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ABSTRACT

The Muon g-2 experiment at Fermilab (E989) aims to measure the anomalous magnetic

moment of the muon, aµ = (g − 2)/2, to a groundbreaking precision of 140 ppb, obtaining a near

four-fold increase in precision over the previous experiment, E821, at the Brookhaven National

Laboratory (BNL). The value of aµ from BNL currently differs from the StandardModel prediction

by ∼ 3.7 standard deviations, suggesting the potential for new physics and therefore, motivating a

new experiment.Because the theory predicts this number with high precision, testing the g-factor

through experiment provides a stringent test of the SM and can suggest physics beyond the Standard

Model. The goal of the Fermilab Muon g − 2 experiment is to increase the statistical precision by

more than a factor of 20 and reduce systematic errors by a factor of 3. By measuring anomalous

muon precession rate (ωa) in an external magnetic field, the anomalous magnetic moment will be

calculated. This is an incredibly challenging experiment with a unique opportunity to provide new

insight into nature.

The g − 2 data also provides a great opportunity for setting the most stringent limits on

some of the Standard Model Extension CPT Lorentz violating (LV) parameters in the muon sector.

One of the CPT and Lorentz violating signatures that we can look for using g − 2 data is a sidereal

variation of ωa (t). Extensive simulation studies confirm that the sensitivity regarding the sidereal

varation roughly scales with ωa uncertainty. Hence, the g − 2 experiment at FNAL should be able

to reach limits of ∼ 5 × 10−25 GeV. Because the CPT and LV analyses are essentially studies of

variations in ωa as a function of time and charge, performing an ωa analysis sets the stage for the

CPT and LV measurement. This dissertation focuses on the methodology of a fully functioning

framework and analyzing the Fermilab Muon g−2 Run 2 data containing ∼ 11 billion events above

an energy threshold of 1.7 GeV.
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CHAPTER 1

INTRODUCTION

1.1 Anomalous Magnetic Moments of Particles

When placed in an external magnetic field, a fermion’s internal magnet tends to align with

the external magnetic field. For fermions, the magnetic dipole moment (µ) is related to the spin

(S) by

µ = g
Qe
2m

S, (1.1)

where Q = ±1 and e > 0, m is the mass and g, the Lande-g factor is a proportionality constant

characterizing the relation between the magnetic moment of the particle and the spin.

The torque on a particle in a magnetic field B is

N = µ × B (1.2)

hence the spin precession rate of the particle will depend on g, one of the key physics principles

for the Fermilab experiment. One of the great successes of Dirac’s relativistic theory was the

prediction that g = 2 for spin-1/2 particles with no internal structure [1]. A derivation of this result

can be found in [2]. However, in 1947, motivated by measurements of the hyperfine structure in

hydrogen, Schwinger showed that from a theoretical viewpoint contributions to the electron spin

magnetic moment arise from the lowest order radiative correction [3]. Eq. 1.1 therefore becomes

µ = 2(1 + al )
Qe
2m

S, where al =
gl − 2

2
, (1.3)

The first term is the Dirac moment and the second term is the anomalous moment, where the

dimensionless quantity al is often referred to as the anomalous magnetic moment. The anomalous
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magnetic moment leads to the anomalous precession, ωa of the muons, which is a measure

of how fast the spin precesses in presence of an external magnetic field. This precession can

be measured very precisely. Parallely, Kusch and Foley measured the electron g factor to be

ge = 2.00238(10) [[4], [5]], supporting the need for introducing radiative corrections in a more

complete theory. From a quantum field theory point of view, any interaction of a muon or electron

with virtual particles will contribute to the g-factor. The value of al can bemeasured experimentally

very precisely, and hence can be probed to test the theoretical predictions.

1.2 Standard Model Predictions of aµ

The theoretical contributions to aµ come from the QED, EW and Hadronic sectors:

aSM
µ = aQED

µ + aEW
µ + aHad

µ (1.4)

where the QED contributions are from interactions involving virtual leptons and photons, EW

contributions from interactions with the massive bosons and the Hadronic contributions from

strongly interacting hadrons. The Muon g − 2 Theory Initiative consists of over hundred theorists

from various institutions working on a full re-evaluation of the SM prediction [6].

1.2.1 QED Contribution

The QED correction is well understood and the uncertainty on the correction is small. The

contribution has been calculated to five-loops through analytical and numerical approaches. The

famous one-loop contribution was calculated by Schwinger as shown in Fig. 1.1. The current QED

contributions calculated by Aoyama et al. [7], [6], [8] is

aQED
µ =

∞∑
n

Cn

(
α

2π

)n

= 11658471.8971(0.0007)(0.0017)(0.0006)(0.0072) × 10−10

(1.5)
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Figure 1.1: Feynman diagrams for Dirac contribution and Schwinger term respectively representing
QED contributions to al

where the uncertainties arise from the lepton masses, the four-loop contributions, the five-loop

contributions and the determination of α using measurements of 87Rb , respectively. Although over

99% of the contribution to aµ comes from the QED sector the error is much smaller than from the

EW and hadronic contributions.

1.2.2 Electroweak Contribution

The EW contribution, shown in Fig. 1.2, is calculated through two-loops. The different

one-loop diagrams are shown in Fig. 1.2. The total electroweak contribution, given by Ishikawa et

al. [9] is

aEW
µ = (15.36 ± 0.10) × 10−10 (1.6)

The uncertainty from the EW is much smaller than the hadronic sector and comes from virtual

exchange of W±, Z0 and H0. The EW contributions to aµ are much smaller than the QED

contributions as the EW processes are suppressed by ( ml

mZ0,H,W±
)2, where the masses of the gauge

bosons are much larger than that of the muon. EW contributions are much smaller when compared

to the QED effects but the uncertainty on these contributions is not negligible if we consider the

experimental accuracy.
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Figure 1.2: Electroweak contributions to aµ from virtual exchange of Z0, W bosons and Higgs
boson

1.2.3 Hadronic Contribution

The hadronic contributions to aµ come from interactions with virtual hadrons. The ampli-

tudes for these processes can’t be calculated using perturbative methods due to the large coupling

at low energies. The uncertainty in the hadronic sector is dominated by the low energy non

perturbative processes which then dominates the overall uncertainty in the SM calculation. The

hadronic contributions consists of two major components, hadronic vacuum polarization (HVP)

and hadronic light by light (HLbL) contribution:

ahad
µ = aHVP

µ + aHLbL
µ (1.7)

.

The goal of the Muon g − 2 Theory Initiative is to make improvements in the hadronic

calculations, and has a future prospect of a factor of 2 improvement in dispersive hadronic vacuum

polarization (HVP) error. A lot of ongoing effort in the theoretical community is dedicated in

determining the hadronic contributions.

Hadronic Vacuum Polarization:

In Eq. 1.7, aHVP
µ stands for contributions from hadronic vacuum polarization and the first

order diagrams are shown in Fig. 1.3. This can be calculated using two techniques. One of them

is to express the virtual hadron bubble into the loop integrals for the photon propagator using a
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dispersive approach [10], [11]. The cross section of the electron-positron annihilation can be used

to estimate the imaginary part of the photon propagator [6],[8],[11]. This could be solved using a

perturbative approach for a lepton bubble, instead a data driven approach is followed for a hadron

bubble. The dispersion integral to the leading order (LO) can be expressed as [12]

aHVP(LO)
µ =

αmµ

3π

∫ ∞

m2
π

ds
s2 K (s)R(s) (1.8)

where the kernel function, K (s) can be calculated in terms of combinations of mµ and R(s) is the

ratio of cross sections,

R(s) =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

(1.9)

A brief overview of the cross-section measurements in different energy ranges for calculating eq

1.9 is discussed in Keshavarzi et al. [13], [14].

The cross-section data can be measured in two ways: operating at fixed center of mass

energies in the collider experiment, initial state radiation tagging for the calculation of the differential

cross-section while considering a wider range of energies. The uncertainty in the HVP sector can

be reduced by acquiring more data and comparing different cross-section experiments. The number

from Aoyama et al. as of November 2020 is

aHVP(LO)
µ = 693.1(4.0)tot × 10−10 (1.10)

The other technique for calculating aHVP
µ is to use lattice QCD for estimating the HVP

contributions. The behavior from a continuous theory can be recovered in the limit of the ensemble

being infinitely large and described over a very fine grid. The lattice caculation results are consistent

with that from the dispersive approach with larger uncertainties [12].

Hadronic Light by Light Contributions

The other hadronic term, hadronic light-by-light contribution comes from four photon
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(a) The leading order HVP Feynman
diagram

(b) Light-by-light hadronic contri-
butions

Figure 1.3: Hadronic contributions to aµ from the leading order HVP and HLbL interactions, the
hadronic interactions represented by shaded circle above

interaction and the diagrams are shown in Fig. 1.3. Because the evaluation of these diagrams are

model dependent, there have been constant tension while calculating the contribution. The HLbL

contribution to aµ is [15], [16], [17]

aHLbL
µ = 10.5(2.6) × 10−10 (1.11)

There has been huge interest and efforts in evaluating the contribution using dispersive

approach [18], [19], [20] and lattice QCD [21], [22]. The excellent agreement between phe-

nomenology and lattice QCD leads to taking a weighted average for the final SM calculation [6].

aHLbL
µ (phenomenology + latticeQCD) = 9.0(1.7) × 10−10 (1.12)

The current errors in lattice calculation are too large to take a weighted average in a similar manner

to the HVP sector, and future advancements in the calculation of HLbL are heavily dependent on

further lattice QCD studies.

6



29

Figure 1.17: The visual depicts all different theoretical contributions to (g–2)µ with exper-
imental values for comparison. The value from each storage ring experiment is represented
as a vertical line with the projected precision for E989 as a dashed line. The size and uncer-
tainty of various SM corrections grouped by interaction type are depicted as bars extending
onto the vertical axis. The most important point highlighted by the figure is that the-
ory only needs to improve in the hadronic light-by-light and hadronic vacuum polarization
sectors.

Figure 1.4: The figure depicts all the different theoretical contributions to muon g-2 with exper-
imental values for comparison.The value from each storage ring experiment is represented as a
vertical line with the projected precision for E989 as a dashed line. The size and uncertainty of
various SM corrections grouped by interaction type are depicted as bars extending onto the vertical
axis, values taken from the latest white paper from the theory initiative.

1.2.4 The Standard Model Prediction

The final SM contribution is expressed in terms of QED and EW contributions combined

with the hadronic sector [6]

aSM
µ = aQED

µ + aHVP,LO
µ + aHVP,NLO

µ + aHVP,NNLO
µ + aHLbL,LO

µ + aHLbL,NLO
µ

= 11659181(4.3) × 10−10
(1.13)

This result has a relative uncertainty of 368 parts per billion (ppb). The theoretical predictions have

been consistent over the years and the discrepancy between theory and experimental measurement

is between 3σ and 4σ depending on the SM prediction considered while the current experimental

measurements come from BNL and now Fermilab experiments. Fig. 1.5 shows the discrepancy
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Figure 1.5: A comparison between the various theoretical predictions and the BNL experimental
measurements of aµ

between the SM prediction and the BNL experimental result. Fig.1.4 depicts all the different

theoretical contributions tomuon g-2with experimental values for comparison. Themost important

point highlighted by the figure is that theory needs to improve in the hadronic light-by-light and

hadronic vacuum polarization sectors.

1.3 The Long Standing Discrepancy

With improvedmethods andmore statistics for the data driven approaches, the SMprediction

of aµ have improved and the latest number as of November 2020 is used here [6]. The experimental

measurement of aµ comes from the recent Fermilab Muon g − 2 experiment. The Run-1 results of

the Fermilab Muon g-2 experiment confirms the findings of the BNL Muon g − 2 experiment. The

Fermilab Muon g − 2 experiment measured aµ to be [23]

aExp
µ (FNAL) = 116592040(54) × 10−11 (1.14)
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Figure 1.6: A comparison between the Theory Initiative recommended theoretical prediction and
the BNL and Fermilab experimental measurements of aµ. The experimental average is in tension
with the SM prediction at the level of 4.2σ

which corresponds to a 460 ppb uncertainty. Fig. 1.6 depicts the current status of the SM prediction

and the experimental measurement. The Fermilab experimental goal is to reduce the uncertainty

on the measurement by a factor of 4. The SM prediction and the experimental measurement

uncertainties are of the same order. The deviation of the experimental average value from the

theoretical prediction is expressed

aExp
µ − aSM

µ = 25.1(5.9) × 10−10 (1.15)

which corresponds to a 4.2 standard deviations.
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1.4 Hints of Physics Beyond Standard Model

Although the electron g − 2 has already been measured with around 2000 times more

precision relative to that of the muons [24], [25], higher order interactions with particles of larger

masses contribute with mass suppression terms, ∝ ( ml

M )2. Since the sensitivity to new physics grows

quadratically with the mass of the lepton, the interesting effects are magnified in aµ relative to ae

by a factor of ( mµ

me
)2 ≈ 43, 000. Although τ is a better candidate than µ in this respect, measuring

aτ is beyond current experimental possibilities, because of the very short lifetime of the τ.

The discrepancy between SM and experiment could be due to a statistical fluctuation,

miscalculation of SM or systematic uncertainties in the experiment. There have been many efforts

in both the theory and the experimental fronts and no errors found so far. There is a future

experiment at JPARC that will measure aµ independently using a new approach [26]. The Fermilab

and JPARC experiment’s motivation is to measure the same quantity again. If these experiments

confirm the long standing discrepancy then next puzzle to solve is to what causes this deviation;

The most exciting possibility would be hint of physics beyond the standard model. All particles

that can couple to muon through virtual loops add to the value of aµ. So the possibility remains

that still undiscovered particles cause this discrepancy. The heavy virtual particle contribution to

aµ is expressed in terms of the mass m of the lepton, the mass scale of new physicsM, above the

electroweak scale and the coupling constant C

aµ ∼ C
m2

M
(1.16)

The supersymmetry models supports the existence of such heavy particles, which are yet

to be discovered [27]. Although based on the LHC experiments these supersymmetry models

lost their grounds increasingly, but there are potential regions within the parameter space that

could explain the g − 2 deviation [28]. Another potential source could be from the radiative mass

mechanisms in the energy range of 1−2 TeV. Radiative mass mechanisms in that same energy range

can also for the smaller mass of muons compared to electroweak gauge bosons [29]. Scalar doublet
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models, two-Higgs-doublets among the others can also describe the discrepancy [30]. Although

the dark photon model has been ruled out with 99% confidence level, the low energy BSM models

can be a possible explanation of the discrepancy [30]. Future energy frontier experiments such

as upgraded LHC experiments will be able to constrain the potential models. The Fermilab and

the JPARC experiments probe indirect search of new physics, and are designed with a goal of

measuring aµ with improved precision. The Fermilab experiment aims to measure aµ with a goal

of 4-fold improvement on the uncertainty over the BNL experiment; by increasing the statistical

precision by more than a factor of 20 and reducing the systematic uncertainty by a factor of 3. In

the hypotheical situation where the central value remains the same, the Fermilab measurement will

push the statistical significance of the deviation to ∼ 7σ, shown in Fig. 1.6. The g − 2 data also

provides a great opportunity for setting the most stringent limits on some of the Standard Model

Extension CPT Lorentz invariance violation parameters in the muon sector. This dissertation

focuses on the Fermilab Muon g − 2 Run 2 experimental data, collected in 2019, to probe CPT

and Lorentz invariance violation signals. The Fermilab experimental result has potential to provide

strong evidence for new physics, depending on its aµ measurement.

1.5 CPT and Lorentz Violation Tests

The invariance of the combined transformation of C(charge cojugation)P(parity transfor-

mation)T(time reversal) and Lorentz transformation holds for the minimal standard model(SM) of

particle physics. The SM is anticipated to be the low energy case of a more fundamental theory,

such as string theory, grand unified theory (GUT) [31]. The high-precision feature of the Fermilab

g − 2 experiment can be exploited to probe CPT and LV signals, which are expected to be small in

the energy scale of the experiment. In parallel, there have been extensive work in the theoretical

front to describe CPT and LV within the framework of the standard model extension by Kostelecký

et al. [32], [33]. The CPT and LV effects can be described quantitatively in the SME framework,

where the source of such violations stems from spontaneous symmetry breaking. This is particu-

larly a great approach of symmetry breaking because the underlying theory can still be CPT and
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Lorentz symmetric, hence preserving the desirable features of the symmetry while the vacuum

solution of the theory could violate these symmetries spontaneously [34]. The difference in SME

from SM is that the vacuum is filled with vector quantities oriented in 4D and hence triggering

spontaneous symmetry breaking by interactions that destabilizes the vacuum. The Lorentz and

CPT symmetry are knotted by the CPT theorem which states that certain theories(local quantum

field theory) obeying Lorentz symmetry must also abide by the CPT symmetry. CPT violation

implies Lorentz violation but the reverse doesn’t hold. The CPT theorem is automatically bypassed

when Lorentz symmetry is broken. CPT violation is not a requirement for Lorentz symmetry to be

broken; but allows for CPT breaking (in some cases). Phenomenological descriptions of CPT and

Lorentz violation are easier to construct but in order justify the plausibility an underlying theoretical

framework is needed. In this dissertation we adopt an approach for parameterizing the violation

effects based on an effective field theory.

1.5.1 CPT and Lorentz Violation Experimental Signatures

The SME has the properties of SM and General Relativity with an exception of CPT and

Lorentz violation. The observer Lorentz transformations; i.e, rotations or boosts along spatial

directions in the observer’s inertial frame, still remains invariant while the particle Lorentz trans-

formations(rotations or boosts in particle fields) are violated in the SME framework. For the muon

sector, the SME Lagrangian consists of 5 Lorentz and CPT violating terms in the QED limit, given

as [32]

L′ = −aκψγκψ − bκψγ5γ
κψ −

1
2

Hκλψσ
κλψ

+
1
2

icκλψγκ
↔

Dλψ +
1
2

idκλψγ5γ
κ
↔

Dλψ

(1.17)

where all terms violate Lorentz invariance and CPT is broken for terms involving aκ and bκ

coefficients, and iDλ ≡ iδλ − qAλ. Each of these 5 terms are, by construction, a product

of a coefficient with a LV operator, where the product is coordinate independent. Therefore the

coefficients control the physics associated with any of the above operators, and allows for expressing

12



experimental signatures for LV in terms of the coefficients. These coefficients are anticipated to be

suppressed by a factor of 10−20, coming from the ratio of the muon mass to that of the Planck scale
mµ

MP
. A non-rotating frame is considered for comparing different experimental results. The standard

celestial equatorial frame {X̂, Ŷ, Ẑ } is chosen, where Ẑ is along the Earth’s rotational north pole.

X̂ and Ŷ are along the equatorial plane of the earth. The earth’s precession period is 26000 years

and hence can be safely ignored in Lorentz and CPT violation tests. In the non-rotating equatorial

frame the corrections to ωa is calculated to be

δω
µ±

a ≈ 2b̌µ
±

Z cos χ + 2(b̌µ
±

X cosΩt + b̌µ
±

Y sinΩt) sin χ (1.18)

where

b̌µ
±

J ≡ ±
bJ

γ
+ mµdJ0 +

1
2
εJK L HK L (1.19)

with J = X,Y, Z and χ is the colatitude of the experiment. Ω in the above equation represents

the sidereal angular frquency and is expressed as Ω = 2π/Ts, with Ts ≈ 23 hours 56 minutes. For

the Fermilab Muon g − 2 experiment χ ∼ 48.16◦ whereas for BNL it is 49.1◦. Because of the

earth’s rotation there is a component in Eq. 1.18 that varies cyclically with a period of sidereal

variation, Ts = 23 hours 56 minutes. Eq. 1.18 predicts two Lorentz and CPT violation signatures:

a sidereal oscillation in ωa (t), and a difference between time averages of < ω
µ+

a > and < ω
µ−

a >.

The signature stemming from µ+/µ− difference requires a µ− run and hence falls under the future

prospects of the g − 2 experiment at Fermilab. This dissertation focuses on a sidereal signal search

using the Fermilab Muon g − 2 Run 2 data. The sidereal oscillation search provides information

about the transverse component of the bκ coefficients in Eq. 1.17 and can be calculated as

b̌µ
±

⊥ =

√
(b̌µ

±

X )2 + (b̌µ
±

Y )2 =
ω̂
µ±

a

2 | sin χ |
(1.20)

with ω̂
µ±

a being the sidereal oscillation amplitude of ωa (t). A dimensionless figure of merit,

rω̂a ≡
ω̂a

mµ
, can be used for interpreting the observations as suggested by Kostelecky et al. [35].
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CHAPTER 2

The Fermilab Muon g − 2 experiment

The Fermilab Muon g − 2 experiment aims to measure aµ with a combined uncertainty of

140 ppb [36]. To support this groundbreaking precision, the experiment receives an intense muon

beam from the Fermilab accelerator complex and aims to acquire more than 20 times the BNL

dataset with a statistical uncertainty goal of 100 ppb. The systematic uncertainties come from the

dynamics of the beam and detector effects. This chapter focuses on measurement principles and

design choices to meet the uncertainty goal.

2.1 Measurement of aµ

A particle with mass m, charge e and non-zero spin in an external magnetic field will

experience a torque that tries to align the magnetic dipole moment along the magnetic field.

Therefore in the presence of an external dipole field the spin of the particle will precess with spin

precession frequency,ω s [37]. At the same time the particlewill have an orbital cyclotron frequency,

ωc . In the scenario of a uniform magnetic field and particle velocity completely perpendicular to

the external magnetic field, the equations of motion become

ω s = −g
Qe
2m

B − (1 − γ)
Qe
γm

B, (2.1)

ωc = −
Qe
γm

B, (2.2)

and the difference between ω s and ωc gives ωa, the anomalous precession frequency,

ωa = ω s − ωc = −

(
g − 2

2

)
Qe
m

B = −aµ
Qe
m

B. (2.3)
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where ωa is basically the rate of change of the angle between the momentum and the spin of the

muon. The spin would remain parallel to the momentum vector if g were equal to 2. From Eq. 2.3

it is clearly seen that ωa is proportional to aµ. Hence we are able to determine aµ with a precise

measurement of ωa, provided we have an equally precise measurement of the external magnetic

field. The magnetic field is measured using Nuclear Magnetic Resonance (NMR) techniques in

terms of the Larmor precession frequency of the shielded protons in spherical sample of water

~ω̃′p = 2µ′pB (2.4)

Therefore, the anomalous magnetic moment of the muon can be determined from

aµ =
ωa

ω̃′p(Tr )

µ′p(Tr )

µe(H)
µe(H)
µe

mµ

me

ge

2
(2.5)

The total error on aµ comes from the quadrature sum of the errors of each of the quantities in

Eq. (2.5). High precision measurement of ge has an uncertainty of 0.28 ppt [38]. µ′p(Tr )/µe(H)

represents the ratio of the electron magnetic moment while bound in hydrogen to that of a shielded

proton in a spherical water sample, measured to 10.5 ppb at a reference water temperature of Tr =

34.7◦C [39]. The ratio of µe(H)/µeis determined by the bound-state QED corrections, and is

considered exact [40]. The ratio of mµ/me, has been measured by the hyperfine splitting of the

muonium and bound state QED with an uncertainty of 22 ppb [41], [40]. These contributions to

the total uncertainty are negligible compared to the Fermilab uncertainty goal of 100 ppb statistical

error and systematic errors on ωa and ωp of 70 ppb individually.

2.2 Muon Beam Production and Journey to the Muon Campus

Muons are produced at the Fermilab accelerator complex in a number of stages. Fig.2.1

shows various components in the accelerator complex. Protons are produced by accelerating H−

ions in a linear accelerator. Protons are then sent to the "booster", a storage ring of radius 75 m,

which then accelerates the proton beam to 8 GeV/c and batches them. One such booster batch
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Figure 2.1: The schematic of accelerator beam-line components Fermilab uses to provide spin-
polarized muon beam to E989. Protons start in the Linac, travel around the Booster and then the
Recycler Ring, hit the nickel-based target at AP0, and produce pions. The pions then decay to
muons in the Delivery Ring before reaching the muon campus [42].

consists of 4 × 1012 protons. These protons are then sent to the "recycler", where the proton beam

gets separated into bunches containing 1 × 1012 protons, with a temporal width of ≈ 120 ns. The

temporal width of the proton beam is less than 149 ns, the cyclotron period of the g − 2 storage

ring which is a requirement for the aµ measurement. The re-bunching stems from the need to

manipulate the flux rate at the detectors used for the g−2 experiment. In one accelerator supercycle

of 1.4 s, 4 booster batches are delivered which correspond to 16 recycler bunches at an average rate

of 11.4 Hz. Fig. 2.2 shows the timing structure crucial for recording the data from the detector.

Figure 2.2: The timing structure of the beam sent to the muon campus at Fermilab. Each cycle
consists of 16 bunches–10 ms apart–with a repetition rate of 11.4 Hz.

The proton beam hits the nickel-iron alloy target and positively charged particles are then

directed through a lithium lens and a bendingmagnet. The energy of the secondary beam is selected

to be around 3.11 GeV. This beam of pions, muons and protons then goes through a long transfer

beamline to produce a pure muon beam. The secondary beam mostly has pions that decay into
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muons with a branching ratio of 99.98%. To observe ωa signal we need a highly spin polarized

muon beam. That is achieved due to the parity violating nature of weak interactions. For the

conservation of momentum, the ν and µmust travel in opposite directions in the rest frame of pion.

Since pions are spin-0 and neutrinos are always left handed (LH), muons must as well be LH to

conserve momentum. In the lab frame, this translates into a correlation between the muon spin

and the direction of momentum. Accordingly, 95% of the beam is polarized by highest-momentum

muon selection, with spin and momentum anti parallel. Around 80% of the pions decay into muons

by the time the beam reaches the end of the transfer beamline. To obtain a pure muon beam, this

secondary beam is then circulated around the delivery ring, shown in Fig. 2.1. All of the pions

decay by the time the beam completes four turns around the delivery ring, and protons fall behind

by ∼ 200 ns due to their small Lorentz boost. A pulsed electromagnetic magnet takes care those

protons, and the final product is a highly intense and pure 3.09 GeV muon bunch. There are four

quadrupole magnets for extracting and focusing the muon bunch, that then enters the g − 2 storage

ring through the inflector magnet.

2.3 Muon Beam Injection

The inflector, a superconductingmagnet, is used to cancel the fringe field of themain storage

ringmagnet. We need the inflector magnet in order to maintain uniformity of the continuous storage

ring magnetic field for effective muon beam storage. However, there must be a field-free injection

tunnel through the storage ring magnet iron or else the injected beam would be deflected into the

magnet mass. There is a superconducting shield outside the inflector to trap the fringe field in order

to ensure the uniformity of the storage ring magnetic field. The inflector is placed 77 mm radially

outward from the storage orbit in order to make sure that the muons don’t hit the inflector on their

way while orbiting the storage ring at the cyclotron frequency.
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(a) Superconducting inflector magnet (b) The inflector cross section

Figure 2.3: The inflector magnet and its cross section view

This necessitates a kicker magnet, providing a transverse impulse to "kick" the beam from

the injection orbit to the storage orbit. The kicker magnet consists of three pulsed magnets located

at 90◦ from the injection point. The placement is shown in Fig. 2.4. Since the kicker needs to be

within the main magnetic field it must not have any magnetic elements. Each of the three magnets

consists of two 1.27 m long thin aluminum plates, separated by 10cm, carrying the current needed

to create the "kick". The required field is around 200 − 280 G to provide a 10.8 mrad kick to the

incoming muon beam. The kicker magnets reduce the 1.45 T magnetic field locally by 22 mT

to provide the "kick". This field must be zero well before the bunch starts its second turn, so the

kicker pulse must be greater than 120 ns to contain the entire muon bunch, but less than the 149 ns

cyclotron period.

2.4 Muon Beam Storage and Focusing

The uniform dipole magnetic field in the storage region comes from the magnetic storage

ring itself, which is inherited from the BNL experiment.
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Figure 2.4: A map of the vacuum chambers. K1-K3 show the locations of the kicker magnets,
while Q1-Q4 show the locations of the electrostatic quadrupoles. Also shown is the location of the
inflector
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Figure 2.5: An illustration of production and injection of the muon beam into the storage ring.
accelerated protons hit the Inconel target to produce charged pions which then decay to muons.
These high energy muons are then injected into the storage ring through the inflector magnet. A
"kick" is then applied by a kicker magnet to store the muons on the design storage orbit.

Since the main magnetic field is vertical, the force exerted by it will be in the horizontal

direction only. Therefore the magnetic field alone is insufficient to store the muons, as a muon

with a velocity component parallel to the magnetic field will leave the storage ring. Four pairs of

short and long electrostatic quadrupole (ESQ) plates are used to focus the beam vertically and are

placed inside the vacuum chambers. The short plates span 13◦ of the storage ring while the long

plates span 26◦. A four fold asymmetry is achieved by using the combination of the short and

long quadrupole plates. The quadrupole system is turned on during a measurement period, but is

otherwise turned off so as to reduce the rate of high voltage electrical sparking. The quadrupole

plates are shown in Fig. 2.6. The high voltage system consists of resistors that sit outside the

vacuum, and combined with the plate capacitance, determine the RC time constant of the system

to be 5µs. A DC power supply could have been used instead of the pulsed system but that would

increase the rate of the high voltage breakdown of the system. The top and bottom plates are

charged with positive voltage while the side plates of the quadrupole are charged with negative

voltage in order to create a restoring force in the vertical direction. The quadrupoles only occupy

43% of the storage ring circumference due to accommodate the other systems discussed above
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Figure 2.6: Figure shows 4 quadrupole plates within the storage region. The top and bottom plates
are positively charged while the side plates are negatively charged to provide the vertical focusing
for the positive muon beam.

along with tracker detectors placed azimuthally at 180◦ and 270◦, causing a larger vertical spread

at some places around the ring. The plates are charged by high voltage pulses, and then held at

a constant voltage during the measurement period. The quadrupole plates were held at 18.3 kV

during Run-2 data taking period. The quadrupole plates are discharged to zero at the end of every

muon fill and are charged back up before the next fill arrives from the accelerator complex. The

presence of the ESQ system affects ωa measurement, and hence must be taken into account before

reporting the final ωa measurement.

2.5 Measuring the Magnetic Field

Fig. 2.7 shows a cross-section of the C-shaped 14 m diameter magnet, providing 1.45 T

magnetic field. The uniformity of the magnetic field is crucial to ωa measurement, as seen from

Eq. 2.3 , and is manipulated by many built in "knobs". The main magnet current, wedges, pole

pieces and top hats along with small shims are parameters used for fine tuning and stabilizing
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Figure 2.7: A cross-section of the g − 2 storage ring. Superconducting coils in yellow excites the
main magnet. Top hats, pole pieces, wedges used for subppm level adjustment of the field

the field seen by the muons. The pulsed nuclear magnetic resonance (NMR) technique is used

to measure the magnetic field. NMR provides high precision measurements of the field, around

10ppbwith negligible statistical uncertainty, and hencewas chosen for themeasurement [43]. NMR

probes contain pickup coils around a proton sample within a fluid. The proton spin will precess

at Larmor frequency in presence of an external magnetic field. The magnetization of the proton

sample is rotated by 90 deg with respect to the external magnetic field from equilibrium by a radio

frequency(RF) pulse, called ’π/2 pulse’, generated by the pickup coils. Since the spins interact

with the external field gradients and inhomogeneities, the proton sample’s magnetization will be

in equilibrium with the external magnetic field. This is known as the free induction decay (FID)

signal, as shown in Fig. 2.8 , and is meausred by the same pickup coils that were used to deliver

the ’π/2’ pulse, connected to waveform digitizers recording the current induced in the coils by the
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Figure 2.8: A sample FID signal. The pick up coil signals around the proton sample will oscillate
as the spins precess around the external magnetic field, and decay as the spins relaxes back.

precessing protons. In order to map the magnetic field precisely around the storage ring, a trolley

moves around the ring inside the storage region. The trolley has 17 NMR probes measuring the

field at ∼ 9000 azimuthal locations. Since the trolley cannot be in the storage region while muons

are present, another set of 378 fixed NMR probes is used to monitor the field. The fixed probes

are located outside the storage region on the vacuum chambers. Since a trolley run around the

ring interrupts storing the muons and hence data taking, the detailed mapping is performed every

three days, while the field in between is interpolated using the fixed probes data. Fig. 2.9 shows

the position of the fixed probes relative to the storage region, and the trolley probe. This way the

magnetic field can be mapped spatially as well as temporally. The precession frequency measured

by the trolley probes or the fixed probes are not accurately the free proton precession frequency

since it depends on parameters such as, molecular properties of the proton sample, shape of the

probe sample etc. The expression for a probe sample with water

ωp,probe = ωp,free
(
1 − σ(H2O,T) + δb + δp + δs

)
ωp (2.6)
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(a) Fixed NMR probes (b) The trolley consisting of 17 NMR probes

Figure 2.9: The position of the fixed NMR probes that monitor the field 24 × 7 are shown in the
left figure. The fixed probes sit above and below the storage region. The trolley that contains 17
NMR probes is shown in the right figure. The trolley goes around the ring every 3 days to provide
a detailed map of the magnetic field inside the ring.

where σ(H2O,T) is the temperature dependent diamagnetic shielding, and δ’s represent the sus-

ceptibility of water sample, magnetic effects of the probe, water sample’s paramagnetic impurities.

Figure 2.10: An example of azimuthally average magnetic field map provided by the trolley in the
storage ring. The (x) marks indicate the location of 17 NMR probes within the trolley
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A "plunging probe" is used in order to correct for these effects. It is placed inside the

storage region so that the field can be measured at the same positions as the trolley probe. This

probe can provide an absolute scale for the measurements within the storage region by calibrating

the free proton precession frequency to each of the trolley probes. There is a 35 ppb uncertainty

on the calibration process, which is nearly half total uncertainty goal of 70 ppb. Some of the other

systematic uncertainties come from the errors in the trolley measurements, probe calibrations,

interpolation of the field between trolley runs by the fixed probes etc.

2.6 Muon Beam Dynamics

Muons injected into the storage ring, in practice, have a finite momentum and position

spread as they enter the ring with a spread of angles relative to the storage orbit and then are kicked

imperfectly to occupy a non zero radial distribution. Thus, other than exhibiting a cyclotron motion

around the ring, the muons also undergo betatron oscillation in the radial (x = r − R0) as well as

vertical (y) directions.

In order to predict the equation of motion of the muons, consider a muon with momentum

3.09 GeV, which is also the design momentum for the experiment (discussed in 2.8.2). Additionally,

the magnetic field provided by the storage ring and the electric field due to the quadrupole systems

can be expressed as

B = B0 ŷ (2.7)

E = k x x̂ + kyŷ (2.8)

where k indicates the quadrupole field strength. The equations of motion along these two directions

can be written as

ẍ = −ω2
c (1 − n) · x (2.9)

ÿ = −ω2
cn · y (2.10)

where n, the field index, is related to k by n ≡ kR0
v0B0

andωc(= QeB0/mµγ) is the cyclotron frequency.
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The solutions to Eqs. (2.9) and (2.10) considering the discrete quadrupole effects are

x(t) = xe + Ax cos(ωxt + φx) (2.11)

y(t) = Ay cos(ωyt + φy) (2.12)

where xe is the equilibrium radius,

xe ≈
R0

1 − n
p − p0

p0
(2.13)

Ax and Ay are the amplitudes of the motion with quadrupole effects included and ωx and ωy are

related to the field index n by

ωx = ωc
√

1 − n (2.14)

ωy = ωc
√

n (2.15)

Eqs. (2.11) and (2.12) show that a radial or vertical displacement from R0 causes a simple harmonic

motion of the muon, also known as the betatron oscillation.

The muons will encounter local field gradients and higher order perturbations several times

on their way around the storage ring. To prevent the potential resonant oscillations it is important

to make sure that muons do not have the same betatron oscillation phases while passing through

the perturbations. The beam is “tuned”accordingly to spread the beam equally around the entire

azimuth in order to miss the resonances and store the beam.

2.6.1 Coherent Betatron Oscillation

As discussed above in 2.6, each muon in the beam undergoes betatron oscillations. If the

phases of these betatron motion were randomly distributed, then the beam could be treated as a

constant entity in time. However, in reality, the beam has a particular phase space distribution

induced by the inflector and the kicker. The 77 mm radial offset at the injection and afterwards an

imperfect kick will leave the beam with a width and mean, dependent on the phase and stregth of

the kicker pulse as well as the injection process, causing an oscillation of the mean position. The
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calorimeter detectors are sensitive to register the betatron oscillations. The detector acceptance,

which is given by the probability of a positron hitting the detector, will depend on the mean and

width of the muon distribution at a particular time. A mismatch is introduced by design between

the wavelength of the betatron oscillation and the circumference of the ring to avoid sitting on the

resonances. The radial betatron frequency, ωx is larger than half the cyclotron frequency for the

design choice of the Fermilab experiment, and hence introducing an aliasing effect. The detector

instead observes the beam with a slower oscillation than the original betatron motion because of

the aliased frequency. This detector measurable effect is known as the coherent betatron oscillation

(CBO).

fCBO = fc − f xBO (2.16)

The effects stemming from the coherent betatron oscillations must be taken into account before

extracting ωa. Hence the five parameter fit model needs modification in order to include the

CBO effects. The CBO oscillations will end up modulating the asymmetry and phase information

because of the modulation in detector acceptance.

2.6.2 Beam Debunching

The muon beam in the Fermilab experiment has a temporal width of 120 ns and upon

injection only covers a fraction of the ring as it is narrower than one cyclotron period, ∼ 149 ns.

Because of this spatial confinement of the beam at initial injection only detectors near the bunch

will observe a high intensity and the detectors on the other side at the same time will observe a low

intensity; hence the event rates vary with the cyclotron frequency at each detector. As the muon

beam has a momentum distribution, not all the muons are at the “magic ”-momentum. Higher

momentum muons will sit at a larger equilibrium radii and hence will traverse a larger distance,

therefore taking longer to go around the ring compared to the lower momentum muons. Eventually

the low momentum muons that are at the inner radii catch up with the high momentum muons,

and the bunch structure fades away. By 30µs after injection the beam has completed two hundred

turns and the intensity of the beam is mostly uniform. The debunching effect at early times can be
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observed in the data, a common practice is to bin the data in periods of the cyclotron frequency,

and randomize each event by ±149/2, where the cyclotron period is 149ns. The initial spatial

distribution of the beam can be estimated from the detector respnses at early times, which then can

be used to estimate the electric field correction (discussed in 2.8.2).

2.7 The Detectors

There is a wide range of detectors used in the Fermilab Muon g − 2 Experiment. The

primary detectors are the calorimeter detectors, which provide the information needed to extract

the precession frequency of the muons. There are many auxiliary detectors that are used for

monitoring the beam. There are two stations of straw tracking detectors at 180◦ and 270◦ around

the ring, which measure the positrons and hence we can extrapolate the decay position.

2.7.1 Auxiliary Detectors

There is a "T0" counter right before the inflector that provides the timing and intensity

information of the muon beam. In order to time-align various detectors a reference time must be

chosen, otherwise comparing the data from different detectors would not be possible. Furthermore,

there must be phase alignment within the positron spectra from one to fill to another. The "T0"

counter which is made up of scintillating paddle with photo-multiplier tubes (PMTs) provide the

time information of the injected muon beam profile.

The inflector beam monitoring system (IBMS) sit before the inflector and measures the

beam position [44]. The IBMS system provides inputs that are used to match the phase space

between the last accelerator component that the muons pass through and the storage ring, and hence

helping in optimizing the stored muons. The IBMS is also made up of scintillating fiber detectors.

Currently there are two IBMS systems placed before the inflector, as shown in Fig. 2.11. In future,

there are plans to install another device near the downstream of the inflector.

Another auxiliary detector known as "fiber harp" is used to provide a handle on the beam

intensity as a function of position and time inside the storage region [45]. This detector, made up of
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Figure 2.11: A schematic showing the position of the IBMS detectors

four scintillating fiber detectors is usually retracted in the measurement period due to its destructive

nature of causing multiple scattering.

2.7.2 Calorimeter Detectors

The primary detectors used in the experiment are the electromagnetic calorimeters. The

calorimeter detectors provide the energy and time information of the positrons that curl inward and

hit the detectors.

The precision of the ωa measurement depends on the performance of the calorimeter

detectors. Hence, there are specific requirements on the timing and the energy resolution of

the detector. The detectors must distinguish multiple events with an efficiency of 100% when

the temporal separation between two events are more than 5 ns. The requirements on the time

resolution also helps to the "pileup" effects. Pileup refers to multiple overlapping events that are

too close in time and space to be resolved. The detectors are required to have an energy resolution

of more than 5% at 2 GeV [46]. The detectors used in the experiment also satisfy the requirement

of having a timing resolution of 100 ps for events that have energy greater than 100 MeV. Another

important requirement for the measurement of the precession frequency is that the response of the

detectors be stable over the measurement period of 700µs. The energy response is often referred

to as the gain of the calorimeter; the gain is basically the current per hit. Gain of the detector is

controlled by the rate at which the detector is hit and the temperature stability. If the pixels in the

detector are fired by two consecutive hits that are very close to each other in time, then the detector
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would not be able to fire for the second hit within a short time frame as there would be charge

depletion in the capacitive components of the detector’s electronics, and there must be corrections

applied before using the information of the second hit. A laser calibration system is used in order

to correct the gain of the calorimeters.

24 calorimeters are placed around the inside of the storage ring in order to detect the positron

events. The calorimeter detector is placed on a board attached to a cart that contains the power

and read out electronics, as shown in Fig. 2.12a. The movable carts are used to keep the magnetic

materials away from the high magnetic field region so that any potential field perturbations can be

avoided. Each of the 24 calorimeters consists of 9 × 6 PbF2 crystals with 1296 channels. These

2.5×2.5×14 cm3 crystals are wrapped in black Tedlar foils in order to prevent inter crystal leakage

of the signals. Fig. 2.12b shows a close view of the PbF2 crystals. Due to the high density of

PbF2 crystals, almost 100% of the positron energy is deposited within the length of the crystal [47].

Cerenkov light is emitted upon a positron hit with energy 100 keV, which is then detected by

the silicon photo-multiplier (SiPM) sensors. High photo-detection efficiency of the SiPMs make

them an ideal choice for Cerenkov light detection. SiPM channels are then sampled by waveform

digitizers, and finally are sent to GPU processors for on-line processing and monitoring.

2.8 Measuring ωa

Muons trapped in the storage ring decay to two neutrinos and a positron with a branching

ratio of 99.98%, as shown in Fig. 2.13. The muon’s spin direction is correlated with the daughter

particle’s energy and directionality. Hence enabling us to measure the average direction of the

muon’s spin over time from the detection of the positrons. The decay positron will be emitted

with its spin parallel to its momentum, i.e. right handed, due to the parity violating nature of

weak interactions [] while the angular momentum must be conserved in the decay. The correlation

between muon’s spin and decay positron’s energy can be understood by considering the extreme

cases. νe and ν̄µ both will be emitted in the opposite direction in the muon’s rest frame when the

decay positron is emitted with the maximum energy, as shown in Fig.. The spins of νe and ν̄µ will
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(a) A schematic of the calorimeter detectors placed in the
movable carts

(b) A close view of the PbF2 crystals connected to SiPMs
at the end in order to collect the Cerenkov light from the
positron hits

Figure 2.12: The calorimeter detector placed on the inside of the ring. The right figure shows the
PbF2 crystals within a calorimeter
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Figure 2.13: µ+ will decay through a W+ boson to two neutrinos and a positron with a branching
ratio of 99.98%

cancel each other since neutrinos and anti-neutrinos are always LH and RH respectively. Therefore,

the e+ must carry the spin information of the muon at the time of its decay due to conservation

of angular momentum. As mentioned earlier, the parity violating nature enables a correlation that

can now be exploited, high energy positrons will be preferentially emitted parallel to the muon’s

spin direction. On the other hand if we consider the minimum energy scenario, the neutrinos are

emitted in opposite direction and the minimum energy e+s emitted with spin anti-parallel to that of

the muon. Hence it is evident that the high energy positrons is emitted parallel to the muon spin

when it decays, whereas relatively lower energy e+s will be emitted with a spin anti-parallel to the

spin of the muon. Therefore, the correlation between the directionality of a high energy e+ and

muon’s spin encrypts the ωa signature. The differential decay in muon’s rest frame can be written

in terms of the decay positron’s energy E and the decay angle θ relative to the spin direction of the

muon
d2P

dEd cos(θ)
= N(E) [1 + A(E) cos θ] (2.17)

where

N(E) = 2y2(3 − 2y) (2.18)

A(E) =
2y − 1
3 − 2y

(2.19)

with y = E/Emax . N(y) refers to the number distribution of the decay positrons and A(y), the

asymmetry, encrypts how strongly themuon spin direction is correlated to the positron’smomentum.
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Almost all of the high energy decay positrons will be emitted parallel to the momentum direction

of the muon in the lab frame. This makes it difficult to measure the positron’s average angle θ

over time. On the other hand we know that the highest energy decay positrons in the rest frame is

emitted along the muon spin when it decayed. The high energy positrons’ energy distribution is

modulated by ωa, where θ = ωat + φ. The number of positrons detected at time t in the lab frame

can be expressed in terms of an initial number N0

N(t,E) = N0(E)e(−t/γτµ) [
1 + A(E) cos(ωat + φ(E))

]
(2.20)

0 20 40 60 80 100
]sμTime after injection modulo 102.5 [

210

310

410

510

610

710

N
 / 

14
9.

2 
ns  / NDOF = 3899/40002χ

Figure 2.14: A typical wiggle plot from the calorimeter detectors in the Fermilab experiment
showing number of detected positrons as a function of time above an energy threshold. The time
spectrum is folded into a 100µs window

After transforming from rest frame to lab frame Eq. (2.18) and Eq. (2.19)

N0(E) ∝ (y − 1)(4y2 − 5y − 5) (2.21)

A(E) =
−8y2 + y + 1
4y2 − 5y − 5

(2.22)

The polarization of the muons was considered to be unity. For observing the muon spin precession,
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positrons above a certain energy threshold can be considered,

N(t,Eth) = N0(Eth)e−t/γτµ [
1 + A(Eth) cos(ωat + φ(Eth))

]
(2.23)

where N0 and A(y) can re-written by taking the integral of Eq. (2.21) and Eq. (2.22)

N0(Eth) ∝ (yth − 1)2(−y2
th + yth + 3) (2.24)

A(Eth) =
yth(2yth + 1)
−y2

th + yth + 3
(2.25)

Now the precession frequency, ωa can be extracted by fitting time spectrum that arises from

counting the number of positrons above an energy threshold. For this, a typical fit function has the

form same as Eq.(2.20). Fig.() shows the positron time spectrum above a threshold as seen by the

detectors.

With an assumption of Gaussian bin errors and performing a χ2 minimization for the fit in

order to extract ωa, the statistical error is given by

σωa

ωa
=

√
2

√
Ntotal Aγτµωa

(2.26)

where Ntotal is the total number of events in the time spectrum above a certain threshold. From Eq.

(2.26) it is evident that ωa measurement has maximum statistical precision when Ntotal A2 in the

denominator is maximized. Eq. (2.26) is valid for a weighting sceme of one for every count in the

time spectrum, as used in this dissertation. The optimal energy threshold was found to be 1.7 GeV,

including detector acceptance effects and an asymmetry of 0.37 for the Fermilab experiment. For a

100ppb statistical goal of the Fermilab experiment, Eq. (2.26) shows that the number of positrons

to be fitted for the finalωa extraction should be ∼ 170×109, where A = 0.37, γ = 29.3, τµ = 2.2µs

and ωa = 1.44rad/µs. This statistical error is finally combined with the systematic error on the

ωa measurement.
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2.8.1 Systematic Effects

The ωa measurement is robust and straightforward in a sense that it depends on the time

oscillation in the number of positrons that hit the detector, and knowledge of accurate energy de-

pendence of the detector acceptance or exact calibration of the detectors is not necessary. Differing

detector response or decay distributions may end up affecting the normalization, phase or asymme-

try in Eq. (2.20), while the frequency ωa remains unaffected by these effects. The fit parameters in

the precession frequency fit as described by Eq. (2.20) however is not sufficient forωa extraction as

there are effects that modify the frequency and are not being taken into account by Eq. (2.20). Time

dependent effects may bias the ωa measurement, and hence must be estimated and considered as

systematic uncertainties on theωa measurement. The sources of systematic uncertainties can either

be due to beam dynamics effects or detector effects. Some of the beam dynamics effects are taken

in to account by applying a correction to the final ωa after performing the fit. The beam dynamics

effects are primarily from the behavior of the stored muons in presence of various systems, such as

electrostatic quadrupoles. On the other hand, the detector effects are caused by the imperfections

of the calorimeter, such as, finite time and spatial resolution. The experiment is designed to limit

the combined systematic uncertainty to 70 ppb after four years of running.

The quantities, energy (E) and time (t), in the differential decay equation are not exactly

what the detectors measure. The energy and time information provided by the detectors differ

from those information at the time of the decay. Now if the effects that are responsible for this

transformation are time dependent within a muon fill, that can modify ωa. This can be easily

understood by considering a scenario of a drift time that is energy dependent. Now replacing t by

t + tdri f t in (2.20) only results in a constant phase offset which does not affect the best-fit ωa. A

time dependent phase on the other hand, would introduce a systematic bias in the ωa measurement

by pulling the best-fit ωa value from the actual ωa value if not modelled correctly within the fit

function. The betatron motion of the muons, is an example of such an effect, which modifies

the detector acceptance and the average drift time and hence introduces a time dependent phase.
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Considering a time dependent φ the oscillation in time spectrum will be modified as

cos(ωat + φ(t)) ≈ cos(ωat + φ0 +
dφ
dt

) = cos((ωa +
dφ
dt

)t + φ0) (2.27)

where φ is expressed in terms of a power series of φ0 +
dφ
dt + .... It is therefore evident from Eq.

(2.27) that any effect that modifies the observed phase qualifies as a potential source of systematic

error to the best-fit value of ωa.

To achieve the 70 ppb systematic uncertainty goal, one of the significant improvements

were in the design of the calorimeter detectors to provide excellent energy resolution and time

information. Therefore reducing the systematic uncertainty coming from the so-called pileup

events. The pileup events refer to two or more overlapping events hitting the detector too close in

space and time. In that case the overlapping pulses cannot be separated from each other and are

treated as a single pulse of higher energy, and hence alter the number of positrons contributing to

the histogram for ωa extraction. Pileup can either add events (two lower energy pulses add up to

mimic a single higher energy pulse above threshold) or subtract events (two pulses above the energy

threshold add up to form a single pulse) from the time spectrum of the decay positrons above an

energy threshold. Since pileup events are pulses with a different g − 2 phase,1, the phase of the

pileup events differs from that of the single decay positron events. Therefore, pileup events distort

the decay pobsitron time as well as energy spectra and we must apply pileup corrections before

extracting the ωa value. This incorrect energy will encrypt wrong asymmetry, normalization and

phase information but does not cause an ωa bias as long as the distortions are not time dependent.

However, the total rate of events hitting the calorimeter detectors decreases within a fill as the

muons decay and the two positron pileup rate is proportional to the total rate of positron events

squared. Hence the pileup perturbation decays with time as well. Because of the time dependence

of the perturbation there will be a bias in precession frequency measurement if not corrected. The

1The spin precession phase depends on the energy of the positrons as higher-energy positrons traverse a longer path
from the decay vertex to the calorimeter and arrive later than lower-energy positrons. Pileup pulses carry the phase
information of the lower-energy positrons rather than the phase of the high energy positron that they imitate
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algorithm used to correct for pileup will be discussed in the next chapter.

2.8.2 Electric Filed and Pitch Correction

The expression used for the anomalous precession frequency in Eq. (2.3) is modified in the

presence of various systems such as, the electrostatic quadrupoles. The muons enter the storage

ring with a range of vertical angles, and hence a vertical focusing by the electrostatic quadrupoles

is needed. Introduction of such an external electric field ends up modifying Eq. (2.3). Further

correction comes from the fact that not all the muons have zero velocity component parallel to

the direction of the magnetic field. Hence a more complete depiction of the scenario observed

experimentally is given by

ωa = ω s − ωc = −
Qe
m

[
aµB − aµ

(
γ

γ + 1

)
(β · B) β −

(
aµ −

1
γ2 − 1

)
β × E

c

]
(2.28)

The second term arises from the vertical component of muon’s motion which is parallel to

the external magnetic field. Therefore a correction, also known as pitch correction must be applied

to ωa after extraction from the time histogram. Now if we consider the muon beam entering the

storage ring to have no vertical component at all, i.e, β · B = 0, then the contribution to ω comes

the third term alone. The third term is zero if 1
γ2−1 = aµ, which motivates the design choice of

’magic’ muon momentum to be 3.094GeV. The electric field correction in this case comes from

the off-magic momentum muons with p , pm, where pm is the magic momentum. The fractional

shift in ωa is expressed as

∆ωa

ωa
= −

βEx

cB0

(
1 −

1
aµ β2γ2

)
≈ −2

βEx

cB0

p − pm

pm
(2.29)

where β is almost constant, and Ex is the radial component of the electric field. The fractional shift

further, can be written in terms of < x2
e >, as discussed in the previous section

∆ωa

ωa
= −2

n(1 − n) β2

R0
< x2

e > (2.30)
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where the radial position of the muons is x, and xe is the equilibrium radius relative to R0. < x2
e >

is evaluated from the event information of the detected positrons by calorimeter detectors for each

dataset. The systematic uncertainty on this correction primarily arises from < x2
e >.

Now, to focus on the second term of Eq. (2.28), we assume that the electric field correction

term is zero, i.e., p = pm for all muons and that they are injected with a small vertical angle,

indicating β · B. Because of the betatron oscillations of the muons, the sign of the radial and

vertical components of β will alternate. The vertical betatron frequency is modulated by the ’pitch’

angle,

ψ(t) = ψmax cos(ωyt) (2.31)

The fractional shift in ωa can be expressed as

∆ωa

ωa
= −

< ψ2 >

2
= −

n
2R2

0
< y2 > (2.32)

considering small angle approximation and taking average over spin precession period[]. The

relation between the pitch angle ψ and the vertical position y in Eq. (2.32) is expressed in terms of

ψ ≈ tanψ = y
√

n/R0. As the pitch correction can directly be evaluated from the vertical distribution

of the beam, which can bemeasured using the tracking detectors. A source of systematic uncertainty

for the pitch correction stems from the measurement of < y2 >. Combining these two corrections

with the best-fit ωa, the reported value of unbiased ωa, that then goes into aµ evaluation is slightly

higher.

2.8.3 The error budget

The Fermilab g-2 experiment design aims to reach a four-fold improvement in experimental

precision compared with the BNL g-2 experiment (E821), which would reduce the error on the

measurement of aµ to the 140 parts-per-billion (ppb) level. The targeted statistical uncertainty of

E989 is at the 100 ppb level. E989 must obtain twenty one times the amount of data collected for

E821. This means that we need about 1.5 × 1011 decay positrons in the final fitted histogram. The
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systematic errors of aµ are derived from those on the anomalous spin precession frequency ωa and

the magnetic field normalized to the proton Larmor frequencyωp, each of which is targeted to reach

a 70 ppb level. Compared to E821, there will be a three-fold improvement on ωa uncertainties and

a two-fold improvement on ωp.

ωa Error budget

Category E821 [ppb] E989 Improvements E989 Goal

[ppb]

Gain changes 120 Better laser calibration 20

Pileup 80 Calorimeter segmentation 40

Lost muons 90 Better collimation in the ring 20

CBO 70 Better match of the beamline

to ring

< 30

E and pitch 50 Improved tracker 30

Total 180 Quadrature sum 70

Table 2.1: Systematic errors estimated for the anomalous spin precession frequency(ωa) [? ]
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CHAPTER 3

Measurement of ωa

Themeasurement ofωa frequency is done by analyzing the time spectra from the calorimeter

detectors. The time spectra from the detectors is basically the number of positrons above an energy

threshold as a function of time, and this is modulated by the precession frequency, ωa. Before the

data is available in terms of the units of energy as MeV and time as µs, a huge effort goes into

reconstructing the data from raw units.

Because the CPT and Lorentz violation analyses are essentially studies of variations in ωa

as a function of time and charge, the first step in the measurement is performance of theωa analysis.

The details of this analysis, from constructing the so-called wiggle plot to considering some of the

systematic effects is discussed in this chapter. Note that, any systematic effect that does not have a

time varying effect is not particularly of interest from the Lorentz violation analysis point of view.

3.1 Energy and Time Spectra

From the reconstructed data of all the calorimeters the histograms for energy and time

spectra are constructed. The information, such as energy, time, and hit positions of each event

detected by the calorimeters are stored in ROOT TTree formats [48] and is made available to the

analyzers. These data files are usually of the order 20000 − 140000 data files for each dataset,

which then is further processed, and for this dissertation analysis, a C++ based code in Fermilab’s

well known art framework was written [49]. This finally produces histograms defined by the TH1F

class; the ωa analysis is largely a cut based analysis and all the energy and time cuts were applied

based on inputs from the simulation and suggestions from the collaboration to maintain a standard

among various analyses. This dissertation includes plots from Run 2 datasets; Run 2 data contains
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Common Parameter Value
Energy threshold 1700 MeV
width of time bins 149.2 ns
Pileup scale factor 1

Pileup shadow time offset 10 ns
Pileup shadow window 1.5 ns

Table 3.1: Parameters used for Run 2 analysis among different datasets.

∼ 11 billion events, after applying the required time and energy cuts; these events are used for the

ωa extraction. The parameters mentioned in the table were identical among different datasets.

Energy and time histograms are constructed for each calorimeter detector and then are

added for the finalωa extraction. The energy threshold chosen for this analysis is 1700 MeV; events

with energy greater than the threshold are used for extracting ωa. This is found to be the optimal

threshold from studies performed based on concepts discussed in Chapter 2. The optimal energy

threshold can be determined by performing a scan over energy thresholds and each time fitting the

time spectra with a five parameter fit function. The bin widths in the time spectra were chosen to be

149.2 ns, which is the cyclotron period. The typical approach is to smear the bins by randomizing

each event time by ±Tc/2, where Tc is the cyclotron period. This is a known approach to smear

frequencies from the data. ROOT’s TRandom3 class was used for this randomization. The range

chosen for the time histograms is 0 − 699.8972µs with a total of 4691 bins.

3.2 Pileup Construction

We must consider the case when two (or more) decay positrons hit a calorimeter (close

in space and time) within the pulse reconstruction algorithm’s time resolution. In that case the

overlapping pulses cannot be separated from each other and are treated as a single pulse of higher

energy. This effect is called pileup. Pileup can either add events (two lower energy pulses add

up to mimic a single higher energy pulse above threshold) or subtract events (two pulses above

the energy threshold add up to form a single pulse) from the time spectrum of the decay positrons
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above an energy threshold. Since pileup events are pulses with a different g-2 phase,1, the phase

of the pileup events differs from that of the single decay positron events. Therefore, pileup events

distort the decay positron time as well as energy spectra and we must apply pileup corrections

before extracting the ωa value.

81

seen

as

Pileup: Overlapping pulses cannot be resolved

Offset Time

E2, t2E1, t1

∆t = Resolution Time

Probrability of having overlapping pulses is the same
as having pulses separated by a small offset time (~10 ns)

ED = E1 + E2

tD =
(E1*t1 + E2*(t2 −offset time))_______________________

(E1 + E2)

Reconstructed pileup pulse with energy ED and time tD

Figure 4.5: Method of pileup construction.

Figure 3.1: Method of pileup construction [? ]

A technique of pileup event construction and thereby pileup subtraction from the time and

1The spin precession phase depends on the energy of the positrons as higher-energy positrons traverse a longer path
from the decay vertex to the calorimeter and arrive later than lower-energy positrons. Pileup pulses carry the phase
information of the lower-energy positrons rather than the phase of the high energy positron that they imitate
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energy spectra of the single decay positron events, was developed by Y.Semertzidis, C. Ozben and

others [50], [51]. The method is based on the assumption that the probability that two pulses may

overlap is the same as the probability that two pulses will be separated by a small time offset (10 ns).

The time and energy spectra of the pileup events is constructed by looking at pulses in a "shadow"

window2 (Fig.3.1). If there is a shadow pulse detected within a shadow window, the energies and

times of the two pulses are used to construct a pileup spectrum. In this report, we use the pileup

construction algorithm derived in [50]. Doubles are basically composed of two decay positron

events and events with only one decay positron are called singles. The energies and times of the

two singles (trigger pulse and shadow pulse) are used to construct an artificial doubles spectrum

whose energy and time is determined by

ED = C(E1, E2) × (E1 + E2) (3.1)

and

tD =
t1 + t2

2
, (3.2)

where E1,t1 are the energy and time of the trigger pulse respectively and E2,t2 are the energy and

time of the shadow pulse respectively. C(E1, E2) is an energy dependent scale-factor for combining

the energies of two single pulses. So far, a ±3ns shadow window around a 10 ns time offset have

been used and the value of C(E1, E2) = 1. After all of the above considerations, four different

spectra are constructed OP(Original Pulse), D, S1, S2. OP contains all of the events from the

calorimeters. The doubles spectrum D(E,t) is constructed by adding the energies of trigger pulses

and the shadow pulses. In addition, each of the individual pulses that comprise the pileup events

in D(E, t) are separately entered into two histograms of singles S1 and S2. A pileup spectrum is

constructed as D − S1 − S2 and a pileup subtracted spectrum is then construted as

N (E, t) = OP(E, t) − D(E, t) + S1(E, t) + S2(E, t) (3.3)

2A shadow window is basically a ∼ 1 ns time window around a 10 ns time offset from the initial trigger pulse.
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Statistically, Equation 3.3 is equivalent to first completely removing the pileup events from OP

by subtracting D, and then adding the events in S1, S2 back to the ensemble. The pileup spectra

construction is done by following procedures described below:

• Store time, energy and spatial positions of each event in a vector for each muon fill for each

calorimeter detector.

• Loop through the vector; look for a second hit within the shadow window (1 ns here) which

is 10 ns apart from the first registered hit.

• If there is a shadow pulse found, these two events qualify for a pileup candidate.

• Fill the artificially created pileup energy and time spectra using the information of the above

qualified hits.
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(c) Calorimeter 24

Figure 3.2: The original energy spectra and the pileup spectra for calorimeters 1, 12 and 24

Figure 3.2 shows the energy spectra of calorimeters 1, 12 and 24 before pileup subtraction

and the energy spectra of the constructed pileup events (absolute), where only times ranging from

30 to 600 µs after injection have been used. The highest energy that a decay positron can have

is 3.1 GeV. The logarithmic scale is used to illustrate the shoulder in OP that starts at about 3.1

GeV and occurs as a result of pileup events. All of the events in OP above 3.1 GeV are mostly

from doubles and a few from higher order pileup. Pileup subtraction removes high-energy samples
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and adds them back at lower-energies. Therefore, at some energy the total pileup contribution is

identically zero. We define the pileup spectra as D(E) − S1(E) − S2(E), and the absolute of the

pileup spectrum is shown in Fig. 3.2
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Figure 3.3: Energy spectra for detectors 1, 12 and 24 after pileup subtraction

Fig. 3.3 compares the energy spectrum of the original pulse and the energy spectra after

pileup subtraction. We can see that there is a slight overcount in the pileup spectrum for calorimeter

1, resulting in a small dip around 3 GeV. In calorimeters 12 and 24 this effect is vanishingly small.
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(c) Calorimeter 24

Figure 3.4: The ratio of the original pulse and the pileup spectrum for detectors 1, 12 and 24

Fig. 3.4 shows the ratio of the energy of original pulse and the pileup spectrum. If the

pileup spectrum for the doubles match the original pulse in the higher energy region then the ratio

of the two should be unity. In Fig. 3.4, we see that the ratio is roughly 1 around 3 GeV to 4 GeV,

but above 4 GeV it differs from 1 which indicates a higher order pileup contamination. The pileup

energy and time spectra is shown in Fig. 3.5, when we add the events from all the detectors for a

subset of Run 2 data agree quite well with our expectation.
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(a) Energy spectra for all calorimeters added (b) Time spectra

(c) Ratio of the measured energy to the constructed pileup

energy

Figure 3.5: The energy spectrum of the measured hits and that of the artificially constructed pileup
events match very well, indicating good performance of the algorithm. The Pileup time spectrum
on the right plot on a log scale is fit to an exponential decay function to verify that the lifetime of
these events is half the muon lifetime of 64.4µs. The bottom plot shows the ratio of the measured
energy to the pileup energy, again confirming the performance of the algorithm.

Regardless of the consideration of higher order pileup contamination, the systematic error

coming from the procedure of pileup correction is well within the error budget of Run 2.

47



3.3 The Five Parameter Fit

The five parameter fit function used for the ωa extraction is expressed as

N (t) = N0 · e−t/τ · (1 + A · cos(ωa (R)t + φ)) (3.4)

The bold symbols in Eq. 3.4 are to be extracted from the data. Parameter N0 represents

the initial beam intensity, τ stands for the boosted muon lifetime, the parameter A depends on the

threshold energy and governs the amplitude of the oscillation. The parameter φ is not physically

important, and represents the initial angle of the muon spins with respect to the beam direction.

In order to avoid any bias towards preferring an expected measurement we perform a blind

analysis and the value of ωa is shifted by an offset in ppm level. What we extract from the fit is

actually R and not ωa directly.

ωa = 2π · 0.2291MHz · (1 + (R − ∆R) × 10−6) (3.5)

The parameter R is blinded in hardware as well as software levels by a C++ blinding library. 0.2291

MHz is used as the reference frequency. a 1 ppm shift in R implies 1× 10−6 × 0.2291 MHz shift in

ωa. ∆R, a secret offset is fixed by the blinding library by each analyzer. ∆R is chosen randomly for

each independent analysis from a range of ±25 ppm. There is another layer of blinding protection

in the hardware level, that is removed after finalizing all the collaboration wide approved analyses.

3.4 Fit Algorithm

A χ2 minimization is performed in order to extract the fit parameters in Eq. 3.4. The χ2 fits

are done using the ROOT software package with standard TH1F fit procedures, setting the strategy

level to 2. By choosing the strategy level of two, the uncertainties on the fit parameters from

the MnMigrad routine are returned by MnHesse, where the uncertainties are calculated by finite

difference methods. The data used for the fits are the pileup corrected time spectra. The fits are

largely performed in iterations where a set of initial guess values are supplied and the parameters
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Parameter specifications
Fit start time 30.2µs

Fit end time (data collectedd in 1 hour) 450µs
Fit end time(whole Run 2 dataset) 650µs

Fit strategy level 2
Number of fit parameters 5

Blinding Phrase same for all Run 2 subsets

Table 3.2: Fit specifications used for Run 2 ωa fits.

are then allowed to float based on the initial guess; in these iterations sets of parameters are freed,

fit and then fixed to the best fit values before pinning down the next group of parameters. The final

iteration will have all the parameters freed. The fit start time was chosen to be ∼ 30µs in order to

allow the muon beam to stabilize after injection to the storage ring from the accelerator complex.

The exact start time was chosen based on where the time spectra pass through a g−2 zero crossing,

for the fits shown in this dissertation it was found to be 30.28µs, the BNL measurements showed

that some of the systematic errors can be avoided by setting the fit start time to align with the g − 2

zero crossing.

The parameters used to perform the fit are listed in table 3.3. We choose the same blinding phrase

among different subsets of the Run 2 data so that the blinded ωa are shifted by the same offset and

we can use a series of ωa values for the CPT and Lorentz violation analysis as described in the

next chpater without worrying about different offsets causing artifacts or faking a Lorentz violation

signal.

The names of the Sequential Access via Metadata (SAM) datasets used for the analyses in

this dissertation are listed in table 3.3. SAM is a data handling system used at Fermilab for efficient

storage of huge datasets among all the experiments.
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Dataset SAM Name
B gm2pro_ daq_ offline_ dqc_ run2B
C gm2pro_ daq_ offline_ dqc_ run2C
D gm2pro_ daq_ offline_ dqc_ run2D
E gm2pro_ daq_ offline_ dqc_ run2E
F gm2pro_ daq_ offline_ dqc_ run2F
G gm2pro_ daq_ offline_ dqc_ run2G
H gm2pro_ daq_ offline_ dqc_ run2H

Table 3.3: SAM dataset names used for Run 2 ωa fits are included for future references of the
results presented in this dissertation.

(a) (b)

Figure 3.6: Five parameter fit to one of the subsets of Run 2 data. Left plot shows the fit performed
∼ 30µs and the corresponding pulls of the fit residuals. The pull shows the case where a fit is
performed with a start time extending to 10µs, which shows that the current five parameter fit is
insufficient to model the beam motion. The right plot shows a Fourier transform (FFT) of the fit
residuals. The clear peaks present in the FFT are expected as we did not account for these motions
in the fit function.

Fig. 3.6 shows the fit results from a five-parameter fit to one of the subsets of Run 2 data.

There is a clear oscillation present when we plot the pull of the fit residuals. The pull is given by the

fit residuals divided by the errors from corresponding bins. As discussed in the previous chapter,

the five parameter fit function alone is not sufficient to consider all the beam motions as seen by

the detectors. From the FFT of the fit residuals several oscillation frequencies are found, some of

which were discussed in the previous chapter. All of the peaks in the FFT are at expected locations,
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which makes it easier to include more fit parameters and extend the five parameter model in order

to account for all of these beam motions. The dominant oscillation frequency comes from the CBO

effects. The presence of a peak at the zero frequency comes from the slow effects, such as pileup

effects. Since the primary motivation behind extraction of ωa is to use the time series of ωa for the

CPT and Lorentz violation search, it is sufficient to consider only the five parameter fit function.

We do not lose sensitivity by doing this as the effects not modeled by the five parameter fit do not

vary from one subset of data to another. Technically the fit will fail to converge if we try to model

all the beam frequencies while extracting ωa from only 1 hour duration of data taking due to low

statistics, as these effects are hardly visible for such a small duration of data taking.

(a) 5 parameter fit on 1 hour duration of data (b) 13 parameter fit on a larger subset of Run 2 data

Figure 3.7: The left plot shows the fit parameter values when a five parameter fit was performed on
1 hour duration of data. The best-fit values of R for Run 2 are still blinded. The right plot shows
a 13 parameter fit on a relatively larger subset of Run 2 data where some of the beam frequencies
were modeled and hence extending the five parameters to Thirteen.

Fig. 3.7 shows that the χ2/ndf of the fit for a single run, i.e., extractingωa from just 1 hour

duration of data is ∼ 1.04. The blinded precession frequency extracted from the five parameter fit

functions for each run will be used in the next chapter for a CPT and Lorentz violation search.
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CHAPTER 4

CPT AND Lorentz Invariance Violation Tests

The g − 2 data also provides a great opportunity for setting the most stringent limits on

some of the Standard Model Extension CPT LV parameters in the muon sector. The current best

limits on some of the CPT and LV signatures in the muon sector come from the BNL Muon

g − 2 Experiment [52], reaching limits of ∼ 1.4 × 10−24 GeV on coefficients of SME Lagrangian

terms. The CPT and Lorentz violating signatures that we can look for using g − 2 data are: a

sidereal variation of ωa (t) and a µ+/µ− ωa difference, ∆ωa =< ω
µ+
a > − < ω

µ−
a >. Extensive

simulation studies confirm that the sensitivity regarding the sidereal varation roughly scales with

ωa uncertainty. Hence, the g − 2 experiment at FNAL should be able to reach limits of ∼ 5× 10−25

GeV. Two analysis techniques are used in the framework for a sidereal oscillation signal search

in the g − 2 data: the Lomb-Scargle (LS) test, a unique spectral analysis technique for unequally

spaced data, a direct multi-parameter fit (MPF) to the data. The two approaches give results in

agreement. There is no significant signal found in this search. This chapter includes a detailed

discussion of the sidereal search using the Fermilab g-2 Run 2 data.

4.1 Rµ Instead of ωa

The frequency ωa is proportional to the magnetic field and therefore to ω̃′p , so the sidereal

variation of Rµ = ωa/ω̃
′
p is analyzed, rather than ωa directly. The variations of the magnetic field

affects ωa measurements as well since we measure ωa in presence of the external magnetic field.

The main magnet is powered by a low-voltage power supply providing ≈ 5200 A which can be

regulated to 0.3 ppm, and an NMR feedback provides 0.1 ppm stability. So the magnetic field used

in the g − 2 experiment is not exactly a constant depending on how small a CPT and LV signal we
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are looking for. Hence, the magnetic field is taken into account in the analysis by using Rµ. The

other factors that could cause a variation in the magnetic field are, for example, thermal expansion

of the steel in response to temperature changes in the experimental hall. The day-night temperature

change could fake a sidereal variation signal in ωa (t). Therefore by taking the ratio of the two

measured frequencies we can avoid many artifacts of the data that could otherwise cause potential

backgrounds in the analysis. An upgraded hall temperature control system, with a precision of

±1◦C was installed in 2019 to provide a stable thermal bath for the experiment.

One of the concerns while considering Rµ to search for the signal is the possibility of

cancelling the potential sidereal oscillations present in both the frequencies with similar amplitudes.

However the clock-comparison experiments set a limit on ω̃′p that is negligible, and hence any

potential sidereal oscillation in Rµ will stem from a potential signal in ωa. This dissertation

confirms that the amplitude of a potential sidereal signal in ω̃′p is negligible compared to that

in the ωa data. The field measurements used in this analysis are provided by S. Corrodi. This

chapter provides the first limits from the Fermilab Muon g − 2 experiment on both the precession

frequencies and the ratio.

4.2 Ingredients for The Sidereal Search

The Fermilab g − 2 experiment uses GPS systems that provide unix time-stamps for each

event unlike the previous experiment at BNL. Several atomic clocks in GPS satellites provide very

precise time data to the GPS signals. These signals are decoded by GPS receivers and each receiver

is synchronized to the atomic clocks. The hyperfine transition between the ground states of 87Rb

can be attributed for atomic clocks. The 0→ 0 transitions between F = 2 and F = 0 of the ground

state are insensitive to the orientation of the clock, and hence to any potential Lorentz violation

effects, where F corresponds to the total angular momentum quantum number.

The Muon g − 2 clock system is driven by two GPS antennas, mounted to the roof of the

experimental hall, one manufactured by Stanford Research Systems (SRS), the other by Meridian.

The GPS antennas send 1 pulse per second (PPS) signals over two independent cables to two
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separate receivers. The antennas and the receivers are connected to two sets of clocks, that contain

internal Rubidium Oscillators, which ensure short-period stability, while the GPS signal ensures

long-period stability [53].

Figure 4.1: The schematic of the clock system used in the experiment [36].

The knowledge of time stamps of all events provides a lot of opportunity to test the data

using various other methods. The data are binned in two ways in time: evenly sampled and

unevenly sampled. Even sampling refers to the data folded over equally spaced time bins, whereas

the "Unevenly" sampled data refers to binning the data on a run-by-run basis, where the time

bins are of different sizes. For each time bin, ωa and ω̃′p are calculated. We apply two methods

on the time series of Rµ(= ωa/ω̃
′
p) for a sidereal search: the multi-parameter fit (MPF) and the

Lomb-Scargle (LS) test. A detailed analysis on 2019 Run 2 data, both evenly sampled, folded and

unevenly sampled, run-by-run data are included in the following sections.

4.3 Time: One of the Key Ingredients

The basic periods of data collection are called "runs" which last approximately 1 hour. The

runs consist of several subruns, which contains seven seconds of data collection each. The median

of the time stamps of all the subruns within a run was assigned as the unix time stamp of that run
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for a run-by-run data analysis. In order to sample the data in evenly spaced time bins we need

to determine the time stamp of each event; where an event qualifies for each positron hit in the

calorimeter above a threshold energy. For each positron event the unix time stamp is given by,

t = tsubrun + t f ill + tg−2 (4.1)

where tsubrun is the unix time stamp at the beginning of a given subrun, t f ill is the fractional time

of each muon fill (discussed in chapter 2) within that subrun relative to tsubrun, and tg−2 is the time

of the positron usually used in the ωa analysis within each 700µs muon fill. The time stamps for

the run-by-run analysis used in this dissertation are shown in Fig. 4.2.
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Figure 4.2: Figure shows the unix timestamps for each run in the Run 2 dataset after applying the
data quality cuts.
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4.3.1 The Sidereal Time

The signal that we are looking for in the data is an oscillation with a period of sidereal

time. The sidereal time, widely used by astronomers for locating celestial objects, is the period of

the earth’s rotation about its axis relative to the fixed stars, rather than relative to the sun. By the

time the Earth spins once about its axis, it has already moved along its orbit by over 2.5 million

kilometers. Hence the sun will not appear in the same part of the sky at the end of that rotation.

The earth has to rotate for another four minutes in order to return to the same position in the sky.

So the actual period of rotation of the Earth relative to the distant stars, i.e. the time for the Earth

to spin 360 degrees, is less than one solar day. So one sidereal day is,

Ts = 24 × 60 × 60 ×
360

360 × (1 + 1
365.25 )

= 86164.09 seconds (4.2)

One solar day is,

Td = 24 × 60 × 60 × 60 = 86400.00 seconds (4.3)

The experiment records unix time to denote the time of each positron event detected by the

calorimeters. Unix time is the number of seconds advanced since the Unix epoch, minus leap

seconds; the Unix epoch was set at 00:00:00 UTC on 1st January 1970.

4.4 Data Selection Criteria

The 2019 Run 2 dataset was used for this analysis. While the pulsed systems, the ESQs and

the kickers, were held stable throughout Run 2 unlike Run 1, there were 5 day beam on 9 day beam

off periods that affected the stability of the storage ring magnet. Also, the temperature control of

the experimental hall was lost towards the end of Run 2 and this in turn caused some spurious peaks

in the spectral analysis, that will be discussed later in this chapter. The full dataset was divided into

smaller subsets and labeled as 2B to 2H chronologically.

The pulsed HV systems experienced frequent disruptions from dielectric breakdown due to

the non ideal storage ring vacuum conditions that caused the HV systems to spark. Furthermore,
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Dataset Name Date High energy e+

B April 4 - April 9 0.8 × 109

C April 11 - April 24 4.19 × 109

D April 27 - May 11 3.41 × 109

E May 20 - May 25 1.045 × 109

F June 4 - June 8 1.22 × 109

G June 17 - June 19 0.134 × 109

H June 21 - June 22 0.348 × 109

Table 4.1: Number of high energy positron events in each of the Run 2 subsets that qualified for
the analysis.

muon bunches with irregular profile measured by the T0 counter were sometimes delivered by the

accelerator complex. These were taken into account by applying data-quality cuts to each data

set’s muon fills to select only the most stable ones for analysis. This avoids introducing possible

systematic ωa-biases. The energy cut applied to select the high energy e+s was 1.7 GeV and the

data used for this analysis are pileup corrected and gain shifted.

4.5 Analysis Techniques

A sidereal variation in ωa can be expressed as ωa (ωpi, ti) = Kωp(ti) + AΩcos(Ωti + φ). In

terms of the ratio R,

R = K +
AΩ

ωp(ti)
cos(Ωti + φ) (4.4)

where K is a combination of µp and µm, and AΩ represents the amplitude of the sidereal variation.

Two analysis techniques were used to extract oscillation signal from the the g-2 data: a direct

multi-parameter fit to Eq.(4.4), and the Lomb-Scargle test, a unique spectral analysis technique for

unequally spaced data.

The Multi-parameter Fit Method

The oscillation amplitude can be obtained by performing a multi parameter fit to the time

series of R. The amplitude of a possible oscillation is minuscule as the ratio R is known to be
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essentially constant with respect to time. The 4-parameter function used for the least square fit to

the data is:

R (t) = C0 + A0cos
(

2πt
T0
+ φ0

)
(4.5)

The oscillation amplitude is given by A0. The four-parameter fit will be used to find the oscillation

amplitudes.

The Lomb-Scargle test

The Lomb-Scargle test is a spectral analysis technique, uniquely designed for detecting

signals when the data are unequally spaced [54], [55]. This method is widely used for astronomical

observations. With evenly sampled data it reduces to the usual Fourier analysis. For the time series

yi with i = 0, ...N − 1, the normalized Lomb power PN at frequency ω within a search range is

given by,

PN (ω) ≡
1

2σ2

{
[
∑

i (yi − ȳ)cos[ω(ti − τ)]]2∑
i cos2[ω(ti − τ)]

+
[
∑

i (yi − ȳ)sin[ω(ti − τ)]]2∑
i sin2[ω(ti − τ)]

}
(4.6)

where ȳ, σ and τ are given as,

ȳ ≡

∑
i yi

N
, σ2 ≡

1
N − 1

∑
i

(yi − ȳ)2

tan(2ωτ) ≡
∑

i sin(2ωti)∑
i cos(2ωti)

(4.7)

The frequency range for the Lomb-Scargle test is [0, Fc], where Fc is the nyquist frequency, and

is given by Fc =
N
2T (T being the observational baseline for the analysis). The frequency range

used for the run-by-run data in this report is [0, 5Fc]. The higher the value of PN , the Lomb power,

the more significant the periodic signal will be at ω. Hence, the Lomb-Scargle test provides the

frequency information of a potential oscillation signal within the search range. The uncertainty in

the estimated frequency of the LS periodogram is a very important aspect of the measurement and

the uncertainty can be expressed in terms of the height of the peak w.r.t the background peaks that
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appear in the periodogram. The significance of a peak in the spectral analysis is interpreted in terms

of the False Alarm Probability (FAP), which is a measure of the probability that the data consisting

of Gaussian noise with no periodic signal would lead to similar peak amplitude (or higher) due

to the noise in the data. Hence, a small FAP value is indicative of the presence of a significant

periodic signal in the data. For M independent frequencies within the search range, the FAP for a

Lomb power, PN is given by,

1 − (1 − e−PN )M (4.8)

The number of independent frequencies within the search range can be obtained by Monte

Carlo simulations. The standard approach only considers the highest peak for FAP estimation; I

have incorporated a generalized statistical approach by which we can estimate the significance of

any peak of any amplitude appearing in the LS spectra.

4.6 Run-by-Run Data Analysis

The first step in the CPT analysis is extracting the precession frequency for each run by

performing a 5 parameter fit on the pileup corrected time spectra from the calorimeter detectors

along with calculating the average magnetic field, ω̃′p. The combination of ωa and ω̃′p then gives

Rµ as a function of time; where each run is assigned to a unix timestamp as described in 4.3. Some

of the runs were excluded because of their low statistics even though they passed the usual data

quality cuts. 640 runs from the Run 2 data were available for this analysis. Figure 4.3 shows the

time series of the precession frequency, the shielded proton frequency and the ratio Rµ on a run by

run basis.

4.6.1 Lomb Scargle Test

From Fig. 4.3 the unequal spacing of the data points can be clearly seen. So, in order to

switch from the time domain to the frequency domain we applied a sophisticated spectral analysis

technique, known as Lomb-Scargle test, that is widely used in astronomical observations. Fig. 4.4a

shows the spectral power, PN over a frequency range, where we scan frequencies and calculate
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Figure 4.3: Time series of ωa, ω̃′p and Rµ on a run by run basis respectively.
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(a) Spectral power plot for run by run data
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Figure 4.4: The spectral analysis plots on a run by run basis for Run 2 data. Left plot: the
Lomb power, PN (ω) over a frequency range shows that there is no significant peak present at the
sidereal frequency. Right plot: the distribution of PN (ω) over all the frequencies scanned follow
an exponential decay confirming the absence of a potential significant oscillation signal
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PN (ω) at each frequency, ω. The peaks in Fig. 4.4a represent PN (ω), which is a measure of the

statistical significance of a potential signal with frequency of oscillationω. The higher the peak the

more significant the oscillation signal at thatω is. Here the frequency range is chosen to be [0, 5FC],

where FC is the average nyquist frequency. The nyquist frequency depends on the observational

baseline, i.e, the duration of the data taking period and the number of data points. For instance the

Run 2 data was taken over a period of 3.5 months and 640 runs qualified for the analysis, making

FC = N/2T = 4.93 × 10−5 Hz. The frequency grid for the analysis was optimized based on the

average nyquist frequency and an over sampling factor set by the analyzer. With the over sampling

factor to be 10, 16000 frequencies were scanned for the Run 2 data set. Although the search is for

a potential signal at the sidereal frequency, we search over a broad frequency grid to ensure that

the analysis method is robust and free of any artifacts or biases that could mimic or compromise

a signal measurement at our region of interest. The highest peak arises at 0.0010s−1 with a peak

height ∼ 8. The Lomb power at the sidereal frequency is 0.86, and the probability of this value

arising from a potential oscillation signal is negligible. Moreover, the Lomb power distribution in

Fig. 4.4b follows an exponential decay which is indicative of the absence of a significant signal,

discussed in more detail in appendix. For further investigation, the 640 data points are divided into

two slices; the first half consists of the first 300 data points and the second half has the rest 340

data points. Lomb Scargle test is then applied on these subsets. Fig. 4.5 shows the spectral power

for each of the above three cases. The position and height of the highest peak while analyzing

the whole dataset changes when only a subset is considered. Additionally, a peak at the sidereal

frequency also pops in and out of existence depending on which part of the whole dataset we choose

for the analysis. This confirms that the peak at ωs is due to statistical fluctuation. We do not see a

consistent appearance of a significant peak at any of the scanned frequencies suggesting that there

is no significant oscillation present at any of the frequencies scanned.
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Figure 4.5: Figure shows spectral analysis plots on preliminary Run 2 data. The top plot shows
spectral power as a function of frequencies when the analysis was performed on the full Run-2
dataset. The middle and the lower plot shows the spectral power as a function of frequencies when
the analysis was performed on partial subsets of the data in order to investigate the overall structure
of various peaks.
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Figure 4.6: Comparison of Lomb power distributions. The left plot shows the Lomb power
distribution for an input data with no significant signal. The right plot on the other hand shows the
power distribution when we injected a 10 ppm false signal. The Lomb power distribution in the
right plot extends to a much higher value, indicating the presence of a strong signal.

4.6.2 Sensitivity of the algorithm

In order to gauge the sensitivity of the Lomb-Scargle test for a given observational baseline,

the performance of the algorithm is studied over an ensemble of simulated datasets. The simulated

data are generated based on the inputs from the real data; the unix timestamps of the Run 2 data

are used and the data points for each of these timestamps are generated randomly from a normal

distribution with the central value to be the average Rµ from Run 2 and the standard deviation of

the each individual data points. The range of the maximum Lomb power that we would expect for a

given dataset with no signal can be determined by applying the Lomb-Scargle test on an ensemble

of simulated data groups. For instance, Fig. 4.6a shows a maximum Lomb power of about 10

for one dataset; now by performing the analysis on 10000 such cases and storing the maximum

Lomb power each time, we get the distribution shown in the top plot of Fig. 4.7. This plot gives

a handle on the range of maximum values extending to a spectral power of 15; meaning that with
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Figure 4.7: The Lomb-Scargle test performed on an ensemble of simulated data with no signal
added. The distribution of the maximumLomb power shows that the range of peak heights stretches
out to 15 even when there is no signal present. The frequency positions of the highest peaks are
randomly distributed confirming that the algorithm is not biased towards a particular frequency
over the other within the search range.

the Run 2 data spacings we can expect a peak as high as 15 even when there is no significant signal

present in the data. The Lomb power distribution has a long tail stretching out to a much higher

value when we add an artificial signal of 10 ppm to the simulated data, and no longer follows an

exponential decay indicating the presence of a potential signal, as shown in Fig. 4.6b. The mean

of the distributuion of maximum Lomb power also shifts to the right as anticipated when we add

an artificial signal at the sidereal frequency. The bottom plot of Fig. 4.7 shows the distribution

of the corresponding frequency positions of the maximum Lomb power for each data group; a

flat distribution for the cases with no artificial signal reinforces that the algorithm is not biased

towards a particular frequency within the frequency grid, whereas the distribution is peaked around
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Figure 4.8: The Lomb-Scargle test performed on an ensemble of simulated data with 10 ppm
signal added at the sidereal frequency. The distribution of the maximum Lomb power shows that
the range of peak heights shifts to the right when there is a significant signal present as compared
to the no signal scenario. The frequency positions of the highest peaks are no longer randomly
distributed rather the distribution now peaks near the frequency of the input signal confirming that
the algorithm is able to detect a significant signal
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the sidereal frequency for the cases when we added an artificial signal of 10 ppm at the sidereal

frequency, as shown in the bottom plot of Fig. 4.8. The position of the peak landing at the same

frequency bin depends on the statistical fluctuation of the data as well as how strong the injected

artificial signal is. The top plot of Fig. 4.8 shows that the mean of the distribution of the maximum

Lomb power shifts to a much higher value when a 10 ppm signal was added to the simulation

samples.

Initially several sensitivity studies were done to understand the performance of the algorithm

for the given Run 2 data specifications, such as the time range of Run 2 and the individual

uncertainties on each data point, which is ∼ 10 ppm. The sensitivity studies presented here

are done on simulated data to study various effects such as the performance of the algorithm to

artificially injected signals, estimating the resolution of the peak positions and comparing the results

of different methods.

Lomb-Scargle test is a very sensitive spectral analysis technique. Two 4 ppm signals are

added at the sidereal frequency and a randomly chosen frequency of 0.0012s−1 with the data point

uncertainty as that of the real Run 2 data. Fig. 4.9a shows the power spectrum when we ran the

analysis on a simulated dataset containing these two signals; the power spectrum shows clear peaks

at the expected frequencies. Now if we look at the corresponding Lomb power distribution, as

shown in Fig. 4.9b, it clearly does not follow an exponential decay, reinforcing the fact there is a

significant oscillation present in the input data. Furthermore, to gauge the behavior of the Lomb-

Scargle test we generated simulated datasets with lower uncertainties and studied the performance

of the algorithm. Here the simulated data were generated from the normal distribution with the

average value of Rµ as before but with individual data point uncertainties scaled by factors of 2,

5 and 10; i.e., we generated the simulated data based on the data point uncertainties δRµ, δRµ/2,

δRµ/5 and δRµ/10 and then used these individual data sets to study the sensitivity of the Lomb-

Scargle test. For these uncertainties we injected the same 4 ppm signals at the sidereal frequency

and at 0.0012s−1 as before. From Fig. 4.10a, and Fig. 4.10b it is evident that the sensitivity of the

algorithm scales with the individual data point uncertainties. The uncertainties on the data points
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Figure 4.9: Performance of the Lomb-Scargle test. The left plot shows the power spectrum when
we added two 4 ppm signals with the data point uncertainties δRµ to the average of the data points,
hence excluding some of the gaussian noise. The spectral power plot behaves as expected. The
right plot shows the corresponding Lomb power distribution, which now deviates completely from
an exponential decay, indicating a presence of pure oscillation components in the data. Note that
the x-axis is truncated in this plot to emphasize the decay deviating quite a lot from that of an
exponential nature.
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Figure 4.10: Sensitivity of Lomb-Scargle test. Left plot: simulated data generated with individual
data point uncertainty, and then two signals of amplitude 4 ppm are added simultaneously at the
sidereal frequency and at 0.0012s−1. Right plot: simulated data generated with individual data
point uncertainty as δRµ/2, with false signals of 4 ppm injected at the same frequencies as before.
The right plot shows clear huge peaks at both the frequencies as the SNR improves quite a lot. We
see that the sensitivity of the algorithm scales with the uncertainties on Rµ. The more statistics
we accumulate as we move forward with the g − 2 experiment the smaller the uncertainties on
individual data points and hence the more sensitive the algorithm will be.
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Figure 4.11: Lomb-Scargle test on simulated data generated with individual data point uncertainties
set to δRµ/2, with two artificial signals added at the sidereal frequency and at a randomly chosen
frequency of 0.0012s−1. The left plot shows the power spectrum when the false signal amplitudes
are 2 ppm. The right plot shows the spectrum when two 1 ppm signals are added. The peak
amplitudes are much more significant for the 2 ppm signals compared to the 1 ppm case. The
peak from the signal injected at 0.0012s−1 is almost smeared by the noise in the right plot and the
spectral leakage is much more prominent in this case.

may wash out a potential signal depending on the size of the signal compared to the uncerntainties.

The smaller data point uncertainties correspond to a power spectrum more sensitive to smaller time

variations. The signal amplitude must be comparable with the data point uncertainties in order for

the algorithm to be able to detect a signal component significantly. The peaks arising from the

signal will be smeared in the noise if the uncertainties are relatively large, and the algorithm will

not be able to detect the potential signal.

Since we see that the sensitivity of the Lomb-Scargle test strikingly improved with a data

point uncertainty of δRµ/2, it should be more sensitive to a smaller amplitude signal with this

uncertainty. A simulation study is performed to confirm this; by adding various amplitudes.

Adding artificial signals with 2 and 1 ppm amplitude respectively with a data point uncertainty of
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δR/2 results in distinguishable peaks at the input frequencies. Notice that the signal to noise ratio

is better in the first case where we added two 2 ppm signals to the simulated data. The spectral

leakage to nearby frequency bins is more prominent in the second plot where two 1 ppm signals

are added at the frquencies mentioned before, this will be discussed in more detail in Sect. 4.9.

The above simulation studies give an estimate on what to expect from the Lomb-Scargle test and

how the sensitivity scales with the Rµ uncertainty as well as the potential signal’s amplitude. The

outcome of these studies heavily depends on the characteristics of the dataset being used. So the

sensitivity is may change for Run 3 based on the parameters such as, the length of the observational

baseline, the spacing of the data points and the statistical uncertainties on each data point.

4.6.3 Multi Parameter Fit Results

A multi-parameter fit to the data gives us the amplitude of any potential oscillation. In

absence of a sidereal oscillation we expect Rµ to be a constant in time, and the amplitude of a

potential signal is small compared to the constant part of Rµ(t). The oscillation amplitude is

obtained by performing a least-square fit to the data. Fig. 4.12 shows the Run 2 data fitted to the

multi-parameter fit function. The χ2 of the fit did not change significantly when a multi-parameter

fit is performed compared to a constant fit. We fixed the oscillation period at TS, the sidereal period,
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Figure 4.12: Figure shows an oscillation period scan of the 2019 Run 2 data, where we step through
A0 in the fit keeping the rest of the parameters floating. Top plot: Oscillation amplitude A0 from
the MPF fit. Bottom plot: unnormalized χ2 of the fit. Absence of a global minimum in the bottom
plot indicates no signal.
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Parameter Fixed T = TS Fixed T = TD

C0 3.707 × 10−3 ± 1.65 × 10−9 3.707 × 10−3 ± 1.65 × 10−9

A 0.934 ± 0.63 0.938 ± 0.63
φ 1.32 ± 0.66 1.33 ± 0.66

χ2/ndf 1.02 1.02

Table 4.2: Comparison of the values of the fit parameters for a sidereal oscillation (T = TS) fit and
a solar day (T = TD) fit

and set all the other parameters to float, and then set the oscillation period at TD, the solar day for

comparison.

In the 4-parameter fit, a scan on T0 is done. In this scan we step through different values of

T0 keeping all other parameters fixed. The motivation is to search for any time structure near the

sidereal period. Fig. 4.13 shows the oscillation period scan. The absence of a global minima in

the χ2 plot indicates that there is no significant signal present at any of the scanned periods. The

broadening of peaks as the scan moves to the right is due to increased correlation of adjacent fit

results as the scan moves to period values greater and greater relative to the data point (run) lengths.

i.e. high frequency fits can be easily pulled by a few point-by-point random noise fluctuations

over ranges on the order of the period fit, but low frequency fits are determined much more by

the aggregate pattern over a large fraction of the data and much less affected by the random noise

within that aggregate. Neither the sidereal nor the solar day period correspond to a local or global

minima. The χ2 of the fit for a potential oscillation is expected to have a global minimum at that

period.

4.6.4 Expressing Lomb Power in terms of an Amplitude of Oscillation

As we know, the Lomb-Scargle test provides information of the frequency of a potential

oscillation and the peak height indicates how significant the oscillation is. In order to express

the information contained in the peak height in terms of the oscillation amplitude, a dedicated

simulation study is performed.

Signals of random amplitude are added to the simulated data at the sidereal frequency; now
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Figure 4.13: Figure shows an oscillation period scan of the 2019 Run 2 data, where we step through
A0 in the fit keeping the rest of the parameters floating. Top plot: Oscillation amplitude A0 from
the MPF fit. Bottom plot: unnormalized χ2 of the fit. Absence of a global minimum in the bottom
plot indicates no signal.

by selecting the amplitudes of the artificial signals that give rise to a Lomb power of 0.86, as seen

in the Run 2 data at the sidereal frequency, we end up with a distribution of the amplitudes of a

potential signal at the sidereal frequency, as shown in Fig. 4.14. The mean of this distribution is

0.68 with a standard deviation of 0.48. This number agrees quite well with the amplitude of the

oscillation predicted by the multi-parameter fit, 0.94 ± 0.63.

4.6.5 Summary of the Run-by-Run results

In order to compare the results from the two methods used for the analysis, a simulation

campaign is carried out. We simulate 10000 groups of random data based on the real data average

and the individual uncertainties as before. False oscillation signals with different amplitudes are

added to the simulated data at the sidereal frequency. The performance of the Lomb-Scargle test

as well as the multi-parameter fit are then studied on the same simulated ensemble. We study the
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Figure 4.14: Figure depicts the distribution of the amplitude of artificial signals added to simulated
data resulting in the same Lomb power at the sidereal frequency as seen from Run 2 data. The
artificial signal amplitude from the corresponding Lomb power comes out to be 0.68 ± 0.48 ppm
which agrees quite well with the amplitude predicted by the multi-parameter fit results, 0.94±0.63.
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Artificial Signal [ppm]
Prob. of having

bigger amplitude A0 (%)
Prob. of having

bigger Lomb power (%)
1.0 50.57 54.07
1.6 83.19 84.85
1.9 92.08 93.04
2.0 94.35 94.99

Table 4.3: Table summarizes the results on simulation samples, where two methods; the Lomb-
Scargle test and the multi-parameter fit are applied. These two methods agree quite welland set a
limit of the potential sidereal oscillation component to be less than 2 ppm with ∼ 95% confidence
level.

Lomb power at the sidereal frequency from the spectral analysis, and for themulti-parameter fits, we

study the distribution of the oscillation amplitude, A0 while keeping the period fixed at the sidereal

frequency. Fig. 4.15 shows the distribution of the Lomb power at the sidereal frequency when we

applied the Lomb-Scargle test on each of the 10000 cases. The shaded area in the plots show the

cases in which the Lomb power measured at the sidereal frequency is less than that found in the

real data, where the dotted vertical line indicates the Lomb power seen from the real data. Note

that, at 2 ppm ∼ 95% of the time we calculate a higher Lomb power than what we saw in real data.

This can be interpreted as the present oscillation signal amplitude at the sidereal frequency being

less than 2 ppm with 95% confidence. Fig. 4.16 shows the distributions of oscillation amplitudes,

A0 obtained from the multi-parameter fit. The plots indicate that when the oscillation amplitude is

2 ppm, 95% of the time the fitted amplitude is higher than that from the real data. The results from

the twomethods agree very well. We applied both the methods on the same simulated data samples,

and studied the probability of the Lomb power being greater than that of the real data at the sidereal

frequency while for the multi-parameter fit, the probability of the fit parameter A0 being greater

than that of the real data is reported. Table summarizes the limits on the sidereal oscillations for

Run 2 data along with the significance. The two analysis techniques are in agreement with each

other, and indicate that the limit on the amplitude of a potential oscillation signal is 2 ppm with

95% confidence level.
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Figure 4.15: Distribution of Lomb power at the sidereal frequency for 10000 simulated data
groups.The x-axis is the Lomb power at the sidereal frequency for each data group. We conclude
from the above plots that the amplitude of oscillation in the real data is less than 2 ppm with 95%
confidence level.
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Figure 4.16: Distribution of the oscillation amplitudes at the sidereal frequency for 10000 simulated
data groups are shown. The x-axis here is the oscillation amplitude, A0 obtained from the multi-
parameter fit. We conclude from the above plots that the amplitude of oscillation in the real data is
less than 1.7 ppm with ∼ 95% confidence level.

77



Window Name(W) Window Size[seconds] Bin Width [seconds]
A W = 4 × TS 1346.31
B W = 4 × TD 1350.0
C W = 4 × 123594 1931.16
D W = 4 × 89903 1404.73
E W = 4 × 92801 1450.02

Table 4.4: Table shows various window sizes for the data being folded with a time window.

4.7 Folded Data Analysis

For the folded data analysis, we choose the window size to be equal to or more than a

sidereal period as we are performing a sidereal search. The window sizes were chosen to be a

mulltiple of the sidereal period in order to observe any potential oscillation over more than one

period. Five different window sizes were studied, where the two obvious choices are the signal and

the background frequency,i.e., the sidereal period and the solar day period. Three other windows

were randomly chosen to study the effects of binning the data in a particular way, and therefore

study if we in any way biased the analysis by introducing the window sizes as integer multiples of

sidereal or solar day period. The table 4.4 summarizes five different windows used as well as the

bin widths for each of those cases.

4.7.1 Analysis for Window A

The first window, referred to as Window A from now on, is chosen to be four times the

sidereal period. There are 256 bins chosen within the window. Hence, the width of each bin is

∼ 22 minutes. In order to fold the data, we first take the unixtime of each positron event modulo

the time window, and then the time spectrum of the positrons are filled, resulting in histograms

for each of the 256 bins within the window specified above. Now by performing a five parameter

fit for each of those histograms corresponding to the bins within a window, a series of ωa values

are extracted. At this point we have a folded time series of ωa. Now the field measurements are

folded by taking the unix timestamps of each subrun modulo the time window. A subrun in the

Fermilab experiment refers to ∼ 7.2 s of data collection. After folding the field measurements
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Figure 4.17: The folded time series of Rµ for Run 2. The time window chosen here is four times
the sidereal period.

into the window, we took average of the measurements and assigned an uncertainty by taking the

quadrature sum of the corresponding measurements in a particular bin. The last step is to take the

ratio of these two measurements and construct a time series of folded Rµ.

4.7.2 Lomb Scargle Test on Folded Data With Window A

Since the data are already folded, the time series is no longer unequally spaced. The

sophisticated Lomb-Scargle test in this case becomes a classical spectral analysis, and is expressed

in terms of the corresponding FFT of the time series. The frequency range otherwise used must be

adjusted to avoid redundancy in the power spectral plots. Hence, the frequency range used from

now on for the folded data analysis is: [0, Fc], where Fc is the nyquist frequency. From Fig. 4.18 we

see that the Lomb power at the sidereal frequency is ∼ 2 and there is a small peak nearby. Note that

the huge peaks at the zero frequency observed from the Run-by-Run analysis is completely washed

out here when we folded the data from various parts of the whole time duration of 3.5 months. This

confirms that the zero frequency peaks seen in the previous study are due to some artifact present

in the data and not because of a potential oscillation component. It is evident that by folding the

data into a smaller window we are losing sensitivity to noise arising from effects other than a strong

oscillation signal. To investigate the structues in the power spectra we consider different window

sizes next.
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Figure 4.18: The Lomb-Scargle power spectrm for folded time of window A.
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Figure 4.19: The multi-parameter fit for folded time of window A.

4.7.3 Multi-parameter Fit on Folded Data with Window A

The folded data is fit to the multi-parameter fit function as before to obtain the oscillation

amplitude. The χ2 of the multi-parameter fit did not change when compared with a constant fit,

which is consistent with the run-by-run results. In order to perform an oscillation period scan, a

series of fits are done with fixing the oscillation period to a certain value within the scan range while

all the other parameters are free to float. The results of the oscillation period scan is in agreement

with the run-by-run analysis. There is no significant signal present in the data analyzed here. The

oscillation amplitude from the fit comes out to be 1.2 ppm. The unnormalized χ2 does not have

a global minimum in the scan range confirming the previous claim of the absence of a potential
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Figure 4.20: Oscillation period scan for folded time of window A.

signal with any of the periods scanned.

4.7.4 Analyzing Five Different Windows

To investigate the appearance and disappearance of peaks due to statistical flustuations, we

considered five different window sizes. The Lomb Scargle test was performed on each of these

differently binned data. Fig. 4.21 shows the power spectra for all five windows. We see that the

position of the highest peak depends on the choice of binning. The fact that the appearance of

the small peak at the sidereal frequency depends on window sizes, reinforces that the peak near

the sidereal frequency arises due to statistical noise. Presence of any peak due to a significant

oscillation signal must not depend on how we choose to bin the data. The multi-parameter fit

results on the folded data are summarized in table 4.5. The values of the fit parameter A from the

table for various windows are consistent with a prediction of no significant signal at the 2σ level.

The consistency of the best-fit parameter values among various windows confirms that there is no

significant signal in the data. Fig. 4.22a show the oscillation period scan results from each window.
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Preliminary Preliminary Preliminary
Window size (W) fix T = TS fix T = 24h

A
(W = 4 × TS)

χ2 = 0.82
A = −1.21 ± 0.68

φ = 1.36

χ2 = 0.82
A = −1.23 ± 0.68

φ = 1.39

B
(W = 4 × TD )

χ2 = 1.15
A = 1.03 ± 0.63

φ = 0.47

χ2 = 0.82
A = 1.03 ± 0.63

φ = 0.50

C
(W = 4 × 123594s)

χ2 = 1.0
A = 0.48 ± 0.66

φ = 2.88

χ2 = 1.0
A = 0.46 ± 0.61

φ = 0.47

D
W = 4 × 89903

χ2 = 0.82
A = −1.38 ± 0.66

φ = 0.46

χ2 = 0.82
A = −1.34 ± 0.62

φ = 0.46

E
W = 4 × 92801

χ2 = 0.86
A = 0.52 ± 0.63

φ = 0.32

χ2 = 0.86
A = 0.53 ± 0.63

φ = 1.15

Table 4.5: Fit parameters for different window sized folded data. A is expressed in ppm. The
windows C, D and E were chosen randomly to verify the binning effects when binned differently
from the sidereal period.

The sidereal period does not correspond to a global minimum in any of the oscillation amplitude

scans, hence confirming again the absence of a potential signal at the sidereal period.

4.7.5 Summary of the Folded Analysis

Again to compare the results of the Lomb-Scargle test and themulti-paramter fit we generate

simulated data for each time bin from a normal distribution with a central value as the average

of Rµ and the individual data pointś standard deviation. By studying the behavior of the analysis

methods on simulated folded datasets with false signal injected at the sidereal frequency, we can

also compare the sensitivity of the folded data and the run-by-run data. There is always a risk

of losing sensitivity towards potential oscillations by folding the data in a certain way. Artificial

signals of different amplitudes are added to the simulated data and the two analysis methods are

then performed on 10000 such simulated samples as before. Fig. 4.23 shows the distribution of

oscillation amplitudes, i.e., the best-fit value of A in each of those 10000 cases. The shaded area

in the plots represents the best-fit parameter values less than that of the real data at the sidereal
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Figure 4.22: Oscillation period scans on data folded inwindowCandD respectively. The oscillation
amplitude on the y-axis of the top plot actually is the fit parameter A in ppm. The y-axis of the
bottom plot is the unnormalized χ2 of the multi-parameter fit for each value of the oscillation
period, T0. The vertical line corresponds to the sidereal period.

Artificial Signal [ppm]
Prob. of having

bigger amplitude A0 (%)
Prob. of having

bigger Lomb power (%)
1.0 50.78 48.02
1.6 82.76 80.64
1.9 92.09 90.51
2.0 94.19 93.04

Table 4.6: Table summarizes the results on simulation samples, where two methods; the Lomb-
Scargle test and the multi-parameter fit are applied. These two methods agree quite welland set a
limit of the potential sidereal oscillation component to be less than 2 ppm with ∼ 94% confidence
level.

frequency. From this study, the limit on the oscillation amplitude comes out to be 2 ppm with a

confidence level of 94.19%. The spectral analysis results on the same simulated datasets are shown

in Fig. 4.24. The Lomb power distribution at the sidereal frequency shows that the peak amplitude

is bigger than that of the real data ∼ 93% of the time when we added a false signal of 2 ppm. Hence,

the prediction from the two methods agree quite well with each other. Table 4.6 summarizes the

results from the simulation studies.
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Figure 4.23: Distribution of best-fit values of the fit parameter A0, the oscillation amplitude on
simulated folded data of window size A. The vertical line corresponds to the value of A0 from real
data. The bottom right plot shows that the amplitude of oscillation is bigger than that of the real
data ∼ 94 % of the time when an artificial signal of amplitude 2 ppm is present. Hence, setting a
limit of 2 ppm with confidence 94%.

4.8 Summary: Run-by-Run and Folded Data Analysis

We have implemented two different analysis techniques on Run 2 data, where we binned

the data in two different ways. The conclusion from all these combinations of data binnings and

analysis techniques agree with each other; there is no significant signal present at the sidereal

frequency. The limits on the amplitude of a potential sidereal signal from simulation studies are
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Figure 4.24: Distribution of the Lomb power at the sidereal frequency for simulated folded data of
window size A. The vertical line corresponds to Lomb power obtained from real data. The bottom
right plot shows that the Lomb power is bigger than that of the real data ∼ 93 % of the time when
an artificial signal of amplitude 2 ppm is present. Hence, setting a limit of 2 ppm with confidence
93%.
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2 ppm with a 95% confidence level from the run-by-run data analysis. The confidence level for the

same amplitude of signal slightly differs in the folded data analysis; this is due to the fact that the

folded data loses sensitivity towards the whole duration of the measurement period.

4.9 Systematic Concerns

One of the most important systematic effects may arise from the consideration of Rmu

instead of ωa. Presence of a potential sidereal signal in ω̃′p could nullify the effect of any signal

in ωa hence making the analysis insensitive to any CPT and LV signals. The magnetic field is

measured using NMR techniques in terms of the proton precession frequency, ω̃′p. An upper limit

at the mHz level is given on the sidereal oscillation of ω̃′p by the atomic clock comparisons. This

limit is smaller than the resolution of the magnet’s feedback control system. The limits of electron

and nucleon local Lorentz violation are predicted from the observations of the stability of the

relative frequency of the Hg and Cs magnetometers by Berglund et al. [56]. The limits on the

electron and nucleon local Lorentz violation are 10−27 GeV, so there is no reason to worry about a

potential cancellation. However, there could be experimental apparatus induced oscillations in the

field measurements. One of the potential background in this analysis could stem from the day-night

temperature variation in the experimental hall affecting the stability of the magnetic field. The

solar day (24 hours) is very close to one sidereal day (23 hours 56 minutes). In order to provide

the limits on the Run 2 dataset of the g − 2 experiment, we run the sidereal oscillation search on

ω̃′p alone. Fig.4.25 shows the time series of the field measurements for Run 2. From Fig. 4.25 we

see that there were field instabilities in Run 2; the value of the magnetic field had jumps as high

as 1 ppm, however the field values were measured and monitored extremely precisely during the

whole period of data taking. These occasional jumps in the measurement were due to the running

conditions in the summer of 2019; the experiment at that time was running for 5 days followed by

a 9 day off period synchronized with the Fermilab Accelerator Division’s beam supply availability.

So the main magnet would be off for 9 days and we faced some challenges while powering the

magnet back up. Because of the presence of these instabilities it is not possible to simply generate
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Figure 4.25: The time series of the magnetic field measurements for Run 2.

random numbers based on the average field value for generating huge simulation samples as done

for studying the effects on Rµ. Also, for the same reason as explained above we can not fit the field

data either to a multi-parameter fit function or a constant fit. The Lomb-Scargle test is still valid for

the field data, and can provide the information of any potential oscillation at the sidereal frequency.

Note that the field instabilities will definitely give rise to spurious peaks in the power spectrum.

Fig. 4.26 shows the power spectrum, where the spectral analysis is performed on the whole Run 2

dataset as well as dividing the data in two pieces to investigate the presence of various peaks in the

analysis. A huge peak near zero frequency is present in the top plot, indicating an artifact present

in the data. The nearby smaller peaks are caused by the spectral leakage from the highest peak;

frequency leakage is a well-known problem in spectral analysis methods. the highest peak also

suggests that the period of such an oscillation will be infinite; reinforcing that the peak is caused by

instabilities during 5 day beam on-9 day beam off period in later half of Run 2 as well as from large

constant offsets that were not taken into account. The power spectrum also shows a small peak

near the sidereal frequency for the whole dataset. The significance of this peak is negligible, which

is also confirmed by the midlle and the bottom plot where we considered 1st and 2nd half of the

data respectively for the analysis. The potential reason for the small peak at the sidereal frequency

is the statistical noise present in the data as well as the temperature instabilities during the 5 day

beam on-9 day beam off period. This must be studied again in great detail for Run 3 datasets. Note
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Figure 4.26: Figure shows the spectral analysis performed on the field measurements. The top plot
shows the spectral power as a function of frequencies within the search range along with a zoomed
in version to focus on the peaks near the sidereal frequency. The middle and bottom plots show the
spectral power analysis when only partial data were used for the analysis in order to investigate the
presence of various peaks over the search range.

that in general the peak amplitudes are much higher than that from the power spectrum of Rµ. This

is due to the smaller uncertainties on the magnetic field data points; the statistical uncertainty is

negligible in case of the field measurements and the overall uncertainty is dominated by various

systematic effects whereas theωa measurements are largely dominated by the statistical uncertainty

on each datapoint. Because of the relatively smaller uncertainties the Lomb-Scargle test is much
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more sensitive to a slight variation in the field. In other words, the significance is much less for a

peak of same height in the field data than the ωa data. As seen in the previous section, the power

spectrum of Rµ is largely dominated by that of ωa.

For this run, one of the possibilities of setting a limit on the potential sidereal variation

amplitude arises from adding artificial signals of various phases to the real data and then perform the

spectral analysis. The concept used here is that if we add an artificial signal at the sidereal frequency

with an opposite phase then that will cancel any potential signal component already present in the

real data and will end up reducing the peak amplitude, on the other hand adding a signal which is in

phase with a potential signal component already present in the real data will enhance the oscillation

and hence cause a larger peak height at the sidereal frequency in the power spectrum. For instance,

if there is a potential oscillation signal with phase φ, then adding an artificial signal with phase φ+π

will end up minimizing the peak height at a given frequency. A scan over a range of phases were

done to confirm this. Once we fix the phase of an artificial signal, we move forward to perform a

scan on the amplitudes of the added artificial signal. Fig. ?? shows the result of such a scan. The

Lomb power is minimum when the amplitude of the artificial signal is 0.03 ppm. So the limit on

the sidereal oscillation amplitude is less than 0.03 ppm for Run 2 dataset. This being negligible

compared to the limit of 1.7 ppm on Rµ rules out the possibility of cancellation of a potential signal

present in both the numerator and the denominator of Rµ(= ωa/ω̃
′
p). This study confirms that an

accidental or even a real peak in the spectral analysis of ω̃′p will not harm the analysis because of

its negligible significance compared to the scale of ωa. If we consider that there is a sidereal signal

present in the field measurements as given by (4.9)

ω̃′p(t) = ω̃′p,const . + ˆ̃ω′p cos(ωst + φp) (4.9)

where, ω̃′p,const. is the constant term in the time variation and ˆ̃ω′p represents the amplitude of a
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Figure 4.27: Figure shows an oscillation period scan of the 2019 Run 2 data, where we step through
A0 in the fit keeping the rest of the parameters floating. Top plot: Oscillation amplitude A0 from
the MPF fit. Bottom plot: unnormalized χ2 of the fit. Absence of a global minimum in the bottom
plot indicates no signal.

potential signal. Then the ratio can be expressed as

ωa

ω̃′p
=

ωa

ω̃′p,const . +
ˆ̃ω′p cos(ωst + φp)

=
ωa

ω̃′p
(1 −

ˆ̃ω′p
ω̃′p,const.

cos(ωst + φp)) (4.10)

where we have expressed the ratio in terms of a Taylor series expansion. The ratio
ˆ̃ω′p

ω̃′p,const .
is at the

ppm (10−6) level whereas ωa

ω̃′p
is at the level of 10−3. This reiterates that a small sidereal signal in

the field data data does not introduce a detectable effect in the g − 2 data.
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4.9.1 Benchmarking The Analysis

From the Lomb-Scargle test and the multi-parameter fit methods we reached the conclusion

that there is no significant signal present in the g − 2 Run 2 data; this also depends on the

sensitivity of the algorithms used for the search. In order to benchmark the analysis, we studied

the performance of the algorithm against the case of a potential background arising from the solar

day. If we saw a significant signal, it would be very important to be able to justify the potential

signal arising from the sidereal frequency itself and not from the most obvious background. For

a sidereal search the potential background comes from the solar day; we study the effects in the

spectral analysis when two signals are injected simultaneously at the sidereal frequency as well as

the solar day frequency. Fig. 4.28 shows that the algorithm is unable to distinguish between two

signals with same amplitude (4 ppm each); one with sidereal frquency and the other one with solar

day frequency. These frequencies are so close to each other that they fall within the frequency

resolution for the given Run 2 observational baseline. The frequency resolution is determined by

the size of the time interval over which the data are sampled, and due to the finite size, ∼ 3.5

months in Run 2, the algorithm fails to detect two simultaneous signals with frequency positions

in close proximity. To study the peak widths and heights for cases when two signals are injected

Figure 4.28: The time series of the magnetic field measurements for Run 2.

simultaneously, we generate simulated data using the average value of Rµ and the uncertainties on

real data points as done previously. Lomb-Scargle test is performed on 1000 simulated data groups
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after adding two artificial signals of amplitudes 1 ppm to 4 ppm, and the position of the highest

peak is stored each time along with the peak width in order to characterize the effects coming from

the presence of multiple signals. Fig. 4.29 shows the distribution of the highest peak width from

Figure 4.29: Figure shows the distribution of the widths of the highest peak for 1000 simulated data
groups with two artificial signals of same amplitude added at the sidereal frequency and the solar
day frequency, with 1 ppm to 4 ppm. There is a small shoulder that arises for higher amplitude
signals.

the power spectrum on simulated data groups when two signals were added. The distribution starts

showing a shoulder on the right as we keep increasing the amplitude of the injected signals. For

comparison we also studied the distribution of the peak widths when only an artificial signal is

injected at the sidereal frequency. The distribution in this case is shown in Fig. 4.30. The analysis

provided an upper limit of 1.7 ppm on the amplitude of the sidereal oscillation in Rµ, and the above

study of the peak width distribution in this limit is not sufficient to draw a conclusion about the

source of the peak. Furthermore, the distribution of the position of the highest peaks corresponding
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Figure 4.30: Figure shows the distribution of the widths of the highest peak for 1000 simulated
data groups with artificial signals of 1 ppm to 4 ppm injected at the sidereal frequency.

to an artificial signal injected at the sidereal frequency were also compared to that in the case of an

artificial signal at the solar day frequency. Fig. 4.31 shows the comparison of the two distributions

of the positions. This is done by first adding an artificial signal at the sidereal frequency (TS) to

the simulated data groups and then performing the Lomb-Scargle test to see which frequency the

highest peak corresponds to; then the same study is repeated but this time with an artificial signal

added at the solar day frequency(TD). This study shows that the possibility of resolving a potential

signal at TS from the background at TD is very limited, and is proportional with the amplitude of

the signals involved. We will collect more data as we move forward with the g − 2 experiment but

the current limit of 1.7 ppm is already below 3 ppm, so it is highly unlikely that we will be able to

distinguish between signal and background. This study also gives as an insight to the biases in the

algorithm in presence of an oscillation signal. Fig. 4.31 shows that there is a slight frequency bias
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Figure 4.31: Figure shows the comparison of the distribution of the position of the highest peak
for 1000 simulated data groups with artificial signals of 1 ppm to 4 ppm injected at the sidereal
frequency and that at the solar day frequency.

in the method as both peaks occur in the next highest bin above the bin containing TS (or TD). This

bias appears to be about half the width of a bin (0.5 × 10−8s−1).

4.10 Conclusion

One of the CPT and LV signatures was tested in this dissertation. The results are based on a

preliminary Run-2 dataset and do not represent the final result that will be published in 2022. The

results reported in this dissertation are considered as a sensitivity test for the eventually published

CPT and LV results.

From the preliminary search we conclude that there is no significant signal present in the

Run-2 dataset; the preliminary Run-2 dataset contains ∼ 11 billion events. The χ2 did not not

improve in the multi-parameter fit method while adding an oscillation term to a constant. The

Lomb-Scargle test results also agree with the findings of the multi-parameter fit. The highest peaks

in the spectral power plot at other frequencies within the search range are randomly distributed,
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confirming the potential source to be statistical noise. The results from two different data binnings

are also in agreement with each other. Based on the simulations in Sect. 4.6.5, we set a limit on

the sidereal oscillation amplitude to be less than 2 ppm with 95% confidence level. A 2 ppm signal

corresponds to b̌µ
+

⊥ =
ω̂
µ±

a

2|sin χ | = 1.27×10−24 GeV, where χ is the colatitude of Fermilab, 48.2◦. The

limits listed in the Data Tables [33] on b̌µ
+

⊥ = 1.4 × 10−24 GeV comes from the BNL Muon g − 2

Experiment.
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CHAPTER 5

Future Prospect

This dissertation explains the theoretical contributions as well as the technique used for

the experimental measurement. The Fermilab Muon g − 2 experiment published its first result on

the Run 1 data, and currently the combined experimental measurement of aµ is in tension with

the theoretical prediction at the level of 4.2σ. This has stirred a lot of excitement in the physics

comminuty and could point to the next big breakthrough. The Fermilab experiment confirms the

discrepancy reported by the Brookhaven experiment twenty years ago. So far the collaboration

has analyzed less than 6% of the data that the experiment plans to collect, and the results are very

promising. Combining the results from all five runs will give us even more precise measurement

of the muon’s precession in the presence of an external magnetic field, which will help us reach

the experimental goal of more than 5σ discovery limit. The results on Run 2 and Run 3 data are

scheduled to be published in the summer of 2022, with an improvement on not only the statistical

uncertainty but also the systematic uncertainties. This publication will be unique in a sense that, the

first results of a detailed CPT and Lorentz violation search and the electric dipole moment (EDM)

will be published along with the aµ result.

5.1 g − 2 Operations

One of the crucial systems for storing the muon beam in the storage ring is the electrostatic

quadrupoles, as discussed in chapter 2. During Run 1 the performance of the system was found

to be less than 100%, due to frequent voltage breakdowns, also referred to as sparks. Our goal

was to tackle challenging operational issues associated with running the high voltage system at 20

kV, which is a requirement for good beam storage. Occurance of electrical sparks in high voltage
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(a) High voltage spark (b) adding ceramic support to reduce mechanical vibration

Figure 5.1: The first figure shows a spark at the quadrupoles recorded by a camera. The second
figure shows one of the mitigation strategies used in the 2018 summer shutdown.

systems is a known problem, and the design constraints in the g − 2 experiment makes it even more

difficult. To adress this issue many equipments and tools were developed, we used mirrors and

cameras to capture the sparks. There are stand-offs that support the four plates against vibrations

caused by the pulsed high voltage. One particluar stand-off was found to be causing more sparks,

and was replaced in-situ by first uninstalling and then reinstalling the parts that sit outside the

vacuum chamber. The high voltage (HV) plates that provide the vertical focusing to the muon

beam are connected to resistors by long HV leads; the distance between two HV leads was found

to be small, this was solved by fabricating small alignment tools, and adding small 3 deg bends to

the leads. In the summer shutdown after Run 1 two of the 32 resistors were found to be damaged

and hence causing the beam to move during Run 1 data taking. One of the biggest systematic

uncertainties come from this effect in Run 1 result. With the resistors now replaced this systematic

effect is expected to be negligible from Run 2 onward, and hence improving the uncertainties.

The second largest systematic uncertainty stems also from the quadrupole systems; during

Run 1 it was found that the otherwise stable magnetic field has a time dependent variation in the

regions covered by the quadrupoles. A lot of effort went into understanding the cause of this

variation; for instance if the effect stems from vibration of the quadrupole plates; more efforts

are planned to study this effect in the next shutdown period. The mitigation strategies are quite
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Physics µ+ data µ− data
Overall stats more statistical precision 2× BNL
µ− stats - 4× BNL

Additional Physics -

bµ
−

⊥

bZ
dZ0
HXY

Table 5.1: The Table summarizes the physics advantages for an additional one year of running the
experiment in case of a positive as well as negative muon beam.

complicated and can not be performed in-situ, and the discussion for pinning down this effect is

still ongoing.

5.2 Muon g − 2 Experiment - Here to Where?

The g − 2 experiment is on track to collect more data with the positive muon beam, the data

analysis is currently underway for Run 2 and Run 3, and we are collecting data for Run 4, and a

subsequent Run-5 is scheduled for 2022. It will be interesting to perform the sidereal search using

the spectral analysis techniques on a larger observational baseline, which can be done by combining

the Run 2 and Run 3 datasets. The power spectrum and the analysis results of Run 2 can then be

verified. Combining the two runs will result in a larger duration of data taking compared to ∼ 3.5

month duration of Run 2, hence the algorithm will be more sensitive towards smaller frequencies.

One of the future possibilities is to run the experiment with a negative muon beam. In order for a

complete understanding, the most straight forward test is to repeat the measurement with negative

muon beam. The strong motivation behind a negative muon run stems from the fact that this would

be the world’s best measurement for the negative muons as there are no other experiments designed

in the coming decade; the Muon g − 2 experiment at JPARC can only collect µ+ data. Besides

this, measurement of aµ− provide a whole suite of measurements for the CPT and Lorentz violation

parameters, summarized in 5.1 The negative muon run will enable us to measure the direct CPT

signature and will be sensitive to the bZ parameters discussed in chapter 1
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All the magnet polarities are needed to be inverted for a negative muon run; beam line,

main magnet, inflector and kicker magnets must be inverted for a µ− run. This can be done in ∼ 1

month.

The Fermilab experiment will perfom the first search for annual variation in Rµ; this

advantage comes from the fact that the Fermilab experiment runs for a longer duration compared

to three month running period of the BNL experiment over a year.

A recent work by Janish and Ramani [57] suggests that the g − 2 experiment can be

repurposed to probe ultralight dark matter signals that couple to muons. Various signatures of dark

matter perturbations can be probed by studying the effects on the precession frequency. The nature

of the perturbation will depend on the dark matter candidate that we are looking at. The spectral

analysis techniques used so far for the sidereal search can be applied for the ultralight dark matter

search as well; in this case the frequency of DM signal will depend on the mass of the DM we

are looking for. The dark matter mass in general spans over 90 order of magnitude. So, in order

to search for a potential ultralight DM signal we will need to consider statistical methods such as,

look else where effect, widely used in Higgs analysis.
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APPENDIX A

Electrostatic Quadrupole Systems

A.1 Upgrades of the EQS in Summer Shutdown 2018

We encountered many operational issues during Run-1, which caused the performance of

the quadrupoles to be less than 100%. The quadrupoles suffered from high voltage breakdowns,

which are also known as sparks. A spark occurs due to trapped electrons ionizing the residual gas

and eventually producing an avalanche. The electron trapping occurs because of the presence of

the electric and the magnetic field, causing a E × B field. The source of the free electrons is the

quad plates at very high voltage themselves.

The installation of the quadrupole system at an early stage faced challenges such as, space

limitations. One of the hardware deficiencies that were found to increase the spark rate, was the

mechanical vibration of high voltage leads through which the quadrupole plates are connected

to the high voltage resistors. More ceramic plates were added to support these leads during the

shutdown period. Furthermore, small 3 deg bends were added in the end of these leads where they

are connected to the quadrupole plates in order to increase spacing between them. Fig. ?? shows

both the mitigation strategies discussed above. From the mirrors and cameras that were installed to

capture the sparks, it was observed that one particular stand-off continuouslywas causing sparks; the

stand-offs are used to hold the quadrupole plates in place. This particular stand-off was damaged in

an accident and was replaced in-situ by uninstalling and re-installing the extension that sits outside
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(a) Adding small bends to high voltage leads (b) Adding ceramic support to reduce mechanical vibration

Figure A.1: The first figure shows small bends introduced in the shutdown period for mitigating
the high spark rates. The second figure shows another mitigation strategy of adding ceramic plates,
known as "batman" to reduce vibration of long leads.

the vacuum.

One of the challenges we faced in Run-1 is that two of the thirty-two high voltage resistors were

damaged. These high voltage resistors along with the quad plate capacitance sets the RC time

constant to be around 5µs. For the damaged ones it became ∼ 100µs, which caused the muon beam

to be unstable in the measurement period. The presence of these damaged resistors enhanced one

of systematic effects. We used two kinds of resistors; CADDOCK and HVR. HVR resistors were

found to be causing the above mentioned issues, and in the summer shutdown of 2018 we replaced

all of the HVR resistors by CADDOCK. In order to make sure that the RC time constant is ∼ 5µs,

we check resistors as well as the capacitance of the quad plates occasionally.

In 2019, it was found that the magnetic field had a time dependent variation in the regions

covered by the quads. Special NMR probes were designed to measure this effect within the storage

region as the fixed probes that sit above and below the storage region would suffer from a skin

depth effect from the aluminum surrounding. Models suggest that the variation in the magnetic

field comes from the vibration of the quad plates and hence altering the flux within an external

magnetic field. In January 2020, we measured the plate vibrations using laser reflection techniques
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(a) HVR and CADDOCK high voltage resistors
that were used in the quadrupole system during
Run-1

(b) The RC time constant much higher for the damaged
resistors

Figure A.2: The first figure shows the two kinds of high voltage resistors that were used. The
HVR resistors were found to have a resistance of 2MΩ whereas the requirement was ∼ 39kΩ. The
second plot shows that the quad plates with the damaged HVR resistors take ∼ 100µs to reach full
voltage and hence affects the ωa data

and piezoelectric accelerometers in order to determine the cause of the time dependence of the

magnetic field. We attached the accelerometers to the stand-offs and places inside the storage region

where laser could not reach. The accelerometer setup is shown in Fig. ??. The quads were then

pulsed with 100 Hz frequency and the vibration was recorded and analyzed by looking at the FFT.

A schematic of the laser setup is shown in Fig. A.4. The laser was shot on the mirrors attached

with the quad plates and the displacement of the laser was recorded in a photodiode. The results

from this week long study was not conclusive enough to pin down the cause of the magnetic field

variation with a huge magnitude.

A.2 RF Systems Installation and Testing for Reduction of ωa Systematic Effects

In chapter 2 we discussed about the electrostatic quadrupole systems, which are used to

confine the muon beam vertically. Before the arrival of the beam, the quadrupole plates are charged

in order to maintain a beam focusing potential for the next 700µs, over many turns around the

storage ring. Another key component for beam storage are the kicker magnets also discussed the
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(a) Accelerometer used to measure vibrations (b) The setup when attached to a
stand-off in one of the eight quad
sections

Figure A.3: The piezoelectric accelerometer was used to measure the quad plate vibrations.
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Figure A.4: The laser setup used to measure the quad plate vibrations by capturing the reflected
laser from a mirror attached to the quad plates by a photo diode.

chapter 2. In Run-1, the kicker magnets were found to be underperforming, as a result the beamwas

not fully centered. Hence the beam dynamics effects, such as cohenrent betatron oscillation (CBO)

is enhanced. An old technique using radio frequency can be used in order to manipulate the beam

and hence the phase space distribution. The idea is to apply a RF electric field at the CBO frequency

in the transverse direction. An oscillating dipole electric field with a phase difference of 180 deg

relative to the CBO is applied in the radial direction to minimize the beammotion. The RF field will

be applied to the side quadrupole plates. The RF system is installed as an extension to the existing

quadrupole system, and the RF field is superposed additionally to the vertical focusing field. There

has been a substantial amount of effort to install and test the system. The experiment currently does

not run in RF configuration but there are plans to implement this in Run 5. The tests are ongoing

in Run 4 and there will be dedicated datasets with RF configuration running. The installation and

testing of the RF system was performed opportunistically in various shutdown periods since 2018.

Fig. A.5 shows the schematics that was installed to the existing quadrupole system. The RF box

was assembled in the experimental hall and was attached as an extension, within which resides the

transformers. Fig. A.6 shows the extension box after it was assembled. The performance of the

transformers were checked for each quad plate and accordingly the configurations were chosen that
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Figure A.5: Figure shows a schematic of the interface that is currently used between the RF
electronics and the quadrupoles.

is now installed.
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Figure A.6: RF extension boxes once assembled at MC-1
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Figure A.7: Potted RF resistors that are now installed in all of the eight quadrupole systems
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Figure A.8: Potted RF resistors after being installed in all of the eight quadrupole systems, the
white cables connect the resistors to the transformers that are used to provide more power and hence
more CBO reduction
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APPENDIX B

Lomb-Scargle Method

As discussed in chapter 4, we used the Lomb-Scargle technique to search for CPT and

Lorentz violating signals. This is a spectral analysis technique specifically designed for unevenly

spaced data samples. If the data were evenly spaced then we could have used discrete fourier

transform in order to go from the time domain to the frequency domain. We tried various imple-

mentations of the algorithm and the one used to generate all the results in this dissertation is based

on the nFFT library as this was found to be faster than the other implementations.

B.1 Spectral Analysis Techniques

A commonly used tool in spectral analysis is calculating power spectral density using

discrete fourier transforms. For a set of evenly spaced measurements Y (t j ), the fourier transform

can be written as

P =
1
N0
|FT(ω) |2 (B.1)

where

FT(ω) = Σ jY (t j )e−iωt (B.2)

. The power spectral density can further be expressed in terms of sine and cosines.

P =
1
N0
| Σ jY (t j )e−iωt |2

=
1
N0

[(
Σ jYj cos(ωt j )

)2
+

(
Σ jYj sin(ωt j )2

)] (B.3)
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The advantage of using the spectral power density to look for a signal in the data can be seen from

eq. B.3. If there is a signal at frequency ω0 then the power will have a maximum at ω0 as the Y (t j )

and the e−iωt will be in phase. Hence, the power spectral density directly provides the information

about the frequency of a significant signal present in the data by indicating the maximum power at

that frequency. The power at other frequencies will come from the sums of randomly positive and

negative terms and hence not as huge as the previous contribution.

The difficulties that any spectral analysis with finite sampled data inherits are the statistical noise

issues and the spectral leakage to adjacent frequencies. For a periodic signal at a particular

frequency, ω0, if the power due to the signal bleeds in to the adjacent frequencies then we refer to

that as a spectral leakage problem. Leakage to adjacent frequencies occurs due to a finite size of

the observational baseline. Leakage can spread to distant frequencies as well due to the sample

size being finite. Smoothing techniques can be exploited to solve the leakage problem, such as

multiplying by a function that is zero at the extremes of the sampling interval. The drawback

of introducing a smoothing function is that the statistical properties of the algorithm is no longer

straight forward as the spectral values at different frequencies will be correlated.

The statistical noise is another issue that occurs due to finite sample size. The spectral

power itself is very noisy as it scales with the square of the noise present in the data.

Y (t j ) = Y0 cos(ω0t + φ) + R(t j ) (B.4)

where j = 1, ..., N0, and R(t j ) represents the noise in the data. For such a dataset the power at ω0

is given by

PY (ω0) = N0

(
Y0
2

)2
(B.5)

and the contribution from the noise floor is given by

PR = 〈R2〉 = σ2
0 (B.6)
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Hence the signal to noise ratio (SNR) becomes

PY

PR
= N0

(
Y0

2σ0

)2
(B.7)

From eq. B.7 it is evident that the SNR is proportional to the number of data points within the

dataset. Although the noise level remains the same but the SNR improves with an increased sample

size. These issues become less significant when the signal present in the data is strictly periodic.

B.2 Lomb-Scargle Test

For the data analysis in this dissertation, a slightly modified spectral analysis technique was

used. The spectral power is given by [54]

PN (ω) ≡
1

2σ2




[
∑

j Yj cosω(t j − τ)]]2∑
j cos2[ω(t j − τ)]

+
[
∑

j Yj sinω(t j − τ)]]2∑
j sin2[ω(t j − τ)]




(B.8)

The advantage of writing the spectral power in the above form is that the statistical behavior is

straight-forward, and its form is expressed in such a way that one could employ least square fitting

methods to obtain the power. Another attractive feature of the modified expression for the spectral

power is the time translation invariance for even sampling.

B.2.1 Statistical Properties

Using eq. B.1, the spectral power can be written as

PY =
A2

2



∑
j

Y (t j ) cosωt j



2

+
B2

2



∑
j

Y (t j ) sinωt j



2

(B.9)

where A = B =
√

2
N0
. Additional conditions are imposed to determine the coefficients, A and B.

These conditions are imposed in such a way that the statistical properties remain widely unchanged

from that of the even sampling scenario. Consider the case whereY consists of pure gaussian noise,
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with standard deviation σ0. Now if we define C(ω) and S(ω) as [58]

C(ω) = A
∑

j

Y (t j ) cos(ωt j ) (B.10)

and

S(ω) = A
∑

j

Y (t j ) sin(ωt j ) (B.11)

Hence, PY can be written as

PY =
1
2

[
C2(ω) + S2(ω)

]
(B.12)

where PY is expressed in terms of a sum of two normal distributions of random variables. We

consider the sum of two random variables in order to study the statistical property of PY .

Consider two random variables, X and Y with zero mean and standard deviations to be σ1 and σ2

respectively. Then another random variable Z = X2 + Y 2 will have a distribution given by [59]

Pz (z) =
e
− z

2σ2
2

2σ1σ2
G[

z
4

(
1
σ2

1
−

1
σ2

2
)] (B.13)

where G(z) is represented in terms of modified Bessel functions, G(z) = e−z I0(z). For a special

case of σ1 = σ2, the expression becomes

Pz (z) =
1

2σ2 e−
z

2σ2 (B.14)

Now revisiting Eq. B.12, the expression for the spectral power becomes [59]

PY (ω) =
1
2



(
∑

j Yj cosωt j )2∑
j cos2ωt j

+
(
∑

j Yj sinωt j )2∑
j sin2ωt j


(B.15)
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and has an exponential distribution.

The probability distribution function for Z in z < Z < z + dz can be written as

pZ (Z ) = e−zdz (B.16)

The corresponding cumulative distribution function (CDF) has the form

FZ (z) = 1 − e−z (B.17)

B.2.2 Independent Frequencies

The freuquency range used in this dissertation for the Lomb-Scargle test is [0, 5Fc], where Fc

is the average nyquist frequency. Now, not all of the frequencies within this range are independent.

The number of independent frequencies depends on the frequency grid, the number of data points

within the observational baseline and the spacing of the data points. The number of independent

frequencies can be determined by performing a Monte carlo simulation to generate artificial data

using the real data information, and find the maximum spectral power for each simulated dataset.

The distribution of the maximum spectral power basically represents the probability distribution

funtion of the underlying random variable. So, by fitting the distribution to Pr (Zmax > z) =

1 − (1 − e−z)N one can determine the number of independent frequencies that then can be used for

calculating the confidence level.

120



VITA

Meghna Bhattacharya

Education

University of Mississippi

Ph.D. in Physics August 2016 - Present

Advisor: Prof. Breese Quinn

Thesis: Search for CPT and Lorentz Violation effects in the Muon g-2 Experiment at

Fermilab

Indian Institute of Technology, Madras, India June 2016

M.Sc in Physics

Thesis: Reconstruction of muons using INO (India-based Neutrino Observatory) ICAL

Detector.

Supervisor: Dr Prafulla Behera

St. Xavier’s College, Kolkata, India May 2014

B.Sc in Physics

121


	SEARCH FOR CPT AND LORENTZ INVARIANCE VIOLATION IN THE MUON g-2 EXPERIMENT AT FERMILAB
	Recommended Citation

	ABSTRACT
	DEDICATION
	LIST OF ABBREVIATIONS AND SYMBOLS
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	LIST OF APPENDICES
	CHAPTER 1: INTRODUCTION
	Anomalous Magnetic Moments of Particles
	Standard Model Predictions of a
	QED Contribution
	Electroweak Contribution
	Hadronic Contribution
	The Standard Model Prediction

	The Long Standing Discrepancy
	Hints of Physics Beyond Standard Model
	CPT and Lorentz Violation Tests
	CPT and Lorentz Violation Experimental Signatures 


	CHAPTER 2: 
	Measurement of a
	Muon Beam Production and Journey to the Muon Campus
	Muon Beam Injection
	Muon Beam Storage and Focusing
	Measuring the Magnetic Field
	Muon Beam Dynamics
	Coherent Betatron Oscillation
	Beam Debunching

	The Detectors
	Auxiliary Detectors
	Calorimeter Detectors

	Measuring a
	Systematic Effects
	Electric Filed and Pitch Correction
	The error budget


	CHAPTER 3: Measurement of a
	Energy and Time Spectra
	Pileup Construction
	The Five Parameter Fit
	Fit Algorithm

	CHAPTER 4: CPT and Lorentz Violation(LV) Tests
	R Instead of a
	Ingredients for The Sidereal Search
	Time: One of the Key Ingredients
	The Sidereal Time

	Data Selection Criteria
	Analysis Techniques
	Run-by-Run Data Analysis
	Lomb Scargle Test
	Sensitivity of the algorithm
	Multi Parameter Fit Results
	Expressing Lomb Power in terms of an Amplitude of Oscillation
	Summary of the Run-by-Run results

	Folded Data Analysis
	Analysis for Window A
	 Lomb Scargle Test on Folded Data With Window A
	Multi-parameter Fit on Folded Data with Window A
	Analyzing Five Different Windows
	Summary of the Folded Analysis

	Summary: Run-by-Run and Folded Data Analysis
	Systematic Concerns
	Benchmarking The Analysis

	Conclusion

	CHAPTER 5: Future Prospect
	g-2 Operations
	Muon g-2 Experiment - Here to Where?

	LIST OF REFERENCES
	APPENDICES
	Upgrades of the EQS in Summer Shutdown 2018
	RF Systems Installation and Testing for Reduction of a Systematic Effects
	Spectral Analysis Techniques
	Lomb-Scargle Test
	Statistical Properties
	Independent Frequencies


	VITA

