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ABSTRACT 

 Alternative DNA structures are likely to form from Watson-Crick B-form DNA when there 

is an asymmetric distribution of guanosine and cytosine on opposite DNA strands, especially 

during processes that involve superhelical duress. A guanosine rich strand can form a four-stranded 

structure known as a G-quadruplex (G4). The complimentary cytosine rich strand can utilize 

intercalating cytosine-cytosine base pairing to form a four-stranded structure known as an i-motif 

(iM). While both structures are known to exist in vivo, they are energetically uphill from double 

strand DNA (dsDNA), meaning that additional factors are needed to facilitate their formation. 

Earlier, it was believed that iMs required slightly acidic conditions (pH ≤ 6) for structure 

stabilization. However, crowding agents like polyethylene glycols and dextrans can shift the pKa 

of the iM (the pH at which 50% of the iM is folded) nearer to the physiological pH of ~7. 

Additionally, loop regions of iMs have been implicated in their thermal and pH-dependent 

stability. Small molecules such as polyamines and larger molecules like proteins can interact with 

iMs by binding to their loops, suggesting that additional biochemical factors may also facilitate 

their stabilization. In this report, we present data on how 7-aminoactinomycin D -- an antitumor 

drug known to bind DNA loops -- can affect the iM structure. Our results demonstrate that a small 

molecule antitumor drug can stabilize or destabilize iMs by simultaneously changing 

thermodynamic properties including Tm, pKa, and ΔG°37 °C. Our results suggest that the use of 

small molecules may be a promising way to therapeutically regulate expression of genes controlled 

by alternative DNA structures like G4s and iMs. 
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CHAPTER I: INTRODUCTION 

The DNA inside eukaryotic nuclei exists predominantly in the familiar double helix B-

form conformation, as first reported by Watson and Crick.1 However, there are many instances 

when this familiar conformation can be altered. Intranuclear processes like transcription and 

replication locally unwind and melt dsDNA into two single strands of DNA (ssDNA), which in 

turn allows for the formation of non B-form DNA structures.2 Non-B DNA structures—sometimes 

referred to as DNA secondary structures—are thought to play several different roles in cells, 

including regulation of transcription.3,4 Interestingly, regions of ssDNA rich in guanosine and 

cytosine have shown the ability to form noncanonical, four-stranded DNA structures called G-

quadruplexes (G4) and i-Motifs (iM), respectively. 

The G4 structure is made possible through Hoogsteen hydrogen bonding between four 

guanosine residues on a single strand of DNA. These residues interact with one another to form a 

planar tetrad; in regions of ssDNA rich in guanosine, multiple tetrads can form and stack on one 

another, forming the G4.5 Multiple factors contribute to the formation and stability of these 

structures, including solvent-makeup, monovalent cations, protein binding, and superhelical 

duress.6-8 G4s are known to form in vivo,5 and the sequences of DNA capable of forming G4s are 

disproportionately located in and around the promoter elements of proto-oncogenes; there has been 

much work over the years describing the variations in the likely mechanisms by which different 

G4s affect transcription of genes,9 but the overall results suggest G4s represent a potential drug 

target to therapeutically manipulate expression of oncogenes.
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The cytosine rich DNA complementary to guanosine rich sequences are similarly capable 

of forming a ssDNA structure called the iM. Their existence was first proposed in the 1960’s when 

Landridge and Rich10 postulated that DNA containing multiple protonated cytosines could 

hydrogen bond with one another at low pH to form an ordered structure. The existence of such 

structures was not validated until the 1990’s.11 At pH near 5.4, a poly-dC strand of DNA becomes 

partially ionized, allowing for noncanonical, hemiprotonated C•C+ base pairs to intercalate with 

one another and form the iM.11 However, early studies of iM stability revealed that the proton 

concentrations necessary to form the C•C+ base pairs are only readily available at relatively acidic 

pH’s (below pH 6), which is significantly more acidic than the intranuclear pH of ~7.1. As a result, 

the iM was initially regarded as a biophysical novelty with no real physiological relevance. 

The early experiments on iMs, however, did not consider the different biochemical factors 

that could influence formation of iMs in vivo. For example, experiments have shown that the 

activity of water can affect the formation of ssDNA structures like the iM.12,13 Approximately 

20%-40% of the volume of eukaryotic cell nuclei is occupied not by water, but by biomolecules.14 

In this crowded intranuclear environment, water activity is measurably lower than in the dilute 

aqueous buffer first used to understand the pH-dependent formation of iMs. The use of crowding 

Figure 1. Schematic describing the general structure of G4s and iMs formed from ssDNA. Guanosine residues 

are shown in green, and cytosine residues are shown in red. 
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agents such as polyethylene glycols and dextrans to mimic the crowded nuclear environment 

reveals an almost universal shift in the stability of iMs toward more physiologically relevant 

values.12,15-17 These studies suggest that iM structures are more stable at physiological pH than 

originally anticipated. 

Recently, iM structures have been directly observed in cell nuclei, confirming that their 

formation from dsDNA in vivo is energetically possible, thus further increasing interest in their 

possible biological role. Some of the most exciting work has come from the labs of Dinger and 

Christ, who have recently published the first visualization of native iMs in the nuclei of human 

cell lines.18 The formation of iM structures was not only pH-dependent -- as expected -- but also 

cell-cycle dependent; iM formation was most prevalent at the G1/S boundary, a point in the cell-

cycle where transcriptional activity is high, providing further evidence that iMs, like G4s, serve an 

important role in transcriptional regulation. 

Because iM-forming sequences of DNA are complementary to G4-forming sequences of 

DNA, the sequences that are capable of forming iMs are also predominantly located in and around 

promoter elements of proto-oncogenes, and investigations into the iM as a transcriptional regulator 

have been fruitful.9,19-25 For example, the Hurley lab has proposed a mechanism by which an iM 

in the promoter of the myc gene affects transcription of the gene by acting as a mechanosensor.26 

In cases of minimal negative supercoiling in the myc promoter, iM folding is facilitated, and the 

binding of important transcription factors to this cytosine-rich region is inhibited, leading to 

lowered transcription of the myc gene. When the same promoter becomes more densely 

supercoiled, iM folding is inhibited and the unfolded ssDNA conformation is more favored. The 

unfolded iM facilitates binding of transcription factors, and transcription of myc increases. This is 

a very important finding, as it appears to confirm what has long been expected about the role of 
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G4s and iMs in gene regulation. 

Attempts to understand the biological roles of iMs as transcriptional regulators -- and 

ultimately, as drug targets -- have required the identification of iM-interactive compounds. Of the 

few compounds known to interact with iMs, many are inspired by preexisting compounds that 

interact with G4s. Examples include Tetra-(N-methyl-4-pyridyl) porphyrin;27 macrocyclic poly-

oxazoles;28 and several phenanthroline and acridine derivatives.29,30 Screening chemical databases 

has identified other iM-interactive compounds such as mitoxantrone, a synthetic doxorubicin 

derivative; tilorone, an antiviral compound; and tobramycin, an aminoglycoside antibiotic.31 

The identification of iM-interactive compounds has allowed researchers to understand iM 

function associated with other proto-oncogenes like bcl-2.32,33 Upstream of the bcl-2 gene’s P1 

promoter is a GC-rich element integral to bcl-2 promoter activity; deletions or mutations in this 

region lead to elevated transcription of bcl-2. The cytosines within this element are capable of 

forming an iM.23 Hurley et al., identified two compounds -- IMC-76, a cholestane derivative, and 

IMC-48, a pregnanol derivative -- that have opposing effects on the stability of this bcl-2 iM ex 

vivo. IMC-76 was shown to unfold the iM into a hairpin conformation, and IMC-48 was shown to 

stabilize the folded version of the iM. Treating bcl-2 positive cancer cell lines with these 

compounds resulted in opposite effects on transcription of the bcl-2 gene. Use of IMC-76 lead to 

a downregulation in transcription of bcl-2, resensitizing lymphoma cell lines to treatment with 

traditional chemotherapy. In xenograft murine lymphoma models, use of IMC-76 alongside a myc 

G4-interactive compound substantially lowered the IC50 values of traditional chemotherapy 

agents.34 These papers give further evidence that iMs affect transcription via their folded or 

unfolded state, and furthermore, that the distribution of these conformations can be affected by the 

use of small molecules. 
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Other iM-interactive compounds have been used to probe the function of iMs associated 

with other proto-oncogenes.35 The Hurley lab has shown that expression of the oncogene KRAS 

can be regulated with an iM-interactive benzophenanthridine alkaloid.36 Additionally, they have 

described an iM-interactive benzothiophene-2-carboxamide with the ability to affect transcription 

of PDGFR-β in neuroblastoma cell lines.37 Shu et al., have recently synthesized an acridone 

derivative that has the ability to selectively bind and stabilize the myc promoter iM; their in vitro 

data shows this compound can downregulate the oncogenic overexpression of myc.38 While the 

iMs associated with each of these proto-oncogenes regulates transcription differently, a pattern has 

emerged: small molecules that affect the equilibrium of the folded and unfolded iM can impact 

transcription of genes controlled by iMs. 

Ligands like those mentioned above have helped researchers to understand some of the 

biological roles that iMs play, but their usefulness in the study of other iMs is limited because the 

ability of these compounds to target iMs is heavily dependent on the structural features of the iM. 

This is important to note, because iMs constitute a diverse class of DNA structures that can vary 

in cytosine tract length, loop length, loop position, and loop composition. To understand the 

feasibility of the iM as a drug target, future studies of iMs will necessitate new iM-interactive 

compounds, but the identification of novel iM-interactive compounds is a difficult process with 

very low success rates. Conventional drug discovery methods will likely be slow to identify iM-

interactive compounds, impeding our ability to draw broader conclusions about small molecule 

targeting of the iM.  

The structural diversity of iMs, however, also grants us the freedom to create unique 

models to study the effects of ligand binding to the iM. In this thesis, a series of non-genomic 

“model” iMs (Fig. 4) were synthesized that facilitate interaction with a known DNA binding drug, 
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7-Aminoactinomycin D, to assess the ability of a small molecule to affect the overall stability of 

the iM. We found that a small, loop-binding molecule like 7-AAMD can modestly affect overall 

iM stability. However, these changes were less dramatic than anticipated, suggesting that small 

loop-binding molecules may not be the best method to dramatically affect iM stability. 
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CHAPTER II: BINDING OF 7-AAMD TO MODEL IMS 

II.a Introduction 

The iM forms of DNA have been implicated as important transcriptional regulators of 

genes, predominantly those that are often misregulated in cancer. As such, they are appealing drug 

targets. The use of small molecules to affect the stability of these iMs seems a promising way to 

affect gene expression, with potential anti-cancer benefits.32-34 but due to difficulty identifying iM-

interactive compounds, little is known about the extent to which small molecules can affect the 

stability of iMs. By creating seven, non-genomic model iMs (Fig. 4) that facilitated strong 

interaction with 7-aminoactinomycin D (7-AAMD), a known DNA-binding fluorophore derived 

from actinomycin D (AMD), the ability of small molecules to affect iM stability was studied. 

7-AAMD is the fluorescent analogue of AMD, a potent antiviral and anticancer molecule 

isolated from bacteria of the genus Streptomyces. The molecule (Fig. 2) is composed of a planar 

phenoxazone chromophore linked to two identical, pentapeptide rings. 7-AAMD’s therapeutic 

properties were once broadly attributed 

to the molecule’s ability to 

nonspecifically bind guanosine 

residues via intercalation, halting 

transcription by RNA polymerase,39-43 

but later studies of 7-AAMD revealed 

the molecule’s unique and much higher 

affinity for ssDNA target sequences 

Figure 2. The structure of 7-AAMD. For simplicity, the identical 

pentapeptide rings are shown coplanar with the phenoxazone; in 

reality, they are above and below the plane of the paper. 
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that contain 5’-AGT-3’, especially when those sequences can form a ssDNA hairpin.44-47 This 

hairpin ssDNA secondary structure can recruit AMD, and via “hemi-intercalation” of the 

phenoxazone into the 5’-AG-3’ polypurine step and coordination of the pentapeptide rings with 

nearby bases in the loop of the DNA hairpin, the drug can stabilize the secondary structure.46 The 

ability of 7-AAMD to bind and stabilize a ssDNA target will be fundamental to our studies. 

7-AAMD’s affinity for this target was discovered by pronounced changes to the molecule’s 

emission spectra upon binding to ssDNA, changes that are useful for studies of drug-DNA 

interactions. Upon binding the target hairpin DNA, 7-

AAMD’s fluorescence intensifies dramatically and 

undergoes a pronounced hypsochromic shift.44 

Understanding the unique environment in which 7-AAMD 

resides when bound to these ssDNA hairpins helps to 

explain the observed changes in the emission spectra. 7-

AAMD “identifies” its target by simultaneous 

intercalation between purine base pairs in the stem-loop 

interface and hydrogen bonding of a pentapeptide ring 

with nearby DNA bases in the loop of the hairpin. 

Interestingly, in the hairpins studied, non-Watson-Crick mismatched base pairs like T-T in the 

stem of the DNA hairpin help to stabilize the DNA-drug complex while simultaneously shielding 

the fluorophore from water. Without nearby water, the excited state of 7-AAMD does not 

experience as much hydrogen bonding with the surrounding solvent. As a result, energy is less 

effectively dissipated in 7-AAMD’s excited state, and this energy is instead released via emission, 

resulting in a blue shift of the emission spectrum.48 The hydrophobic environment of the bound 7-

Figure 3. The folded model iM L123HP with 

labeled loop regions. Each of the seven model 

iMs contains the hairpin loop known to bind 

7-AAMD; the name of each model iM 

describes the placement of the loop. 
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AAMD also liberates the fluorophore from solvent-mediated quenching, and as a result, more 

intense fluorescence can be detected; quantum yield efficiencies can grow more than five-fold if 

the “hydrophobic matching” of 7-AAMD to the ssDNA structure is ideal.44-46,48 These unique 

changes in the emission spectrum of 7-AAMD position the drug as a great tool for studying 

interactions with ssDNA structures like the iM. 

 

 

AIM OF THESIS: The specific aim of this thesis is to assess the stability of seven model 

iMs before and after binding of a known anti-tumor drug, 7-AAMD. 7-AAMD is known to have 

a strong affinity for a ssDNA hairpin.46 The seven model iMs incorporate this hairpin target into 

their loop regions; these loop regions are diverse structural features of iMs that play important 

roles in biomolecular recognition of genomic iMs.33,49 Given the high affinity of 7-AAMD for the 

hairpin loops, we can begin to understand the extent to which small molecules can affect iM 

stability when they interact with this important iM structural feature. This is important because the 

efficacy of iM-targeted therapies seems to be dependent on the ability of the small molecule to 

shift the equilibrium between the folded and unfolded iM in vivo. The objective of this thesis is to 

determine the thermal stability and pH stability of the seven model iMs before and after drug 

Model iM Sequences 
 
L1HP   5’-CCCAGTTTTAAATCCCTCCCTCCC-3’ 
L2HP   5’-CCCTCCCAGTTTTAAATCCCTCCC-3’ 
L3HP   5’-CCCTCCCTCCCAGTTTTAAATCCC-3’ 
L12HP   5’-CCCAGTTTTAAATCCCAGTTTTAAATCCCTCCC-3’ 
L13HP   5’-CCCAGTTTTAAATCCCTCCCAGTTTTAAATCCC-3’ 
L23HP   5’-CCCTCCCAGTTTTAAATCCCAGTTTTAAATCCC-3’ 
L123HP  5’-CCCAGTTTTAAATCCCAGTTTTAAATCCCAGTTTTAAATCCC-3’ 

Figure 4. The seven model ssDNA iMs used in these studies. The hairpin loops (shown in bold) are a 

known target of 7-AAMD. The name of each model iM describes the loop position of the hairpin 

sequence. 
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binding. This entails measuring changes in the iM Tm’s (that is, the temperature at which 50% of 

the iM is folded) as a result of drug binding, which was accomplished by using UV-visible 

spectroscopy on a Cary 100 UV-visible spectrometer. To study the pH stability of these iMs, we 

measured changes to the iM pKa’s (that is, the pH at which 50% of the iM is folded) as a result of 

drug binding. This was accomplished using circular dichroism studies on an Olis DSM-20 

spectropolarimeter. Drug-DNA interactions were confirmed and described quantitatively using 

fluorescence emission spectroscopy on an ISS K2 fluorometer. This is a creative method for 

studying small molecule interaction with iMs that allowed us to understand, in a best case scenario, 

what changes small molecule binding can have on overall iM stability.  

 

II.b. Methodology 

Materials  

The model iMs used in this study were based on the simple, iM-forming oligonucleotide 

known as T1.17 The T1 iM is a good model because it undergoes a simple two-state transition from 

folded to unfolded form.17 The ssDNA sequence known as HP6 (5’-AGTTTTAAA-3’), which is 

a known high-affinity target of 7-AAMD, was incorporated into each of T1’s loop regions (Fig. 

4), creating a total of seven model iMs. These oligos were synthesized by and purchased from 

Midland Certified Reagent Co., Inc. (Midland, TX). Each of the model iM oligonucleotide stock 

solutions were stored in a 10 mM Tris, 1 mM EDTA buffer at pH 8.0 in a -20 ̊C freezer. The 

sodium cacodylate, Tris-HCl, and EDTA used to create buffer solutions were purchased from 

Fisher Scientific (Pittsburgh, PA). 7-AAMD was also purchased from Fisher Scientific 

(Pittsburgh, PA) and stored in DMSO at -20 ̊C. Technical note: it is important to aliquot the 7-

AAMD solutions in DMSO into ~100 µL portions and store them at -20 °C. Repeated freezing 
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and thawing cycles rapidly degrades 7-AAMD fluorescence and DNA-binding properties via a 

mechanism that we are presently investigating. 

Kd determination for 7-AAMD-iM interactions 

Fluorescence titration studies were done using an ISS K2 Fluorometer. A 0.6 µM solution 

of 7-AAMD was excited with 530 nm light and emission spectra were collected from 560-700 nm 

after incremental additions of 1 mM iM. Emission spectra were collected until changes in emission 

reached a plateau, indicating saturation of the 7-AAMD. Relative changes in fluorescence (ΔF/Fo) 

at emission λmax (~625 nm) for each of the samples were plotted against amount of ssDNA titrated, 

and through application of a Langmuir isotherm fitting equation, dissociation constants (Kd) were 

calculated, as has been previously described.44-46 These experiments were carried out both at acidic 

pH of 5.4 where the iM was fully folded and at an alkaline pH of 8 where no iM would normally 

be formed without facilitation.  

Thermal Stability and Denaturation of iMs  

iM structures show a pronounced hypsochromic and hyperchromic shift in their UV-visible 

absorbance spectra upon heating that can be monitored at 260 nm to determine folded and unfolded 

states. Model iMs (5 µM) in 30 mM cacodylate buffer at pH 5.4 were melted with and without 7-

AAMD. Melting of the model iMs was performed on a Cary 100 UV-Visible Spectrometer 

(Agilent Technologies, Santa Clara, CA). Prior to experimentation, each sample was heated to 

80 ̊C for 5 minutes and then cooled to room temperature to ensure removal of unwanted DNA 

dimers. Thermal denaturation recordings were made by monitoring the absorbance at 260 nm 

while increasing the temperature from 25 ̊C to 85 ̊C, at a ramping rate of 2 ̊C per minute and a one-

minute hold at each temperature. Calculated Tm’s represent the temperature at which 50% of the 

model iM is unfolded. All thermal denaturation experiments could be fit to a simple two-state 
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model, defined in Eq. 1) as: 

𝐸𝑞. 1) 𝑈𝑛𝑓𝑜𝑙𝑑𝑒𝑑 ↔ 𝑁𝑎𝑡𝑖𝑣𝑒 

By applying this model, the absorbance data can allow estimation of the equilibrium 

constant, K, at any given temperature. The change in free energy at 37 °C (ΔG°37 °C) can be 

calculated by the use of the absorbance data at 37 ̊C and Eq. 2: 

𝐸𝑞. 2) 𝐾 =  
[𝑁]

[𝑈]
=  𝑒

−∆𝐺
𝑅𝑇⁄  

where [N] and [U] are the concentrations of the iM and random coil forms of DNA, respectively, 

R is the gas constant, and T is the physiological temperature (310 K). 

Determination of iM pKa 

To determine the pKa for iM folding (defined as the pH at which 50% of the oligo is folded 

into the iM), CD spectra of DNA solutions at 20°C were collected from 250-320 nm at various 

pH’s (pH 5 - pH 8) on an Olis DSM 20 Circular Dichroism (CD) instrument fitted with a peltier 

heat block (Olis, Inc. Bogart, GA, USA). The experiments were performed with and without 7-

AAMD. An integration time as a function of high voltage was used. The CD signals observed at 

290 nm were then plotted against pH, and Eq. 3 was applied to obtain the pKa’s of the model iMs 

and the cooperativity parameter that describes their unfolding.  

𝐸𝑞. 3) 𝑆𝑖𝑔𝑛𝑎𝑙𝑡𝑜𝑡𝑎𝑙 =
𝑠𝑖𝑔𝑛𝑎𝑙𝑓𝑜𝑙𝑑𝑒𝑑 −  𝑠𝑖𝑔𝑛𝑎𝑙𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑

1 +  10𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑖𝑡𝑦∗(𝑝𝐻−𝑝𝐾𝑎)
+  𝑠𝑖𝑔𝑛𝑎𝑙𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑   
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II.c Results 

7-AAMD binds the model iMs 

Binding of 7-AAMD to the model iMs results in significant changes to the fluorescence 

spectra of the drug, (Fig. 5) as has been described previously for binding of 7-AAMD to select 

ssDNA.44-46 Analysis of these fluorescence changes allows for calculation of the binding affinity 

of the drug for each iM through application of a Langmuir isotherm fitting equation. The close 

resemblance of the spectral changes to 7-AAMD binding to ssDNA hairpins containing the HP6 

sequence in their loops suggests that 7-AAMD is interacting with the loops of the model iMs.44,46 

The Kd’s describing the interaction between 7-AAMD and the model iMs were determined and 

tabulated in Table 1. 

The Kd’s for L1HP, L2HP, and L3HP were 4-to-5 times lower at pH 5.4 than the Kd’s 

determined at pH 8 (Table 1). The fluorescence intensity change upon binding of the iMs by 7-

AAMD is also lower at the more alkaline pH than the fluorescence intensities at the more acidic 

pH (Fig .5). These pH-dependent changes in the emission spectra are consistent with 7-AAMD’s 

preference for the HP6 target in a hairpin conformation and the solvatochromic effects associated 

with binding of 7-AAMD to this particular ssDNA target.46,48 Interestingly, this data also shows 

that is possible for a small molecule to preferentially bind the folded iM rather than the unfolded 

ssDNA, an ideal feature of future potential therapeutics that target the iM. 
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The number of assumed binding sites for each sequence influenced the calculated 

dissociation constants. At both pH 5.4 and 8.0, 7-AAMD was more readily bound by an iM with 

multiple binding sites than an iM with one binding site, with the exception of L13HP and L123HP 

at an acidic pH. We attribute this to sterics; when folded into the iM, the hairpin loops in the first 

and third position are directly adjacent to one another and can impede simultaneous ligand binding. 

As the iM unfolds at a higher pH, the DNA becomes linear. The potential binding sites for 7-

AAMD become further apart and largely independent of one another, and as a result, the Kd for 

L13HP at pH 8 is less than L1HP or L3HP at pH 8.  

Figure 5. Titration curves derived from fluorescence intensification of 7-AAMD in the presence of the model 

iMs. Model iMs containing one hairpin loop are shown on the left. Model iMs containing multiple hairpin loops 

are shown on the right. The fluorescence intensifications and calculated dissociation constants are correlated (a 

phenomenon previously observed in earlier studies of 7-AAMD binding ssDNA44-48) and these two parameters 

are dependent on the pH of the solution. 
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Regardless of the small 

differences in 7-AAMD’s affinity for 

our model iMs at an acidic pH, this 

data illustrates that 7-AAMD bound 

our model iMs. We interpreted this to 

mean that 7-AAMD’s interaction 

with these iMs constitutes a useful 

model with which to probe the effects 

of small molecule binding to the iM. 

The following experiments explored 

those effects on the thermal and pH 

stability of the model iMs. 

7-AAMD affects the thermal stability of the model iMs 

Previous reports have demonstrated that iM loop length, position, and composition affect 

both the thermal and pH-dependent stability of iMs.9,50-52 Our lab has previously shown that iMs 

with loops in the second position are more stable than iMs with identical loops in the terminal first 

or third positions.17 While those previous studies used loops exclusively composed of dT residues, 

here our model iMs contained more heterogeneous loop sequences.  Specifically, the iMs used 

here contain the loop insert known as HP6.46 HP6 alone binds 7-AAMD with a Kd of 0.4 μM but 

only minorly affects fluorescence intensity. We inserted the HP6 sequence into the first, second, 

and third loops of the model iMs, and all combinations. Similar to our lab’s previous findings, iMs 

with loops in the first and third position have significantly lower Tm’s than when the insert was at 

the second position. Interestingly, when compared to previously published data describing iMs 

Table 1.) Dissociation constants describing the interaction of 

model iMs and 7-AAMD at acidic and alkaline pH's 
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with poly-dT loops of equal length, the model iMs in this study have higher Tm’s; for example, 

L1HP has a Tm ~10 °C higher than Mod1T10, an iM with a 10 bp poly-dT loop in the same 

position.17 This is presumably due to the presence of intra-loop interactions. Future, more 

systematic studies will be needed to fully understand the effects of these intra-loop forces on iM 

thermal stability. 

Model iMs with multiple hairpin loops exhibit interesting patterns in thermal stability. We 

anticipated that the HP6 loops would confer additional stability to the iM, given their ability to 

form an additional dA•dG base pair.  However, our data shows that the presence of loops at any 

position negatively influences iM stability. Sequences with multiple hairpin loops like L12HP have 

a destabilizing “weighted average” effect, where the Tm of an iM containing multiple hairpin loops 

is between the Tm’s of iMs that contain only one of the hairpins. This pattern is depicted graphically 

Figure 6. Graphical depiction of the "weighted average" destabilization effect describing the thermal stability of 

iMs containing multiple hairpin loops. Cytosines, adenines, thymines, and guanines are shown in grey, red, blue, 

and green, respectively. Note how the Tm for an iM with multiple loops falls between the Tm’s of simpler iMs 

containing one of the loops. Also, note that regardless of hairpin loop placement, all model iMs are less thermally 

stable than the simple T1 iM. 
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in Fig. 6 and tabulated in Table 2. 

The Tm’s for all model iM sequences with multiple hairpin loops followed this pattern, with 

the slight exception of L13HP. L13HP deviated negatively from the “weighted average” trend, 

with slightly lower than expected Tm’s and pKa’s. We suspect this destabilization is due to steric 

interactions between the first and third hairpin loops that are present when L13HP is folded into 

the iM. It is unclear whether the “weighted average” effect is present in other iMs containing 

multiple loops, or if this phenomenon is unique to our model iMs. Still, the strategic incorporation 

of multiple loops into the iM may benefit nanotechnologists seeking to fine-tune the stability 

of iMs used in a litany of nanoscale processes, as described in several reviews.53-55 

Past data has shown that 7-AAMD can affect the thermal stability of ssDNA structures. In 

fact, a past report revealed that 7-AAMD had the ability to shift the Tm of ssDNA hairpins 

containing the HP6 insert, in some cases by more than 30 °C.46 Our fluorescence data indicated 

that 7-AAMD bound our model iMs very similarly to those ssDNA hairpins; logically, we 

anticipated stabilization of our model iMs. 

The results were less dramatic than anticipated but notable. L1HP, L2HP, L13HP 

experienced little to no increase in Tm after binding of 7-AAMD. L3HP, L12HP, and L23HP 

experienced a modest Tm increase of ~4 °C after binding of 7-AAMD. Interestingly, binding of 7-

AAMD to L123HP caused a decrease in Tm, lowering L123HP’s Tm from 39.5 °C (above 

Table 2. Calculated Tm's and ΔG°37 of the model iMs before and after saturation with 7-AAMD  
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physiological temperature) to 35.6 °C (below physiological temperature).  After binding of 7-

AAMD, L3HP’s Tm was raised from 34.0 °C (below physiological temperature) to 38.4 °C (above 

physiological temperature). While the absolute change in Tm for these two models may be small, 

they could represent a therapeutically useful repositioning of equilibrium away from or towards 

formation of an iM in vivo. Changes in the absorbance data for the model iMs at 37 °C reveal that 

small molecule binding can affect the energetics of iM folding. The measured ΔΔG°37°C values 

tabulated in Table 2 are similar to those reported elsewhere that describe the effect of molecular 

crowding reagents on iM formation.17,56 
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Figure 7. Thermally induced unfolding of the model iMs before and after saturation with 7-AAMD, as measured 

by hyperchromic shifts in absorbance upon heating. Model iMs containing one hairpin loop are shown on the 

left. Model iMs containing multiple hairpin loops are shown on the right. Tm’s are tabulated in Table 2. 
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7-AAMD affects the pH dependency of the model iMs 

Previous reports have similarly demonstrated that iMs with loops in the second position 

have higher pKa values than iMs with loops in the first and third position.17, 50-52 The pKa values 

measured for L1HP, L2HP, and L3HP follow this trend as well. These models have slightly 

different pKa values compared to iMs with poly-dT loops.17 L1HP (pKa 6.24) is slightly more 

stable than Mod1T10 (pKa 6.14) and L2HP (pKa 6.80) is slightly more stable than Mod2T10 (pKa 

6.62). However, L3HP (pKa 5.96) was slightly less stable than Mod3T10 (pKa 6.12). The pKa 

values for model iMs with multiple hairpin loops followed the same “weighted average trend” that 

described their relative thermal stabilities, where the pKa for L12HP falls between the pKa values 

of L1HP and L2HP. 
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The modest effects of 7-AAMD binding on the thermal stability of the model iMs were 

reflected in the pKa studies. L1HP and L2HP experienced pKa increases of ~0.1 pH units. L13HP 

and L23HP experienced pKa increases of ~0.2 pH units, and L12HP experienced a pKa increase of 

~0.3 pH units. L123HP’s modest thermal destabilization after ligand binding was accompanied by 

a modest decrease in pKa of ~0.2 pH points, further supporting the notion that simultaneous 

interaction with all loops may be a viable method for destabilizing the iM in vivo. 

Figure 8. pH-induced unfolding of the model iMs before and after saturation with 7-AAMD, as monitored by 

CD signal at 290 nm. Model iMs containing one hairpin loop are shown on the left. Model iMs containing 

multiple hairpin loops are shown on the right. Calculated pKa’s are tabulated in Table 3. 



 21 

Surprisingly, L3HP experienced an increase in pKa of nearly 0.5 pH points after binding of 7-

AAMD. As mentioned above, the L3HP model iM also experienced a modest Tm increase of ~4°C 

after ligand binding. Prior to ligand binding, L3HP was one of the least stable model iMs; it had 

the lowest Tm (34.0 °C) and the second lowest pKa (5.96). This result suggests that, if the goal of 

iM-targeted therapies is to dramatically shift the iM’s stability, semi-stable iMs, perhaps with 

unique loops in the third position, may be appealing targets. 

 

II.d Discussion 

Our primary goal for this thesis was to create a series of model iMs that could facilitate 

small molecule interaction with loop regions of the DNA iM and to subsequently measure changes 

in iM stability. To create these model iMs, we inserted a short hairpin sequence of ssDNA into 

each of the loop regions of a simple iM. We chose this sequence because of its conformation-

dependent affinity for the antitumor drug 7-AAMD. To determine if 7-AAMD interacted with the 

model iMs, we monitored the unique fluorescent properties of the molecule to confirm interaction 

with the iMs. We then measured the Tm’s, ΔG°37 °C’s, and pKa’s of the model iMs before and after 

saturation with 7-AAMD to determine the effects of small molecule binding on iM stability.  

This data is important because it allows researchers to better understand the extent to which 

loop-binding small molecules can affect the folding of iMs. This directly impacts the feasibility of 

iMs as drug targets for gene therapy. While our findings were less dramatic than anticipated, they 

illustrate that by simultaneous changes to iM Tm, pKa, and ΔG°37 °C, small molecule binding can 

Table 3. Calculated pKa’s for model iMs before and after saturation with 7-AAMD 



 22 

be another important energetic consideration that affects the formation of iMs in vivo, especially 

for semi-stable iMs with Tm’s and pKa’s near physiological values. However, our findings also 

suggest that dramatically shifting the stability of the iM in vivo via loop-binding small molecules 

may be a difficult task for future gene targeting applications. Until more iM-interactive compounds 

can be identified that dramatically alter the stability of iMs, our experiments suggest that the future 

of iM-targeting may be better suited for combination therapies as described by Hurley rather than 

standalone therapies.34 Additionally, our experiments make no conclusions about the ability of 

proteins or thoughtfully designed peptidomimetic ligands to affect iM stability, two very promising 

strategies illustrated by other groups.33,57 Our results suggest that, if the goal of iM targeting is to 

dramatically alter iM stability, identification or synthesis of iM-interactive proteins and 

biomimetics may be a worthwhile pursuit. 

 

II.e Summary 

 The iM was originally dismissed as a biophysical novelty with no real biological 

significance, but through the contributions of researchers across many disciplines, we have come 

to understand the iM as 1.) a dynamic ssDNA structure that cells use to modulate expression of 

genes critical to their survival, and 2.) a very appealing drug target for gene therapies, 

specifically those seeking to provide anti-cancer benefit. Today, many “targeted” contemporary 

cancer treatments are “anti-protein” in that they seek to inhibit a particular oncogenic protein. iM 

and G4 targeted therapies are unique in that they are “anti-gene” treatments; they are able to 

directly inhibit the transcription of overactive oncogenes. These types of therapies would be of 

great use in the field of oncology. However, the development of these therapies necessitates a 

deeper understanding of the effect small, drug-like molecules can have on overall iM stability, as 
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this directly influences the efficacy of  therapies targeting the iM. This thesis concluded that a 

small, loop-binding molecule can in fact modestly affect iM stability. However, it would also 

seem that future therapies seeking to dramatically affect iM stability in vivo via small molecules 

will be a difficult (but not impossible) endeavor. 

 

II.f Future Work 

This work has sought to explore the role small molecule binding can have on iM stability, 

but these experiments were performed in dilute aqueous buffer. Crowded solvent systems more 

closely mimic the intranuclear environment in which iMs actually form, and past studies have 

shown that iMs are almost always stabilized in these solvent systems. As a result, we are attempting 

to study the effects of small molecule binding to our model iMs in crowded solvent systems that 

more closely represent their native, intranuclear environment. However, solvaotchromic changes 

in the fluorescent properties of 7-AAMD have necessitated the use of different spectroscopic 

techniques to confirm and monitor DNA-drug interactions, namely UV-visible absorbance and 

fluorescence anisotropy. 
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