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ABSTRACT 

Performance-based approach for material design, risk assessment, and emergency planning is 

utilized in this research. Artificial Neural Network (ANN) technique is employed to analyze 

and optimize two engineering problems; characterizing the stress-strain behavior of graphene 

nanocomposites and predicting earthen embankment failure due to overtopping. In the first 

application, the optimization is based on experimental data, and in the second application, it is 

based on numerical data.  

In the first problem, Polyetherimide graphene nanoplatelets papers (PEIGNP) were tested with 

different graphene loadings varying from 0-97 weight percent (WT%). The resulting stress-

strain curves were utilized to develop two ANN models. Stress-controlled and strain-controlled 

models. Both models showed an excellent correlation to the experimental. Several Mechanical 

properties were calculated from the predicted stress-strain curves, namely; toughness, 

maximum strength, maximum strain, and maximum tangent modulus. Both models captured 

the same overall behavior of the PEIGNP composite. However, the strain-controlled model 

was found to predict lower stress than the stress-controlled model. Finally, a Graphical User 

Interface (GUI) was developed to aid in future use of the developed material.  

In the second problem, a comprehensive investigation is performed to study the behavior of 

earthen embankments during an overtopping event. Due to experimental limitations, numerical 

simulations are performed utilizing multi-phase Smoothed Particle Hydrodynamics (SPH) to 

study the post-failure behavior of the simulated embankments. This technique is validated by 

modeling different experiments focusing on various aspects of soil behavior, such as; failure 

mechanism, and seepage flow. Two hundred forty simulations are performed for different soil 

properties and embankment geometries. Embankment geometry consists of the side slope and 
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height. The embankment slope range considered between 1.2:1 – 3:1 (H:V). And the height 

range is between 3-15 m. While the soil is divided into two sections; embankment and 

foundation soil. Four different soil types were considered for the embankment soil and five for 

the foundation soil. Many failure parameters were studied, including; failure mode, peak 

discharge, Breach percent and initiation time, and foundation erosion. Eight ANN models were 

developed to predict these failure parameters. The developed models showed an excellent 

correlation to the numerical simulations. Finally, an EXCEL based GUI was designed to 

simplify the use of the developed models. 
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1. INTRODUCTION 

1.1 Optimization aided by Artificial Neural Networks  

Performance-based approach for the design, construction, management, assessment, and 

maintenance of Civil Engineering materials and structures, must satisfy the fundamental 

requirements of strength, resilience, sustainability, and safety from risks, such as floods, 

earthquakes, fires, and explosions. This approach requires a comprehensive analysis of the 

performance indicators. Traditionally, such an analysis relies on classical mathematical 

techniques which are often limited by the assumptions of trend, distribution, and variable 

individuality, etc. In the past decades, soft computing techniques have been a low-cost 

alternative to perform complex analyses in engineering applications.  

Artificial Neural Networks (ANN), which is considered a part of the soft computing techniques, 

is one the most commonly used methods for knowledge discovery. ANN is a computational 

method that emulates the human neurological network structure. On the contrary of 

conventional techniques, ANNs capture trends and variable relationships without being 

conformed to predetermined equations. Recently, ANNs has been a popular method to model 

various civil engineering problems, such as; structural design (Armaghani et al. 2019), material 

behavior modeling (Bui et al. 2018), geotechnical problems (Koopialipoor et al. 2019), 

transportation engineering (Baldo et al. 2018), and Environmental engineering (García-Alba et 

al. 2019).  

(Armaghani et al. 2019) studied the optimization of retaining walls design. In their study, the 

safety factor against overturning was the objective parameter. While considering the wall 

height, concrete density, soil density, soil friction angle and the wall base width as input 
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parameters. The developed prediction model was used alongside the Ant Colony Optimization 

algorithm to achieve the optimum design for the given problem. The model can efficiently 

optimize the safety factor for given design parameters ranges.  

(Bui et al. 2018) studied the performance of high-performance concrete. The objective 

parameter of their study was the compressive strength. The mix design parameters were; 

cement, blast-furnace slag, fly-ash, water, superplasticizer, coarse aggregate, and fine 

aggregate proportions as well as the age of testing. The authors utilized ANN to develop the 

prediction model combined with Modified Firefly optimization algorithm. The developed 

model can predict the compressive strength of high-performance concrete with high accuracy.  

(Pham and Hadi 2014) used ANN modeling, with the Purlin function as an activation function, 

to calculate the compressive strength and strain of fiber reinforced polymer (FRP) confined 

square columns. The proposed model showed an excellent correlation to the experimental data, 

performing better than the mechanical models developed before.  

(Gangi Setti and Rao 2014) proposed an ANN model to predict the stress-strain curve of 

titanium alloy as a function of the volume fractions of α and β. They used a combination of 

activation functions (tan-sigmoid, log-sigmoid, and Purlin) and training algorithms (cascade-

forward backpropagation, feedforward backpropagation, and layer recurrent). The best 

performing network was a combination of the log sigmoidal activation function and the layer 

recurrent training algorithm.  

(Najjar and Huang 2007) implemented the recurrent (dynamic) ANN to predict the stress-strain 

behavior of soils under various initial confining pressures, densities and compaction states. In 

their work, the proposed ANN model was used to overcome the complexity, practicality, and 

accuracy of the available mechanical constitutive models. The final ANN model showed 

excellent statistical accuracy measures when compared to the experimental data.  
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In this dissertation, two optimization problems are addressed. Graphene nanocomposite 

mechanical behavior as well as post-failure behavior of earthen embankments due to 

overtopping. 

1.2 Graphene Nanocomposites 

Graphene has generated enormous research interest in the past decade due to its superior 

electrical, thermal, and mechanical properties (Chen et al. 2008). These properties offer 

potential advancements in many areas of research, one of which is manufacturing the graphene 

nanoplatelets into a macroscopic, paper-like, freestanding sheet form called graphene paper. 

This graphene paper has a variety of applications, such as lithium battery electrodes (Wang et 

al. 2009a), freestanding electrodes for flexible supercapacitors (Wang et al. 2009b), and 

electromagnetic interference shielding sheets (Jiajie et al. 2009). The mechanical, thermal, and 

electrical properties of graphene nanocomposites have been extensively investigated, and it is 

reported to be a next-generation multifunctional super-material (Lahiri et al. 2012). 

 Low price graphene nanoplatelets (GNPs) can be exfoliated from natural graphite, which is 

essentially a stack of graphene that has layers ~10 nm thick shown in Figure 1, and the size of 

the platelets can be controlled (Li et al. 2015). These GNPs exhibit properties analogous to 

those of the graphene sheets. 

 

Figure 1: Scanning Electron Microscope (SEM) Image of Graphene Nanoplatelets (GNPs) 
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However, an issue arises when such highly graphitic platelets are assembled to form graphene 

papers. GNPs are crystalline and smooth, so the platelets slip past one another due to a lack of 

defect sites and oxygen groups which would create a strong adhesion between individual 

GNPs. An obvious solution is to use a binding material to attach individual GNPs to form the 

macroscopic papers. However, the binder material must be compatible with the graphene sheets 

that form the GNPs. Polyetherimide (PEI) can be used as a binder material for GNPs and was 

studied before by (Wu and Drzal 2012). However, Wu et al. used dichloromethane to dilute the 

PEI, which is very volatile and evaporates very fast to form a PEI skin.  This results in difficulty 

controlling the GNP loading in the final paper. (Li et al. 2015) used dimethylacetamide 

(DMAc) to dilute the PEI, allowing the GNP papers to be easily fabricated with almost any 

GNP concentration (0 to nearly 100 wt.%). (Li et al. 2015) studied the behavior PEI-GNP 

papers he fabricated. A significant increase in the loss and storage moduli was found. 

Additionally, impedance, glass transition temperature, as well as the damping coefficient, were 

studied. 

1.2.1 Need of Research  

Graphene nanocomposites are being used in many applications, such as; aerospace, defense, 

additive manufacturing, coating, and many others. Each discipline focuses on specific 

properties of the material, namely; thermal, electrical, or mechanical. Additionally, it is 

essential to optimize the nanocomposite graphene loading for its intended application while 

keeping in mind other properties at the same time. While the PEIGNPs were studied by (Li et 

al. 2015) in terms of electrical, thermal, and mechanical behavior, the static behavior was only 

considered in terms of the stress and strain at failure. Which does not show the overall material 

behavior. Moreover, graphene nanocomposites exhibit behavioral variation due to their 

inhomogeneous structure. Subsequently, it is essential to develop a design tool that can guide 

engineers to get the optimum graphene content for the desired properties.  
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1.2.2 Objectives 

• Test the developed PEIGNPs with varying graphene content ranging from 0-97% using 

standard tension test.  

• Develop optimization models utilizing artificial neural networks (ANN) to predict the 

behavior of the PEIGNPs under different graphene loadings  

• Study the accuracy of the developed models compared to the experimental results  

• Perform a sensitivity analysis of the PEIGNPs to the graphene loading  

• Calculate different mechanical properties from the stress-strain curves obtained from 

the experimental testing as well as the developed ANN models.  

• Develop graphical user interface (GUI) utilizing the developed ANN models  

 

1.3 Dam overtopping  

Extreme weather events such as hurricanes occur every year. Heavy water runoff coincides 

with these events. Dams and levees are one of the most crucial protection infrastructures in 

these occasions. While these structures are designed to withstand a 50 or 100-year storm. Some 

of these structures fail due to deterioration of the dam soil condition or due to extreme loading 

the dam wasn’t designed to withstand.  

The Association of State Dam Safety Officials (ASDSO 2015) reports more than 90,000 dams 

in the United States. More than 15,000 are considered high-hazard potential dams, that is, 

failure is projected to result in loss of life or may cause substantial economic damage. 

Moreover, ASDSO statistics on dam failure incidents between 2010-2015 shows that more than 

70% are caused either by an extreme weather event or overtopping. 

It is essential to prepare for emergencies like dam failure, especially high-hazard potential 

dams. As of 2017, 81% of the state-regulated dams have an emergency action plan (EAP) 

(ASDSO 2015). It is also essential to predict dam failure before the incident itself to provide 
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time to execute these EAPs. Additionally, post-failure behavior is necessary to predict the 

extent of the damage caused by these extreme events.  

1.3.1 Dam Failure  

Many studies were carried to investigate dam failure parameters, such as; failure mode, breach 

shape, breach height and width, breach formation time, and peak discharge. These studies focus 

on the empirical formulation of these failure parameters. 

   (Froehlich 2008) studied 74 embankment failures and formulated a model to predict the final 

breach width, height, and the time to failure. In their study, a Monte Carlo simulation was used 

to evaluate the degree of uncertainty for the breach parameters. The authors’ database didn’t 

include the soil characteristics for the failed embankments.  

(Alhasan et al. 2015) studied four small dam failures in the Czech Republic. In their study, a 

one-dimensional numerical model was developed to simulate the flow during an overtopping 

incident. The authors assumed a trapezoidal shape for the failed dam section. The software 

HEC-RAS was used to simulate the hydraulic flow and erosion of the assumed trapezoidal 

cross-section channel. The erosion parameters were calibrated using the field measurements 

observed from the studied dam failures. The peak discharge was calculated for each case and 

compared with the field measurements.  

(Franca and Almeida 2004) developed a numerical model to simulate rockfill dam overtopping 

failure “RoDaB”. The model relies on hydraulic flow simulation and empirical erosion 

parameters calibrated from laboratory experiments. The model was compared with other 

breach models that depend on similar parameters. Rockfill dam breach was found to be entirely 

different than that of earthen fill. The authors suggested a more comprehensive calibration of 

the erosion parameters.  

(Gee 2009) conducted a comparison between different models that simulate the dam 

overtopping failure. These models rely on the assumption of the initial shape of the eroded 
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channel at the top of the dam crest and empirical soil erosion parameters. The developed models 

generated more significant flow estimations than the observed ones.   

(Froehlich 2016) collected data from 111 dam failures and formulated empirical formulae to 

predict the final breach parameters; average width, channel side slope, and formation time. 

These formulae depend on dam geometry, failure mode, impounded water volume. Soil 

properties were not considered in this study. Moreover, breach formation time wasn’t available 

for most of the studied datasets.  

(Zhong et al. 2018) studied the stability of clay core dams during the overtopping incident. 

Dam erosion was calculated using empirical erosion parameters. The breach parameters studied 

in this paper were; the breach width, discharge, and formation time. The dam clay core stability 

was considered in addition to the erosion of the breach channel. Overturning failure of the clay 

core was found to be dominating.  

1.3.2 Numerical Modeling  

Since it is not feasible to perform full-scale lab experiments to build such a wide-ranging 

database, numerical simulations were utilized in this research. Large deformation and post-

failure analyses are generally difficult to achieve in Finite Element Methods (FEM) or Finite 

Volume Methods (FVM). These methods are grid-based methods, which suffers from grid 

distortion or even computational instability due to the negative values of Jacobian determinants 

at nodes of integration (Bui et al. 2008a). This issue can be solved by relying on meshless 

methods such as; Smoothed Particle Hydrodynamics (SPH).    

Smoothed Particle Hydrodynamics (SPH) is a meshless numerical method used to obtain the 

solution of fluid and continuum dynamics equations by replacing the fluid and/or continuum 

with particles. Originally, SPH was developed in 1977 for astrophysics applications (Gingold 

and Monaghan 1977). The Material is discretized into Particles that have material properties 

such as density, velocity, and stress. These particles move according to their defined governing 



 

8 

equations. Particle interaction is only calculated within a certain radius called smoothing 

distance (h). The weight of each particle contribution is calculated using a kernel function (W). 

The Choice of the smoothing distance and kernel function affects the stability, accuracy, and 

the efficiency of the numerical solution (Monaghan 1994). 

In the last decade, SPH has been used for various geomechanical applications, such as; soil 

stability, soil structures failure, and hydraulically loaded soil embankments. (Bui et al. 2006) 

used SPH to simulate Soil failure flows using the elastic-perfectly plastic soil constitutive 

model. In their study, the Drucker-Prager model was used to describe soil plastic behavior (i.e., 

Failure criteria). SPH results showed good agreement with the experimental results as well as 

FEM ones.  

(Bui and Fukagawa 2013) developed an improved SPH formulation to account for soil-water 

interaction. In their study, a hydrostatic pore water pressure is assumed. The authors performed 

multiple validation problems, namely; a case of fully/partially submerged soil sample, as well 

as slope stability problem. The results of the simulations were consistent with the theoretical 

solutions of the given problems.  

(Korzani et al. 2018a) studied homogeneous embankments under hydraulic and mechanical 

loading. The saturated soil was modeled as two layers; soil and water layer. Each layer has its 

governing equations of motion. The interaction between these two layers was implemented in 

terms of the pore water pressure and seepage forces. Their approach was validated compared 

with different experiments (porous flow and slope stability).  

1.3.3 Need of research 

A comprehensive database is necessary to understand the post-failure behavior of the earthen 

dams. Several studies attempted to develop empirical formulae to predict different parameters 

of dam failure, such as; failure mode, breach shape, breach height and width, breach formation 

time, and peak discharge (Froehlich 2016). However, these studies only focus on the hydraulic 
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failure mechanism. That is by defining an initial shape and size of failure, then study the erosion 

progress of the channel bed. Dam failure due overtopping of water could also cause a structural 

failure which hasn’t been investigated so far. After examination of the databases acquired from 

literature, only the geometric properties of dams were recorded. Soil properties such as the 

angle of friction, cohesion, and grain size distribution are missing. Hence the focus of this study 

on the overall dam stability as well as surface erosion progression and its effect on dam 

stability.   

1.3.4 Objectives  

• Validate the SPH code developed by Dr. Korzani “PersianSPH” (Korzani 2015). 

• Identify the numerical simulation input parameters and develop a simulation database 

to be utilized in developing the ANN models 

• Identify the failure parameters such as; failure mode, peak discharge, breach percent, 

and initiation time. 

• Develop ANN models to correlate the models’ input parameters to the desired failure 

parameters.  

• Validate the developed ANN models by performing numerical simulations that were 

never included in the ANN optimization process.  

• Develop a graphical user interface (GUI) to predict the behavior of earthen 

embankments due to overtopping.  

 

1.4 Dissertation structure  

The core of this dissertation is comprised of three main chapters; Optimization aided by 

Artificial Neural Networks, followed by two optimization applications; characterizing the 

static behavior of graphene nanocomposites and Predicting embankment failure during 

overtopping event. In the first application, the optimization is based on experimental data, and 
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in the second application, it is based on numerical simulation data. Each problem is discussed 

in a separate chapter. The structure of this dissertation is depicted in Figure 2. 

 

Figure 2: Dissertation structure  
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2. OPTIMIZATION AIDED BY ARTIFICIAL NEURAL NETWORKS  

Neural networks have been attracting increasing attention since the development of the concept 

of artificial neurons (McCulloch and Pitts 1943). Ever since new and more advanced models 

have been proposed from decade to decade. Artificial Neural Networks (ANNs) emulates the 

structure of the human brain. As the ANN model is not conformed to a specific formula, the 

model is kept free of the assumption of the behavior of the data, unlike the conventional 

regression techniques.  

An ANN model is comprised of different layers; input, hidden, and output layers shown in 

Figure 3. Each layer consists of “computational nodes” (i.e., neurons). An “Activation 

function” is assigned at each node to perform the calculation. Neurons are connected among 

different layers with links. Each link has different “connection weight” that is optimized in the 

training stage. 

 

Figure 3: Typical ANN model structure
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The input and hidden layers have a “bias neuron” (Rojas 1996). These neurons are added to 

each layer to prevent the network from being “biased” to a specific neuron during the 

calculation process. The bias term is also referred to in the literature as neuron threshold. The 

value of bias neurons is kept constant at 1. However, its connection weight to the other neurons 

in the next layer is optimized during the training stage.  

The information is carried over from any layer to the next using a “Transfer function” utilizing 

the connection weights. Then, the “Learning rule” is defined, which specifies how the 

connection weights are optimized (i.e., learning). Finally, the “Training Algorithm” need to 

be assigned to reach the final network structure.  

In this section, the node activation function, transfer function, learning rule, as well as the 

training algorithm is discussed extensively.  

2.1 Activation function 

The calculation at each node is applied using the activation function. There are different types 

of activation functions. The step or threshold function, as the name suggests, only has two 

values 0, 1. If the value of the neuron input exceeds a certain value, the function returns 1, 

otherwise, it returns 0. This function is generally used in clustering or classification problems. 

The linear function, where the weighted sum input of the neuron is added to a linearly 

dependent bias. This function can be used in engineering problems (Pham and Hadi, 2014). 

Another function usually used in engineering problems is called Log-Sigmoid function, also 

known as the Logistic function. This function is represented by equation (1). The slope factor 

β determines the slope of the function. Figure 4, shown below depicts the Log-Sigmoid 

activation function at different slope factors.  

𝑓(𝑥) =  
1

1 + 𝑒𝛽𝑥
 (1) 

Where β: slope factor  
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Figure 4: Sigmoid activation function 

Another variation of the Log-Sigmoidal function is the Tan-sigmoid function. Where a 

hyperbolic tangent function is used instead of equation (1). 

In this dissertation, the Log-Sigmoid function, referred to as the Sigmoid function, is utilized 

due to the simplicity to calculate its derivatives. Which will be helpful during the training stage.  

 

2.2 Transfer function 

Neurons transmit data from each layer to the next (i.e., Feed-Forward). Each Neuron receives 

the data (i.e., signal) from all the neurons in the previous layer as a weighted sum represented 

by equation (2).  The signal 𝑆𝑘 becomes the input of the activation function. 

𝑆𝑘
𝐿 = ∑ 𝑤𝑗𝑘 𝑓𝑗

𝐿−1 + 𝜃𝑘

𝑗

 (2) 

Where: 𝑆𝑘: The total input of neuron k in the layer L 

 𝑤𝑗𝑘: The connection weight between neuron k in layer L and neuron j in layer L-1 

 𝑓𝑗
𝐿−1: The output from neuron j in layer L-1 
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 𝜃𝑘: The connection weight between the bias neuron in layer L-1 to neuron k  

2.3 Learning rule  

After the data has been transferred through the network. The result from the output neuron (i.e., 

the predicted value) is compared with the target value. The error between these two values is 

used to tweak the connection weights. There are different methods of propagating this error 

(i.e., Error Back-Propagation) to adjust the connection weights, such as; Perceptron’s, Gradient 

Descent, Levenberg-Marquardt, and many others. The most popular learning method is the 

Gradient Decent method due to its simplicity, stability, and effectiveness.  

The Gradient Decent method propagates the error from the output layer to the previous layers 

utilizing the derivatives of the activation function. The weight adjustments are calculated using 

equation (3). 

∆𝑤𝑗𝑘
𝐿 = 𝜂𝛿𝑗

𝐿𝑓𝑘
𝐿−1 (3) 

Where: 𝜂: Learning rate that specifies the step size between iterations 

 𝛿𝑗
𝐿: Correction factor in layer L, calculated using equations (4) and (6). 

 𝑓𝑘
𝐿−1: The output of neuron k in layer L-1 

The error factor for the connection weights between the neurons in the output layer and the 

hidden layer is calculated using equation (4). The error signal is then propagated to the hidden 

layer utilizing the connection weights between these two layers using equation (5). The error 

factor for the neurons in the hidden layer is then calculated using equation (6).  The first 

derivative of the Sigmoid activation function is represented by equation (7). After calculating 

the error factors for all neurons in the output and hidden layers, the weight adjustments are 

computed for each connection weight within the network.  

𝛿𝑗
𝑂 = (𝑇𝑗

𝑂 − 𝑓𝑗
𝑂) 𝑓′(𝑓𝑗

𝑂) (4) 

𝐸𝑆𝑘
𝐻 =  ∑ 𝑤𝑗𝑘 𝛿𝑗  𝑗   (5) 
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𝛿𝑘
𝐻 = 𝐸𝑆𝑘

𝐻  𝑓′(𝑓𝑖
𝐼) (6) 

𝑓′ = 𝑓 ( 1 − 𝑓) (7) 

Where: 𝛿𝑗
𝑂: The correction factor for neuron j in the output layer 

 𝑇𝑗: The target value of neuron j in the output layer 

  𝑓𝑗
𝑂: The output of neuron j in the output layer  

 𝑓′: The first derivative of the activation function. 

 𝐸𝑆𝑘
𝐻: Error Signal transmitted from the output layer to neuron k in the hidden layer  

 𝛿𝑘
𝐻: Error factor for neuron k in the hidden layer  

  𝑓𝑖
𝐼: The output of neuron i in the input layer  

2.4 Training Algorithm 

The Feed-Forward – Error-Backpropagation method is utilized for updating the connection 

weights. This method is comprised of 5 steps, as follows:  

Step 1: Initialize connection weights. 

Step 2: Pass inputs through the network utilizing the transfer function, equation (2). 

Step 3: Calculate the error factors for all neurons in each layer, equations (4) & (6). 

Step 4: Update the connection weights using the weight adjustments, equation (3). 

Step 5: Repeat Steps 2-4 for all datasets (Iteration). 

The training algorithm in this research is chosen using the procedure outlined in (Najjar and 

Huang 2007). Accordingly, the network is trained using the Feed-Forward – Error-

Backpropagation method, described earlier, starting from 1 hidden node and for 20,000 

iterations on the specified structure. Then, hidden nodes are added one by one until it reaches 

the maximum number of hidden nodes calculated using equation (8).  

HN= 
N-NO

C ∙ (IN+NO+1) 
  (8) 

Where: N: The number of training data sets.  
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NO: The number of outputs. 

IN: The number of inputs  

C: The number of data points allocated to each connection weight (constant). 

The network with the lowest Averaged Squared Error (ASE), equation (9), is chosen as the best 

prediction network for this scenario. Then, the same process is performed for structure starting 

with two hidden nodes, and so on, until the maximum number of hidden nodes is reached. The 

best of the best prediction network structures is chosen as the optimal ANN prediction model. 

ASE =
1

𝑁
 ∑ (𝑇𝑖 − 𝑂𝑖)𝑁   (9) 

Where: N: The number of training datasets. 

 𝑇𝑖: The Target value of dataset 𝑖 

 𝑂𝑖: The model output corresponding to 𝑇𝑖 

To prevent the ANN models from being biased towards a specific input, the values of all the 

inputs are normalized using equation (10). 

Xn= 
X-Xmax

Xmax-Xmin
  (10) 

Where: Xn: The normalized value. 

 X: The actual value 

 Xmax: The maximum value of X 

Xmin: The minimum value of X 
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3. GRAPHENE NANOCOMPOSITES  

Graphene has attracted colossal research interest in the past decade. That is due to its excellent 

electrical, thermal, and mechanical properties (Chen et al. 2008). These properties present 

possible improvements in many areas of research, one of which is manufacturing the graphene 

nanoplatelets into a macroscopic, paper-like, freestanding sheet form called graphene paper.  

The material developed by (Li et al. 2015), shown in Figure 5, is manufactured and tested a 

standard stress controlled tension unit. Seventy-one tests were conducted for several graphene 

loadings ranging from 0~97 wt.%. 

 

Figure 5: Typical sample of the PEIGNP Nanocomposite paper 

In this section, the manufacturing and testing processes are discussed in detail. Then the 

preparation of the database for ANN modeling is explained. After that, the developed models 

are described. Additionally, ANN simulations are performed utilizing the developed models as 

well as sensitivity analysis and mechanical properties. Finally, a graphical user interface (GUI) 

is designed as a helpful tool to predict the behavior of the material for any given WT%.Material 

manufacturing 

In this research, PEI and dimethylacetamide (DMAc) were purchased from Sigma-Aldrich and 

Fisher Scientific, respectively. GNPs with an average diameter of 50 µm were used to 
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manufacture the PEIGNP composites. The graphene-based nanocomposite analyzed in this 

paper was PEIGNP that was manufactured using the filtration-hot press method reported by 

(Li et al. 2015), namely, GNPs were dispersed in DMAc in a one-neck flask by magnetically 

stirring and sonication. The right amount of PEI was added into the mixture. While being stirred 

and quenched with a condenser, the mixture of GNPs, PEI, and DMAc was refluxed for half 

an hour. After cooling the suspension to room temperature, it was vacuum filtered (vacuum 

pressure: -66 cm mercury) through a porous Teflon fabric to obtain a PEIGNP cake, which was 

then dried in an oven at 190°C for 1 hour to allow the DMAc to evaporate. The dried PEIGNP 

cake was placed between two PI films coated with the release agent and then clamped with two 

aluminum panels for hot-pressing. The operating parameters during hot-pressing were: a 

pressure of 10 nominal MPa based on the applied tonnage and the area of the sample, 4 minutes 

and 340°C. The pressed paper was then lightly pressed (about 3 MPa, 1 min and 340°C) a 

second time to smooth the final PEIGNP paper. Either neat PEI film or pure GNP paper was 

hot-pressed in the same way as that for PEIGNP paper. 

3.1 Testing 

Dynamic Mechanical Analyzer, DMA Q800 (TA Instruments Inc., New Castle DE, USA), 

Figure 6, was used to perform the tensile tests is used utilizing a standard stress-controlled 

tension module. The temperature is held constant throughout all tests at 35oC. The force was 

ramped at a rate of 0.5 N/min up to failure.  

 

Figure 6: DMA Q800 by TA Instruments 
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Figure 7 shows samples of the resulting stress-strain curves for different GNP loadings. The 

test results exhibited a variation ranging between 1-40% was found in the maximum stress for 

the samples with the same WT.% of added graphene. This variation was the motivation for 

using ANN to model the behavior of the material with different wt. %. All tested samples 

curves are shown in APPENDIX A. 

 

Figure 7: Sample experimental stress-strain responses for a) 0.5 wt. % b) 25 wt.% c) 40 wt.% 

and d) 85 wt.% 

 

3.2 Database preparation  

A total of 71 tests were performed with varying graphene content. Each stress-strain curve 

contained its corresponding wt. %, stress, and strain data values. Since there was a difference 

in the number of data points available for each experimental response (curve). To prevent the 

ANN model from being biased towards a specific curve more than another, therefore, all stress-

strain responses (curves) were interpolated based on their respective ranges to provide 600 data 

a 
b 

c d 
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points. A total of 42,600 datasets are provided for training the ANN model. The tests were 

divided into three categories; training, testing, and validation. Thirty-six experiments were 

included in the training, 21 tests in the testing, and 14 tests in the validation.   

Additionally, the stress and strain at failure were recorded for each test and prepared as a 

separate database. This database containing the WT%, Maximum stress, and Maximum strain 

will be utilized to develop another ANN model that works as a stopping criterion for each ANN 

stress-strain simulation. 

A maximum of 12 hidden nodes was set to prevent the ANN model from memorizing the data. 

Which inhibit the model ability to predict the behavior of samples that were not given in the 

training stage. Finally,to find a better solution for the optimum network structure, the ANN 

model is trained on all the data (training, testing, validation) utilizing the same structure of the 

train-test model (Najjar and Huang 2007). 
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3.3 ANN Optimization 

Three different ANN models were developed; stress-controlled, strain-controlled, and stopping 

criterion models. The first two models are utilized to predict the stress-strain behavior for a 

given graphene loading. The third model, which predicts the maximum strain for a given WT% 

of graphene loading, is utilized to stop the simulation for the first two models.  

3.3.1 Stress-controlled model 

In this model, the strain is predicted as a function of stress and the weight percent of added 

GNP. After performing the training process discussed in section 2.4, the best performing model 

was obtained by adaptively starting at 1 hidden node and stopping at 7 hidden nodes and 19,900 

iterations. Since the model performed worse on the testing and validation datasets, as shown in 

Table 3, the train-all model was utilized to capture the logic within the testing and validation 

datasets and not included in the training datasets.  

Table 1: Training, testing, validation, and train all statistics for the stress-controlled model 

Training Testing Validation Train All 

R2 ASE R2 ASE R2 ASE R2 ASE 

0.912 0.00132 0.873 0.00223 0.8681 0.00202 0.909 0.00138 

The train-all model produced an excellent representation of the stress-strain curves involved. 

Accordingly, the final ANN model can be represented, as shown in equation (11).   

ε% =ANN2-[1-7-19,900]-1[σ, wt.%] (11) 

Where: 2: is the number of input variables [σ in MPa, wt. %], 1-7-19,900 represents the starting 

hidden node and the final hidden node and corresponding iterations. Lastly, 1 represents the 

number of output variables (ε %). 

The connection weights and thresholds of the final network are shown in Table 2.  

 

Table 2: Connection weights and thresholds (TS) of the stress-controlled model 

 
HN1 HN2 HN3 HN4 HN5 HN6 HN7 

 

WT% 16.49 -38.44 -0.55 -0.60 -18.97 -15.98 -8.56 
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Stress -4.38 3.86 -8.98 -4.41 8.06 4.23 -4.55 
 

TS 1 5.19 -3.65 10.48 -0.54 -4.96 -4.74 2.39 
 

 
HN1 HN2 HN3 HN4 HN5 HN6 HN7 TS 2 

Strain -17.90 -25.90 -13.29 -15.73 5.30 11.72 3.49 29.90 

 

3.3.2 Strain-controlled model 

This model predicts the stress as a function of strain and wt. % of added GNP. The final model 

was obtained by adaptively training the network starting from 1 hidden node and stopping at 9 

hidden nodes and 20,000 iterations. Since the model performed worse on the testing and 

validation datasets, as shown in Table 3, the train-all model was utilized to capture the logic 

within the testing and validation datasets and not included in the training datasets.  

Table 3: Training, testing, and validation statistics for the strain-controlled model 

Training Testing Validation Train All 

R2 ASE R2 ASE R2 ASE R2 ASE 

0.936 0.00163 0.893 0.00276 0.858 0.00274 0.927 0.00171 

 

The train-all model produced an excellent representation of the stress-strain curves involved. 

Accordingly, the final ANN model structure can be represented, as shown in equation (12).   

σ =ANN2-[1-9-20,000]-1[ε, wt.%] (12) 

Similarly, 2: is the number of input variables [ε %, wt. %], 1-9-20,000 represents the starting 

hidden node and the final hidden node and corresponding iterations. Lastly, 1 represents the 

number of output variables (σ in MPa). 

 

 

3.3.3 Stopping criterion model 

In this model, the maximum strain is predicted as a function of the weight percent of added 

GNP. After performing the training process similar to the one used in the earlier models, the 

best performing model was obtained at 9 hidden nodes and 3,000 iterations. The statistical 

measures for the train-test model are shown in Table 4.  
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Table 4: Training, testing, and validation statistics for the stopping criterion model 

Training Testing Validation Train All 

R2 ASE R2 ASE R2 ASE R2 ASE 

0.817 0.00512 0.848 0.00411 0.885 0.0034 0.803 0.0055 

The train-all model did not improve the prediction accuracy of the strain value at failure. 

Accordingly, the train-test ANN model was adopted, which can be represented, as shown in 

equation (13).    

 ε𝑚𝑎𝑥%=ANN1-[1-9-3,000]-1[wt.%] (13) 

 

3.4 ANN Simulations  

In this study, the stress-strain responses are predicted using the ANN approach. In this section, 

the ANN simulations using the developed models are compared with the experimental 

responses. Then a sensitivity analysis is performed for a range of 0-97 wt. %. Finally, the 

toughness, maximum tangent modulus, and maximum strength and strain values are calculated 

and compared with their corresponding experimental values.  

3.4.1 Stress-strain simulations  

In this section, both stress-controlled and strain-controlled models are simulated and compared 

with the experimental responses. A sample of simulations for wt.% = 0.5 wt.%, 25 wt.%, 40 

wt.% and 85 wt.% are shown, respectively in Figure 8. As noted in Figure 8, the stress-

controlled model outputs higher predictions while the strain-controlled model predicts lower 

values of stress. It is to be noted that the prediction accuracy of the developed models has been 

impacted by the discrepancy observed in the experimental data. Moreover, at higher 

percentages, the strain-controlled model seems to fit the experimental data better than the 

stress-controlled model. This observation is in accordance with the statistical accuracy 

measures (R2 & ASE) reported earlier. In this case, the stress-controlled model tends to 
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overestimate the stress values. All the ANN simulations compared with the experimental stress-

strain curves are shown in APPENDIX B. 

 

Figure 8: ANN simulations compared with experimental stress-strain curves for: a) 0.5 wt.% 

b) 25 wt.% c) 40 wt.% d) 85 wt.% 

3.4.2 Sensitivity analysis 

In this section, a sensitivity analysis is performed using both models, as shown in Figure 9 and 

Figure 10. The analysis was performed by changing the wt.% from 0 to 97% by an increment 

not higher than 1%.  As observed in the figures below, both models predict a softening behavior 

of the material with an increase in graphene content, which may be due to clustering of the 

graphene within the material until the weight percent reaches approximately 10%.  At this 

point, the platelets start to mechanically interlock, which enhances the strength of the material. 

a 
b 

c d 
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Finally, the material reaches a plateau where almost no more strength is developed beyond the 

40 wt.%.  

Moreover, it can also be observed from the figures below; the strain-controlled model seems 

to predict a lower strength for a given weight percent when compared with the value obtained 

from the stress-controlled model. This behavior is consistent with the observation noted in 

section 4.1. Additionally, for weight percentages between 0-1%, a finer simulation is done to 

capture any behavioral change in the material when a fraction of a percent is added. For this 

case, the strain-controlled model predicts less strength loss than the stress-controlled model. At 

1%, the strain-controlled model predicts a loss of 26% while the stress-controlled model 

predicts a 35% strength loss.  

 

Figure 9: Sensitivity analysis simulation for the strain-controlled model 
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Figure 10: Sensitivity analysis simulation for the stress-controlled model 

3.4.3 Mechanical Properties  

In this section, the 4 different mechanical properties are calculated from the stress-strain 

responses simulated earlier, namely: the toughness, which essentially is the area under the 

curve; the maximum tangent modulus, which takes the maximum slope at each point for the 

entire curve; and the maximum stress and strain, which form the final points on the curve. 

These properties are calculated from the experimental test data as well as the predicted 

corresponding responses, shown in Figure 11.  

The toughness curve in Figure 11a shows a rapid decrease in toughness until the weight percent 

of added GNPs reaches 40%, and then it stays almost unchanged. Both ANN models fall in the 

1% 

3% 

0% 

6% 

45% 
20% 
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middle of the experimental data. It can also be noted the strain-controlled model always 

predicts a lower toughness than the stress-controlled model. The same behavior can be 

concluded from the maximum tangent modulus in Figure 11b, where it is evident that the stress-

controlled model defines the upper bound, and the other model depicts the lower bound. At 

low percentages (i.e., less than 10%) the stress-controlled model predicts a higher modulus 

than any of the experiments which is not the case with the other model where it almost falls 

right in the mid-range of the corresponding experimental-based data.  The maximum strength 

behavior is shown in Figure 11c; it follows the same trend noted in the toughness case. The 

strength decreases until the added GNPs percentage reaches a minimum at 40 wt. %. Finally, 

the maximum strain is shown in Figure 11d, which is mostly plotting the results from the 

stopping criterion model since the maximum strain is used to terminate the simulation for both 

models. The stopping criterion ANN-based model shows excellent predictions of the maximum 

strain except at 20 wt. % where the experimental values of the maximum strain increase at 20 

wt. % then drops back for the 25 wt.%. The same plateau noted earlier at 40 wt. % can also be 

pointed out in this case as well. 
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Figure 11: Mechanical properties calculated from the stress-strain responses; a) toughness b) 

maximum tangent modulus c) maximum strength d) maximum strain 

 

3.5 Graphical User Interface (GUI) 

In order to make the models more accessible, an Excel GUI is created. In this GUI, all three 

models were programmed in separate sheets. All the connection weights necessary calculations 

are done within these sheets. The interface, shown in Figure 12, is comprised of three parts; 

WT% slider bar, mechanical properties table, and upper and lower limit stress-strain curves. 

The WT% slider bar is the only input needed from the user to set the desired WT% of added 

graphene. The mechanical properties are calculated instantaneously. Finally, the stress-strain 

a b 

c d 
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curves for the upper and lower limits are plotted. The stress-controlled model is considered as 

the upper limit and the strain-controlled model as the lower limit. 

 

Figure 12: Graphical User Interface for PEI-GNP Nanocomposites 

 

3.6 Conclusions 

Graphene nanocomposites exhibit a variation in mechanical properties. In this research, the 

mechanical properties of PEIGNP composites are studied, including the toughness, maximum 

tangent modulus, maximum strength, and strain.  

• PEIGNPs were manufactured with varying graphene loading ranging from 0-97%. 

•  The papers were tested using a standard stress-controlled tension test via Dynamic 

Mechanical Analyzer, DMA Q800.  

• A total of 71 samples were tested, and the corresponding stress-strain curves were 

obtained.  
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• Two ANN models were developed; the first was a strain-controlled model (i.e., strain-

input), and the other was a stress-controlled model.  

• Another ANN model was developed and incorporated to predict the maximum strain at 

a given wt.%.  

• The strain-controlled model tends to predict lower values for the mechanical properties 

while the stress-controlled model tends to predict higher values.  

• Toughness, Strength, and Ductility decrease until the WT% reaches 40% then it stays 

almost unchanged  

• Stiffness keeps decreasing for wt.% 0-10% until reaching to 40 wt.%.  

• Both stress and strain-controlled models showed excellent agreement with the 

experimentally observed data with R2 of 0.909 and 0.927, respectively. 

• By employing the developed ANN stress- and strain-controlled models, the stress-strain 

response can be efficiently simulated at any given wt.%.  

• Finally, the developed ANN models are utilized to create a GUI to aid in future material 

design.   
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4. DAM OVERTOPPING FAILURE  

Dam Failure is a disastrous type of failure can be described as an unexpected, rapid, and 

unrestrained discharge of impounded water. This failure can be due to deterioration of the dam 

soil condition or due to extreme loading the dam wasn’t designed to withstand. It is essential 

to prepare for emergencies like dam failure, especially high-hazard potential dams. It is also 

vital to predict dam failure before the incident itself to provide time to execute emergency 

plans. 

Additionally, post-failure behavior is essential to predict the extent of the damage caused by 

this event. Many studies have been carried out in this area. Failure parameters such as; peak 

discharge, time to fail, and others are often used to describe dam failure. However, most 

researchers assume one type of failure due to dam overtopping, which starts with the 

assumption of initial damage to the crest of the dam and study its progression. Additionally, all 

the collected data from literature only provide dam geometry, the volume of impounded water, 

as well as the corresponding failure parameters.  

In this research, Numerical simulations are performed considering the geotechnical behavior 

of soil as well as the hydraulic flow of water through the dam body (seepage) and water 

overtopping (surface flow). Smoothed Particle Hydrodynamics (SPH) is employed to perform 

the numerical simulation. SPH is especially attractive in post failure analyses due to its 

meshless representation of the material, which avoids numerical instability and mesh distortion.  

In this chapter, the SPH modeling of soil is discussed first. After that, the development of the 

numerical model and numerical simulations are performed and processed. Finally, the ANN 

models and the graphical user interface are developed. Smoothed Particle Hydrodynamics 

(SPH) 
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Smoothed Particle Hydrodynamics (SPH) is a Lagrangian meshless numerical method used to 

obtain the solution of fluid and continuum dynamics equations by replacing the fluid and/or 

continuum with particles. The material is discretized into Particles that have material properties 

such as density, velocity, and stress. These particles move according to their defined governing 

equations. Particle interaction is only calculated within a certain radius called smoothing 

distance (h). The weight of each particle contribution is calculated using a kernel function (W). 

The Choice of the smoothing distance and kernel function affects the stability, accuracy, and 

the efficiency of the numerical solution (Monaghan 1994). The most used kernel function 

developed by (Monaghan 1994) is the cubic spline function shown in equation (14). 

𝑊𝑎𝑏 = 𝑊(𝑟𝑖𝑗, ℎ) =  𝛼𝑑 {

1 −
3

2
𝑞2 +

3

4
𝑞3 0 ≤ 𝑞 ≤ 1

1

4
(2 − 𝑞)2          1 ≤ 𝑞 ≤ 2

0                   𝑞 ≥ 2

  (14) 

Where: Subscript i: denotes the integration point particle  

Subscript j: indicates the neighboring particles 

𝑟𝑖𝑗: The distance between particles i and j 

ℎ: The Smoothing range  

𝑞: The non-dimensional distance between particles 𝑞 =
𝑟𝑎𝑏

ℎ
 

𝛼𝑑: Dimensional normalizing factor, 𝛼𝑑 =
10

7𝜋ℎ2 in 2D and 𝛼𝑑 =
1

𝜋ℎ3 in 3D  

SPH utilizes an interpolation technique to represent any field function 𝑓(𝑥𝑖) for each particle 

along the particles’ neighboring particles using the following approximation 

𝑓(𝑥𝑖) = ∑
𝑚𝑗

𝜌𝑗
𝑓(𝑥𝑗)𝑊𝑖𝑗

𝑁
𝑗=1   (15) 

𝜕𝑓(𝑥𝑖)

𝜕𝑥
= ∑

𝑚𝑗

𝜌𝑗
𝑓(𝑥𝑗)𝑊𝑖𝑗

𝑁
𝑗=1  .

𝜕𝑊𝑖𝑗

𝜕𝑥𝑖
  (16) 

Where: N: Number of neighboring particles  

𝑚, 𝜌: mass and density of the particle, respectively. 



 

33 

In the last decade, SPH has been used for various geomechanical applications, such as; soil 

stability, soil structures failure, and hydraulically loaded soil embankments. Saturated soils are 

generally modeled as two separate layers; Soil and water layer, as illustrated in Figure 13. Each 

layer is simulated separately, and the interaction between the layers is modeled in two parts. 

Surface particles exhibit lift and drag forces, and deep soil particles experience seepage forces.  

Modeling each layer is discussed extensively in the next sections. After that, soil-water 

interaction and numerical challenges are examined. Finally, the simulated numerical model 

parameters are defined.  

 

Figure 13: Saturated Soil Model in SPH formulation 

4.1.1 Water Layer 

Water is simulated as a weakly incompressible viscous fluid utilizing Weakly Compressible 

SPH (WCSPH). The conservation of mass and momentum equations govern the fluid motion 

in the Lagrangian space, also known as Navier-Stocks equations, equations (17) and (18). 

𝐷𝜌𝑎

𝐷𝑡
=  −𝜌𝑎

𝜕𝑣𝛼

𝜕𝑥𝛼
  (17) 

Surface particle

s 

Lift & Drag 

Seepage 

Deep particles 

Soil Layer Water Layer 

Saturated soil 
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𝐷𝑣𝑎
𝛼

𝐷𝑡
=

1

𝜌

𝜕𝜎𝛼𝛽

𝜕𝑥𝛽 + 𝑓𝛼  (18) 

Where: 𝜎𝛼𝛽 = −𝑝𝛿𝛼𝛽 + 𝜏𝛼𝛽  

𝜏𝛼𝛽 = 𝜇𝜀𝛼𝛽  

𝑓𝛼: Acceleration due to external forces 

𝐷

𝐷𝑡
: material derivative which is defined as 

𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ 𝑣𝛼 𝜕

𝜕𝑥𝛼  

𝜎𝛼𝛽: Stress Tensor  

𝑝: Thermodynamic Pressure  

𝛿𝛼𝛽: Kronecker delta 

𝜏𝛼𝛽: Shear stress  

𝜇: Dynamic viscosity  

𝜀𝛼𝛽: Shear strain 

The pressure 𝑝 is calculated via the Equation of State (EOS). There are many forms of EOS 

for fluid simulations. The choice of EOS depends on the material and application. In this 

research equation (19) developed by (Monaghan 1994) shown below is utilized. This equation 

has been widely used in WCSPH. The assumption of the speed of sound 𝑐𝑠 directly affects the 

time step and the stability of the simulation. Subsequently, it is recommended to assume cs 

equal or to more than 10U. Where U is the upstream velocity of the flow (Bui et al. 2007; 

Korzani et al. 2017; Monaghan 1994). This assumption limits the fluctuation in water density 

to less than 1% (Bui et al. 2007).  

𝑝 =
𝜌0𝑐𝑠

2

7
[(

𝜌

𝜌𝑜
)

7

− 1]  (19) 

Where: 𝜌0: Reference density (density at rest)  

 𝑐𝑠: Speed of sound  

Navier-Stocks equations are written in the SPH formulation as follows (Korzani et al. 2017):  
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𝑑𝜌𝑖

𝑑𝑡
=  𝜌𝑖  ∑

𝑚𝑗

𝜌𝑗
(𝑣𝑖 − 𝑣𝑗) ∙  𝛻 𝑊𝑖𝑗𝑗   (20) 

𝑑𝑣𝑖

𝑑𝑡
= − ∑ 𝑚𝑗 (

𝑝𝑖

𝜌𝑖
2 +

𝑝𝑗

𝜌𝑗
2) 𝛻𝑊𝑖𝑗𝑗 + {

𝜇

𝜌
𝛻2𝑣}

𝑖
   (21) 

Where: 𝛻: The gradient with respect to the coordinates of particle a  

The resulting water model requires three parameters for proper definition using the SPH 

formulation; density, dynamic viscosity, and speed of sound.  

4.1.2 Soil Layer 

The conservation of momentum equation (18) is used to define the soil motion and written in 

the SPH formulation as follows: 

𝑑𝑣𝑖
𝛼

𝑑𝑡
= ∑ 𝑚𝑗 (

𝜎𝛼𝛽
𝑖

𝜌𝑖
2 +

𝜎𝛼𝛽
𝑗

𝜌𝑗
2 )

𝜕𝑊𝑖𝑗

𝜕𝑥
𝑖
𝛽𝑗 + 𝑓𝛼  (22) 

The stress tensor consists of two components; hydrostatic pressure 𝑝, and deviatoric shear 

stress 𝑠𝛼𝛽, as shown in equation (23) below.  

𝜎𝛼𝛽 = −𝑝𝛿𝛼𝛽 + 𝑠𝛼𝛽  (23) 

Where: 𝑠𝛼𝛽: Deviatoric shear stress 

The pressure 𝑝 is calculated using the mean stress definition, equation (24), as opposed to the 

EOS calculations for the water layer (Korzani et al. 2018a).  

𝑝 = −
1

3
(𝜎𝛼𝛼 + 𝜎𝛽𝛽 + 𝜎𝛾𝛾)  (24) 

Where: 𝜎𝛼𝛼 , 𝜎𝛽𝛽 , 𝜎𝛾𝛾: Normal stresses in X, Y, and Z directions  

Traditionally, the soil is modeled as an elastic-perfectly plastic material. Thus, it is usually 

represented by the Drucker-Prager model with a non-associated flow rule (Bui et al. 2008b). 

Drucker-Prager model is described using the following equation.  

𝑓(𝐼1, 𝐽2) = √𝐽2 + 𝛼𝜙𝐼1 − 𝑘𝑐 = 0  (25) 

Where 𝐼1, and 𝐽2 are the first and second invariants of the stress tensor. Which are given by 

equations (26) and (27), respectively. Additionally, 𝛼𝜙, and 𝑘𝑐 are Drucker-Prager constants, 
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which are related to the soil cohesion (𝑐) and angle of friction (𝜙), equations (28) and (29), 

respectively.   

𝐼1 =
1

3
(𝜎𝛼𝛼 + 𝜎𝛽𝛽 + 𝜎𝛾𝛾)  (26) 

𝐽2 =
1

2
𝑠𝛼𝛽𝑠𝛼𝛽  (27) 

𝛼𝜙 =
tan 𝜙

√9+12 tan2 𝜙
  (28) 

𝑘𝑐 =
3𝑐

√9+12 tan2 𝜙
  (29) 

The stress-strain relationship was derived in details by (Bui et al. 2008b) and written in the 

form shown in the following equation.  

𝑑𝜎𝑖
𝛼𝛽

𝑑𝑡
= 𝜎𝑖

𝛼𝛾
�̇�𝑖

𝛽𝛾
+  𝜎𝑖

𝛾𝛽
�̇�𝑖

𝛼𝛾
+ 2 𝐺𝑖�̇�𝑖

𝛼𝛽
+ 𝐾𝑖𝜀𝑖

𝛾𝛾
𝛿𝑖

𝛼𝛽
− �̇�𝑖 [9𝐾𝑖 sin 𝜓𝑖 𝛿𝛼𝛽 + (

𝐺

√𝐽2
)

𝑖
𝑠𝑖

𝛼𝛽
]   (30) 

�̇�𝑖 =
3𝛼𝜙𝐾�̇�𝑖

𝛾𝛾
+(

𝐺

√𝐽2
)𝑠𝑖

𝛼𝛽
𝜀𝑖

𝛼𝛽
 

27 𝛼𝜙𝐾𝑖 sin 𝜓𝑖+𝐺𝑖
  (31) 

�̇�𝑖
𝛼𝛽

= 𝜀�̇�
𝛼𝛽

−
1

3
𝜀�̇�

𝛾𝛾
𝛿𝑖

𝛼𝛽
  (32) 

Where: �̇�𝑖
𝛼𝛽

: Deviatoric shear strain tensor,   

 𝜀𝑖
𝛼𝛽

, �̇�𝑖
𝛽𝛾

: Strain rate, and Spin rate, respectively.  

 𝐺𝑖, 𝐾𝑖: Shear and Bulk moduli, respectively.  

 �̇�𝑖: Plastic flow multiplier 

 𝜓𝑖: Dilatancy angle  

The strain and spin rates are calculated using equations (33) and (34) and written in SPH 

formulation for as shown in equations (35) and (36), respectively. 

𝜀�̇�
𝛼𝛽

=
1

2
(

𝜕𝑣𝛼

𝜕𝑥𝛽
+

𝜕𝑣𝛽

𝜕𝑥𝛼
)

𝑖
  (33) 

�̇�𝑖
𝛼𝛽

=
1

2
(

𝜕𝑣𝛼

𝜕𝑥𝛽
−

𝜕𝑣𝛽

𝜕𝑥𝛼
)

𝑖
  (34) 
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𝜀�̇�
𝛼𝛽

=
1

2
[∑

𝑚𝑗

𝜌𝑗
(𝑣𝑗

𝛼 − 𝑣𝑖
𝛼)

𝜕𝑊𝑖𝑗

𝜕𝑥
𝑖
𝛽

𝑁
𝑗=1 + ∑

𝑚𝑗

𝜌𝑗
(𝑣𝑗

𝛽
− 𝑣𝑖

𝛽
)

𝜕𝑊𝑖𝑗

𝜕𝑥𝑖
𝛼

𝑁
𝑗=1 ]  (35) 

�̇�𝑖
𝛼𝛽

=
1

2
[∑

𝑚𝑗

𝜌𝑗
(𝑣𝑗

𝛼 − 𝑣𝑖
𝛼)

𝜕𝑊𝑖𝑗

𝜕𝑥
𝑖
𝛽

𝑁
𝑗=1 − ∑

𝑚𝑗

𝜌𝑗
(𝑣𝑗

𝛽
− 𝑣𝑖

𝛽
)

𝜕𝑊𝑖𝑗

𝜕𝑥𝑖
𝛼

𝑁
𝑗=1 ]  (36) 

The resulting soil model requires five parameters for proper definition using the SPH 

formulation; density, cohesion, angle of friction, dilatancy angle, and bulk modulus.  

4.1.3 Soil – Water interaction  

The interaction between the soil and water layers is divided into two types; surface particles 

interaction, and deep particles interaction (Korzani et al. 2018c). Surface particles encounter 

lift and drag forces (Dong and Zhang 1999; Li et al. 2008), equations (37), and (38). And deep 

particles undergo seepage forces. Which is calculated using the Forchheimer Equation and Den 

Adel Coefficients, equation (42) (Korzani et al. 2018a).   

𝑓𝑥 =
3

4𝑑15
𝜌𝑓 𝑐 𝐶𝐷 𝑢𝑟 √𝑢𝑟

2 + 𝑣𝑟
2  (37) 

𝑓𝑦 =  
3

4𝑑15
𝜌𝑓 𝑐 𝐶𝐷 𝑢𝑟 √𝑢𝑟

2 + 𝑣𝑟
2 +

3

4
𝜌𝑓 𝑐 𝐶𝐿 |𝑢𝑟|

𝜕𝑢𝑟

𝜕𝑦
  (38) 

𝑢𝑟 = 𝑢𝑓 − 𝑢𝑠 (39) 

𝑣𝑟 = 𝑣𝑓 − 𝑣𝑠 (40) 

𝐶𝐷 =
24 𝜈

𝑑15√𝑢𝑟
2+𝑣𝑟

2
+ 2  

(41) 

𝑓𝑠𝑒𝑒𝑝𝑎𝑔𝑒 = 𝑎(𝑣𝑓 − 𝑣𝑠)𝛾𝑓 + 𝑏|𝑣𝑓 − 𝑣𝑠|(𝑣𝑓 − 𝑣𝑠)𝛾𝑓  (42) 

𝑎 = 𝛼
(1−𝑛)2

𝑛3

𝜈

𝑔 𝑑15
  (43) 

𝑏 = 𝛽
1

𝑛2

1

𝑔 𝑑15
  (44) 

Where: 𝑢𝑟 , 𝑣𝑟: Relative velocities between the fluid and soil particles in the horizontal and

   vertical directions, respectively. 

 Subscripts f and s: stand for fluid and soil particles, respectively. 

 𝐶𝐿and 𝐶𝐷: Lift and drag coefficients. 
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 𝑐: Soil volumetric concentration, 𝑐 = 1 − 𝑛. 

 𝑛: Porosity 

 𝑑15: effective soil particle size 

 𝛼, 𝛽: constants set as 𝛼 = 150 , 𝛽 = 0.4 (Korzani et al. 2018b) 

 𝑔: Gravity acceleration. 

 𝜈: kinematic viscosity  

Finally, in the case of saturated soils, effective stress is used in the equation of motion (22) 

instead of the total stress. The pore water effect is taken into account by using the effective 

density of the soil instead of the saturated density (Korzani et al. 2018b).  

The resulting soil-water interaction requires two parameters for proper definition using the SPH 

formulation; soil porosity and effective diameter.  

4.1.4 Numerical issues 

Two issues are encountered when modeling solids and fluids in SPH; tensile instability, and 

unphysical particle penetration (Gray et al. 2001; Monaghan and Pongracic 1985). Tensile 

instability presents as clumping of particles during plastic flow. This problem is solved by 

introducing an artificial stress term to the equation of motion (45) (Gray et al. 2001). This term 

is only added to the particles in tension. Therefore, the principal stresses are calculated first to 

determine whether the particle in tension or not. Then, the artificial stress is added to the 

principal stresses. After that, the new stress tensor is found by rotating the coordinates back to 

its original orientation. The artificial stress is given by equations (46) to (48):  

(
𝜎𝛼𝛽

𝑖

𝜌𝑖
2 +

𝜎𝛼𝛽
𝑗

𝜌𝑗
2 ) →  (

�̅�𝛼𝛽
𝑖

𝜌𝑖
2 +

�̅�𝛼𝛽
𝑗

𝜌𝑗
2 + �̅�𝑖𝑗

𝛼𝛽
𝑓𝑖𝑗

𝑛)  (45) 

�̅�𝑖𝑗
𝛼𝛽

= �̅�𝑖
𝛼𝛽

+ �̅�𝑗
𝛼𝛽

  (46) 

�̅�𝑖
𝛼𝛽

= −𝜖
�̅�𝑖

𝛼𝛽

𝜌𝑖
2   (47) 
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𝑓𝑖𝑗 =
𝑊(𝑟𝑖𝑗)

𝑊(Δ𝑃) 
  (48) 

 Where: 𝑛 and 𝜖: Constants set as 2.55 and 0.5 (Bui et al. 2008b). 

 Δ𝑃: Particle spacing (constant).  

   Artificial viscosity term is also introduced into the stress term of the equation of motion. The 

updated stress term is shown in equation (49). Artificial viscosity is calculated using equations 

(50) to (55). 

(
𝜎𝛼𝛽

𝑖

𝜌𝑖
2 +

𝜎𝛼𝛽
𝑗

𝜌𝑗
2 + �̅�𝑖𝑗

𝛼𝛽
𝑓𝑖𝑗

𝑛)  →  (
�̅�𝛼𝛽

𝑖

𝜌𝑖
2 +

�̅�𝛼𝛽
𝑗

𝜌𝑗
2 + �̅�𝑖𝑗

𝛼𝛽
𝑓𝑖𝑗

𝑛 + Π𝑖𝑗𝛿𝛼𝛽)  (49) 

Π𝑎𝑏 =  {
−𝛼𝑐�̅�𝑏𝜇𝑎𝑏+𝛽𝜇𝑎𝑏

2

�̅�𝑎𝑏
2 ,   𝒗𝑎𝑏  ∙ 𝒙𝑎𝑏 < 0 

               0        ,     𝒗𝑎𝑏  ∙ 𝒙𝑎𝑏 ≥ 0
  (50) 

𝑐�̅�𝑏 =
1

2
(𝑐𝑎 + 𝑐𝑏)  (51) 

𝜇𝑎𝑏 =
ℎ𝑎𝑏𝒗𝑎𝑏𝒙𝑎𝑏

𝑟𝑎𝑏
2 +0.1 ℎ𝑎𝑏

  (52) 

�̅�𝑎𝑏 =
1

2
(𝜌𝑎 + 𝜌𝑏)  (53) 

𝒗𝑎𝑏 = 𝒗𝑎 − 𝒗𝑏  (54) 

𝒙𝑎𝑏 = 𝒙𝑎 − 𝒙𝑏  (55) 

Where: 𝛼, 𝛽: Constants set as 0.1 (Bui et al. 2008b) 

 𝑐𝑎: Speed of sound for particle a  

 𝒙, 𝒗: Position and velocity vectors  

In conclusion, to accurately define a saturated soil model, several parameters are required; 

water parameters; namely, water density, viscosity and speed of sound, and soil parameters; 

including, soil density, angle of friction, cohesion, effective diameter, and porosity.   

4.1.5 Software validation  

The software used in this research, “PersianSPH,” is developed by Dr. Korzani (Korzani 2015). 

This software is a C++ based algorithm on the Linux platform. It can perform coupled 
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simulations for solids, fluids, and structures in 2D as well as 3D. It is especially suitable for 

post-failure analysis and soil-water interactions.  

To validate the software, two problems are simulated and compared with the corresponding 

experiment. The first experiment is performed to validate the soil failure model in the SPH 

platform. The second experiment is performed to validate the soil-water interaction.  

4.1.5.1 Sandbox failure 

In this section, a 2D simulation of a sand column collapse is performed. This experiment has 

been studied previously by (Bui et al. 2008a). Since the numerical simulation is performed in 

2D, the test was designed to reflect it. (Bui et al. 2008a) used aluminum bars with diameters of 

1 and 1.5 mm and a density of 2650 kg/m3. The bars were arranged in a 200x100 mm box.  

The equivalent soil properties such as cohesion (c), friction angle (φ), and elastic bulk modulus 

(K) were measured for the aluminum bars using a shear box experiment. The cohesion (c) was 

found to be zero, the friction angle (φ) was 19.8o, and the elastic bulk modulus was 0.7 MPa.  

The numerical model is defined in 2D with the same properties mentioned earlier. The particle 

size is set as 2 mm. The final surface configuration, as well as the failure surface, are compared 

to the experiment. Figure 14 depicts the final soil configuration for the experiment performed 

by (Bui et al. 2008a) as well as the SPH simulation using PersianSPH software.  

 

Figure 14: Sandbox failure, (a) Experiment (Bui et al. 2008a) (b) SPH simulation 

(a) 

(b) 
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The SPH simulation shows an excellent correlation to the experimental results. This is further 

shown in  Figure 15. The failure surface and final surface configuration of the SPH simulation 

agree with the experiment. This result indicates that PersianSPH software can simulate large 

deformation soil problems with excellent accuracy. 

 

Figure 15: Sandbox failure surface and surface configuration 

4.1.5.2 Phreatic surface in a rock-fill embankment 

In this section, fluid flow through porous media is studied and compared with experimental 

results. The experiment utilized in this study was conducted by (Larese et al. 2013). In this 

experiment, a rock-fill embankment made of gravel with porosity (n) of 0.41 and effective 

diameter (D15) of 25.5 mm. The phreatic surface was measured using pressure sensors installed 

at the bottom of the embankment. Two different flow rates were introduced from the upstream 

side, 25.46 L/s, and 51.75 L/s.  

The same soil configuration was modeled using PersianSPH software. An excellent correlation 

between the experiment and the numerical simulation was found in both cases for the available 

points of the test, as seen in Figure 16. This shows that the software is also capable of simulating 

water flow through porous media with precision.  
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Figure 16: Phreatic Surface within a rock-fill embankment 

 

4.2 Numerical simulations  

In the purpose of developing superior ANN model, the training database is essential to 

encompass many variations of each variable that governs the outcome of the problem. In this 

case, dam overtopping behavior. There are many parameters to be designed for an earthen 

embankment, including; physical and engineering parameters. Physical parameters include 

geometry, type, specially designed sections such as wave protection surface treatment, filters, 

spillways, and many others. Engineering parameters include soil properties such as density, 

cohesion, angle of friction, compaction, Elastic modulus, grain size distribution, and porosity. 

Moreover, extreme events vary in intensity and type of loading on the embankment. The 

magnitude of loading can be represented in water elevation on the upstream side of the 

embankment. Water elevation can be constant over time or vary over time in a wave-like 

manner. In this study, only homogenous embankments with a maximum height of 15m are 

studied.  

As discussed earlier, five parameters are needed to define soil material properties; density, 

angle of friction, cohesion, porosity, and effective diameter. Additionally, another three 
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parameters are required to define the geometry of the dam; dam height, crest width, and side 

slope. In this context, more than 65,000 simulations are needed to build the database, if only 

four variations of each parameter are considered. Moreover, some of these combinations could 

represent an artificial soil, as soil parameters are interrelated, for example, a change in cohesion 

would affect porosity or angle of friction and vice versa. To evade this problem, each section 

of the soil model is considered as a whole, and only soil type is changed.  

It is crucial to select soil types with properties that envelop the range for each property of soil. 

In this research, the chosen soil types for the foundation section are; medium compaction high 

plasticity clay, well-graded gravel, dense silty gravel, loose high plasticity slit, and dense high 

plasticity silt. The properties of each soil type are shown in Table 5.  

Table 5: Foundation section soil properties 

 Density 

(kg/m3) 

Cohesion 

(kPa) 

Friction 

angle 

Elastic modulus 

(MPa) 
Porosity 

Diameter 

(m) 

CH 1890 11 19 7 0.39 4.2E-04 

GM 2320 0 34 20 0.17 4.0E-02 

MH 1930 50 18 2 0.53 8.0E-03 

GW 2370 0 40 30 0.27 5.0E-02 

ML 2220 22 27 15 0.42 8.0E-03 

The selected soil types for the embankment section are; dense compacted high plasticity clay, 

dense silty gravel, compacted high plasticity silt and compacted clayey sand. The properties 

for each soil type are shown in Table 6. Porous soil options are excluded since it doesn’t make 

sense to build a dam using highly porous material. 
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Table 6: Embankment section soil properties 

 
Density 

(kg/m3) 

Cohesion 

(kPa) 

Friction 

angle 

Elastic modulus 

(MPa) 
Porosity 

Diameter 

(m) 

CH 2090 103 19 32 0.39 4.2E-04 

GM 2420 5 40 35 0.17 4.0E-02 

MH 2130 72 18 10 0.53 8.0E-03 

SC 2150 11 31 20 0.15 1.0E-03 

 

The embankment crest width is kept constant at 3 meters. Three different values are considered 

for the slope ranging between 1.2-3:1 (H:V). And four values are set for height ranging between 

3-15 m.  

In conclusion, the model is divided into embankment and foundation sections. Four different 

soil types are considered for dam section, whereas Five soil types for the foundation section. 

Embankment geometry parameters are identified as; height, slope, and crest width. Three 

different values are considered for the slope ranging between 1.2-3:1 (H:V). And Four values 

are set for height ranging between 3-15 m. The embankment width is kept constant at 3 m. The 

total number of simulations to be considered in this study is 240 simulations, as shown in Figure 

17. The modeling parameters for each simulation are shown in APPENDIX C. 
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Figure 17: Numerical Simulations Database  

Embankment Geometry 

Slope

Height

Foundation soil

Embankment soil

CH GM

MH SC

CH GM

MH GW

ML

3 m 7 m

12 m 15 m

1:1.2 (V:H) 1:2 (V:H)

1:3 (V:H)
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4.3 Numerical Model  

In this study, earthen embankment behavior is studied during a water overtopping event. The 

numerical simulations are performed using an SPH code developed by Dr. Korzani 

“PersianSPH” (Korzani 2015). The soil layer, shown in Figure 18, is divided into dam and 

foundation sections. Each section has different soil properties. Dam geometry parameters are 

identified as height, slope, and crest width.  

 

Figure 18: Typical configuration of the soil layer 

The water layer, shown in Figure 19, is defined as one section filling the embankment and 

foundation section as well. Additionally, the height of the water is increased beyond the height 

of the embankment by Hw to simulate water overtopping. Which is kept constant at 0.5m in all 

the performed simulations. 

Particle size (rin) is chosen to be equal to 0.1m for the soil particles as well as the water particles 

based on the convergence study discussed in the next section. The smoothing length (h) is set 

as 1.2*rin as well (Bui et al. 2007).  

Embankment Geometry 

Embankment Soil  

Foundation Soil  

H 

V Height 

Crest Width 
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Figure 19: Typical configuration of the water layer 

4.3.1 Convergence study 

There are many numerical parameters to be considered in this study, namely, particle size (rin), 

smoothing distance (h), artificial viscosity and artificial stress coefficients, and seepage flow 

coefficients (Den Adel coefficients). In this study, the smoothing distance is set to be equal to 

1.2xrin, (Bui et al. 2008b), artificial viscosity coefficients 𝛼, 𝛽: set as 0.1, and artificial stress 

coefficients 𝑛 and 𝜖 set as 2.55 and 0.5, respectively, (Bui et al. 2008b), and the seepage flow 

coefficients 𝛼, and 𝛽 are set to be 150, and 0.4 respectively, (Korzani et al. 2018b).  

Finally, the initial particle size is optimized, which is problem dependent. In this research, 

particle sizes ranging from 0.05m to 0.25m are considered. One simulation is performed for 

each particle size considering one variation of the simulation database. For this simulation, the 

embankment height is 3m, and the side slope is 1:1.2 (H:V). The embankment soil is silty 

gravel (GM), and the foundation soil is high plasticity clay (CH).  

As depicted in Figure 20, the failure mode is the same in all simulations, which is embankment 

instability. However, there is a soil failure in the upstream side of the embankment for particle 

sizes 0.2 and 0.15m. Additionally, there are differences in other failure parameters considered 

in this research, such as breach percent, and peak discharge.    

Hw  
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Figure 20: Failure mode for different particle sizes  

Breach percent and initiation time, and peak discharge calculations are explained in sections 

4.4.2 and 4.4.3, respectively. Breach initiation time in all the simulations is calculated to be 5 

seconds (instant). Breach percent and peak discharge for each particle size simulation are 

depicted in Figure 21 and Figure 22, respectively. Breach percent and peak discharge are almost 

identical for 0.05m and 0.1m particle size (80% vs. 79%, and 1.55 vs. 1.512, respectively). 

Therefore, a particle size of 0.1m is considered for all other simulations performed in this study.  

Start 
rin = 0.2m 

End 

Start 

rin = 0.15m 
End 

Start rin = 0.1m End 

Start 
rin = 0.05m 

End 
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Figure 21: Breach percent vs. Particle size 

 

Figure 22: Peak discharge vs. Particle size 
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4.4 Post Processing 

Many studies were performed to investigate dam failure. In most of these studies, empirical 

formulae were developed to predict failure parameters, such as; failure mode, breach shape, 

breach height and width, breach formation time, and peak discharge. In this research, the ANN 

approach is used to predict the behavior of earthen embankments during an overtopping event. 

For all the 240 performed simulations, the following parameters are studied; fail mode, breach 

percent, and peak discharge.  

4.4.1 Fail modes  

One of the shortcomings found in the literature is the study of dam overtopping. It is generally 

categorized as the mode of failure. Additionally, only the erosion progression of the 

embankment body is studied. However, water flow over the embankment can cause other 

problems to the dam structure. In this study, embankment failure, as well as foundation failure, 

is studied. Fail modes are classified into two categories; embankment failure and foundation 

failure. Two embankment fail modes are identified; Embankment erosion and instability. And 

three foundation fail modes are identified; Foundation erosion, piping, and bearing capacity 

failure. In the following sections, a sample of each failure mode is shown. All the simulations 

fail modes are reported in APPENDIX D. 

4.4.1.1 Embankment erosion 

This failure mode is characterized as the initiation of embankment erosion process and its 

progression over time. In this failure mode, shown in Figure 23, the downstream part of the 

embankment experiences a concentration of stresses, seen at 𝑡 = 20 𝑠. After that, the water 

begins to erode the soil of the surface, 𝑡 = 30 𝑠, of the downstream part of the embankment 

until the whole embankment is eroded. 
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Figure 23: Total deviatoric strain progression during dam erosion. 

This mode of failure mainly occurs when the embankment consists of clayey sand soil and less 

steep slopes and lower heights. This failure mode usually presents with embankment 

instability, since it is the only present mode by itself in only five simulations. However, in 

many other cases, there is a potential for erosion. But since the simulation is only for 500 

seconds, it doesn’t evolve into full failure within the simulated time.    

4.4.1.2 Embankment instability  

In this failure mode, the stresses exceed the design capacity of the embankment. Which is 

caused by the extreme water level. As seen in Figure 24, the failure starts from the downstream 

slope toe and progressed back to reach the embankment crest 𝑡 < 20 𝑠. After that, the failed 

soil portion starts to erode due to the water flow 𝑡 > 180 𝑠.  

𝑡 = 0 𝑠 𝑡

= 5 𝑠 

𝑡 = 20 𝑠  𝑡 = 30 𝑠  

𝑡 = 50 𝑠 𝑡 = 200 𝑠 

𝑡 = 500 𝑠  
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Figure 24: Total deviatoric strain progression during dam instability failure. 

This mode of failure happens when the embankment is made of silty gravel soil regardless of 

the dam geometry and foundation soil. Additionally, this mode of failure occurs if the 

embankment is made of clayey sand with steeper embankment slope or higher embankments. 

4.4.1.3 Foundation erosion 

In this failure mode, the dam is not eroded. However, the water flow over the dam causes the 

foundation to erode near the toe of the embankment. This is caused by the stress concentration 

due to water colliding with the soil. This erosion eventually will cause the embankment to 

become unstable and fail, as shown in Figure 25. 

 

  

𝑡 = 0 𝑠 𝑡 = 2 𝑠 

𝑡 = 10 𝑠  𝑡 = 180 𝑠  

𝑡 = 500 𝑠  

𝑡 = 0 𝑠 𝑡 = 20 𝑠 



 

53 

  

 

Figure 25: Total deviatoric strain progression during foundation erosion. 

This failure mode arises when the foundation soil is silty gravel and less steep embankment 

slopes. Moreover, there is a potential of foundation erosion if the foundation soil is low 

plasticity silt, which could increase with time.  

4.4.1.4 Piping  

In this mode of failure, the hydraulic gradient at the embankment toe is enough to deform the 

soil and create piping conditions. Figure 26 depicts the progression of piping failure over time. 

In the beginning, 𝑡 < 180 𝑠, the strain forms a channel for the seepage flow to increase. After 

that, the soil starts to deform more and eroded by the overtopping water.  

 

𝑡 = 50 𝑠  𝑡 = 100 𝑠  

𝑡 = 500 𝑠  

𝑡 = 40 𝑠 
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Figure 26: Total deviatoric strain progression during piping failure 

This mode failure mainly happens when the foundation consists of well-graded gravel 

regardless of embankment soil or geometry. In some cases, piping failure occurs alongside 

embankment instability failure if the embankment is made of silty gravel or clayey sand.  

4.4.1.5 Bearing capacity slide 

In this failure mode, the foundation soil is overloaded by the dam and water beyond its bearing 

capacity, which causes a shear band to form and cause foundation slide. As depicted in Figure 

27, the deviatoric shear strain is concentrated underneath the downstream slope of the dam, 

𝑡 = 5 𝑠. Then a shear band starts to form, 𝑡 = 190 𝑠, which creates a slipping surface for the 

embankment and the foundation. Finally, this failure triggers a sliding of structure, which 

eventually leads to embankment breaching. 

  

𝑡 = 180 𝑠  

𝑡 = 320 𝑠  

𝑡 = 5 𝑠 𝑡 = 190 𝑠 
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Figure 27: Total deviatoric strain progression during bearing capacity slide failure 

This failure mode mainly happens with high embankment elevations and steep slopes. The 

probability of breaching (i.e., embankment instability) increases when the foundation is made 

of high plasticity clay or clayey gravel.  

4.4.1.6 Failure index 

In many cases, failure didn’t evolve to cause breaching during the simulated time. To account 

for this progress, a failure index is defined for all the failure modes discussed before. Where 

the index is given a value of 1 when the failure is fully formed, and 0 when no failure is 

observed. 

The value of the failure index depends on the failure progress during the simulated time. In 

some cases, the strain is increasing over time, it will eventually lead to failure, as depicted in 

Figure 28. Depending on how far the failure has progressed, the failure value is increased. 

These cases are given a failure index larger than 0.5.  

𝑡 = 250 𝑠  𝑡 = 350 𝑠  

𝑡 = 500 𝑠  
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Figure 28: Total deviatoric shear strain for potential embankment erosion failure 

In other cases, little to no increase in the deviatoric shear strain is observed. In this case, the 

failure index is given a value lower than 0.5. Figure 29 shows an example case for a possible 

foundation erosion. In this case, foundation erosion is possible if the overtopping event 

continues for an extended period of time. The failure index value increases with the increase 

of the total deviatoric shear strain.  

 

 

𝑡 = 250 𝑠 

𝑡 = 500 𝑠 

𝑡 = 250 𝑠 
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Figure 29: Total deviatoric shear strain for possible foundation erosion 

4.4.2 Breach percentage  

Generally, the breach formation time is measured from the start of the overtopping event until 

the embankment is completely eroded (Franca and Almeida 2004; Morris et al. 2018). Since 

the simulation takes a long time to perform, the embankment height is recorded over the time 

of the simulations (500 s) as shown in Figure 30. The breach percentage at the end of the 

simulation is calculated by dividing the embankment height at the end of the simulation by its 

original height. Additionally, the breach initiation time is also recorded, marked by the red 

circle in Figure 30. All the simulations’ breach percent, initiation time, and peak discharge are 

reported in APPENDIX D. 

𝑡 = 500 𝑠 
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Figure 30: Embankment height over time 

4.4.3 Peak discharge 

To calculate the peak discharge, the average velocity of the particles leaving the model domain 

is recorded as well as the depth of water exiting the model. The discharge is calculated using 

equation (56). Since a two-dimensional simulation is performed, the discharge is calculated per 

meter width.  

𝑄 = 𝑉 × 𝐴 (56) 

Where: 𝑄: Discharge (m3/s/m)  

 𝑉: Average velocity (m/s) 

 𝐴: Discharge area (m2/m) 
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Figure 31 illustrates the discharge over time. Since the discharge fluctuates significantly, a 

moving average is applied with a window of 5 seconds. The peak discharge is obtained from 

the moving average curve.  

 

Figure 31: Water discharge over time 

4.4.4 Foundation erosion 

The maximum depth of failed foundation soil on the downstream side is recorded at the end of 

the simulation. This failure can be due to any of the foundation failure modes; erosion, piping, 

or bearing capacity slide. Regardless of the failure mode, the maximum depth of the failed 

foundation soil is documented.  
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4.5 Database preparation 

In this research, a total of 240 simulations are performed. Each simulation requires 14 

parameters to define the model correctly. Two parameters are needed to define the embankment 

geometry; embankment side slope and height. The model is divided into two sections; 

embankment and foundation. 6 parameters are required to define each soil section; density (φ), 

Cohesion (c), Angle of friction (φ), Modulus of elasticity (E), Porosity (n), and effective 

diameter (D15).  

Moreover, failure modes are assigned a generalized failure embankment or foundation failure. 

After that, each generalized failure is classified into the failure modes discussed in section 

4.4.1. Additionally, the maximum discharge, breach percent, breach initiation time, and 

foundation erosion are calculated for each simulation, as explained in sections 4.4.2 to 4.4.4. 

This brings the total number of outputs to 11 outputs.  

A total of 240 simulations are performed. Each simulation has 14 inputs and 11 outputs. The 

database is divided into 150 datasets for training, 60 datasets for testing, and 30 for validation. 

The maximum number of hidden nodes is set to 7 hidden nodes, calculated using equation (8). 

Each output is modeled in a separate ANN model except the classification of foundation failure, 

which produced better results when combined in one model.  

 

4.6 ANN Optimization  

Each output is modeled in a separate ANN model except the classification of foundation failure, 

which produced better results when combined in one model. In some models, the prediction of 

previously developed ANN models is utilized as inputs to enhance the prediction of the model. 

In other models, not all the inputs are used which produced better model prediction accuracy 

than using all the inputs. The choice of the utilized inputs is based on the correlation factor 
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between the input and the output, shown in APPENDIX E. Each model is trained adaptively 

using the training algorithm discussed in section 2.4.   

4.6.1 Failure Modes  

4.6.1.1 General embankment failure  

In this model, the general embankment failure index (GEF) is predicted as a function of all the 

inputs; embankment side slope (α) and height (H), embankment soil properties as well as 

foundation soil properties. After performing the training process discussed in section 2.4, the 

best performing model was obtained by adaptively starting at 6 hidden nodes and stopping at 

6 hidden nodes and 200 iterations. Since the model performed worse on the testing and 

validation datasets, as shown in Table 7, the train-all model was utilized to capture the logic 

within the testing and validation datasets and not included in the training datasets.  

Table 7: Training, testing, validation, and train all statistics for the general embankment failure 

index (GEF) prediction model. 

Training Testing Validation Train All 

R2 ASE R2 ASE R2 ASE R2 ASE 

0.902 0.01510 0.912 0.01319 0.821 0.03564 0.916 0.01363 

The train-all model produced an excellent representation of the embankment instability failure 

index. Accordingly, the final ANN model can be represented, as shown in equation (57).   

GEF =ANN14-[6-6-200]-1[α, H, 𝜌𝑒, 𝐶𝑒 , 𝜑𝑒, 𝐸𝑒 , 𝑛𝑒 , 𝐷15𝑒 , 𝜌𝑓, 𝐶𝑓 , 𝜑𝑓 , 𝐸𝑓 , 𝑛𝑓 , 𝐷15𝑓]  (57) 

Where: 14-[6-6-200]-1: 14: is the number of input variables [α is side slope degrees, H is 

embankment height in meters, ρ is density in kg/m3, C is cohesion in kPa, φ is angle of friction 

in degrees, E is modulus of elasticity in MPa, n is porosity, and D15 is effective diameter in 

meters, subscript e refers to embankment property and f refers to foundation property, 6-6-200 

represents the starting hidden node and the final hidden node and corresponding iterations. 

Lastly, 1 represents the number of output variables (GEF). 

The connection weights and thresholds of the final network are shown in Table 8. 
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Table 8: Connection weights and thresholds (TS) of the generalized embankment failure 

(GEF) probability prediction model. 
 

HN1 HN2 HN3 HN4 HN5 HN6 
 

𝜶 -1.815 -1.732 -6.369 0.105 -3.896 -0.445 
 

𝑯 2.703 1.848 -4.793 0.192 4.591 -2.653  

𝝆𝒆 -0.578 -0.356 2.251 -0.455 3.235 1.396  

𝑪𝒆 -1.237 -0.777 1.146 0.506 2.347 -0.411  

𝝋𝒆 0.162 -0.047 1.398 -0.951 -1.396 0.451  

𝑬𝒆 1.084 0.740 2.715 -0.286 -2.549 1.506  

𝒏𝒆 -0.153 -0.537 2.420 -0.653 -4.575 -1.235  

𝑫𝟏𝟓𝒆 0.842 0.766 0.379 -0.241 -0.938 0.647  

𝝆𝒇 0.345 -0.213 -2.251 -0.701 -2.945 -0.777  

𝑪𝒇 -1.884 -1.101 2.239 -0.151 4.650 0.149  

𝝋𝒇 -0.217 -0.450 -2.575 -0.237 -3.391 -0.561  

𝑬𝒇 -0.952 -0.270 1.161 0.892 -0.616 1.004  

𝒏𝒇 -0.869 -1.174 -0.379 -1.837 2.953 -1.615  

𝑫𝟏𝟓𝒇 1.193 0.611 -1.401 0.136 -1.517 0.295 
 

TS 1 -0.761 -0.614 -0.847 -0.090 0.426 -0.172 
 

 
HN1 HN2 HN3 HN4 HN5 HN6 TS 2 

GEF 1.479 1.054 -5.699 -1.356 -4.342 -1.650 -8.965 

4.6.1.2 Embankment instability  

In this model, the embankment instability failure index (EIF) is predicted as a function of all 

the inputs; embankment side slope (α) and height (H), embankment soil properties, foundation 

soil properties, and the prediction from the GEF model developed earlier in section 4.6.1.1. 

After performing the training process discussed in section 2.4, the best performing model was 

obtained by adaptively starting at 1 hidden node and stopping at 2 hidden nodes and 400 

iterations. Since the model performed worse on the testing and validation datasets, as shown in 

Table 9, the train-all model was utilized to capture the logic within the testing and validation 

datasets and not included in the training datasets.  

Table 9: Training, testing, validation, and train all statistics for the embankment instability 

failure index (EIF) prediction model. 

Training Testing Validation Train All 

R2 ASE R2 ASE R2 ASE R2 ASE 

0.892 0.01796 0.923 0.01221 0.835 0.03210 0.908 0.01551 
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The train-all model produced an outstanding representation of the generalized embankment 

failure probability. Accordingly, the final ANN model can be represented as shown in equation 

(58).   

EIF =ANN15-[1-2-400]-1[α, H, 𝜌𝑒, 𝐶𝑒 , 𝜑𝑒 , 𝐸𝑒, 𝑛𝑒 , 𝐷15𝑒 , 𝜌𝑓, 𝐶𝑓, 𝜑𝑓, 𝐸𝑓, 𝑛𝑓 , 𝐷15𝑓, GEF]  (58) 

Where: 15-[1-2-400]-1: 15: is the number of input variables [α is side slope degrees, H is 

embankment height in meters, ρ is density in kg/m3, C is cohesion in kPa, φ is angle of friction 

in degrees, E is modulus of elasticity in MPa, n is porosity, and D15 is effective diameter in 

meters, subscript e refers to embankment property and f refers to foundation property, and GEF 

is the prediction of the generalized embankment failure model], 1-2-400 represents the starting 

hidden node and the final hidden node and corresponding iterations. Lastly, 1 represents the 

number of output variables (EIF). 

4.6.1.3 Embankment erosion  

In this model, the embankment erosion failure index (EEF) is predicted as a function of 

embankment height (H), embankment soil cohesion (C), angle of friction (φ), porosity (n), and 

effective diameter (D15). And the prediction from the GEF, EIF models developed earlier in 

section 4.6.1.1 and section 4.6.1.2, respectively. As well as the forecast from the general 

foundation failure (GFF) developed in section 4.6.1.4. The best performing model was obtained 

by adaptively starting at 2 hidden nodes and stopping at 5 hidden nodes and 20,000 iterations. 

Since the model performed worse on the testing and validation datasets, as shown in Table 10, 

the train-all model was utilized to capture the logic within the testing and validation datasets 

and not included in the training datasets.  

The coefficient of determination (R2) for the validation is very low. This can be reasoned to the 

fact that embankment erosion has a value in only 5 validation datasets. The other validation 

datasets are zeros. This inconsistency of the coefficient of determinations is avoided when 

using ASE, which is the primary statistical measure utilized in determining the best model. 
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Table 10: Training, testing, validation, and train all statistics for the embankment erosion 

failure index (EEF) prediction model. 

Training Testing Validation Train All 

R2 ASE R2 ASE R2 ASE R2 ASE 

0.886 0.00624 0.651 0.00848 0.050 0.02121 0.862 0.00634 

 

The train-all model produced a very good representation of the generalized embankment failure 

probability. Accordingly, the final ANN model can be represented, as shown in equation (59).   

EEF =ANN8-[1-2-400]-1[H, 𝐶𝑒 , 𝜑𝑒 , 𝑛𝑒, 𝐷15𝑒, GEF, EIF, GFF]  (59) 

Similarly: 8-[1-2-400]-1: 8: is the number of input variables [H is embankment height in 

meters, C is cohesion in kPa, φ is angle of friction in degrees, n is porosity, and D15 is effective 

diameter in meters, subscript e refers to embankment, and GEF, EIF, and GFF are the 

predictions of the generalized embankment failure, Embankment instability failure, and the 

generalized foundation failure models, respectively], 1-2-400 represents the starting hidden 

node and the final hidden node and corresponding iterations. Lastly, 1 represents the number 

of output variables (EEF). 

 

4.6.1.4 General foundation failure  

In this model, the general foundation failure index (GFF) is predicted as a function of all the 

inputs; embankment side slope (α) and height (H), embankment soil properties as well as 

foundation soil properties. After performing the training process discussed in section 2.4, the 

best performing model was obtained by adaptively starting at 5 hidden nodes and stopping at 

6 hidden nodes and 600 iterations. The train-all model produced a very good representation of 

the generalized foundation failure index, as shown in Table 11. Accordingly, the final ANN 

model can be represented, as shown in equation (60). 

Table 11: Training, testing, validation, and train all statistics for the general foundation failure 

index (GFF) prediction model. 

Training Testing Validation Train All 

R2 ASE R2 ASE R2 ASE R2 ASE 
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0.954 0.007 0.721 0.04545 0.713 0.06109 0.933 0.01033 

 

GFF =ANN14-[5-6-600]-1[α, H, 𝜌𝑒 , 𝐶𝑒 , 𝜑𝑒, 𝐸𝑒, 𝑛𝑒 , 𝐷15𝑒, 𝜌𝑓, 𝐶𝑓 , 𝜑𝑓 , 𝐸𝑓 , 𝑛𝑓, 𝐷15𝑓]  (60) 

Where: 14-[5-6-600]-1: 14: is the number of input variables [α is side slope degrees, H is 

embankment height in meters, ρ is density in kg/m3, C is cohesion in kPa, φ is angle of friction 

in degrees, E is modulus of elasticity in MPa, n is porosity, and D15 is effective diameter in 

meters, subscript e refers to embankment property and f refers to foundation property], 5-6-

600 represents the starting hidden node and the final hidden node and corresponding iterations. 

Lastly, 1 represents the number of output variables (GFF). 

4.6.1.5 Foundation failure classification  

In this model, the foundation erosion failure index (FEF), foundation piping failure index 

(FPF), and foundation bearing capacity slide failure index (FBF) are predicted as a function of 

embankment side slope (α) and height (H), and foundation soil properties, in addition to 

generalized foundation failure index (GFF). The best performing model was obtained by 

adaptively starting at 5 hidden nodes and stopping at 6 hidden nodes and 11,100 iterations. The 

train-all model produced a good representation of the generalized foundation failure index, as 

shown in Table 12. Accordingly, the final ANN model can be represented, as shown in equation 

(61). 

Table 12: Training, testing, validation, and train all statistics for FEF, FPF, and FBF prediction 

models. 

 Training Testing Validation Train All 

 R2 ASE R2 ASE R2 ASE R2 ASE 

FEF 0.876 0.00471 0.709 0.00583 0.985 0.00058 0.768 0.00735 

FPF 0.977 0.00235 0.869 0.01695 0.993 0.00155 0.960 0.00487 

FBF 0.824 0.01125 0.655 0.03939 0.767 0.01871 0.766 0.01767 

Avg 0.893 0.00610 0.745 0.02072 0.915 0.00695 0.831 0.00996 

 

[FEF, FPF, FBF] =ANN9-[5-6-11,100]-3[α, H, 𝜌𝑓, 𝐶𝑓 , 𝜑𝑓 , 𝐸𝑓 , 𝑛𝑓 , 𝐷15𝑓 , GFF]  (61) 

Where: 9-[5-6-11,100]-1: 9: is the number of input variables [α is side slope degrees, H is 

embankment height in meters, ρ is density in kg/m3, C is cohesion in kPa, φ is angle of friction 
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in degrees, E is modulus of elasticity in MPa, n is porosity, and D15 is effective diameter in 

meters, subscript f refers to foundation property, GFF is the prediction from the generalized 

foundation failure model], 5-6-11,100 represents the starting hidden node and the final hidden 

node and corresponding iterations. Lastly, 3 represents the number of output variables (FEF, 

FPF, FBF). 

4.6.2 Breach percentage and initiation time 

 In this model, breach percent and initiation time are predicted as a function of embankment 

side slope (α) and height (H), and foundation soil properties, in addition to the prediction of the 

embankment instability failure (EIF) as well as the foundation piping failure model (FPF). 

Since failure didn’t occur in all simulations, the inverse of the initiation time is taken. The 

dataset with no failure will have a value of zero (1/infinity). The best performing model was 

obtained by adaptively starting at 2 hidden nodes and stopping at 4 hidden nodes and 500 

iterations. The train-all model produced a good representation of the generalized foundation 

failure index, as shown in Table 13(62). Accordingly, the final ANN model can be represented, 

as shown in equation (62). 

Table 13: Training, testing, validation, and train all statistics for breach percent (BP) and 

initiation time (BIT) prediction model. 

 Training Testing Validation Train All 

 R2 ASE R2 ASE R2 ASE R2 ASE 

PB 0.954 0.00302 0.777 0.01569 0.373 0.07337 0.905 0.00726 

BIT 0.761 0.00554 0.633 0.00835 0.562 0.01247 0.794 0.00495 

Avg 0.858 0.00428 0.705 0.01202 0.468 0.04292 0.849 0.00611 

 
[BP, BIT] =ANN16-[2-4-500]-2[α, H, 𝜌𝑒, 𝐶𝑒 , 𝜑𝑒 , 𝐸𝑒 , 𝑛𝑒 , 𝐷15𝑒 , 𝜌𝑓, 𝐶𝑓 , 𝜑𝑓 , 𝐸𝑓 , 𝑛𝑓 , 𝐷15𝑓 ,EIF, FPF]  (62) 

Where: 16-[2-4-500]-2: 16: is the number of input variables [α is side slope degrees, H is 

embankment height in meters, ρ is density in kg/m3, C is cohesion in kPa, φ is angle of friction 

in degrees, E is modulus of elasticity in MPa, n is porosity, and D15 is effective diameter in 

meters, subscript e refers to embankment property and f refers to foundation property, EIF is 
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the prediction from the embankment instability failure model, and FPF is the prediction of 

foundation piping failure model], 2-4-500 represents the starting hidden node and the final 

hidden node and corresponding iterations. Lastly, 2 represents the number of output variables 

(BP, BIT). 

4.6.3 Peak discharge  

In this model, peak discharge (PD) is predicted as a function of all the inputs; embankment side 

slope (α) and height (H), embankment soil properties as well as foundation soil properties. The 

best performing model was obtained by adaptively starting at 3 hidden nodes and stopping at 

3 hidden nodes and 100 iterations. The train-all model produced an excellent representation of 

peak discharge, as shown in Table 14. Accordingly, the final ANN model can be represented, 

as shown in equation (63). 

Table 14: Training, testing, validation, and train all statistics for the peak discharge (PD) 

prediction model. 

Training Testing Validation Train All 

R2 ASE R2 ASE R2 ASE R2 ASE 

0.85 0.00316 0.926 0.00316 0.934 0.00241 0.883 0.00219 

 

PD =ANN14-[3-3-100]-1[α, H, 𝜌𝑒 , 𝐶𝑒 , 𝜑𝑒 , 𝐸𝑒, 𝑛𝑒 , 𝐷15𝑒, 𝜌𝑓, 𝐶𝑓, 𝜑𝑓, 𝐸𝑓 , 𝑛𝑓 , 𝐷15𝑓]  (63) 

Where: 14-[3-3-100]-1: 14: is the number of input variables [α is side slope degrees, H is 

embankment height in meters, ρ is density in kg/m3, C is cohesion in kPa, φ is angle of friction 

in degrees, E is modulus of elasticity in MPa, n is porosity, and D15 is effective diameter in 

meters, subscript e refers to embankment property and f refers to foundation property], 3-3-100 

represents the starting hidden node and the final hidden node and corresponding iterations. 

Lastly, 1 represents the number of output variables (PD) in m3/s/m. 

4.6.4 Foundation erosion  

In this model, Foundation erosion (FE) is predicted as a function of the embankment side slope 

(α) and height (H), foundation soil properties, and the prediction from generalized foundation 
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failure (GFF). The best performing model was obtained by adaptively starting at 3 hidden nodes 

and stopping at 4 hidden nodes and 700 iterations. The train-all model produced a good 

representation of peak discharge, as shown in Table 15. Accordingly, the final ANN model can 

be represented, as shown in equation (64). 

Table 15: Training, testing, validation, and train all statistics for the foundation erosion (FE) 

prediction model. 

Training Testing Validation Train All 

R2 ASE R2 ASE R2 ASE R2 ASE 

0.898 0.00597 0.742 0.02774 0.717 0.03347 0.783 0.01772 

 

FE =ANN9-[3-4-700]-1[α, H, 𝜌𝑓, 𝐶𝑓 , 𝜑𝑓 , 𝐸𝑓 , 𝑛𝑓 , 𝐷15𝑓 , GFF]  (64) 

Where: 9-[3-4-700]-1 : 9: is the number of input variables [α  is side slope degrees, H is 

embankment height in meters, ρ is density in kg/m3, C is cohesion in kPa, φ is angle of friction 

in degrees, E is modulus of elasticity in MPa, n is porosity, and D15 is effective diameter in 

meters, subscript f refers to foundation property, GFF is the prediction from the generalized 

foundation failure model], 3-4-700 represents the starting hidden node and the final hidden 

node and corresponding iterations. Lastly, 1 represents the number of output variables (FE) in 

meters. 

 

4.7 Post Validation 

To further validate the developed models, two additional simulations are performed. These 

simulations were not included in the simulation database before. This will ensure that the 

developed models can predict the failure parameters for different scenarios.  

In these simulations, the foundation is defined as high plasticity clay (CH) soil, and the 

embankment is defined as compacted clayey sand (SC). The modeling properties of these soils 

are shown in Table 16. The slope of the embankment is 1.5:1 (H:V). Finally, two different 

heights are considered 5m and 10m.   

Table 16: Soil modeling properties for the post-validation simulations 



 

69 

 Density 

(kg/m3) 

Cohesion 

(kPa) 

Friction 

angle 

Elastic modulus 

(MPa) 
Porosity 

Effective 

Diameter (m) 

CH 1890 11 19 7 0.39 4.2E-04 

SC 2150 11 31 20 0.15 1.0E-03 

 

In the first problem (i.e., 5m embankment), definite embankment failure is predicted with 

general embankment failure index of 1. And values of 1 and 0.87 for the embankment erosion 

and instability failure indices, respectively. This result is consistent with numerical simulation 

shown in Figure 32. Embankment erosion starts to form at the beginning before the instability 

failure (𝑡 = 60 𝑠 ). After that, the embankment continues to failure while the embankment 

topsoil is eroding (𝑡 > 350 𝑠).   

 

 

 

  

  

Figure 32: problem failure progression for the first post validation  

Other failure parameters are shown in Table 17. Peak discharge and breach initiation time are 

underestimated. And the breach percent is overestimated by 2%. These predictions imply 

𝑡 = 60 𝑠  

𝑡 = 160 𝑠 𝑡 = 250 𝑠 

𝑡 = 350 𝑠  𝑡 = 500 𝑠  
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embankment failure will start within the first minute of the overtopping event, and 12% breach 

will happen over the next 8 minutes.  

Table 17: Failure parameters for first post validation problem, calculated vs. prediction. 

 Peak discharge 

(m3/s/m) 

Foundation erosion 

(m) 

Breach 

Percent (%) 

Breach initiation 

time (s) 

Calculated  1.823 0.0 10 51 

Predicted 1.258 0.0 11.9 17.8 

 

In the second problem (i.e., 10m embankment), definite embankment, as well as foundation 

failure, are predicted with general embankment and foundation failure indices of 1 and 0.98, 

respectively. The foundation failure is predicted to be a bearing capacity slide failure with a 

failure index of 1. And the embankment failure is predicted to be an instability failure with a 

failure index of 1 as well. The same failure modes occur during the numerical simulation, as 

shown in Figure 33. Bearing capacity failure starts to form at the beginning before the 

instability failure (𝑡 = 10 𝑠). After that b,oth failure modes progress to failure (𝑡 > 180 𝑠).   

 

  

  

Figure 33: failure progression for second post validation problem  

𝑡 = 10 𝑠 𝑡 = 35 𝑠 

𝑡 = 180 𝑠  𝑡 = 280 𝑠  
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In this simulation, peak discharge and breach initiation time are also underestimated. And the 

breach percent is underestimated by 2% as depicted in Table 18. These predictions imply 

embankment and foundation failure will start within the first minute of the overtopping event, 

and 21% breach will happen over the next 8 minutes.  

Table 18: Second post validation problem failure parameters, calculated vs. prediction. 

 Peak discharge 

(m3/s/m) 

Foundation erosion 

(m) 

Breach 

Percent (%) 

Breach initiation 

time (s) 

Calculated  1.691 0.4 23.9 29 

Predicted 1.562 0.6 21.3 6.3 

 

4.8 Graphical user interface (GUI) 

In order for the results of this study more accessible for emergency planning or further research 

in a specific case study, a Graphical User interface is created utilizing all the developed ANN 

models. Excel is used to create the GUI since it is readily available on most computers and 

doesn’t require unique software installation.  

The GUI is comprised of 3 sheets; the first is an information sheet describing the interface and 

how to use it, and the ANN model statistics. The second sheet is the interface itself, shown in 

Figure 34. And finally, the third sheet is a calculation sheet.  
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Figure 34: Embankment failure due to overtopping graphical user interface (GUI) 

The user inputs are the geometry of the embankment, embankment soil properties, and the 

foundation soil properties, shown in Figure 35. The confidence range for each input is displayed 

next to it. Additionally, the soils utilized in the numerical simulations are listed as suggested 

soils for the foundation and the embankment. The user can click on the soil name, and its 

properties will automatically be filled.  

 

Figure 35: Embankment failure GUI inputs 
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The outputs of all the models developed in this study are the failure mode for the embankment 

and the foundation and their classification, peak discharge, breach percent and foundation 

erosion at the end of the simulation (after 500s), and breach initiation time. As shown in Figure 

36.  

 

Figure 36: Embankment failure GUI outputs 

Finally, the results are visually represented compared to the initial conditions, as depicted in 

Figure 37. 

 

Figure 37: Embankment failure prediction visual representation 
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4.9 Conclusions 

In this study, the post-failure behavior of earthen embankments was numerically simulated 

utilizing an open source code smoothed particle hydrodynamics (SPH) code “PersianSPH.” 

The software was successfully validated by modeling experiments from literature focusing on 

soil failure and soil-water interaction.  

• The numerical model input parameters were identified as embankment slope and 

height, embankment soil properties, and foundation soil properties.  

• Embankments with slope varying from 1.2-3:1 (H:V) and height ranging between (3-

15m). Instead of changing each soil property individually, five different soils were 

considered for the foundation and four soil types for the embankment.  

• A total of 240 simulations were performed; each simulation was performed for 500 

seconds.  

• Five different failure modes were identified; Embankment erosion and instability, and 

foundation erosion, piping, and bearing capacity failure.  

• Embankment erosion presented in low height and low slope embankment and the 

embankment is made of clayey sand soil. 

• Embankment instability failure occurred in clayey gravel embankments and silty sand 

embankments with steeper slopes or higher embankments. 

• Foundation erosion arose for silty gravel foundations and low embankments, a potential 

foundation erosion was observed for low plasticity silt foundations. 

• Foundation piping failure occurred when the foundation is made of well-graded gravel. 

• Foundation bearing capacity slide failure was observed for steeper and higher 

embankments. 

• Peak discharge, foundation erosion, breach percent at the end of the simulation, and 

breach initiation time are identified as failure parameters. 
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• Eight ANN models were developed to correlate the numerical simulation inputs and the 

identified failure parameters.  

• Each failure parameter was modeled independently except; foundation failure, and 

breach percent and initiation time.  

• The developed ANN models showed good to excellent correlation to the numerical 

simulations results with R2 ranging from 0.768 – 0.960.  

• Two additional simulations were performed to validate the ANN models. These 

simulations were not included in the original database.  

• The developed ANN models were utilized to create a GUI to predict the behavior of 

earthen embankment during an overtopping event.   
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5. CONCLUSIONS AND RECOMMENDATIONS  

5.1 Conclusions 

Artificial Neural Network (ANN) technique is utilized in this research to analyze and optimize 

two engineering problems; characterizing the stress-strain behavior of graphene 

nanocomposites and predicting earthen embankment failure due to overtopping. The first 

problem is an experimental study, and the second application is based on numerical data. In 

both cases, ANN was employed to overcome the complexity of the problem and predict the 

behavior of the studied engineering system with high accuracy. The developed ANN models 

can be reliably and efficiently utilized by engineers and save time, money, and effort. Here is 

a summary of the most important conclusions of this dissertation, more detailed conclusions of 

each study are given in their respective chapters.  

In the first application, the mechanical properties of PEIGNP composites are studied, including 

the toughness, maximum tangent modulus, maximum strength, and strain. ANN approach was 

utilized to overcome the inhomogeneous behavior of the material.  

• Two ANN models were developed; the first was a strain-controlled model, and the other 

was a stress-controlled model.  

• Another ANN model was developed and incorporated to predict the maximum strain at 

a given wt.%. 

• Both stress- and strain-controlled models display excellent agreement with the 

experimentally observed data.  

• The strain-controlled model tends to predict lower values for the mechanical properties, 

while the stress-controlled model tends to predict higher values.
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• The strain-controlled model was noted to be more reliable in predicting the stress-strain 

behavior at different wt.% which is consistent with its higher statistical accuracy 

measures. 

• By employing the developed ANN stress- and strain-controlled models, the stress-strain 

response can be efficiently simulated at any given wt.%.  

• The developed ANN models are utilized to create a GUI to aid in future material design. 

In the second problem, the post-failure behavior of earthen embankments was numerically 

simulated utilizing a smoothed particle hydrodynamics (SPH) code “PersianSPH”.  

• 14 input parameters for the numerical model input parameters were identified; 

including embankment slope and height, 6 parameters to model embankment soil, and 

an additional 6 parameters to accurately define the foundation soil. 

• A total of 240 simulations were performed; each simulation was performed for 500 

seconds.  

• Embankments with slope varying from 1.2-3:1 (H:V) and height ranging between (3-

15m). Five different soils were considered for the foundation and four soil types for the 

embankment.  

• Five unique failure modes were identified; Embankment erosion and instability, and 

foundation erosion, piping, and bearing capacity failure.  

• Peak discharge, foundation erosion, breach percent at the end of the simulation, and 

breach initiation time were identified as failure parameters.  

• A total of eight ANN models were developed to predict earthen embankments during 

an overtopping event.  

• The developed ANN models showed good to excellent correlation to the numerical 

simulations results with R2 ranging from 0.768 – 0.960.  

• Two other numerical simulations were performed and validated the ANN models. 
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• The developed ANN models were utilized to create a GUI to predict the behavior of 

earthen embankment during an overtopping event. 

5.2 Recommendations 

• This study of embankment overtopping failure is the first step in a long and much more 

detailed research. This includes considering more variation of physical, engineering, 

and other modeling parameters.  

• The overtopping numerical model needs to be validated experimentally. 

• The GUI is created to save time and effort. However, the applicable range for each 

parameter should be considered.  

• Real soil parameters should be used in predicting failure of earthen embankments. Since 

soil parameters are interrelated.  

• The developed ANN models are retrainable in case of future database expansion. 
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APPENDIX A 

• PEI-xGnP nanocomposite experimental results  
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APPENDIX B 

• PEI-xGnP ANN Simulations vs Experiments  
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APPENDIX C 

• Dam failure: Modeling parameters of all the performed simulations  

 Geom. Foundation soil properties Embankment soil properties 

 # α H Soil ρ C Ф E n d15 Soil ρ C Ф E n d15 

1 18.43 3 CH 1889 11 19 7 0.39 4.2E-04 CH 2089 103 19 32 0.39 4.2E-04 

2 18.43 3 CH 1889 11 19 7 0.39 4.2E-04 GM 2420 5 40 35 0.17 4.0E-02 

3 18.43 3 CH 1889 11 19 7 0.39 4.2E-04 MH 2129 72 18 10 0.53 8.0E-03 

4 18.43 3 CH 1889 11 19 7 0.39 4.2E-04 SC 2150 11 31 20 0.15 1.0E-03 

5 18.43 3 GM 2320 0 34 20 0.17 4.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

6 18.43 3 GM 2320 0 34 20 0.17 4.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

7 18.43 3 GM 2320 0 34 20 0.17 4.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

8 18.43 3 GM 2320 0 34 20 0.17 4.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

9 18.43 3 MH 1929 50 18 2 0.53 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

10 18.43 3 MH 1929 50 18 2 0.53 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

11 18.43 3 MH 1929 50 18 2 0.53 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

12 18.43 3 MH 1929 50 18 2 0.53 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

13 18.43 3 GW 2369 0 40 30 0.27 5.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

14 18.43 3 GW 2369 0 40 30 0.27 5.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

15 18.43 3 GW 2369 0 40 30 0.27 5.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

16 18.43 3 GW 2369 0 40 30 0.27 5.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

17 18.43 3 ML 2219 22 27 15 0.42 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

18 18.43 3 ML 2219 22 27 15 0.42 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

19 18.43 3 ML 2219 22 27 15 0.42 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

20 18.43 3 ML 2219 22 27 15 0.42 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

21 18.43 7 CH 1889 11 19 7 0.39 4.2E-04 CH 2089 103 19 32 0.39 4.2E-04 

22 18.43 7 CH 1889 11 19 7 0.39 4.2E-04 GM 2420 5 40 35 0.17 4.0E-02 

23 18.43 7 CH 1889 11 19 7 0.39 4.2E-04 MH 2129 72 18 10 0.53 8.0E-03 

24 18.43 7 CH 1889 11 19 7 0.39 4.2E-04 SC 2150 11 31 20 0.15 1.0E-03 

25 18.43 7 GM 2320 0 34 20 0.17 4.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

26 18.43 7 GM 2320 0 34 20 0.17 4.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

27 18.43 7 GM 2320 0 34 20 0.17 4.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

28 18.43 7 GM 2320 0 34 20 0.17 4.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

29 18.43 7 MH 1929 50 18 2 0.53 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

30 18.43 7 MH 1929 50 18 2 0.53 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

31 18.43 7 MH 1929 50 18 2 0.53 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

32 18.43 7 MH 1929 50 18 2 0.53 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 
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33 18.43 7 GW 2369 0 40 30 0.27 5.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

34 18.43 7 GW 2369 0 40 30 0.27 5.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

35 18.43 7 GW 2369 0 40 30 0.27 5.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

36 18.43 7 GW 2369 0 40 30 0.27 5.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

37 18.43 7 ML 2219 22 27 15 0.42 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

38 18.43 7 ML 2219 22 27 15 0.42 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

39 18.43 7 ML 2219 22 27 15 0.42 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

40 18.43 7 ML 2219 22 27 15 0.42 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

41 18.43 12 CH 1889 11 19 7 0.39 4.2E-04 CH 2089 103 19 32 0.39 4.2E-04 

42 18.43 12 CH 1889 11 19 7 0.39 4.2E-04 GM 2420 5 40 35 0.17 4.0E-02 

43 18.43 12 CH 1889 11 19 7 0.39 4.2E-04 MH 2129 72 18 10 0.53 8.0E-03 

44 18.43 12 CH 1889 11 19 7 0.39 4.2E-04 SC 2150 11 31 20 0.15 1.0E-03 

45 18.43 12 GM 2320 0 34 20 0.17 4.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

46 18.43 12 GM 2320 0 34 20 0.17 4.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

47 18.43 12 GM 2320 0 34 20 0.17 4.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

48 18.43 12 GM 2320 0 34 20 0.17 4.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

49 18.43 12 MH 1929 50 18 2 0.53 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

50 18.43 12 MH 1929 50 18 2 0.53 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

51 18.43 12 MH 1929 50 18 2 0.53 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

52 18.43 12 MH 1929 50 18 2 0.53 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

53 18.43 12 GW 2369 0 40 30 0.27 5.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

54 18.43 12 GW 2369 0 40 30 0.27 5.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

55 18.43 12 GW 2369 0 40 30 0.27 5.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

56 18.43 12 GW 2369 0 40 30 0.27 5.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

57 18.43 12 ML 2219 22 27 15 0.42 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

58 18.43 12 ML 2219 22 27 15 0.42 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

59 18.43 12 ML 2219 22 27 15 0.42 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

60 18.43 12 ML 2219 22 27 15 0.42 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

61 18.43 15 CH 1889 11 19 7 0.39 4.2E-04 CH 2089 103 19 32 0.39 4.2E-04 

62 18.43 15 CH 1889 11 19 7 0.39 4.2E-04 GM 2420 5 40 35 0.17 4.0E-02 

63 18.43 15 CH 1889 11 19 7 0.39 4.2E-04 MH 2129 72 18 10 0.53 8.0E-03 

64 18.43 15 CH 1889 11 19 7 0.39 4.2E-04 SC 2150 11 31 20 0.15 1.0E-03 

65 18.43 15 GM 2320 0 34 20 0.17 4.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

66 18.43 15 GM 2320 0 34 20 0.17 4.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

67 18.43 15 GM 2320 0 34 20 0.17 4.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

68 18.43 15 GM 2320 0 34 20 0.17 4.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

69 18.43 15 MH 1929 50 18 2 0.53 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 
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70 18.43 15 MH 1929 50 18 2 0.53 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

71 18.43 15 MH 1929 50 18 2 0.53 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

72 18.43 15 MH 1929 50 18 2 0.53 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

73 18.43 15 GW 2369 0 40 30 0.27 5.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

74 18.43 15 GW 2369 0 40 30 0.27 5.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

75 18.43 15 GW 2369 0 40 30 0.27 5.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

76 18.43 15 GW 2369 0 40 30 0.27 5.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

77 18.43 15 ML 2219 22 27 15 0.42 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

78 18.43 15 ML 2219 22 27 15 0.42 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

79 18.43 15 ML 2219 22 27 15 0.42 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

80 18.43 15 ML 2219 22 27 15 0.42 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

81 26.57 3 CH 1889 11 19 7 0.39 4.2E-04 CH 2089 103 19 32 0.39 4.2E-04 

82 26.57 3 CH 1889 11 19 7 0.39 4.2E-04 GM 2420 5 40 35 0.17 4.0E-02 

83 26.57 3 CH 1889 11 19 7 0.39 4.2E-04 MH 2129 72 18 10 0.53 8.0E-03 

84 26.57 3 CH 1889 11 19 7 0.39 4.2E-04 SC 2150 11 31 20 0.15 1.0E-03 

85 26.57 3 GM 2320 0 34 20 0.17 4.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

86 26.57 3 GM 2320 0 34 20 0.17 4.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

87 26.57 3 GM 2320 0 34 20 0.17 4.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

88 26.57 3 GM 2320 0 34 20 0.17 4.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

89 26.57 3 MH 1929 50 18 2 0.53 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

90 26.57 3 MH 1929 50 18 2 0.53 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

91 26.57 3 MH 1929 50 18 2 0.53 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

92 26.57 3 MH 1929 50 18 2 0.53 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

93 26.57 3 GW 2369 0 40 30 0.27 5.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

94 26.57 3 GW 2369 0 40 30 0.27 5.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

95 26.57 3 GW 2369 0 40 30 0.27 5.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

96 26.57 3 GW 2369 0 40 30 0.27 5.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

97 26.57 3 ML 2219 22 27 15 0.42 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

98 26.57 3 ML 2219 22 27 15 0.42 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

99 26.57 3 ML 2219 22 27 15 0.42 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

100 26.57 3 ML 2219 22 27 15 0.42 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

101 26.57 7 CH 1889 11 19 7 0.39 4.2E-04 CH 2089 103 19 32 0.39 4.2E-04 

102 26.57 7 CH 1889 11 19 7 0.39 4.2E-04 GM 2420 5 40 35 0.17 4.0E-02 

103 26.57 7 CH 1889 11 19 7 0.39 4.2E-04 MH 2129 72 18 10 0.53 8.0E-03 

104 26.57 7 CH 1889 11 19 7 0.39 4.2E-04 SC 2150 11 31 20 0.15 1.0E-03 

105 26.57 7 GM 2320 0 34 20 0.17 4.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

106 26.57 7 GM 2320 0 34 20 0.17 4.0E-02 GM 2420 5 40 35 0.17 4.0E-02 
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107 26.57 7 GM 2320 0 34 20 0.17 4.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

108 26.57 7 GM 2320 0 34 20 0.17 4.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

109 26.57 7 MH 1929 50 18 2 0.53 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

110 26.57 7 MH 1929 50 18 2 0.53 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

111 26.57 7 MH 1929 50 18 2 0.53 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

112 26.57 7 MH 1929 50 18 2 0.53 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

113 26.57 7 GW 2369 0 40 30 0.27 5.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

114 26.57 7 GW 2369 0 40 30 0.27 5.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

115 26.57 7 GW 2369 0 40 30 0.27 5.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

116 26.57 7 GW 2369 0 40 30 0.27 5.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

117 26.57 7 ML 2219 22 27 15 0.42 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

118 26.57 7 ML 2219 22 27 15 0.42 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

119 26.57 7 ML 2219 22 27 15 0.42 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

120 26.57 7 ML 2219 22 27 15 0.42 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

121 26.57 12 CH 1889 11 19 7 0.39 4.2E-04 CH 2089 103 19 32 0.39 4.2E-04 

122 26.57 12 CH 1889 11 19 7 0.39 4.2E-04 GM 2420 5 40 35 0.17 4.0E-02 

123 26.57 12 CH 1889 11 19 7 0.39 4.2E-04 MH 2129 72 18 10 0.53 8.0E-03 

124 26.57 12 CH 1889 11 19 7 0.39 4.2E-04 SC 2150 11 31 20 0.15 1.0E-03 

125 26.57 12 GM 2320 0 34 20 0.17 4.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

126 26.57 12 GM 2320 0 34 20 0.17 4.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

127 26.57 12 GM 2320 0 34 20 0.17 4.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

128 26.57 12 GM 2320 0 34 20 0.17 4.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

129 26.57 12 MH 1929 50 18 2 0.53 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

130 26.57 12 MH 1929 50 18 2 0.53 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

131 26.57 12 MH 1929 50 18 2 0.53 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

132 26.57 12 MH 1929 50 18 2 0.53 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

133 26.57 12 GW 2369 0 40 30 0.27 5.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

134 26.57 12 GW 2369 0 40 30 0.27 5.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

135 26.57 12 GW 2369 0 40 30 0.27 5.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

136 26.57 12 GW 2369 0 40 30 0.27 5.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

137 26.57 12 ML 2219 22 27 15 0.42 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

138 26.57 12 ML 2219 22 27 15 0.42 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

139 26.57 12 ML 2219 22 27 15 0.42 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

140 26.57 12 ML 2219 22 27 15 0.42 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

141 26.57 15 CH 1889 11 19 7 0.39 4.2E-04 CH 2089 103 19 32 0.39 4.2E-04 

142 26.57 15 CH 1889 11 19 7 0.39 4.2E-04 GM 2420 5 40 35 0.17 4.0E-02 

143 26.57 15 CH 1889 11 19 7 0.39 4.2E-04 MH 2129 72 18 10 0.53 8.0E-03 
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144 26.57 15 CH 1889 11 19 7 0.39 4.2E-04 SC 2150 11 31 20 0.15 1.0E-03 

145 26.57 15 GM 2320 0 34 20 0.17 4.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

146 26.57 15 GM 2320 0 34 20 0.17 4.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

147 26.57 15 GM 2320 0 34 20 0.17 4.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

148 26.57 15 GM 2320 0 34 20 0.17 4.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

149 26.57 15 MH 1929 50 18 2 0.53 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

150 26.57 15 MH 1929 50 18 2 0.53 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

151 26.57 15 MH 1929 50 18 2 0.53 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

152 26.57 15 MH 1929 50 18 2 0.53 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

153 26.57 15 GW 2369 0 40 30 0.27 5.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

154 26.57 15 GW 2369 0 40 30 0.27 5.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

155 26.57 15 GW 2369 0 40 30 0.27 5.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

156 26.57 15 GW 2369 0 40 30 0.27 5.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

157 26.57 15 ML 2219 22 27 15 0.42 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

158 26.57 15 ML 2219 22 27 15 0.42 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

159 26.57 15 ML 2219 22 27 15 0.42 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

160 26.57 15 ML 2219 22 27 15 0.42 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

161 39.81 3 CH 1889 11 19 7 0.39 4.2E-04 CH 2089 103 19 32 0.39 4.2E-04 

162 39.81 3 CH 1889 11 19 7 0.39 4.2E-04 GM 2420 5 40 35 0.17 4.0E-02 

163 39.81 3 CH 1889 11 19 7 0.39 4.2E-04 MH 2129 72 18 10 0.53 8.0E-03 

164 39.81 3 CH 1889 11 19 7 0.39 4.2E-04 SC 2150 11 31 20 0.15 1.0E-03 

165 39.81 3 GM 2320 0 34 20 0.17 4.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

166 39.81 3 GM 2320 0 34 20 0.17 4.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

167 39.81 3 GM 2320 0 34 20 0.17 4.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

168 39.81 3 GM 2320 0 34 20 0.17 4.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

169 39.81 3 MH 1929 50 18 2 0.53 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

170 39.81 3 MH 1929 50 18 2 0.53 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

171 39.81 3 MH 1929 50 18 2 0.53 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

172 39.81 3 MH 1929 50 18 2 0.53 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

173 39.81 3 GW 2369 0 40 30 0.27 5.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

174 39.81 3 GW 2369 0 40 30 0.27 5.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

175 39.81 3 GW 2369 0 40 30 0.27 5.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

176 39.81 3 GW 2369 0 40 30 0.27 5.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

177 39.81 3 ML 2219 22 27 15 0.42 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

178 39.81 3 ML 2219 22 27 15 0.42 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

179 39.81 3 ML 2219 22 27 15 0.42 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

180 39.81 3 ML 2219 22 27 15 0.42 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 
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181 39.81 7 CH 1889 11 19 7 0.39 4.2E-04 CH 2089 103 19 32 0.39 4.2E-04 

182 39.81 7 CH 1889 11 19 7 0.39 4.2E-04 GM 2420 5 40 35 0.17 4.0E-02 

183 39.81 7 CH 1889 11 19 7 0.39 4.2E-04 MH 2129 72 18 10 0.53 8.0E-03 

184 39.81 7 CH 1889 11 19 7 0.39 4.2E-04 SC 2150 11 31 20 0.15 1.0E-03 

185 39.81 7 GM 2320 0 34 20 0.17 4.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

186 39.81 7 GM 2320 0 34 20 0.17 4.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

187 39.81 7 GM 2320 0 34 20 0.17 4.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

188 39.81 7 GM 2320 0 34 20 0.17 4.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

189 39.81 7 MH 1929 50 18 2 0.53 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

190 39.81 7 MH 1929 50 18 2 0.53 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

191 39.81 7 MH 1929 50 18 2 0.53 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

192 39.81 7 MH 1929 50 18 2 0.53 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

193 39.81 7 GW 2369 0 40 30 0.27 5.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

194 39.81 7 GW 2369 0 40 30 0.27 5.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

195 39.81 7 GW 2369 0 40 30 0.27 5.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

196 39.81 7 GW 2369 0 40 30 0.27 5.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

197 39.81 7 ML 2219 22 27 15 0.42 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

198 39.81 7 ML 2219 22 27 15 0.42 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

199 39.81 7 ML 2219 22 27 15 0.42 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

200 39.81 7 ML 2219 22 27 15 0.42 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

201 39.81 12 CH 1889 11 19 7 0.39 4.2E-04 CH 2089 103 19 32 0.39 4.2E-04 

202 39.81 12 CH 1889 11 19 7 0.39 4.2E-04 GM 2420 5 40 35 0.17 4.0E-02 

203 39.81 12 CH 1889 11 19 7 0.39 4.2E-04 MH 2129 72 18 10 0.53 8.0E-03 

204 39.81 12 CH 1889 11 19 7 0.39 4.2E-04 SC 2150 11 31 20 0.15 1.0E-03 

205 39.81 12 GM 2320 0 34 20 0.17 4.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

206 39.81 12 GM 2320 0 34 20 0.17 4.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

207 39.81 12 GM 2320 0 34 20 0.17 4.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

208 39.81 12 GM 2320 0 34 20 0.17 4.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

209 39.81 12 MH 1929 50 18 2 0.53 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

210 39.81 12 MH 1929 50 18 2 0.53 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

211 39.81 12 MH 1929 50 18 2 0.53 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

212 39.81 12 MH 1929 50 18 2 0.53 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

213 39.81 12 GW 2369 0 40 30 0.27 5.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

214 39.81 12 GW 2369 0 40 30 0.27 5.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

215 39.81 12 GW 2369 0 40 30 0.27 5.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

216 39.81 12 GW 2369 0 40 30 0.27 5.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

217 39.81 12 ML 2219 22 27 15 0.42 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 
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218 39.81 12 ML 2219 22 27 15 0.42 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

219 39.81 12 ML 2219 22 27 15 0.42 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

220 39.81 12 ML 2219 22 27 15 0.42 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

221 39.81 15 CH 1889 11 19 7 0.39 4.2E-04 CH 2089 103 19 32 0.39 4.2E-04 

222 39.81 15 CH 1889 11 19 7 0.39 4.2E-04 GM 2420 5 40 35 0.17 4.0E-02 

223 39.81 15 CH 1889 11 19 7 0.39 4.2E-04 MH 2129 72 18 10 0.53 8.0E-03 

224 39.81 15 CH 1889 11 19 7 0.39 4.2E-04 SC 2150 11 31 20 0.15 1.0E-03 

225 39.81 15 GM 2320 0 34 20 0.17 4.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

226 39.81 15 GM 2320 0 34 20 0.17 4.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

227 39.81 15 GM 2320 0 34 20 0.17 4.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

228 39.81 15 GM 2320 0 34 20 0.17 4.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

229 39.81 15 MH 1929 50 18 2 0.53 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

230 39.81 15 MH 1929 50 18 2 0.53 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

231 39.81 15 MH 1929 50 18 2 0.53 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

232 39.81 15 MH 1929 50 18 2 0.53 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 

233 39.81 15 GW 2369 0 40 30 0.27 5.0E-02 CH 2089 103 19 32 0.39 4.2E-04 

234 39.81 15 GW 2369 0 40 30 0.27 5.0E-02 GM 2420 5 40 35 0.17 4.0E-02 

235 39.81 15 GW 2369 0 40 30 0.27 5.0E-02 MH 2129 72 18 10 0.53 8.0E-03 

236 39.81 15 GW 2369 0 40 30 0.27 5.0E-02 SC 2150 11 31 20 0.15 1.0E-03 

237 39.81 15 ML 2219 22 27 15 0.42 8.0E-03 CH 2089 103 19 32 0.39 4.2E-04 

238 39.81 15 ML 2219 22 27 15 0.42 8.0E-03 GM 2420 5 40 35 0.17 4.0E-02 

239 39.81 15 ML 2219 22 27 15 0.42 8.0E-03 MH 2129 72 18 10 0.53 8.0E-03 

240 39.81 15 ML 2219 22 27 15 0.42 8.0E-03 SC 2150 11 31 20 0.15 1.0E-03 
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APPENDIX D 

• Dam failure: Failure parameters for all the simulations 

     Failure modes 

     Embankment Foundation 

 # PD BP BIT FE GEF EIF EEF GFF FEF FPF FBF 

1 1.108 0 0 0 0.0 0 0 0.0 0 0 0 

2 1.529 54 75 0 1.0 0 1 0.0 0 0 0 

3 1.209 0 0 0 0.0 0 0 0.0 0 0 0 

4 1.193 0 0 0 0.6 0 0.6 0.0 0 0 0 

5 1.074 0 0 0.9 0.0 0 0 1.0 1 0 0 

6 1.841 17.3 16 0 1.0 1 0 1.0 0 0 1 

7 1.122 0 0 1 0.0 0 0 1.0 1 0 0 

8 1.106 0 0 1.2 0.0 0 0 1.0 1 0 0 

9 1.086 0 0 0 0.0 0 0 0.0 0 0 0 

10 1.429 100 52 0 1.0 1 0 0.0 0 0 0 

11 1.049 0 0 0 0.2 0.2 0 0.0 0 0 0 

12 1.077 0 0 0 0.5 0 0.5 0.0 0 0 0 

13 1.226 0 0 2.5 0.0 0 0 1.0 0 1 0 

14 1.036 100 50 2.5 1.0 1 0 1.0 0 1 0 

15 1.310 40 250 2.5 0.0 0 0 1.0 0 1 0 

16 4.179 100 30 2.5 1.0 1 0 1.0 0 1 0 

17 1.105 0 0 0.3 0.2 0 0.2 0.2 0.2 0 0 

18 1.421 18 32.5 0 1.0 1 0 0.0 0 0 0 

19 1.028 0 0 0.2 0.0 0 0 0.3 0.3 0 0 

20 1.057 0 0 0 0.5 0 0.5 0.0 0 0 0 

21 1.136 0 0 0 0.0 0 0 0.0 0 0 0 

22 1.75 29 70.5 0 1.0 1 0 0.0 0 0 0 

23 1.276 0 0 0 0.0 0 0 0.0 0 0 0 

24 1.331 0 0 0 0.5 0 0.5 0.0 0 0 0 

25 1.24 0 0 0.4 0.0 0 0 1.0 1 0 0 

26 1.076 0 0 0 1.0 1 0 0.0 0 0 0 

27 1.116 0 0 0.2 0.0 0 0 1.0 1 0 0 

28 1.254 0 0 0.4 0.0 0 0 1.0 1 0 0 

29 1.254 0 0 0 0.0 0 0 0.0 0 0 0 

30 2.056 48 10 0 1.0 1 0 0.0 0 0 0 

31 1.081 0 0 0 0.0 0 0 0.0 0 0 0 
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32 1.202 0 0 0 0.5 0 0.5 0.0 0 0 0 

33 1.169 0 0 2.5 0.0 0 0 1.0 0 1 0 

34 2.053 100 7 2.5 1.0 1 0 1.0 0 1 0 

35 1.24 0 0 2.5 0.0 0 0 1.0 0 1 0 

36 1.113 0 0 2.5 0.0 0 0 1.0 0 1 0 

37 1.224 0 0 0 0.0 0 0 0.3 0.3 0 0 

38 1.209 0 0 0 0.7 0.5 0.7 0.0 0 0 0 

39 1.173 0 0 0 0.0 0 0 0.2 0.2 0 0 

40 1.24 0 0 0 0.2 0 0.2 0.0 0 0 0 

41 1.16 0 0 0 0.2 0.2 0 0.2 0 0 0.2 

42 3.598 42 5 0 1.0 1 0 0.0 0 0 0 

43 1.416 0 0 0 0.2 0.2 0 0.5 0 0 0.5 

44 1.404 0 0 0 0.5 0 0.5 0.2 0 0 0.2 

45 1.01 0 0 0.4 0.0 0 0 0.5 0.5 0 0 

46 1.491 5 15 0 1.0 1 0 0.0 0 0 0 

47 1.179 0 0 0.5 0.0 0 0 1.0 1 0 0.3 

48 1.41 0 0 0.55 0.0 0 0 1.0 1 0 0 

49 1.251 0 0 0 0.0 0 0 0.2 0 0 0.2 

50 3.056 36 5 0 1.0 1 0 0.0 0 0 0 

51 1.437 0 0 0 0.3 0.3 0 0.5 0 0 0.5 

52 1.238 0 0 0 0.5 0.5 0.3 0.0 0 0 0 

53 1.432 0 0 1.8 0.0 0 0 1.0 0 1 0 

54 1.766 13 5 3 1.0 1 0 1.0 0 0 1 

55 1.538 0 0 2 0.0 0 0 1.0 0 1 0 

56 1.752 0 0 3 0.0 0 0 1.0 0 1 0 

57 1.227 0 0 0 0.0 0 0 0.0 0 0 0 

58 2.428 31 81.5 0 1.0 1 0 0.0 0 0 0 

59 1.216 0 0 0 0.1 0.1 0 0.1 0 0 0.1 

60 1.237 0 0 0 0.3 0 0.3 0.0 0 0 0 

61 1.105 0 0 0 0.2 0.2 0 0.0 0 0 0 

62 1.66 4 20 0 1.0 1 0 0.0 0 0 0 

63 1.65 0 0 0 0.3 0.3 0 0.4 0 0 0.4 

64 1.299 0 0 0 0.3 0 0.3 0.2 0 0 0.2 

65 1.014 0 0 0 0.0 0 0 0.1 0 0 0.1 

66 2.143 5 10 0 1.0 1 0.8 0.0 0 0 0 

67 1.446 0 0 0 0.2 0.1 0.1 0.3 0 0 0.3 

68 1.13 0 0 0 0.1 0 0.1 0.0 0 0 0 



 

103 

69 1.134 0 0 0 0.1 0.1 0 0.2 0 0 0.2 

70 3.963 26 5 0 1.0 1 0 0.0 0 0 0 

71 1.668 0 0 0 0.1 0.1 0 0.3 0 0 0.3 

72 1.204 0 0 0 0.4 0.4 0.2 0.0 0 0 0 

73 1.089 0 0 3 0.0 0 0 1.0 0 1 0 

74 2.041 0 0 1 0.2 0.2 0.7 1.0 0 1 0 

75 1.485 0 0 1 0.7 0 0.7 1.0 0 1 0 

76 0.939 0 0 0.5 0.0 0 0 0.8 0 0.8 0 

77 1.013 0 0 0 0.2 0.2 0 0.1 0 0 0.1 

78 2.119 2 5 0 1 1 0 0 0 0 0 

79 1.402 0 0 0 0.1 0.1 0 0.1 0 0 0.1 

80 0.928 0 0 0 0.1 0 0.1 0.0 0 0 0 

81 1.112 0 0 0 0.0 0 0 0.0 0 0 0 

82 1.503 61 42 0 1.0 1 0 0.0 0 0 0 

83 1.147 0 0 0 0.0 0 0 0.0 0 0 0 

84 1.145 2 138.5 0 1.0 0.2 1 0.0 0 0 0 

85 1.245 0 0 1 0.0 0 0 1.0 1 0 0 

86 1.345 12 12 0 1.0 1 0 0.0 0 0 0 

87 1.17 0 0 0 0.0 0 0 0.4 0 0 0.4 

88 1.086 0 0 0 0.5 0 0.5 0.5 0.2 0 0.5 

89 1.067 0 0 0 0.0 0 0 0.0 0 0 0 

90 1.272 40 103.5 0 1.0 1 0 0.0 0 0 0 

91 1.015 0 0 0 0.0 0 0 0.0 0 0 0 

92 1.106 0 0 0 0.6 0.6 0.6 0.0 0 0 0 

93 1.298 0 0 3 0.0 0 0 1.0 0 1 0 

94 1.323 100 10 3 1.0 1 0 1.0 0 1 0 

95 1.05 100 60 3 1.0 1 0 1.0 0 1 0 

96 3.377 100 120 3 1.0 1 0 1.0 0 1 0 

97 1.058 0 0 0 0.0 0 0 0.1 0.1 0 0 

98 1.193 19 50 0 1.0 1 1 0.0 0 0 0 

99 1.111 0 0 0 0.0 0 0 0.1 0.1 0 0 

100 1.094 0 0 0 0.6 0 0.6 0.0 0 0 0 

101 0.975 0 0 0 0 0 0 0 0 0 0 

102 3.135 55 7 0 1.0 1 0 0.0 0 0 0 

103 1.215 0 0 0 0.2 0.2 0 0.6 0 0 0.6 

104 1.281 0 0 0 0.7 0.5 0.7 0.0 0 0 0 

105 1.213 0 0 0 0.0 0 0 0.3 0 0 0.3 
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106 1.981 13 13.5 0 1.0 1 0 0.0 0 0 0 

107 1.192 0 0 0 0.0 0 0 0.2 0 0 0.2 

108 1.552 0 0 0 0.0 0 0 0.0 0 0 0 

109 1.202 0 0 0 0.0 0 0 0.0 0 0 0 

110 2.438 36 6 0 1.0 1 0 0.0 0 0 0 

111 1.208 0 0 0 0.1 0.1 0 0.1 0 0 0.1 

112 1.214 0 0 0 0.6 0.4 0.6 0.0 0 0 0 

113 1.48 0 0 3 0.0 0 0 1.0 0 1 0 

114 2.329 27 5 3 1.0 1 0 1.0 0 1 0 

115 1.379 0 0 3 0.0 0 0 1.0 0 1 0 

116 4.481 0 0 0 0.7 0.7 0 1.0 0 1 0 

117 1.234 0 0 0 0.0 0 0 0.3 0.3 0 0 

118 1.302 7 5 0 1.0 1 0 0.0 0 0 0 

119 1.172 0 0 0 0.0 0 0 0.1 0.1 0 0.1 

120 1.032 0 0 0 0.5 0 0.5 0.0 0 0 0 

121 1.414 0 0 0 0.0 0 0 0.5 0 0 0.5 

122 7.01 49 5 0 1.0 1 0 0.0 0 0 0 

123 1.594 0 0 0 0.5 0.5 0 0.6 0 0 0.6 

124 1.772 2 195 0 1.0 1 0.3 1.0 0 0 1 

125 1.065 0 0 0 0.0 0 0.1 0.3 0 0 0.3 

126 1.697 10 10 0 1.0 1 0 0.0 0 0 0 

127 1.422 0 0 0 0.0 0 0 0.1 0 0 0.1 

128 1.382 0 0 0 0.3 0.1 0.3 0.0 0 0 0.5 

129 1.251 0 0 0 0.0 0 0 0.3 0 0 0.3 

130 7.487 39 5 0 1.0 1 0 0.0 0 0 0 

131 1.689 0 0 0 0.2 0.2 0 0.5 0 0 0.5 

132 1.311 0 0 0 0.5 0.5 0.5 0.0 0 0 0 

133 1.454 0 0 3 0.0 0 0 1.0 0 1 0 

134 3.726 23 5 0 1.0 1 0 1.0 0 1 0 

135 1.8 0 0 0.5 0.5 0 0.5 1.0 0 1 0 

136 2.833 0 0 0 0.6 0.6 0 1.0 0 1 0 

137 1.345 0 0 0 0.0 0 0 0.1 0 0 0.1 

138 2.059 15 5 0 1.0 1 0 0.0 0 0 0 

139 1.411 0 0 0 0.1 0.1 0 0.1 0 0 0.1 

140 1.431 0 0 0 0.5 0.2 0.5 0.0 0 0 0 

141 1.457 0 0 0 0.0 0 0 0.5 0 0 0.5 

142 14.146 40 5 0 1.0 1 0 1.0 0 0 1 
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143 2.353 7 5 0 0.7 0.7 0 1.0 0 0 1 

144 1.953 10 81 0 1.0 1 0 1.0 0 0 1 

145 1.297 0 0 0 0.4 0.4 0 0.2 0 0 0.2 

146 2.461 13 5 0 1.0 1 0 0.0 0 0 0 

147 1.71 0 0 0 0.3 0.3 0 0.3 0 0 0.3 

148 1.254 0 0 0 0.2 0.2 0.2 0.0 0 0 0 

149 1.282 0 0 0 0.1 0.1 0 0.3 0 0 0.3 

150 11.147 40 5 0 1.0 1 0 0.0 0 0 0 

151 2.078 0 0 0 0.2 0.2 0 0.3 0 0 0.3 

152 1.28 0 0 0 0.8 0.7 0.8 0.2 0 0 0.2 

153 1.397 0 0 1.5 0.0 0 0 1.0 0 1 0 

154 3.049 13 5 0 1.0 1 0 1.0 0 1 0 

155 1.814 0 0 0 0.0 0 0 1.0 0 1 0 

156 1.136 0 0 0 0.3 0 0.3 0.5 0 0.5 0 

157 1.205 0 0 0 0.0 0 0 0.2 0 0 0.2 

158 3.636 21 5 0 1.0 1 0 0.0 0 0 0 

159 1.755 0 0 0 0.2 0.2 0 0.3 0 0 0.3 

160 1.261 0 0 0 0.3 0.2 0.3 0.1 0 0 0.1 

161 1.097 0 0 0 0.1 0.1 0 0.4 0 0 0.4 

162 1.555 79 2 0 1.0 1 0 0.0 0 0 0 

163 1.144 0 0 0 0.0 0 0 0.2 0 0 0.2 

164 1.268 14 32.5 0 1.0 1 1 0.0 0 0 0 

165 1.235 0 0 0.7 0.0 0 0 0.5 0.5 0 0.5 

166 1.401 61 10 0 1.0 1 0 1.0 0 0 1 

167 1.128 0 0 0 0.0 0 0 0.3 0 0 0.3 

168 1.217 0 0 0.3 1.0 1 1 0.0 0 0 0 

169 1.07 0 0 0 0.1 0.1 0 0.1 0 0 0.1 

170 1.281 67 10 0 1.0 1 0 0.0 0 0 0 

171 1.055 0 0 0 0.0 0 0 0.0 0 0 0.1 

172 1.113 9 41 0 1.0 1 0.8 0.0 0 0 0 

173 3.574 100 10 3 0.0 0 0 1.0 0 1 0 

174 1.441 100 5 3 1.0 1 0 1.0 0 1 0 

175 1.083 100 10 3 0.0 0 0 1.0 0 1 0 

176 4.649 100 7 3 0.5 0.5 0 1.0 0 1 0 

177 1.158 0 0 0 0.0 0 0 0.2 0.2 0 0 

178 1.362 56 5 0 1.0 1 0 0.0 0 0 0 

179 1.072 0 0 0 0.0 0 0 0.2 0.2 0 0 
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180 1.098 0 0 0 0.7 0 0.7 0.0 0 0 0 

181 1.354 0 0 0 0.0 0 0 1.0 0 0 1 

182 6.575 77 3 0 1.0 1 0 0.0 0 0 0 

183 1.25 0 0 0 0.2 0.2 0 0.8 0 0 0.8 

184 1.543 18 5 0 1.0 1 0.3 0.5 0 0 0.5 

185 1.179 0 0 0 0.0 0 0 0.3 0 0 0.3 

186 1.233 0 0 0 1.0 1 0 0.5 0 0 0.5 

187 1.155 0 0 0 0.0 0 0 0.3 0 0 0.3 

188 1.254 5 60 0 1.0 1 0.7 0.0 0 0 0.3 

189 1.187 0 0 0 0.0 0 0 0.2 0 0 0.2 

190 6.51 68 3 0 1.0 1 0 0.0 0 0 0 

191 1.367 0 0 0 0.0 0 0 0.1 0 0 0.1 

192 1.403 15 33 0 1.0 1 0 0.0 0 0 0 

193 1.672 100 10 3 0.0 0 0 1.0 0 1 0 

194 4.378 100 5 3 1.0 1 0 1.0 0 1 1 

195 1.549 100 0 3 0.0 0 0 1.0 0 1 0 

196 4.429 100 20 3 1.0 1 0 1.0 0 1 1 

197 1.143 0 0 0 0.1 0 0.1 0.2 0.1 0 0.2 

198 4.082 57 5 0 1.0 1 0 0.0 0 0 0 

199 1.179 0 0 0 0.0 0 0 0.2 0 0 0.2 

200 1.207 5 80 0 1.0 1 0.7 0.0 0 0 0 

201 1.911 3 120 0 0.0 0 0 1.0 0 0 1 

202 16.179 71 3 0 1.0 1 0 0.0 0 0 0 

203 2.292 9 3 0 1.0 1 0 1.0 0 0 1 

204 2.817 26 10 0 1.0 1 0 1.0 0 0 1 

205 1.315 0 0 0 0.1 0.1 0 0.5 0 0 0.5 

206 11.431 57 3 1 1.0 1 0 1.0 0 0 1 

207 1.788 0 0 0 0.2 0.2 0 0.4 0 0 0.4 

208 2.275 11 40 1.3 1.0 1 0.1 1.0 0 0 1 

209 1.27 0 0 0 0.4 0.4 0 0.6 0 0 0.6 

210 16.317 64 3 0 1.0 1 0 0.0 0 0 0 

211 2.139 0 0 0 0.5 0.5 0 0.5 0 0 0.5 

212 2.155 28 5 0 1.0 1 0 0.0 0 0 0 

213 1.523 0 0 3 0.0 0 0 1.0 0 1 0 

214 12.652 55 3 1 1.0 1 0 1.0 0 1 0 

215 1.978 0 0 3 0.0 0 0 1.0 0 1 0 

216 1.937 9 10 1 1.0 1 0 1.0 0 1 0 
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217 1.251 0 0 0 0.1 0.1 0.1 0.3 0 0 0.3 

218 11.676 58 3 0 1.0 1 0 0.0 0 0 0 

219 1.797 0 0 0 0.2 0.2 0 0.4 0 0 0.4 

220 1.734 14 47.5 0 1.0 1 0 0.0 0 0 0 

221 1.651 0 0 3 0.7 0.7 0 1.0 0 0 1 

222 21.976 68 5 0 1.0 1 0 0.0 0 0 0 

223 2.736 18 5 3 1.0 1 0 0.0 0 0 1 

224 2.85 27 5 3 1.0 1 0 1.0 0 0 1 

225 1.206 0 0 0 0.0 0 0 0.6 0 0 0.6 

226 16.575 55 5 0 1.0 1 0 1.0 0 0 1 

227 2.196 0 0 0 0.6 0.6 0 0.7 0 0 0.7 

228 3.12 27 40.5 0 1.0 1 0 1.0 0 0 1 

229 1.246 0 0 0 0.0 0 0 0.5 0 0 0.5 

230 21.392 62 5 0 1.0 1 0 0.0 0 0 0 

231 2.612 0 0 0 0.8 0.8 0 0.5 0 0 0.5 

232 3.576 32 5 0 1.0 1 0 0.0 0 0 0 

233 1.242 0 0 0 0.0 0 0 1.0 0 0.7 0 

234 17.21 51 5 0 1.0 1 0 0.3 0 0 0.3 

235 16.5 0 0 0 0.2 0.2 0 0.8 0 0.8 0 

236 2.556 24 80 1 1.0 1 0 1.0 0 0 1 

237 1.151 0 0 0 0.3 0.3 0 0.5 0 0 0.5 

238 16.937 57 5 0 1.0 1 0 0.0 0 0 0 

239 2.259 0 0 0 0.5 0.5 0 0.6 0 0 0.6 

240 2.336 23 25 0 1.0 1 0 0.0 0 0 0 

 

  



 

108 

APPENDIX E 

• Correlation matrices between the inputs and the outputs  

o Correlation matrix between the inputs  

 Geom. Foundation soil properties Embankment soil properties 

 α H ρ C Ф E n d15 ρ C Ф E n d15 

α 1.00              

H 0.00 1.00             

ρ 0.00 0.00 1.00            

C 0.00 0.00 -0.65 1.00           

Ф 0.00 0.00 0.96 -0.74 1.00          

E 0.00 0.00 0.93 -0.79 0.99 1.00         

n 0.00 0.00 -0.75 0.91 -0.80 -0.78 1.00        

d15 0.00 0.00 0.86 -0.64 0.94 0.89 -0.80 1.00       

ρ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00      

C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.71 1.00     

Ф 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 -0.91 1.00    

E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 -0.13 0.52 1.00   

n 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.57 0.83 -0.88 -0.53 1.00  

d15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 -0.57 0.76 0.49 -0.39 1.00 
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o Correlation matrix between the inputs and outputs 

 Q max BP BIT FE GEF EIF EEF GFF FEF FPF FBF 

α 0.33 0.30 0.34 0.03 0.22 0.28 -0.08 0.10 -0.20 -0.02 0.35 

H 0.26 -0.18 0.10 -0.14 0.05 0.10 -0.15 0.08 -0.18 -0.05 0.27 

ρ -0.06 0.05 -0.11 0.43 -0.12 -0.10 -0.09 0.47 0.20 0.54 -0.12 

C 0.02 -0.07 0.01 -0.40 0.04 0.04 0.06 -0.54 -0.18 -0.43 -0.14 

Ф -0.03 0.13 -0.07 0.57 -0.10 -0.07 -0.11 0.61 0.16 0.70 -0.09 

E -0.02 0.15 -0.05 0.60 -0.09 -0.07 -0.10 0.63 0.11 0.74 -0.09 

n 0.04 -0.02 0.06 -0.32 0.07 0.05 0.08 -0.50 -0.30 -0.33 -0.13 

d15 -0.02 0.14 -0.06 0.57 -0.09 -0.04 -0.13 0.64 0.17 0.69 -0.06 

ρ 0.42 0.52 0.64 -0.06 0.73 0.73 -0.01 -0.17 -0.16 -0.03 -0.10 

C -0.28 -0.39 -0.44 0.07 -0.78 -0.69 -0.33 0.17 0.13 0.03 0.08 

Ф 0.36 0.48 0.56 -0.06 0.81 0.75 0.22 -0.19 -0.15 -0.03 -0.11 

E 0.22 0.29 0.36 0.00 0.31 0.34 -0.08 -0.10 -0.06 -0.02 -0.10 

n -0.22 -0.33 -0.37 0.05 -0.68 -0.59 -0.35 0.16 0.10 0.03 0.11 

d15 0.42 0.49 0.62 -0.06 0.64 0.67 -0.11 -0.15 -0.15 -0.02 -0.08 
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o Correlation matrix between the outputs 

 Q max BP BIT FE GEF EIF EEF GFF FEF FPF FBF 

Q max 1.00           

BP 0.44 1.00          

BIT 0.59 0.61 1.00         

FE -0.05 0.37 0.06 1.00        

GEF 0.37 0.51 0.60 -0.04 1.00       

EIF 0.39 0.54 0.64 0.00 0.94 1.00      

EEF -0.15 -0.16 -0.19 -0.16 0.22 0.00 1.00     

GFF 0.01 0.14 -0.01 0.64 -0.11 -0.05 -0.25 1.00    

FEF -0.09 -0.14 -0.13 0.02 -0.26 -0.24 -0.10 0.26 1.00   

FPF 0.00 0.30 0.02 0.76 -0.06 -0.04 -0.11 0.67 -0.12 1.00  

FBF 0.07 -0.01 0.08 0.02 0.14 0.18 -0.16 0.39 -0.11 -0.21 1.00 
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