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ABSTRACT

Building a software product line (SPL) is a systematic strategy for reusing software

within a family of related systems from some application domain. To define an SPL, a

domain analyst must identify the common and variable aspects of a family of systems and

capture them for later use in construction of specific products. To do so, Feature-Oriented

Domain Analysis (FODA) introduced the feature model as an abstraction to represent the

common and variable aspects, using a feature diagram to depict the model visually. However,

this abstraction is often difficult for developers to use because most tools rely on specialized

theories, notations, or technologies.

This dissertation takes a novel approach. It uses mainstream database and Web technolo-

gies familiar to most developers. It represents feature models as directed acyclic graphs and

encodes them using the relational (MariaDB), document-oriented (MongoDB), and graph

(Neo4j) database paradigms. The design integrates these storage mechanisms with a Web

interface that enables users to construct syntactically and semantically correct feature mod-

els and to configure specific products from the stored model. To enable the exchange of

models among databases, the design also enables the models to be encoded as JSON text

files. It provides translators from the relational database encoding to the JSON encoding

and vice versa and includes algorithms to manipulate the JSON encoding directly. Finally,

to determine which database encodings are the “best” from various perspectives, the disser-

tation evaluates them experimentally against a set of performance criteria and subjectively

against a set of desirable qualities.
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CHAPTER 1

INTRODUCTION

In the 1970s, Parnas observed that “software will inevitably exist in many versions” [101].

Thus, a “software designer should be aware that he is not designing a single program but

a family of programs” [102]. He describes a software family as a set “of programs whose

common properties are so extensive that it is advantageous to study the common properties

of the programs before analyzing individual members” [101]. That is, developers should

study the commonalities of the programs before studying their variabilities. These ideas

underlie contemporary research on software product lines [106].

1.1 Research Context

A software product line (SPL) is a set of software systems from some application domain

in which all members share some characteristics. For any pair of systems from the set, there

are also some characteristics that differentiate one from the other. The shared and differing

characteristics are called commonalities and variabilities, respectively. These characteristics,

or software assets, are known as features [12, 62].

However, as an SPL grows in size (i.e., in the number of features), it can become complex

and confusing because of the many dependencies among its features. To manage this com-

plexity, Kang et al. [62] introduced the Feature-Oriented Domain Analysis (FODA) method.

In this method, the analyst studies the set of related software systems to identify its features
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and then assembles the features and their interrelationships into a feature model, which can

be depicted using a feature diagram.

To identify an SPL’s commonalities and variabilities, developers must analyze the domain

to identify the organization’s business goals, the SPL’s scope, the types of products to be

developed, and the features of those products. They often document the details of the feature

analysis as a tree-structured feature model. A parent node represents a decision in the design

of a product. The children of that node represent more detailed decisions for realizing the

parent decision. The constraints among the nodes determine how valid products can be

configured in the SPL.

Feature models are recognized in the literature as one of the greatest contributions to

software product line engineering [10]. A feature model is a compact representation of all

possible products of a software product line. They are represented in various ways in the

literature. These include the Feature-Oriented Domain Analysis (FODA) feature diagram

[62] and several extensions and studies [5, 27, 35, 53, 63, 82, 124, 112], special purpose

languages [54, 126], refactoring and management techniques [2], and formal models [18, 121].

Chapter 2 of this dissertation elaborates on this research context and explores other

related work.

1.2 Research Motivation

In the previous section, we identify several ways to represent feature models. We argue

that each of these has one or more of the following shortcomings:

• It does not correct flawed feature models or detect incorrect product configurations.

• It focuses on specific programming languages.

• It requires the mastery of language, logic, or algebraic concepts unfamiliar to many

programmers.
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As feature models grow large in size (i.e., in the number of features), they need to

be represented in a way that makes the variability management reliable and convenient.

This includes support for creating features, deleting features, defining relationships between

features, building up a feature model, and selecting a valid set of features to form a specific

product configuration.

There have been a few efforts to tackle these issues [21, 22, 36, 67, 109], but more research

is needed on the process of constructing a valid feature model from scratch, building up the

relations between features, and presenting the evolving feature model in an understandable

and convenient manner.

In the literature, we know of little work with similar goals. The first feature model editor

supporting abstract features is FeatureIDE [3]. To use FeatureIDE effectively, developers and

users must familiarize themselves with the feature-oriented programming [10] and aspect-

oriented programming [65] paradigms.

Van Deursen and Klint [126] propose the Feature Description Language (FDL), a textual

language to describe features that can be mapped to UML diagrams. Cechticky et al.

[29] and Ge and Whitehead [44] propose XML-based approaches to feature modeling and

configuration. White et al. [131] propose the transformation of feature models into constraint

satisfaction problems to automatically diagnose errors. However, none of these provides an

automated way for creating or configuring feature models for nondevelopers. Users also need

to be familiar with complex topics such as propositional formulas and constraint satisfaction

or may need to learn a new programming language in order to work with feature models. The

system we propose in this dissertation does not require specialized programming knowledge

to create, modify, and delete features in feature models or to configure a product. In addition,

our system guides the user into making correct decisions.

Günther and Sunkle [54] encode the feature model as an object in Ruby, which allows

the feature model to be modified and products configured dynamically. Our approach allows

feature models to be created and modified dynamically without being tied to a specific
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programming language.

Researchers have introduced tools such as pure::variants [109], staged configuration

[21, 36], and FeatureIDE [3] to guide developers in configuring a feature model. However,

they also require considerable software expertise to use effectively. In addition, they do not

help users discover created feature models with incorrect configurations or flawed feature

models [69]. Our system checks the validity of the feature model at every step of its creation,

modification, and use.

Chapter 2 of this dissertation gives more details on the approaches discussed in this

section.

1.3 Research Questions

This research seeks to answer the following general research question: Can mainstream

Web and database technologies (relational, document-oriented, and graph) be

used effectively to construct syntactically and semantically correct feature models

and to configure products from these models? And, if so, which database system

is the best for encoding feature models?

To achieve this, our research aims to answer the following specific Research Questions:

1. Can relational database tables be used to accurately encode feature models?

2. Can mainstream Web and relational database technologies be used to con-

struct correct feature models interactively and incrementally?

3. Can mainstream Web and relational database technologies be used to con-

figure correct products corresponding to a feature model?

4. Can JSON technologies be used to represent feature models correctly and

enable them to be exchanged in textual form?

5. Can a document-oriented NoSQL database be used to accurately encode

feature models?
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6. Can a graph-oriented NoSQL database be used to accurately encode feature

models?

7. Which database system is the best for encoding feature models?

1.4 Research Contributions

In this proposed research, we seek to demonstrate that the answer is “Yes” to the first

six research questions and that the seventh can be answered usefully. We do so by showing

how to achieve each of the following:

1. Encoding feature models in relational databases

In Chapter 3, we encode a feature model in the tables of a relational database (RDB)

[116]. Use of an RDB separates the concept of a feature from its actual implementation,

which helps developers and clients to understand the feature model. This chapter also

specifies how to encode a feature model in an comma-separated values (CSV) text file

that is equivalent to the RDB encoding.

We published a preliminary version of this work in 2017 [116].

2. Designing a Web interface that automates the creation, modification, and

deletion of features in a feature model.

Chapter 4 builds on the relational database encoding of feature models defined in

Chapter 3. We design a Web interface that enables mainstream developers to create

new features, define their relationships with other features, and store them in the

database. The interface also enables the developer to modify or delete existing features.

We base our novel design on mainstream Web technologies, using a dynamic Web

form. This Web interface and the relational database encoding can form a part of a

comprehensive, interactive environment.

We use SQL to interact with the RDB tables and verify the correctness of the relevant

feature’s attributes upon creation, modification, or deletion. For example, we need to
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make sure that feature names are unique and that the relationships among features

are properly structured.

We published a preliminary version of this research in 2020 [117].

3. Designing a Web-based approach to configuring valid products from feature

models.

In Chapter 5, we extend the design of the Web interface from Chapter 4 with a new

Web form that enables the user to configure a product from a feature model by selecting

any valid combination of features. The interface interactively guides users to configure

valid members of the product family represented by a feature model stored in the

database. This Web form is generated dynamically by interpreting the syntax and

semantics of the stored feature model.

We published preliminary versions of this research in 2017 [116] and 2020 [117].

4. Defining a JSON representation for feature models that enables them to be

exchanged as text and checked for correctness.

JavaScript Object Notation (JSON) [73] is a simple, pervasive, machine-independent,

text-based language that is commonly used for transmitting and storing structured

data. In the literature, feature models are described through formal methods or spe-

cial purpose programming languages, which requires the mastery of a certain language,

logic, or algebraic concepts unfamiliar to many programmers. Most mainstream devel-

opers are familiar with JSON, and it is supported by many libraries and tools. Because

of their simplicity, JSON-based feature models can be readily exchanged among devel-

opers and easily interpreted.

In Chapter 6, we first design an approach that can encode an arbitrary “traditional”

feature model accurately in a JSON document in a manner that is equivalent to the

RDB encoding defined in Chapter 3. We then design and implement programs that
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can translate a valid RDB encoding of a feature model to an equivalent JSON encoding

and vice versa. In addition, we design operations to create, modify, and delete features

in a JSON-encoded feature model.

A preliminary version of this research appears in the proceedings of the ACMSE 2021

conference [118].

5. Encoding feature models in document-oriented databases using MongoDB.

In Chapter 7, we first design an approach that can encode an arbitrary “traditional”

feature model accurately in a document-oriented MongoDB database in a manner that

is equivalent to the RDB and CSV encodings defined in Chapter 3. We then design

and implement operations to load a feature model into a database; empty a database;

create, modify, and delete features in an encoded feature model; and generate a product

configuration form from the encoded model. Furthermore, we show that the approach

is practical by using the implementations in the experiments in Chapter 9.

A preliminary version of this research appears in the proceedings of the ACMSE 2021

conference [118].

6. Encoding feature models in graph databases using Neo4j

In Chapter 8, we first design an approach that can encode an arbitrary “traditional”

feature model accurately in a graph-oriented Neo4j database in a manner that is equiv-

alent to the RDB and CSV encodings defined in Chapter 3.

We then design and implement operations to load a feature model into a database;

empty a database; create, modify, and delete features in an encoded feature model;

and generate a product configuration form from the encoded model. Furthermore, we

show that the approach is practical by using the implementations in the experiments

in Chapter 9.

7. Comparing relational, document, and graph database encodings of feature
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models by performance and other factors.

In Chapter 9, we evaluate the relational, document-oriented, and graph database en-

codings (defined in Chapters 3, 7, and 8) against sets of objective and subjective

criteria. We select the criteria carefully to help us determine which encodings are

“best” from various perspectives.

For the objective evaluation, we define, conduct, and analyze the results from a set of

experiments to determine how well each database encoding performs selected opera-

tions as the feature models increase in size. For example, one operation we select is

the generation of the product configuration Web form designed in Chapter 5. We want

to minimize the time this operation takes for large feature models.

For the subjective evaluation, we identify several issues of interest to software devel-

opers, evaluate how well each database encoding handles each issue, and then analyze

the results to determine how suitable each encoding is for the development of feature-

modelings applications. For example, one issue we consider is the ease of installation.

Software developers want the installation process for the software they use to be con-

venient and trouble-free.

Given the results of the evaluations, we can then state a few rules of thumb to guide

decisions about which encoding is best under what circumstances. By considering

a typical usage scenario, we can then suggest which encoding may be “best” for the

feature-modeling application.

1.5 Dissertation Structure

The remainder of this dissertation has the following structure:

• Chapter 2 presents more detail on the context of this research and examines other

related work.

8



• Chapter 3 defines our approach to encoding feature models in relational database

tables.

• Chapter 4 presents our design for the Web user interface for constructing correct feature

models and storing them in the database tables described in the previous chapter.

• Chapter 5 presents our design for a Web user interface for configuring valid products

from a feature model created and encoded as described in the preceding chapters.

• Chapter 6 defines our approach to using JSON to represent feature models and trans-

lating JSON feature models to and from feature models in relational databases.

• Chapter 7 defines our approach to encoding feature models in document-oriented

databases using MongoDB.

• Chapter 8 defines our approach to encoding feature models in graph databases using

Neo4j.

• Chapter 9 reports on our systematic comparison of the relational, document-oriented,

and graph-based databases encodings of feature models.

• Chapter 10 reviews the evaluation of the research questions and summarizes the con-

tributions.

• Chapter 11 lists several new research questions for future investigation.

9



CHAPTER 2

BACKGROUND

As discussed in Section 1.1, our research builds on a body of previous research on software

product lines (SPLs) and feature models (FMs). This chapter surveys key aspects of this

work.

2.1 Software Product Lines

A key to successfully reusing software is capturing detailed knowledge about the software’s

application area, called its domain [23]. Reusing domain knowledge is the leading strategy

for achieving effective software reuse in systems development.

Consider a software company that wants to build software management systems for school

libraries. Instead of developing different applications from scratch for different libraries, and

instead of randomly selecting some previously built artifacts to use, the company can apply a

systematic reuse strategy that manages the process of reusing already implemented projects

to develop new systems.

The company can create a software library (i.e., a suite of data and programming code)

that contains the company’s already implemented software parts (i.e., components, functions,

algorithms, and design patterns), classify them based on their functionalities (networking

domain, database, etc.), and then develop new artifacts specifically for reuse as components

in future systems.

To capture and classify existing software parts, developers can analyze already imple-

mented systems to identify which software parts are common among them and which are

different. Common software parts can be incorporated into future projects in the same area

while variable parts can be customized to yield different software products.
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To develop reusable artifacts from scratch, the company must analyze its operations and

determine what types of systems it develops, what software parts comprise those systems,

and which parts would be sufficiently common across those systems to justify the costs of

developing them as reusable software parts.

After capturing already existing software parts and developing new reusable software

parts, the company can construct a product line of software management systems for school

libraries (i.e., a family of related software systems) which are developed to provide solutions

within the same problem area (i.e., managing school libraries). The company can then

combine reusable software parts from this product line with variable software artifacts to

yield different software applications for different clients.

The process of developing reusable software artifacts for a domain is called domain en-

gineering [34]. The process of analyzing related software systems to identify and capture

common and variable characteristics between them is called domain analysis.

The software product line approach uses both domain analysis and domain engineering

processes to build software systems that share common functionalities to provide solutions

for specific domain areas (i.e., banks) instead of creating different systems one by one from

scratch.

Product lining, as a general term, is an approach to producing a group of related products

that share common features. The concept of software product line is similar. It is a strategy

based on understanding and capturing knowledge about a family of related software systems

in a certain domain area to emphasize and discover common and variable parts; the common

parts across the family are used to build a software platform [55], which serves as a baseline

for all systems in the family while allowing variations among the family members to yield

different products. Clements and Northrop define a software product line as follows [31]:

“A set of software-intensive systems sharing a common, managed set of features

that satisfy the specific need of a particular market segment or mission and that

are developed from a common set of core assets in a prescribed way.”
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Software core assets, (i.e., software parts), are not only restricted to source code fragments

or previously implemented algorithms, but they also include reusable software components,

requirements documents and specifications, design patterns, software architectures, and doc-

umentation.

2.1.1 History of Software Product Lines

The basic concept of a software product line is not new. Parnas called the concept a

program family and described it in 1976 as follows [101]:

“A set of programs constitutes a family whenever it is worthwhile to study pro-

grams from the set by first studying the common properties of the set and then

determining the special properties of the individual members.”

Although the idea was presented in the mid-1970’s, the actual construction of software

product lines started in the early 2000s when software companies shifted their focus tp

systematic reuse strategies [96]. Software reuse practices have been adopted since the earliest

days of programming, but in an ad hoc manner without following planned reuse methods.

Since the 1950s, programmers have used source code fragments, subroutines, and other

general software components gathered from already built systems and stored in reusable

software libraries. Later, organizations started to shift their focus into more systematic reuse

strategies, especially in the emerging field of software product line techniques. Figure 2.1,

inspired by Northrop [96], shows the history of software reuse practices with software product

line as the most recent reuse technique.

2.1.2 Benefits of Software Product Lines

Software product lines extend the software reuse process to cover all aspects of the soft-

ware development lifecycle. Clements and Northrop [31] identify several strategic business

benefits of software product lines:

• Improvement in product quality
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Figure 2.1. History of Software Reuse From Ad hoc to Systematic

• Reduction in development and maintenance effort

• Faster time-to-market and time-to-revenue

• Reduction in development costs and risks

• Higher customer satisfaction

• Help in finding and erasing redundant implementations

2.1.3 Software Product Line Principles

In the literature, many researchers (e.g., [12, 14, 34, 106]) agree that the process of

software product line engineering can be divided into two subprocesses:

Domain engineering, which concerns building a common platform (i.e., reusable software

assets)

Application engineering, which concerns building customer-specific applications (i.e., mass

customization)

Figure 2.2 shows the three main activities of software product line development as de-

scribed by Clements and Northrop [97]. It depicts the relationship between the domain and
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Figure 2.2. Domain and Application Engineering as Two Sub-processes of an SPL

application engineering subprocesses in terms of managing the development of both core

assets and customer specific applications. Managers must define the business goals, control

the risks involved in family-oriented development, analyze the potential market for products

in the family, and keep the work within budget and one time.

2.1.3.1 Domain Engineering

Domains are areas that group a particular set of systems or parts of systems together.

Most software systems are developed to perform tasks related to some business areas (e.g.,

banking systems) and can be categorized based on their areas of functionality (e.g., database

systems). Business areas and areas of functionality represent domains where a set of systems

is grouped and dedicated for finding solutions specific to those areas.

Software systems deployed to provide solutions in a specific domain share common fea-

tures and have similar development lifecycles. A software company that has built several

software systems within a domain can capture its knowledge about the domain and use it to

develop a family of systems.

The concept of domain engineering is similar; it captures the domain knowledge acquired

from building several similar software systems in the form of reusable software assets and

14



uses those assets for developing new software systems within the domain. This speeds the

production process. In the literature, several definitions of the domain engineering pro-

cess are proposed. All describe the process as a method that systematically reuses domain

knowledge [34, 106] define the process of domain engineering as follows:

“Domain Engineering is the activity of collecting, organizing and storing past

experience in building systems or parts of systems in a particular domain in the

form of reusable assets (i.e., reusable work products), as well as providing an ad-

equate means for reusing these assets (i.e., retrieval, qualification, dissemination,

adaptation, assembly, etc.) when building new systems.”

As mentioned before, the software product line engineering process consists of domain

engineering as the process of developing reusable core assets and application engineering as

the process of developing individual products. Domain engineering consists of three main

phases: domain analysis, domain design, and domain implementation [34]. The following

subsections introduce each phase.

2.1.3.1.1 Domain Analysis

Domain analysis (also called product line analysis) is the process of analyzing a set

of related software systems in a domain to determine what common features they share

and what variable features differentiate them from each other. The term domain analysis

was coined by Neighbors [85], who explores the concept of a family of software applications

developed within an area of functionalities.

Domain analysis process originated from software reuse research [127]. It was proposed as

a method for identifying and gathering information from a set of software systems that share

some common features; it then organizes and represents that information in a meaningful

way in order to reuse it again for building new software systems [108].

There are two main purposes for performing the process of domain analysis according to

Czarnecki and Eisenecker [34] and Prieto-Díaz [108]:
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• Selecting and defining the domain scope

• Acquiring appropriate domain knowledge by collecting information related to the do-

main scope and integrating it into the domain model

Selecting and defining the domain scope requires performing business and risk analysis

to select a domain that satisfies the company’s objectives and goals. Information related to

a specific domain is collected from different sources such as existing systems, users, domain

experts and analysts, textbooks and standard documents, and experiments and prototypes.

Domain analysis is performed by domain analysts. Neighbors [86] defines a domain analyst

as “a person who examines the needs and requirements of a collection of systems which seems

similar.”

The domain analysis phase produces a domain model, a conceptual model that captures

the ideas of the problem domain by representing the common and variable features of software

family members in the domain. The domain modeling process produces several models

and consists of several activities. These activities involve defining the domain scope and

vocabulary, describing the domain concepts and their corresponding attributes, identifying

relationships among features and concepts, and describing the dependencies and constraints

among the variable features.

The literature varies in how it identifies the domain model’s elements. However, the

following are the most commonly identified elements of the domain modeling process:

Domain scoping. Domain scoping is the activity of determining the boundaries of a do-

main by finding out which systems and components belong to it. Domain scoping also

gives examples of software applications already in the domain and outside the domain,

gives rules of inclusion and exclusion to determine which software systems belong to

the domain, and determines external systems that may interact with the domain [34].

Domain lexicon. A domain lexicon is a data dictionary that defines the domain vocabu-

lary and terminology to make the communications easier between programmers and
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users. The domain information can be obtained from different sources such as text-

books, already existing system designs and applications, surveys and articles written

by domain experts, and documented requirements and manuals [62].

Commonality and variability analysis. Commonality is a list of assumptions that is

true for all members in the family, while variability is a list of assumptions that is true

only for some members in the family. This activity is performed by domain analysts

using feature modeling techniques, which are presented in the following section.

Notations. Notations are used to visually represent domain concepts and their attributes,

relationships between concepts, and dependencies between them. This activity is per-

formed using a wide variety of well-known models. Kang et al. [62] present several

models used in domain analysis. Briefly, these are:

• Feature models, which are the fourth element of domain engineering process

• Context models, which are usually used by requirements analysts to determine if

a particular application ordered by a customer is within the domain boundary for

which products related to the domain are available

• Dataflow models, which usually explain how data is processed and show how data-

flows between the selected domain and other domains and how they communicate

• Entity-Relationship models, which are usually used by requirements analysts to

gain knowledge about a domain’s entities and their inter-relationships

• Architectural models, which are usually used by domain designers for designing

software applications

Feature modeling. The most important output of the domain analysis phase is the feature

model. A feature model is a representation of all related software applications (i.e., the

family of systems) in a domain. In the context of a software product line, the term

feature is defined as “a characteristic of the system that is visible to the end user.”
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[62]. In a product line, each member is defined by a set of features that differentiate it

from other members in the family of products within the domain. Features in feature

models are represented at the highest level of abstraction. Users prefer to understand

a particular product in the form of user-visible aspects, avoiding the complex details

of internal functions that other models, such as dataflow diagrams, show. Once a

particular application is defined by domain scoping, requirements analysts use feature

models to discuss the application’s features with users.

Since most of the work in the domain analysis phase is performed during the domain

modeling process, some authors prefer to call this phase the domain modeling phase [56].

Domain modeling uses feature models, which are presented in the next section.

2.1.3.1.2 Domain Design

The second phase of domain engineering is domain design. This is the activity of

mapping the configurable requirements and the domain model generated from the domain

analysis phase to technical solutions. This can be performed by creating a common product

line architecture, which provides a common, high-level structure for the family of software

systems in the target domain.

Concrete software applications can be assembled manually or automatically, where soft-

ware applications can be entirely generated using techniques such as generative programming

through generator tools.

2.1.3.1.3 Domain Implementation

The third and final phase of domain engineering is implementing the reusable software

components and their interfaces in addition to the generic architecture designed during

the domain design phase. All of those implemented artifacts are used in the application

engineering process for building concrete systems. Tools such as generators for automatic

component assembly or domain specific languages are used to implement components. If
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Figure 2.3. Problem and Solution Spaces

some products created for customers need additional features based on customers’ requests,

then custom development has to be carried out with implementation tools.

2.1.3.2 Application Engineering

Application engineering is the process of delivering a product by selecting a valid set of

features from the SPL and implementing new customer requirements that are within the

scope of the SPL.

Domain analysis with feature modeling represents the problem space of a product line. A

problem space defines a feature as a high-level abstraction by separating the feature from its

implementation details. This gives the users a clear description of the product line features.

The solution space represents features as source code and converts the users’ selections

into concrete products. Figure 2.3 emphasizes this and shows the development of an SPL

consisting of the two processes: domain engineering and application engineering.

A problem space contains the domain concepts that application, whereas the solution

space contains the implementation.

2.2 Feature Models

A feature model captures all the design choices in one high-level description [17, 41,

114]. Each feature corresponds to one design choice. Some features are shared across all

products in a product line (i.e., a commonality). Some only appear in specific products (i.e.,

a variability). The success of an SPL depends upon effective management of the variabilities.
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A variability means that the feature can be configured and customized when included in a

delivered product [30].

2.2.1 Traditional Feature Models

A feature model documents the product line architecture resulting from the domain

analysis [17]. In traditional feature models, a model is depicted as a tree that represents

all design choices (i.e., features) as nodes and the constraints that one choice imposes on

the others by various types of edges between the nodes. Based on the defined relationships

among the features in the model, the product line can generate a specific product by selecting

a valid set of features—a set of features that satisfies all the constraints (i.e., rules).

A feature model captures the commonalities and variabilities by representing the primary

relationships among features as a tree. The root represents the entire product line. An edge

between a parent and a child is a relationship between a high-level design decision and a

detailed design decision needed in its realization. Kang et al. [62] propose feature models

for use in the Feature-Oriented Domain Analysis (FODA) method. Other researchers have

extended the feature modeling notation in various ways [27, 28, 34, 35, 36, 103].

To develop reusable core assets for use in future systems, however, software product line

engineering must manage the commonalities and variabilities across all products in a product

line within a domain perspective. After determining the commonalities and variabilities,

artifacts that share the most common features across products are chosen as candidates to

be reused as core assets.

Other artifacts that are not part of the specified commonality will not be considered as

part of the reusable core assets, but instead will be stored in the company’s reusable library

as variation points. Variable artifacts will be used to create different products that satisfy

different customer’s needs by using the application engineering process.

As a simple example, consider a company that manufactures cellular phone products.

An example of a common core asset across cellular phone products would be a speaker or
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a microphone since it is mandatory for each phone to have a speaker or a microphone. In

comparison, a Bluetooth service supporting a cellular phone is optional since many types

of cellular phones do not support the Bluetooth feature. Thus, the Bluetooth artifact is

considered a variable feature that would not be part of the common core assets. It would

instead, be stored in the company’s reusable library, which would be available to developers

who wish to include it with phone products that support the Bluetooth service.

In order to determine which artifacts are candidates for the product line’s reusable core

assets and which are considered variable, feature models are used. Feature models support

software product line engineering process by representing similarities and differences for a

set of related products in a domain.

Feature diagrams, as presented in by the FODA method [62], are graphical notations

that visually represent feature models in the form of tree-like diagrams (tree of features).

All feature diagrams start with a node at the top of the diagram as a root node. Root nodes

are called concepts and each concept represents a certain domain or a complete product line

[14].

In feature models, features are connected by two kinds of relationships:

• Relationships between parent and child features

• Cross-tree inclusion or exclusion constraints between features

We can express a feature model visually as a feature diagram as shown in Figure 2.4.

There are four kinds of parent-child relationships in feature models: mandatory, optional,

alternative, and OR features [18, 34, 62].

Mandatory features are software artifacts that must appear in all possible configurations

(generated products) of a product line. A mandatory feature can be parent or child

feature. If the feature is mandatory, then it has to be selected in the generated product

whenever its parent is included. A mandatory feature is indicated by a black circle on
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Figure 2.4. A Basic Feature Model

top of the node in a feature diagram. In Figure 2.4, features A, B, and C are mandatory

features.

Optional features are features that may or may not be selected in the generated product.

The optional feature may be included if its parent is included. If its parent is optional

and not included, then the feature will not be included. An optional feature is indicated

by a white circle on top of the node in a feature diagram. In Figure 2.4, features D,

E, F, G, and H are optional features.

Alternative features are group features that mean the following: if the parent of a set

of alternative features is included in the generated product, then exactly one feature

from this set is included. An alternative feature group is graphically represented in a

feature diagram by an arc or a line that joins the alternative features’ edges, forming

a triangular shape. In Figure 2.4 features E and F are alternative features.

OR features are group features that mean the following: if a parent of a set of OR features

is included in the generated product, then at least one feature from this set is included.

A group of three OR features can result in selecting one, two, or three features. An OR

feature group is graphically represented in a feature diagram by a black-filled arc or

line that joins the OR features’ edges, forming a black triangular shape. In Figure 2.4,
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features G and H are OR features.

A cross-tree constraint is represented by dotted edge. In Figure 2.4, feature D requires

feature H, since the edge is directed to H feature. In this case, if feature D is selected to

be part of the generated product, then feature H must be selected too, but not vice versa.

Feature C excludes feature F means that, if feature C is selected, then feature F cannot be

selected, and vice versa. The require and exclude relationships are outside the hierarchical

(parent-child) structure because they can relate two features that are in different branches

of the tree.

The optional, alternative, and OR features are variation points that represent hierarchical

arrangement of features. Feature models can give domain and software engineers a precise

count of the possible products that can be generated from the product line based on the

requirements imposed by the feature model. These require the management of variation

points based on relationships and types of features. According to Figure 2.4:

• Feature A is mandatory and thus it will be included in all products. The possibility of

having it is always 1.

• Feature B is also mandatory and thus it will be included in all products. Feature B has

two children E and F grouped in an alternative set. In this case, we have the option of

selecting parent B with child E or selecting parent B with child F. Therefore, feature

B has two possibilities when deciding to include it in the product.

• Feature C is mandatory and has an OR group child with two features, G and H. There

are three possibilities of including feature C in a product: selecting C with G, selecting

C with H, or selecting C with both G and H.

• Feature D is optional and thus it has two possibilities: either to select it in the final

product or just ignore it.

• The result is achieved by multiplying the possibilities as follows:
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1 possibility for A × 2 possibilities for B × 3 possibilities for C × 2 possibilities for D

= 12 possible product configurations.

In the approach described in Chapter 3 of this dissertation, we encode traditional feature

models in relational database tables and extend the models to include feature descriptions

and enhanced relationships among the features [116].

2.2.2 Cardinality–Based Feature Models

The cardinality-based feature model is an extension to the basic feature model proposed

by Kang et al. [62] and Griss et al. [53]. The primary motivation is to model some cases of

OR and alternative which are difficult to express in basic feature models.

Riebisch et al. [112] extended the basic feature model by replacing the OR and alternative

relationships with multiplicities similar to those used in the Unified Modeling Language

(UML). This extended feature model keeps FODA’s originalmandatory and optional features

but generalizes the OR and alternative relationships as set relationships.

A set relationship is a set of child features where some number of features in the set is

to be included in the software product when their parent feature is also included. Thus an

alternative relationship is a set relationship with a cardinality <1-1>, and an OR relationship

is a set relationship with a cardinality <1-*>. Consider Figure 2.5.

• Features E and F are alternative features. Because an alternative relationship denotes

a 1-to-1 selection (i.e., only one selection), the relationship between feature B and the

set consisting of the two features E and F is indicated by the cardinality annotation

<1-1>.

• Features G and H are OR features. Because an OR relationship denotes a 1-to-many

selection, the relationship between feature C and the set consisting of the two features

G and H is indicated by the cardinality annotation <1-2>.
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Figure 2.5. Feature Model with Multiplicities

Figure 2.6. Cardinality Relationship Between Features A and B

Czarnecki et al. [35] further extend the Riebisch et al. [112] approach by also generaliz-

ing the mandatory and optional relationships using multiplicities. Their feature cardinality

approach generalizes the mandatory relationship with a cardinality <1-1> and the optional

relationship with a cardinality <0-1>. In Figure 2.6, the optional feature is replaced by the

cardinality <0-1> to indicate an optional relationship.

In the approach proposed for this dissertation research project, we do not use multi-

plicities or cardinalities. Our design allows very large software product lines to be encoded

in relational database tables as feature models and relationships are easily interpreted and

imposed. In future research, we plan to consider adding these features as an extension to

the approach taken for this dissertation.
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2.2.3 FeatureIDE

Liech et al. [66] designed and developed FeatureIDE [3, 75] as an Eclipse plugin for

feature-oriented software development. FeatureIDE supports all phases of software product

line development. It uses a graphical editor for the domain analysis phase to manipulate

feature models and their relationships.

FeatureIDE requires developers to learn special software product line techniques for the

domain implementation phase. These include the feature-oriented programming [10] and

aspect-oriented programming [65] paradigms. Our approach is not tied to any implemen-

tation language. As much as feasible, our approach will enable the use of a wide range of

programming languages, general-purpose or domain-specific.

2.2.4 pure::variant

The pure::variant system [109] provides integrated tools to support all development

phases of software product lines. In the domain analysis phase, its Feature Model editor

is used to build a feature model. In the domain design phase, its Family Model editor is

used to describe the variable family architecture and link it with the feature model through

appropriate rules. The domain implementation phase generates a Variant Result Model from

the Family Model, where a Variant Description Model is used to express the problems to be

solved in terms of selected features.

This approach requires considerable software expertise to use effectively. In addition, it

does not help users discover created feature models with incorrect configurations. In our

approach, we use familiar technologies (relational database tables and Web interfaces) to

represent and manipulate feature models.

2.2.5 Specific Programming Languages

Günther and Sunkle [54] embed the feature model as an object structure in Ruby, el-

evating features to a first-class entity in the language. Ruby’s reflexive metaprogramming
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facilities enable the feature model to be modified and products configured at runtime.

This approach requires the mastery of the Ruby language and its reflexive metaprogram-

ming facilities. Our approach allows feature models to be created and modified dynamically

without being tied to a specific domain, programming language, or application framework.

We focus on the requirements of Web application development, but the tools should be

applicable to other types of software development.

2.2.6 Propositional Formulas and Formal Methods

To support manipulation and analysis using automated tools, some researchers express

feature models using formal specifications. Batory et al. [19] represent a feature model as

a language generated by a formal grammar. A sentence in the language corresponds to a

product in the SPL. Checking the validity of a product configuration is thus a matter of

parsing the sentence. In other work, Batory [17] encodes a feature model in a propositional

formula. A variable in the formula represents a feature. The variable has the value true

if the feature is selected or false if it is not. The formula uses logical operators to encode

the relationships between features, such the OR and alternative relationships. Checking

the validity of a product configuration is thus a matter of evaluating the corresponding

propositional formula. The configuration is valid if and only if the resulting value is true.

Other works express feature models using formal methods and map them to a constraint

satisfaction problems. SPL configuration problems can be automatically diagnosed using

a constraint problem solver [132]. Sree-Kumar et al. [121] use Alloy, a formal modeling

language, to enable formal analysis and error checking. We agree that the use of grammars

and propositional formulas can help users understand feature models.

Software developers should have basic familiarity with these concepts, but many may

not be comfortable using them as intensely as required by some of the tools for representing

feature models. Our approach provides a simpler environment to create and manipulate

feature models.
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CHAPTER 3

ENCODING FEATURE MODELS IN RELATIONAL DATABASES

Building a software product line (SPL) is a systematic strategy for reusing software within

a family of related systems from some application domain. To define an SPL, domain analysts

must identify the common and variable aspects of systems in the family and capture this

information so that it can be used effectively to construct specific products. Often analysts

record this information using a feature model expressed visually as a feature diagram [116].

This chapter addresses specific Research Question 1 from Section 1.3: Can relational

database tables be used to accurately encode feature models?

To answer this question, we show how to represent a feature model as a directed acyclic

graph encoded in three relational database tables. The overall objective of this novel ap-

proach is to enable wider use of SPLs by identifying relevant concepts, defining systematic

methods, and developing practical tools that leverage familiar technologies.

We published a preliminary version of this chapter in 2017 [116].

3.1 Relational Databases in a Nutshell

A database organizes a collection of related data. A relational database organizes a col-

lection of data into tables with rows (called records) and columns (called fields or attributes).

According to Gillensonm [45], a database management system (DBMS) is a system that is

designed to serve two main purposes:

• Manipulating data in the database (i.e., deleting, updating, inserting)

• Providing various ways to view the data in the database
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Figure 3.1. A Relational Database Model

The relational database model represents a database as a collection of relations. Math-

ematically, a relation is a subset of the Cartesian product of two or more attributes. Each

relation is represented in the model as a table.

Figure 3.1 shows the table that represents a relation named R. The table has a column for

each attribute: customerID, customerName, and membership. The attribute names

are shown in the top row of headings. The table also has a row for each tuple in the relation.

This table has three columns and four rows (not counting the headings).

The total number of columns in a relation is called its Degree, while the total number of

rows is called its Cardinality degree.

Tables link to one another using key fields. A primary key is a table column or a group

of columns that uniquely identifies each row within the table. In Figure 3.1, customerID

is the primary key for this relation because it uniquely identifies each row, that is, no two

rows have the same value for customerID,

Figure 3.2 shows a relationship between the two tables: Customers and Orders. A

foreign key is a table column or a group of columns that references the primary key in

another table, thus creating a link between the two tables. In Figure 3.2, the customerID

attribute, which is the primary key for the Customers table, appears as an attribute in the

Orders table and is used as a reference key for the Orders table. The relationship between
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Figure 3.2. One-to-many Relationship Between Two Tables

the Customers and Orders tables is one-to-many, which means there are many orders for

one customers. As shown in Figure 3.2, cutomerID 1 has three orders in the Orders table.

Foreign keys can be a group of columns that uniquely identify each row.

3.1.1 Structured Query Language (SQL)

Tables in a relational database can be manipulated using the Structured Query Language

(SQL), a language for editing, querying, and updating data in a database. According to

Gillensonm [45], SQL has the following main components:

• A definition language (DDL) component for creating database tables.

• A data manipulation language (DML) component for data manipulation.

• A data control language (DCL) component to provide security.

For instance, when connecting to a relational database management system such as

MySQL or PostgreSQL, a user can create a database using the command:

CREATE DATABASE customersOrders;
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The database name should be unique within the database.

Users can also create tables using the SQL command:

CREATE TABLE Customers (
customerID int ,
customerName varchar (255),
membership bit ,

);

In the table created through SQL command above:

• customerID column is of type int and will hold an integer.

• customerName column is of type varchar and will hold characters, where the maximum

length for this field is equal to 255 characters.

• membership column is of type bit, an integer data type that can take a value of 1, 0,

or NULL.

SQL provides queries, which retrieve the data based on specific criteria. The following

list shows some SQL queries to manipulate the customersOrders database:

1 = SELECT *, Customers WHERE customerName= "John␣Brown"
2 = DELETE FROM Customers WHERE customerID = 1;

The first statement is a query to return all (the * indicates all) rows with customerName

equal to “John Brown”. The second statement deletes a customer data specified by the

WHERE clause, which extracts only records that fulfill a specified condition (in this example,

customerID = 1).

For more detail on the SQL syntax, queries, clauses, expressions, and statements, consult

a reference book such as Gillensonm [45].

3.2 Feature Models in Database

As noted in Chapter 1, a objective of this work is to enable wider use of SPLs by

identifying relevant concepts and defining systematic methods. This leads us to design
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Figure 3.3. Adjacency Matrix for a Graph

a novel approach to specification of feature models: encoding the models in a relational

database.

3.2.1 Feature Model as Adjacency Matrix

To manipulate the feature models in a relational database, we must take into account

that we must preserve the structure of the feature model’s hierarchical data. Thus, we must

store both the parent-child and the cross-tree relationships in tables in a way that conforms

the feature model’s tree structure.

For this purpose, we consider the feature model as a graph and represent it using an

adjacency matrix. According to Mukherjee and Mukherjee [83], an adjacency matrix of a

graph G with respect to a listing of n vertices (1, 2, ...., n) is an n x n matrix, denoted

by X(G), and defined as

X(G) = [Xij]

where

Xij = 1, if (vi, vj) is an edge, i.e., vi is adjacent to vj

Xij = 0, if there is no edge between v_i and v_j
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Figure 3.4. Labeled Digraph, Adjacency Matrix, and RDB table

If an edge between vertex vi and vj exists, where i is a row and j is a column, then the value

of xij= 1. If no edge exits, then value of xij= 0.

A graph is a set of nodes with edges that link pairs of nodes. If two nodes are connected

by an edge, then the nodes are considered adjacent. A directed graph is a graph in which

all the edges are directed from one vertex to another. Figure 3.3 shows the representation

of a directed graph with n nodes as an n × n adjacency matrix. The nonzero values denote

the presence of an edge between the two nodes. We represent the parent-child and cross-tree

relationships as directed edges.

As shown in Figure 3.4, the matrix is sparse, so all we need to record are the pairs

of adjacent nodes. Thus, we need a table with columns for the two adjacent features in

the feature model and a third column to describe the relationship between the features.

Figure 3.4 shows how we can use an adjacency matrix to represent a directed-graph in a

relational database table. Because the graph is directed, only one row is needed for each

pair of features.

We adopt the adjacency matrix to encode feature models in a relational database system

such as MySQL [39] or PostgreSQL [98]. We use a simplified Search Engine product line

adapted from Mendonça [76] to illustrate our approach. Figure 3.5 shows a feature diagram

that represents all design choices—expressing the commonalities as mandatory features and

33



Figure 3.5. Feature Model For a Search Engine SPL

the variabilities as optional, alternative, and OR features. The diagram also shows cross-tree

constraints between features represented by requires and excludes relationships.

The Search Engine product line includes search engines that support a variety of user

requirements. Each product generated from the product line will consist of common and

variable features that are composed based on the features selected. The Search Engine

system provides the following features:

• The Page Preview functionality adds an outline of the search results as thumbnails

next to the Web page links.

• The Search Engine can search for and display HTML, Video, File, and Image

documents.

– Supported formats for the Image document type are SVG, JPEG, and GIF.

– Supported formats for the File document type are PDF and MS Office Files

(i.e., Microsoft Word, Excel, PowerPoint, and Access).
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• The Search Engine can translate pages from one language to another (i.e., Page

Translation).

• A search can be done in any of three Search Languages: Portuguese, English, and

Spanish.

One possible product from the Search Engine product line is:

{ Search Engine , Page Preview , Document Type , HTML ,
Image , JPEG , Video }

This product does not include the optional features File, Search Language, and Page

Translation. It also does not include GIF and SVG since only one feature can be selected

from the alternative group. The selection of the Page Preview feature excludes the SVG

feature from the product. If Page Preview is selected, then the Search Engine cannot

support documents of type SVG.

Another possible product from the Search Engine product line is:

{ Search Engine , Document Type , HTML , Image , SVG ,
File , PDF , Search Language , English , Spanish ,
Page Translation }

The Search Language feature has a requires relationship with the Page Translation

feature. If the user decides to have a Search Engine with the Search Language function-

ality, then the Page Translation feature must be added to the generated product. Spanish

and English features are selected from a three-feature OR group and PDF is selected from

a two-feature OR group.

We encode feature diagrams in a relational database using the adjacency matrix approach

as described in the next subsection.

3.2.2 Feature Model Encoded in Relational Database Tables

We propose a novel approach that conceptualizes a feature model as a graph, represents

the graph as an adjacency matrix, and encodes the matrix in three relational database
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Figure 3.6. feature Table

tables in Third Normal Form [32]. Our design consists of three database tables: feature,

featuresRelations, and Relationships tables. The following subsections introduce each one

and explain its part in the design.

3.2.2.1 Feature Table

The first table in our design is the feature table. The table consists of two columns as

shown in Figure 3.6.

• The first column is the name field, which is the primary key for the table. There

is a row in the feature table if and only if there is feature in the feature model with

the same feature name. As described above, a feature is a user-visible behavior of a
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Figure 3.7. Relationships Table

system. Therefore, the feature’s name should clearly identify its functionality for both

developers and users.

• The second column is the description field, which gives a general description of the

feature. In Figure 3.6, we use simple descriptions for demonstration purposes.

3.2.2.2 Relationships Table

The second table in our design is the Relationships table. This table records the possible

types of relationships between features. The table consists of two columns, id and relation,

as shown in Figure 3.7. The id is the primary key; it assigns an integer code to the rela-

tionship name given in the second column. There is exactly one row in the table for each

possible relationship type in feature models.

• A mandatory feature represents the commonalities across all products in the product

line.

• The OR, alternative, and optional features are variation points–features that might

or might not be selected in the generated product.

• The requires and excludes assertions are cross-tree constraints between features.

3.2.2.3 featuresRelations Table

The third table in our design is the featuresRelations table. This table records the

relationships between features in the feature model. As shown in Figure 3.8, the table
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Figure 3.8. featuresRelations Table

consists of three columns: fromFeature, toFeature, and relationType.

This table represents the feature model as the directed graph described above. In the

featuresRelations table, a row represents an “edge” that relates the feature given in the

first column fromFeature to the feature given the second column toFeature. The type of

this relationship is given in the third column relationType. There is a row in the table if

and only if there is an edge in the directed graph (i.e., feature model).

The fromFeature and toFeature columns hold feature name keys from the Feature

table. The relationType column holds relation keys from the Relationships table. Thus,
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it is not difficult to construct the feature diagram for an SPL by examining the features-

Relations table.

In the featuresRelations table, the primary key is a composite of the fromFeature

and toFeature columns. In Figure 3.8, the fromFeature and toFeature columns together

form a primary key that uniquely identifies each row in the table.

3.2.2.4 Feature Model Syntax and Semantics

Syntactically, a feature model, as represented by a feature diagram, forms a directed

acyclic graph (DAG) with labelled edges. The node names are features defined in the Fea-

ture table. The edges are defined in the featuresRelations table. The possible labels on

the edges are defined in the Relationships table. As described in Section 3.2, most of the

edges denote relationships directed from a parent feature to a child feature in a feature tree.

Other edges represent cross-tree constraints ; these cannot constrain ancestor or descendent

features. Our feature model specification process enforces the DAG syntax and builds valid

relational database tables.

The DAG’s edge labels give additional semantics of feature models encoded in the rela-

tional database. Parent-child relationships include mandatory, optional, alternative, and OR

relationships described before. To simplify a model, we restrict a parent to having one group

of alternative and OR children. (If more than one group is needed, we can introduce an

“abstract feature” for each group and add another level to the model.) Cross-tree constraints

include the requires and excludes relationships.. The feature model specification process also

encodes the intended semantics as it builds the database tables.

Figure 3.9 shows part of the feature model from Figure 3.5. It illustrates the feature model

as a DAG with labeled edges. Syntactically, our design treats the excludes relationship as

unidirectional. However, semantically, we treat it as bidirectional. As shown in Figure 3.9,

if feature Page Preview excludes feature SVG, then the directed edge points to SVG and

one row in the featuresRelations table is enough to represent this relationship.

During product configuration, if a user selects SVG first, then the Page Preview feature
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Figure 3.9. Feature Model as DAG with Labeled Edges

cannot be selected later, and vice versa. Currently, our SPL feature models have a single

root. As shown in Figure 3.8, the featuresRelations table records this root with a row

having the keyword root in the fromFeature column and the concept node (i.e., top-level

feature) in the toFeature column. This enables an SQL query to identify the root easily.

The approach we propose for this dissertation research project does not support feature

models with more than one root or more than one parent for a child feature. However, the

DAG-based approach and the database encoding can be readily extended to support both.

• Multiple roots could represent a set of product lines from overlapping domains that

share some features.

• Multiple parents could represent a product line with complex interactions among fea-

tures at the code level.

In future research, we plan to consider adding these features as an extension to the approach

taken for this dissertation.

3.3 Feature Models in CSV Files

A comma-separated values (CSV) file is a plain text file consisting of a sequence of

lines. Each line is a sequence of values separated by commas. We can consider each line as

representing a record and each value on the line as representing a field of the record.
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Given its simple structure, a CSV file is a convenient format for transferring data—in

particular tabular data—among computer applications. Most relational database systems

can export a table to a CSV file with one line for each row and one value for each column

(i.e, field or attribute). Similarly, they can import a CSV file with that format into a table.

In particular, MySQL can export tables to and import tables from CSV files. In addition,

the MongoDB and Neo4j database systems discussed in Chapters 7 and 8, respectively, have

similar capabilities to read and write CSV files.

Given the support for CSV files in the three database systems we use in this dissertation,

we exploit this format to define a simple encoding for feature models as CSV files. Each

line of the CSV file (except the first) contains a sequence of three values recording exactly

the same information that is recorded in a row of the featuresRelations table defined in

Section 3.2:

1. fromFeature—a valid feature name string that denotes the “parent” feature of the

relationship

2. toFeature—a valid feature name string that denotes the “child” feature of the rela-

tionship

3. relationType—an integer code in the inclusive range 0 to 5 that denotes the relation-

ship between and fromFeature and toFeature

The meanings of the relationType values are the same as given in theRelationships table.

The first line of the table is a line containing the three field names fromFeature, toFeature,

and relationType.

In addition, the collection of all lines in the CSV file (not including the first line) has

the same semantic constraints that the rows of the featuresRelations table do. Each line

is unique and it defines an edge in the feature model. The order of the lines is arbitrary.

Thus, a CSV file and the corresponding featuresRelations table encode equivalent feature

models. We sometimes refer to such a CSV file as the feature model’s CSV encoding.

41



Figure 3.10. CSV Structure For Search Engine Feature Model

Figure 3.10 shows a portion of a CSV encoding for the Search Engine feature model

shown in Figure 3.5. The corresponding featuresRelations table is shown in Figure 3.8.

To import a CSV file that encodes a feature model into a corresponding table in an

MySQL database, we use the following SQL query:

LOAD DATA INFILE '{file_name}' INTO TABLE tableName
FIELDS TERMINATED BY ',' LINES TERMINATED BY '\n'
IGNORE 1 ROWS

The above query reads the CSV file from the file file_name and loads its contents into the

table tableName. As indicated by the clause LINES TERMINATED BY ’

n’, the query breaks the file into lines at the newline characters. The first line of the CSV

file gives the three field headings; the above query assumes it is writing into a correctly

structured table and skips this line by using the clause IGNORE 1 ROWS. Otherwise, each line

of the CSV file gives a row of data to be written into the table. As indicated by FIELD

TERMINATED BY ’,’, the fields on the line are terminated by a comma or by the end of the

line. The LOAD statement reads the CSV file values in sequential order and writes them into

the table.

A similar query to the above could be written to export a table to a CSV file. The

export mechanism just needs to sequentially write each row of the table (beginning with the

headings row) as a line in a text file with the field values separated by commas.

However, one operation we do use in Chapter 9 is the emptying of a database table that
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holds a feature model. We can do so with the following simple query:

TRUNCATE tableName

We implemented and tested these operations using Python 3.8 and XAMPP with the

MariaDB database system, a fork of the MySQL relational database management system.

3.4 Evaluation and Conclusion

This chapter addresses Research Question 1 from Section 1.3: Can relational database

tables be used to accurately encode feature models?

To answer this question, we first designed a relational database to store an arbitrary

“traditional” feature model. This database design consists of three tables defined as follows:

• A feature table with two fields, name and description, where name is the table’s

primary key. We populate this table with exactly one row for every feature existing in

the feature model.

• A Relationships table with two fields, id and relation. This table defines a list of the

identifiers for all the feature model’s relationships. Ids are integer codes assigned to

the various relationships defined in the feature model. These consist of the following:

– 0 for optional relationships

– 1 for mandatory relationships

– 2 for OR relationships

– 3 for alternative relationships

– 4 for requires cross-tree constraints

– 5 for excludes cross-tree constraints

• A featuresRelations table with three fields, fromFeature, toFeature, and relation-

Type. For this table, the primary key is the composition of the values of the first two

fields.
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The fromFeature and toFeature fields are foreign keys; both must be feature names

from the feature table (and thus features appearing in the feature model).

The relationType field is also a foreign key; it is an id value from the Relationships

table (and thus an integer code for a relationship type in the feature model).

There is a row in the featuresRelations table if and only if there is an “edge” in the

feature model from the feature named in the fromFeature field to the feature named

in the toFeature field that has the type of relationship designated by the value of the

relationType field.

Thus, the relational database encoding of the feature model is equivalent to the conceptual

feature model.

In Section 3.3, we also designed a simple encoding of feature models as CSV files. This

encoding is equivalent to the RDB encoding also defined in the chapter. It primary purpose

is to provide a convenient mechanism for loading the same feature model into the three

different database systems we compare in Chapter 9.

Second, we implemented this database design using the MySQL relational database man-

agement system with software written in the PHP programming language. We used the

XAMPP [9] open-source, cross-platformWeb server, which consists of the Apache HTTP Server

[68], the MariaDB database [111], and interpreters for the PHP and PERL programming

languages.

Third, we tested this implementation by encoding the feature model shown in Figure 3.5

in the database implementation.

In this chapter, we have thus demonstrated that the answer to Research Question 1 is

“Yes”. We have encoded an arbitrary “traditional” feature model accurately as a directed

acyclic graph in three relational database tables [116]. Furthermore, we have shown that

the design is practical by providing a proof-of-concept implementation and applying it to an

example.
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CHAPTER 4

CONSTRUCTING VALID FEATURE MODELS

This chapter addresses specific Research Question 2 from Section 1.3: Can mainstream

Web and relational database technologies be used to construct correct feature

models interactively and incrementally?

To answer this question, we show how to design a Web interface that automates the

creation, modification, and deletion of features in a feature model. The design uses a dynamic

Web interface enabling the creation, modification, and deletion of features and the definition

of relationships and constraints among the features via Web forms.

Feature model abstractions are often difficult for mainstream developers to specify and

maintain because most tools rely on specialized theories, notations, or technologies. To

address this issue, this chapter presents a novel design that uses mainstreamWeb technologies

to enable users to construct syntactically and semantically correct feature models which

builds on the RDB design [116] from Chapter 3. The Web interface and relational database

designs can form parts of a comprehensive, interactive environment that enables mainstream

developers to specify, store, and update feature models and use them to configure members

of product families.

We published a preliminary version of this chapter in 2020 [117].

4.1 Web Technologies in a Nutshell

Web technologies refer to specialized languages, protocols, and software programs used to

implement applications on the World Wide Web (i.e., WWW or the Web) . The Web is based

on the client-server model [49] as shown in Figure 4.1. The clients and servers communicate
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Figure 4.1. Client-Server Model

over the network using a communication protocol called the Hypertext Transfer Protocol

(HTTP) [68]. Users interact with client programs (e.g., Web browsers or mobile devices) that

send HTTP requests to Web servers. A server hosts information or computational resources

on a Web site. It listens for requests from clients and sends an appropriate response, such

as sending back Web pages or the results of computations.

AWeb site is a collection of Web pages identified by a domain name and existing in at least

one Web server. Each Web page has a name by which it can be accessed, called a Uniform

Resource Locator (URL). A client program requests a Web page by supplying its URL to the

server, with perhaps other information describing the specifics of the request. The software

running on the server takes the request and sends back (or "publishes") the corresponding

Web page and causes other desired effects. A Web page is a hypermedia document that may

contain references to other Web pages. The user can subsequently request that the linked

Web pages be published.

4.1.1 Client-Side and Server-Side Programming Languages

Websites are created using Web programming languages. These languages can be divided

into two groups: client-side and server-side languages.

• A client-side language runs on the users’ machines (typically in a browser). The

browser interprets client-side languages through the browser’s engine (e.g., Chrome
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V8). JavaScript engines are not limited to browsers. For instance, the Chrome V8 [50]

engine is a core component of the Node.js runtime system [107]. Client-side languages

include JavaScript, WebAssembly, HTML, CSS, and AJAX (for asynchronous Web

applications).

• A server-side language runs on a Web server. It is used to program the server’s

responses to the clients’ requests. A server-side language provides the interface to

the client-side programs and controls access to an organization’s private data and

processing resources. On a Web server, the output from the execution of the server-

side language program, forms—in whole or in part—the HTTP response to the client.

The output from the server-side program may include HTML code, images, or other

types of data. Unlike the client-side, there is wide range of server-side languages;

prominent languages include PHP, Python, Ruby on Rails, Java, JSP, and JavaScript.

A software framework is an abstraction in which common code provides generic function-

alities that can be selectively overridden or specialized by custom code to provide application-

specific functionalities. A software framework makes it easier to create, maintain, and scale

a Web application. Examples of client-side frameworks are AngularJS, VueJS, ReactJS, and

Bootstrap (which supports both CSS and JavaScript). Examples of server-side frameworks

are Meteor, Ruby on Rails (Ruby), NodeJS (Javascript), and Django (PHP). Other exam-

ples includes libraries that can be imported and used. An example a client-side library is

jQuery for JavaScript. An example of a server-side library is Faker, a PHP library which

allows developers to generate dummy content for Web applications.

4.1.2 Web Forms

A Web form (i.e., HTML form) is a client-side document with embedded input con-

trols. Each control enables the user to supply data that are sent in a request to the server.

Figure 4.2 shows a simple Web form for user registration.
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Figure 4.2. Simple Web Form For User Registration
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• The controls with the labels First Name, Last Name, Email Address, Password,

and Re-type Password are text input controls. A user can fill an input field with

text and then the client-side program will typically validate this text to ensure that it

has the appropriate format (e.g., for an email address).

• The control allowing selection of Teacher or Student is a radio button, which allows

the user to select only one of the choices.

• The control allowing agreement with the Terms and Conditions is a checkbox, which

just allows the user to select (i.e., check) or deselect (i.e., uncheck) agreement.

• After supplying correct and valid information, the user can submit the whole form

by selecting the Sign up button. This clickable button control causes the client-side

program to send the data entered in the form to the server-side program for further

processing. In the case of this registration form, the server program will likely store

the information in the user registration database after further validation.

The data entered on a Web form can be validated using some combination of client-side

and server-side processing. The developer of the client-side program can attach some of

the built-in HTML5 validation functions to a control (e.g., to disallow an empty field). In

addition, the developer can implement custom client-side validation by writing appropriate

JavaScript code. Usually, the forms sent to a server for further processing are checked again

by the server-side program. This is done to ensure security and perhaps to carry out checks

that are difficult to do in client-side programs.

In our approach, we provide a comprehensive example of building a user interface for

creating and manipulating feature models and show how to validate users’ inputs using

vanilla JavaScript, jQuery, Bootstrap framework (for CSS), CSS3, and HTML as client-side

programming languages, and PHP and MySQL on the server-side.
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4.2 Feature Model Web Interface Design

When feature models grow large in size (i.e., in the number of features), they need to

be represented in a way that makes the variability management reliable and convenient.

This includes support for creating features, deleting features, defining relationships between

features, building up a feature model, and selecting a valid set of features to form a specific

product configuration. We address this need by proposing a novel design based on main-

stream Web technologies. Our design uses a dynamic Web interface to enable the creation,

modification, and deletion of features via Web forms.

This Web-based user interface for product creation and configuration extends the work

in Chapter 3, which presents a novel approach to specification of feature models: encoding

them in a relational database (RDB) [116]. The RDB design uses three tables to store the

features and their hierarchical and cross-tree relationships. Using RDB tables in this way

separates the concept of a feature from its implementation, which makes the feature model

easy for both developers and end-users to understand.

The distinction between a feature and its implementation is useful when performing

automated analyses and when reasoning about the set of different products that can be

generated from the SPL using the feature model’s configurations of products.

A significant benefit is the ability to use the well-known database query language (SQL)

for reasoning about feature models. In this chapter, we exploit this distinction and design a

dynamic user interface that collects the needed information from the users and ensures the

resulting feature model is both syntactically and semantically correct. The interface also

interactively guides the user to configure valid members of the product family represented

by a feature model stored in the database.

In the following subsections, we present an interface design for creating and manipulating

feature models. The interface supports the creation, modification, and deletion of features

while constructing the SPL’s feature model.
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4.2.1 Feature Creation

Feature creation can include a new feature being inserted to a feature model, or a root

feature representing the start of an SPL’s concept. Figure 4.3 shows a design for the user

interface’s Feature Creation tab. It consists of a Web form with components requiring entry

of the following information: the new feature’s name, its parent feature’s name, the type

of its relationship with its parent, the other features to be required, and the other features

to be excluded. The Web form’s implementation must ensure that these data and their

relationships with each other are valid and that only valid data are entered into the database

tables.

The Feature Name component uses an HTML input control to get the name of the

feature to be added. This component enables users to define features and add them to the

database tables encoding the feature model. Each feature’s name must have a valid format

and be unique within the model. The interface ensures the uniqueness of the entered feature

by performing checks on both the client side (using JavaScript, HTML, and CSS) and the

server side (using PHP and MySQL). To create an SPL feature model, the user first adds the

SPL’s concept feature and then recursively adds children to the previously created features.

The Feature Parent component uses an HTML select control to associate a feature

with its parent. This control displays a drop-down list from which the user selects the

parent feature’s name from among the previously defined features. This part works as a

decision-choice that affects the information supported in the Feature Type component’s

form (described below). An implementation of the user interface allows each feature to have

the following groups of children: mandatory or optional (which fall into their own group),

OR (at least one feature selected), and alternative (exactly one feature selected). If the

parent feature already has children, then the implementation must identify the types of the

existing relationships between the parent and its children. It then activates or deactivates the

checkboxes and radio buttons in the Feature Type component accordingly. If the parent

feature does not have children, then all checkboxes and radio buttons in the Feature Type
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Figure 4.3. Feature Creation Tab
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component are activated.

The Feature Type (Relationships) component uses a composite control to assign the

relationship between a newly inserted feature and its parent. This composite control uses

an HTML list control to group together two radio buttons and two checkboxes. The user

can always choose between mandatory and optional for a feature. Once the user selects the

parent feature (in the Feature Parent component described above), an implementation

of the user interface must identify the existing relationships between the parent and its

children. If the existing relationships include an OR, then the OR radio button is activated

and the alternative radio button is deactivated because a feature cannot have two groups

of OR/alternative relationships. If the relationships include an alternative, the OR radio

button is similarly deactivated. If the relationship between the parent and children is only

mandatory or optional, then both the OR and alternative radio buttons are deactivated

while activating mandatory and optional checkboxes.

The Feature Requires and Feature Excludes component uses an HTML multiple-

selection list control to define the requires and excludes relationships between features. The

user can select 0-n previously defined features for both the requires and excludes fields. The

requires and excludes relationships must obey the following rules:

• A mandatory feature cannot be excluded or included. It must be independent from

all other features, except its parent. Therefore, if the user chooses mandatory as the

relationship between a newly created feature and its parent, then the require/exclude

options are disabled. Since the new feature is mandatory, it cannot require or exclude

other features. If the user chooses a relationship other than mandatory, then the list

of possible required/excluded features cannot include any mandatory features.

• A feature cannot require or exclude an ancestor. The implementation must check this

by recursively constructing the path from the new feature to the root (i.e., concept

feature) of the feature model.

53



• A feature cannot require or exclude a sibling. An implementation must perform this

check in order to remove the siblings from the lists of possible existing features to

require/exclude.

• Requires and excludes relationships are mutually exclusive. If a user selects feature

B to be required by feature A, then feature B cannot subsequently be chosen to be

excluded by feature A. Similarly, if feature A excludes feature B, then B cannot later

be required. This is to ensure correct choices when the user constructs cross-constraints

relationships.

Figure 4.4 illustrates how a user can add feature Incognito-Mode to the feature model

using the Web interface. The user interface guides the user to construct a syntactically and

semantically correct (i.e., valid) feature model by going through the following steps:

1. The user enters the new feature’s name Incognito-Mode. The user interface checks to

ensure that name is not already defined.

2. The user interface lists all available parent features including the root. The user selects

the new feature’s parent from the list.

3. Once the user selects the feature’s parent, the user interface checks that parent’s re-

lationships with its children. If the relationship is mandatory or optional, then both

the OR and alternative radio buttons are deactivated while activating mandatory and

optional checkboxes. If the parent feature has no children, the user can choose any

of the relationships available, as all of them are activated. Note that the mandatory

and optional relationships are represented by checkboxes while or and alternative are

represented by radio buttons. This to allow the user to select an OR or alternative

relationship while identifying whether the feature is mandatory or optional.

In Figure 4.4, since the user selects Search Engine as the parent feature, its rela-

tionship with its children is either mandatory or optional. Therefore, the Web form
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Figure 4.4. Creating a New Feature incognito-Mode
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deactivates the alternative and or relationships and activates the mandatory and op-

tional. Although they are represented as checkboxes, the user interface ensures that

the user does not select both mandatory and optional. If one is selected, the other is

deactivated.

4. After the user identifies the new feature’s parent, the user interface lists all other

features in the feature model that can be required by that feature and enables the user

to select one or more for the requires relationship. It does not list any ancestors of

the new feature. It also ensures that the selections obey the rules given above for the

requires and excludes relationships.

5. Once the user identifies which features are required by the new feature, the user in-

terface lists all other features in the feature model that can be excluded and enables

the user to select one or more for the excludes relationship. It does not list any fea-

tures that were selected to be required as possibilities for excludes. It also ensures that

the selections obey the rules given above for the requires and excludes relationships.

Figure 4.5 shows an algorithm to validate these cross-tree constraints.

Although the user interface checks for mutual exclusivity, it cannot detect all possible

semantic errors. For example, consider a feature X that is required by some optional feature

A and excluded by some other optional feature B. Suppose that both features A and B are

selected to be in a particular product during the product configuration phase (described in

Chapter 5). Should feature X be included or excluded? In this case, the product configuration

interface notifies the user of this semantic anomaly and allows the user to modify this relation

again during the product configuration.

4.2.2 Feature Modification and Deletion

The user interface’s Feature Modification tab enables a previously defined feature to be

changed. The user needs to enter the feature name. The form provides autocompletion
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Requires/Excludes
Data: AJAX call to requires.php file, posting feature parent, selected at

feature-Parent Web component form
Output: Listing both requires and excludes in requires and excludes components in

the Web form and handle their selections
1 if parent exists in the feature model then
2 if parent is selected in feature Parent Component then
3 allFeaturesArr ← array that holds all features in the feature model except

the root;
4 ascendantsArr ← fetchAscendants(parent); // Recursive function

to get parent’s ascendants up to the root
5 descendantsArr ←fetchDescendants(parent); // Recursive function

to get parent’s children and their descendants traversing the
leaf nodes (features)

6 mandatoryArr ← list all mandatory arrays in the feature model;
// Mandatory features cannot be excluded since they appear in
every different final product

7 notToIncludeExcludeArr ← [created feature, parent, ascendantsArr and
descendantsArr items, mandatoryArr items ];

8 requiresArr ← Filter notToIncludeExcludeArr and allFeaturesArr
arrays and remove duplicates;

9 LIST requiresArr items in requires drop-down list

10 if feature(s) is selected from Requires list then
11 selectedRequired ← array holding features selected by user as required

features;
12 excludesArr ← Compare requiresArr and selectedRequired arrays and

remove all matching elements; // feature cannot be required and
excluded at the same time

13 LIST excludesArr items in excludes drop-down list

14 SAVE user selections and update the database tables that encode the feature
model

15 else
16 Invalid POST variable; // Check AJAX post again (front-end) or how

POST being handled (back-end)

Figure 4.5. Algorithm Handling Requires and Excludes Relationships
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functionality to guide the user with suggestions while typing. If the feature is found, the

implementation of the user interface must fetch the information about the corresponding

feature and populate the Feature Creation form accordingly. The user can then modify the

feature’s name, reattach it to a different parent feature, modify the type of relationship to

its parent, and change cross-constraints relationships as needed. The same validation rules

applied to these values during feature creation apply during feature modification.

When the user changes the parent to reattach the feature to a different feature, the

Web interface verifies that the parent feature already exists in the feature model. The

Web interface checks whether the selected parent feature has children and considers the

parent’s existing relationships with its children in configuring this component of the form.

The existing relationships can be (a) a mix of mandatory and optional children, (b) an OR

group, or (c) and alternative group. If the existing relationships are a mix of mandatory and

optional, the interface deactivates both the OR and alternative choices for the new feature.

If the existing relationships indicate an OR group, the interface automatically selects the

OR choice and deactivates the alternative choice for the new feature.

The Web interface rechecks the validity of all the requires and excludes constraints in

the reattached feature and in all of its descendant features. If there are invalid cross-tree

constraints, the interface displays a warning message beneath the feature with the incorrect

constraint. If feature A, required by feature B, gets deleted from the model, then its rela-

tionships with all other features would drop. In this case, if the user selects feature B, the

user interface does not show a message to indicate that this feature is required by feature B,

which no longer exists.

The user interface’s Feature Deletion tab enables a previously defined feature to be re-

moved from the SPL. It operates similarly to the Feature Modification tab by allowing the

user to enter the feature name using the autocompletion functionality. An implementation

of the interface must allow any feature to be deleted, even a mandatory feature.

If the deleted feature has no children, the user interface just deletes the feature and
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updates the feature model to reflect the change. If the deleted feature has children, the

user interface determines what other features can be assigned as their new parent. It then

prompts the user to select the new parent. If the user decides not to select a new parent, then

all the children and their descendants are also deleted from the SPL. If the deleted feature

is the root of the feature model, the user interface asks the user whether or not to delete the

entire SPL. For children that are reassigned, the Web interface rechecks the validity of all

the requires and excludes constraints in the reattached feature and in all of its descendant

features. If there are invalid cross-tree constraints, the interface displays a warning message

beneath the feature with the incorrect constraint. If feature A, required by feature B, gets

deleted from the model, then its relationships with all other features would drop. In this

case, if the user selects feature B, the user interface does not show a message to indicate that

this feature is required by feature B, which no longer exists.

4.3 Evaluation and Conclusion

This chapter addresses Research Question 2 from Section 1.3: Can mainstream Web

and relational database technologies be used to construct correct feature models

interactively and incrementally?

To answer this question, we first designed a dynamic Web interface that enables users to

construct and modify correct feature models and store them in the RDB tables as described

in Chapter 3. This includes the creation of new features, the modification or deletion of

existing features, and the definition of the relationships among features. The Web interface

must disallow any addition, deletion, or modification of the feature model that would cause

it to become syntactically or semantically incorrect.

The Web interface consists of three Web forms: Feature Creation, Feature Modification,

and Feature Deletion. Let us examine how each preserves the correctness of the feature

model.

The Feature Creation form enables the creation of a valid new feature, including a new
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root of an empty feature model. This Web form asks the user for information about the new

feature, validates that information, and, once complete, stores the new feature description in

the RDB tables. This form requires the user to carry out the following sequence of actions:

1. Enter the name for the new feature. The Web interface validates the format of the

name and then verifies that it is not already used by another feature in the feature

model.

2. Select the new feature’s parent. The Web interface verifies that the parent feature

already exists in the feature model. If the new feature is the first to be inserted into

the feature model, the new feature’s parent is set to NULL, which makes the new feature

the root of the feature model.

3. Choose the type of relationship between the new feature and its parent. The Web

interface checks whether the selected parent feature has children and considers the

parent’s existing relationships with its children in configuring this component of the

form. The existing relationships can be (a) a mix of mandatory and optional children,

(b) an OR group, or (c) and alternative group. If the existing relationships are a

mix of mandatory and optional, the interface deactivates both the OR and alternative

choices for the new feature. If the existing relationships indicate an OR group, the

interface automatically selects the OR choice and deactivates the alternative choice

for the new feature. If the existing relationships indicate an alternative group, the

interface automatically selects the alternative choice and deactivates the OR choice for

the new feature.

4. Identify what existing feature(s) are required by the new feature. The Web interface

disallows selection of any of the new feature’s ancestors or descendants.

5. Identify what other feature(s) are excluded by the new feature. The Web interface

disallows selection of any of the new feature’s ancestors and descendants. It also
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disallows selection of any feature selected above to be required by the new feature.

Given a correct feature model stored in the database, the Feature Creation form thus creates

a valid new feature and inserts it into the feature model while preserving the correctness of

the model.

The Feature Modification form enables an existing feature to be modified in valid ways.

This Web form asks the user for information about the changes needed, validates the in-

formation, and, once complete, stores the modified feature description back into the RDB

tables. This form requires the user to carry out the following sequence of actions:

1. Enter the name of a feature to be modified. The Web interface, of course, only allows

an existing feature to be modified.

2. Change the selected feature’s name. As in the Feature Creation tab, the Web interface

validates the format of the name and then verifies that it is not already used by another

feature in the feature model.

3. Reattach the selected feature to a different parent. As in the Feature Creation tab,

the Web interface verifies that the parent feature already exists in the feature model.

The Web interface rechecks the validity of all the requires and excludes constraints in

the reattached feature and in all of its descendant features. If there are invalid cross-

tree constraints, the interface displays a warning message beneath the feature with the

incorrect constraint.

4. Change the type of the relationship between the selected feature and its parent. The

Web interface carries out the needed validity checks, which are similar to those de-

scribed above for the “Choose the type of relationship” component of the Feature

Creation tab.

5. Choose different features for for selected feature’s requires relationships. The Web

interface carries out the needed validity checks, which are similar to those described
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above for the “Identify ... required ” component of the Feature Creation tab.

6. Choose different features for the selected feature’s excludes relationships. The Web

interface carries out the needed validity checks, which are similar to those described

above for the “Identify ... excluded ” component of the Feature Creation tab.

Given a correct feature model stored in the database, the Feature Modification form thus

modifies an existing feature in valid ways and inserts it back into the feature model while

preserving the correctness of the model.

The Feature Deletion form enables an existing feature to be deleted from the feature

model. This Web form asks the user for information about the feature and the how to

modify the feature model to compensate for its removal, validates the information, and,

once complete, stores feature description back into the RDB tables. This form requires the

user to carry out the following sequence of actions:

1. Enter the name of a feature to be deleted. The Web interface, of course, only allows

an existing feature to be deleted.

2. Choose what to do with the selected feature’s children (if any). The choices are (a)

to delete them along with the selected feature or (b) to reassign them to a different

parent with possibly different relationship types. For children that are reassigned, the

Web interface rechecks the validity of all the requires and excludes constraints in the

reattached feature and in all of its descendant features. If there are invalid cross-tree

constraints, the interface displays a warning message beneath the feature with the

incorrect constraint.

Given a correct feature model stored in the database, the Feature Deletion form thus removes

an existing feature while preserving the correctness of the model.

Second, we implemented the interactive Web interface design using appropriate client-

side and server-side programs. The implementation updates the feature model (as encoded
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in the RDB) to accurately reflect the user’s requests while also ensuring that the feature

model stays syntactically and semantically correct (i.e., valid). A key aspect of ensuring

correctness is validation of the data being entered or selected by the user as described above.

The client-side implementation uses HTML5, CSS, JavaScript, jQuery, AJAX, and the

Bootstrap CSS framework. It uses HTML5’s builtin validators to ensure the correctness of

data such as the format of feature names.

The server-side implementation uses PHP and MySQL. This implementation ensures the

following:

• The uniqueness of a feature name.

• The consistency of the relationship types. For example, if attaching a feature to a

group of alternative features, then the user cannot choose an OR relationship, and

vice versa.

• The correctness of the requires relationships. Because the parent, ancestor, and de-

scendant features cannot be required by a feature, these are not provided in the list of

possible features to be displayed by the client-side form.

• The correctness of the excludes relationships. Because the parent, ancestor, and de-

scendant features cannot be excluded by a feature, these are not provided in the list of

possible features to be displayed by the client-side form.

Third, we tested the implementation by using using it to create new features, modifying

existing features, and deleting existing features, including assigning orphan features to new

parents.

In this chapter, we have thus demonstrated that the answer to Research Question 2 is

“Yes”. We have proposed a novel design based on mainstream Web and relational database

concepts. Our design uses three dynamic Web forms that incrementally construct feature

models by interactively gathering information about the features and their relationships from
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the user [117]. These feature models are stored in a relational database designed according to

our approach [116] described in Chapter 3. We have implemented the Web interface design

using mainstream relational database and Web technologies. The implementation validates

its inputs and ensures that the feature model stored in the database is syntactically and

semantically correct at any time.

Chapter 5 introduces the live-preview page, an extension to the Web interface presented

in this chapter. The live-preview page displays the feature model as a directory structure

and allows the user to select a combination of features to customize and configure into a

specific product.
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CHAPTER 5

CONFIGURING VALID PRODUCTS

This chapter addresses specific Research Question 3 from Section 1.3: Can mainstream

Web and relational database technologies be used to configure correct products

corresponding to a feature model?

To answer this question, we show how to represent feature models as composite directory

list controls in Web forms. The list presents all features in a feature model in addition to their

parent-child and cross-tree constraints relationships. The objective of this novel approach

is to interpret the syntax and semantics of feature models (as described in the previous

chapters) and generate Web forms that enable the selection of any valid combination of

features. A form should interactively guide users to configure valid members of the product

family represented by a feature model.

We published preliminary versions of this work in 2017 [116] and 2020 [117].

5.1 Product Configuration in SPL Development Phases

So far, we have primarily considered the upper-left quadrant of Figure 2.3 on page 19:

how to represent the problem space during the domain engineering process. Section 2.2

defined the syntax and semantics of feature models. Chapter 3 followed by demonstrating

how to encode feature models in relational database tables. Then, Chapter 4 demonstrated

how to construct syntactically and semantically correct feature models using Web forms.

The feature model also provides the structure for the domain implementation (i.e., the

upper-right quadrant of Figure 2.3). We plan to address that issue in the future, but it is

beyond the scope of this dissertation research project.
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Using a feature model, how can we address the lower-left quadrant of Figure 2.3, selecting

the product features during the application engineering process? That is, how can we build

a valid software product from the specification of an SPL?

This chapter answers that question by extending the Web interface design given in Chap-

ter 4 with a new live-preview Web form. The content of this new form presents the current

structure of a feature model as a directory list. The form is updated continuously during fea-

ture construction and modification to reflect the changes caused by the user’s activities. This

form also enables the user to configure specific products from a feature model by selecting

features and defining their relationships using the form’s controls.

5.2 Product Configuration

A valid product from an SPL is one that conforms syntactically and semantically to the

SPL’s feature model. The feature model specifies all valid combinations of features. As

described in Chapter 3, our approach encodes a feature model conveniently in a relational

database. Thus the product configuration process must enable application engineers to select

any possible combination of features from the database and then validate the selections made.

5.2.1 Live-Preview Product Configuration Form

As a proof of concept, we developed a Web application that recursively visits each feature

in a feature model, starting from the root node. It interprets the syntax and semantics of

the feature model and generates a live-preview Web form that shows the feature model and

enables the selection of any valid combination of features. The application’s current imple-

mentation uses PHP, MySQL, and SQL on the server side and HTML, CSS, and JavaScript

on the client-side.

Figure 5.1 shows a form generated by the Web interface. This example lists all choices

that are initially available for selection from the Search Engine product line shown in

Figure 3.5. A Web form generated for a feature model shows:
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Figure 5.1. Generated Directory List Representing the Feature Model

• Mandatory features as pre-selected checkboxes because they must exist in every con-

figured product

• Optional features as checkboxes that enable the user to either include that feature in

or exclude it from the configured product

The form in Figure 5.1 shows the checkboxes for the root Search Engine, its mandatory

child feature Document Type, and its mandatory grandchild feature HTML as selected.

The form also shows the checkboxes for the three optional children of the root—Page Pre-

view, Page Translation, and Search Language—and the three optional children of Doc-

ument Type as being available for selection. No other feature is currently shown; they are

not available for selection because they are descendants of optional features.

Figure 5.2 shows the Web form for the Search Engine product line after the user has

selected the File, Image, and Search Language features. The form has expanded the

feature model’s structure to show the controls for the children of the newly selected features,
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Figure 5.2. Expanded Features in Feature Models and Their Relationships
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indenting them appropriately. Note that this specification also includes the checkbox for

the Incognito-Mode feature created in Figure 4.4. The Web form generated for a feature

model shows:

• OR relationships as a group of checkboxes so the user can select one or more child

features from a group

• Alternative relationships as a group of radio buttons so the user can select only one

child feature from the group

As we discussed in Chapter 4, the Web interface for feature model construction checks

for mutual exclusivity of the cross-tree constraints as it builds the model. However, it

cannot detect all semantic errors involving features that might or might not be selected. For

example, consider a feature X that is required by some optional feature A and excluded by

some other optional feature B. Suppose that both features A and B are selected to be in

a particular product. Should feature X be included or excluded? In this case, the product

configuration interface notifies the user of this semantic error and allows the user to modify

this relationship during product configuration. The interface detects this error by checking

the feature’s relationships (stored in RDB tables). If the feature is linked with both the

requires and excludes relationships, then the Web form flags that incident and notifies the

user when configuring the product. It gives the user the choice of selecting either feature A

to require feature X or feature B to exclude it.

A generated Web form does not show the requires and excludes relationships as a part of

the directory list structure. Instead it displays an explanatory message beneath the selected

control, showing a warning message in orange and an error message in red. The intention

of a warning message is to guide the user to make appropriate choices. The intention of an

error message is to alert the user that the configuration is incorrect.

In the Search Engine example, the Search Language feature requires the Page

Translation feature. If a user selects Search Language first, the Web form displays a
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warning message explaining that this feature requires the selection of Page Translation.

If Page Translation is selected first, then the Web form does not show a warning message

because the requires relationship is in one direction.

In the example, the Page Preview feature excludes the SVG feature. In this case, if

the user selects either one, the Web form displays a warning message specifying this rule and

disables the selection of the other feature. The Web form validates the selected choices when

the user clicks the Submit button to submit the configuration. The validation is based on

the feature model’s syntax and semantics as encoded in the database. If the user submits

the configuration while ignoring the warning messages, the system detects this by preventing

the submission and showing the error messages to alert the user that the configuration is

incorrect, thus preventing the user to submit until fixing the error.

5.2.2 Algorithms for Live-Preview Form

Figures 5.3 and 5.4 show the algorithms for interacting with the database tables, fetching

the data, and displaying a Web form as a directory list for product configuration.

The first algorithm, the Product Configuration Algorithm shown in Figure 5.3, has an

input argument that provides the database system credentials. The output is the product

configuration interface shown as a Web form structured as a directory list structure. The

algorithm accesses the database tables that encode the Search Engine product line.

The algorithm starts by verifying the user’s credentials to connect to the database. If

not successful, it throws an exception and exits. If successful, it performs an SQL query

to retrieve the root. The root is a conceptual node programmed to equal Null (i.e., it has

no parent). The feature model’s first feature (i.e., the top node in the tree) is a child of

root. The reason for this extra feature (root) is to help when searching for features (i.e.,

if the feature parent is null, then it’s the top and starting node in the feature model tree).

The algorithm then iterates through the database rows returned and assigns the variable

toFeature to the returned value at line 6. toFeature in this case is the Search Engine
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Web Form Creation to Create a Configured Product
Data: servername, username, password, dbname
Output: Web form constructed from the feature model which is stored in the database

1 connection ← mysqli_connect(servername, username, password, dbname);
2 if !connection then

// wrong credentials
3 return;

4 sql ← “SELECT * FROM featuresRelations WHERE fromFeature = ‘root’ ";
5 result ← mysqli_query(connection, sql);
6 while row ← mysqli_fetch_assoc(result) do
7 toFeature ← row[‘toFeature’];

// call displayfeature algorithm
8 displayfeature(toFeature, ‘root’ ,0 , row[‘relationType’], true);

Figure 5.3. Product Configuration Algorithm

feature.

The algorithm then calls the displayfeature algorithm shown in Figure 5.4. This algorithm

has the following parameters:

• toFeature, the top node feature in the feature model

• startNode, the root conceptual feature (i.e., the parent of the top-level node)

The initial argument is a string "root", which is the parent of the top node.

• depth, the indentation level for displaying the feature

• relationType, the type assigned to the parent-to-child relationship

Initially this is the relationship between the root and the Search Engine concept

node.

• showChildren, a Boolean whose value determines whether to display the feature’s chil-

dren (expand the list) or not (collapse)

The displayfeature algorithm receives the top node data as arguments. It starts by

checking whether the relationType argument is one of the integer values defined in the Re-

lationship table, as shown in Figure 3.7. If the integer passed is 4 or 5, which represent the
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Displaying Feature Model As Directory-List Web Form
Data: toFeature, startNode, depth, relationType, ShowChildren
Output: Feeds Product Configuration Algorithm, shown in Figure 5.3, with proper arguments to

draw features
1 if relationType == 4 OR relationType == 5 then

// Cross-tree constraints.
2 return;

3 Make sure startNode exists in the system;
4 Check if startNode is equal to fromFeature and relationType is requires or excludes;
5 Record relationships to be stored in data attributes for HTML;
6 Record ShowChildren to be used in JavaScript;
7 check relations;
8 if relationType == 1 then

// mandatory feature. Disabled, checked, and its children are shown
9 CSS checked and disabled for HTML element;

10 ShowChildren ← true;

11 if relationType == 2 then
// OR group

12 type ← ‘radio’;

13 type optional is default for optional and alternative features;
14 type ← ‘checkbox’;
15 Indent form element based on depth parameter;
16 echo an HTML div with appropriate info for JavaScript, CSS, and HTML;
17 Use SQL to fetch all from featuresRelations table where fromFeature is equal to startNode;
18 Assign toFeature to fetched result;
19 Increment depth for Form indentation structure;
20 recursive call;
21 displayfeature(toFeature, startNode, depth, row2[‘relationType’], ShowChildren);

Figure 5.4. Display Feature Algorithm
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requires and excludes relationships, respectively. Then the relationship between the parent

and child is a requires or excludes. In this case the algorithm exits with no results because

such features cannot be added to the parent-child structure being constructed.

The algorithm checks whether the startNode passed is a valid feature in the database.

The first feature passed as startNode must be the top node after the root, which is the

Search Engine node. The algorithm then performs recursive calls on children down to the

leaves.

5.3 Evaluation and Conclusion

This chapter addresses Research Question 3 from Section 1.3: Can mainstream Web

and relational database technologies be used to configure correct products corre-

sponding to a feature model? .

This chapter builds on the research reported in the preceding chapters. Chapter 2 defines

traditional feature models. Based on that definition, Chapter 3 presents a design that accu-

rately encodes these feature models in relational database tables. Building on this database

design, Chapter 4 then designed a Web interface that enables users to construct syntactically

and semantically correct feature models and store them in the database.

To answer Research Question 3, this chapter extends the Web interface design from

Chapter 4 with a new live-preview Web form design that supports product configuration. The

content of this new form presents the current structure of the feature model as a directory list.

The form is updated continuously during feature construction and modification to reflect the

changes caused by the user’s activities. This form also enables the user to configure specific

products from the feature model by selecting features and defining their relationships using

the form’s controls.

Given a syntactically and semantically correct feature model stored in the relational

database, a live-preview Web form must have the following properties and behaviors:

• It does not change the feature model.
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• It shows a subset of the features from the feature model and shows all the relationships

among them. It does not show any feature or relationship unless it is in the feature

model.

• Using an HTML directory list, it shows all features from the feature model that have

been selected or deselected for the current product or are currently available for selec-

tion. It does not show any other features or relationships.

Note: As described in the excludes item below, a feature that is excluded by some

selected feature shows as deselected, but it has been deactivated so it is not available

for selection.

• If a parent feature is selected, the form shows all of the parent’s children as selected or

deselected for the current product or as currently available for selection. The top-level

feature is permanently selected.

• It represents a mandatory feature as a checkbox that is permanently selected.

• It represents an optional feature as a checkbox that is initially deselected but that can

be subsequently selected.

• It represents an OR group as a group of checkboxes, all of which are initially deselected.

Each checkbox can be subsequently selected independently of the others in the group.

• It represents an alternative group as a group of linked radio buttons, all of which are

initially deselected. When one of the buttons is selected, the others remain deselected.

One of the radio buttons in the group must be selected to configure a complete product

from the feature model.

• If a selected feature requires another feature, then the form displays a warning message

beneath the feature’s checkbox or button to remind the user about this cross-tree
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constraint. The user must manually select the feature before the configuration can be

completed correctly.

• If a selected feature excludes another feature, then the form displays a warning message

beneath the feature’s checkbox or button to remind the user about this cross-tree

constraint. The excluded feature is deactivated; that is, it shows as deselected, but it

is not available for selection by the user. If the excluded feature is not available to be

deselected, then the form displays a warning message.

• If the same feature is both required and excluded, then the form displays a warning

message and asks the user to resolve this conflict by choosing whether to include the

feature or not.

• When the user triggers the Submit button, the Web interface checks to make sure

the product configuration is complete and correct. If it is not, the interface displays

appropriate error messages and waits for the user to correct the errors. To be complete,

a radio button in every alternative group must be selected, all the requires and excludes

cross-tree constraints must be satisfied, and all conflicts between requires and excludes

resolved.

The product configuration consists of the set of all selected features shown in the form at

the point of a successful submission. Because the form executes according to the above

properties and behaviors, this set of features thus corresponds to a correct product from the

product line represented by the feature model.

Given the above design, we then implement a server-side Web application that traverses

the feature model’s graph and generates the live-preview Web form. The server-side appli-

cation is implemented in PHP and uses SQL to access and manipulate the MySQL database

storing the feature model. The generated (client-side) Web form is implemented in HTML5,

CSS, JavaScript, jQuery, AJAX, and the Bootstrap CSS framework. In addition, it uses
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HTML5’s builtin validators to ensure the correctness of data such as the format of feature

names.

Finally, we tested the implementation using the Search Engine SPL described in Chap-

ter 3 (and pictured in Figure 3.5). We had encoded this feature model in the RDB using

the Web interface from Chapter 4. Two of the live-form examples from the testing appear

in this chapter as Figure 5.1 and Figure 5.2.

In this chapter, we have thus demonstrated that the answer to Research Question 3

is “Yes”. We have designed and implemented a Web form that, given a syntactically and

semantically correct feature model stored in the relational database [116, 117], enables the

user to select any set of features from the feature model that corresponds to a correct

configuration of a product.

76



CHAPTER 6

REPRESENTING FEATURE MODELS IN JSON

This chapter addresses specific Research Question 4 from Section 1.3: Can JSON tech-

nologies be used to represent feature models correctly and enable them to be ex-

changed in textual form?

To answer this question, we explore a novel approach that encodes feature models us-

ing JavaScript Object Notation (JSON) [33, 73]. JSON is a simple, pervasive, machine-

independent, text-based language that is commonly used for transmitting and storing struc-

tured data. Given its prominence in Web applications, most mainstream developers are

familiar with JSON, and it is supported by many libraries and tools.

The contributions of this chapter include:

• How to accurately encode feature models in JSON. Section 6.3 defines the syntax and

semantics of our JSON-encoded feature models.

• How to translate valid RDB-encoded feature models to and from JSON. Chapter 3

encodes feature models in relational database (RDB) tables. Section 6.4 specifies the

algorithms to translate the RDB encoding to and from the JSON encoding.

• How to ensure validity of JSON-encoded feature models while creating, modifying, and

deleting features. Chapter 4 presents algorithms for creating, modifying, and deleting

features using the RDB encoding. Section 6.5 presents similar algorithms for the JSON

encoding. Our approach aims to separate the feature concept from its implementation

by using the JSON notation.
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A preliminary version of this work appears in the proceedings of the ACMSE 2021 conference

[118].

We introduced the CSV encoding in Section 3.3 as a simple exchange format among

database systems. Why introduce a different exchange format in this chapter? CSV files have

a simple, but quite general syntax. The specific syntax and semantics of the CSV encoding

are just assumptions shared by the various programs that read and write that format. The

JSON encoding in this chapter seeks to build on the richer, but still simple, JSON syntax

to encode more syntactic and semantic information about feature models directly into the

document, relying less on the shared assumptions among programs. In the future, we plan to

extend this work to exploit JSON Schema [38, 60, 104] to express the syntax and semantics

of feature models more completely.

Before we look at this research, let us first examine the background concepts and tech-

nologies in Section 6.1 and then define a novel feature model example in Section 6.2.

6.1 JSON in a Nutshell

JavaScript Object Notation (JSON) is a lightweight format designed for human-readable

data interchange [33, 73]. It is a convenient format for publishing and exchanging data, as

it combines the flexibility of the Extensible Markup Language (XML) with data structures

such as records, objects, and arrays [13]. To manage JSON data, users can use schema

languages such as JSON Schema [60], in addition to type abstractions provided by modern

programming and scripting languages such as Swift and TypeScript [13]. Most programming

platforms (e.g., JavaScript, PHP, Python, Ruby, Java, and .NET) also have libraries that

support the parsing and formatting of JSON data.

6.1.1 XML Concepts

For purposes of comparison, consider XML [24, 51], the other well-known data-interchange

language. Both JSON and XML are text-based languages that use Unicode encodings. Both
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have hierarchical structures that can conceptually be interpreted as tree structures with

nodes and edges.

XML is “a metalanguage for creating markup languages” [84]. To design a language in

the XML family, a designer must choose a specific set of names for the language’s elements

and attributes.

A well-formed XML element consists of either (a) an empty-tag or (b) a start-tag fol-

lowed by the corresponding content and end-tag [24]. We can form an XML start-tag by

enclosing its name in a pair of angle brackets (i.e., between characters “<” and “>”). We

can form the corresponding end-tag by adding the character “/” following the opening angle

bracket. For example, the start-tag for an element named “nodeName” is “<nodeName>” and

the corresponding end-tag is “</nodeName>.” The content of the element consists of all the

text (if any) between the start-tag and the end-tag. Any XML elements occurring in the

content must themselves be well-formed. An empty-tag for name “nodeName” has the form

“<nodeName/>”, where the character “/” precedes the closing angle bracket. As the name

implies, an empty-tag has no content.

An XML attribute associates specific properties with an element. An attribute has the

form “name = value”, where “name” is the attribute’s name and “value” is its value. The

name must be a quoted string. A list of zero or more attributes may be added to start-tags

and empty-tags but not to end-tags. The list appears after the element name and before the

closing angle bracket. The order of the attributes in the list has no meaning. However, an

attribute name may appear only once in the list.

Consider the example in Figure 6.1. It shows a list of two customers represented as a

tree. The customers node is the parent of the customer nodes. Each customer node is, in

turn, the parent of the customerID, firstName, lastName, and Email nodes. These children

of the customer nodes have values.

To represent the list from Figure 6.1 using a simple XML language, we can choose the

tree representation’s node names as the element names and choose not to use attributes.
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Figure 6.1. A List of Two Customers Represented as a Tree

<customers >
<customer >

<customerID > 4287644 </customerID >
<firstName > John </firstName >
<lastName > Brown </lastName >
<Email> jb@ir.net </Email>

</customer >
<customer >

<customerID > 6592756 </customerID >
<firstName > Sarah </firstName >
<lastName > Smith </lastName >
<Email> ss@yx.net </Email>

</customer >
</customers >

Figure 6.2. A List of Two Customers Represented as a Tree in XML
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<json> ::= <array> | <object > | <primitive >
<primitive > ::= <string > | <number > | <boolean >

| 'null'
<boolean > ::= 'false' | 'true'
<array> ::= '[' ']' | '[' <seq> ']'
<seq> ::= <json> | <json> ',' <seq>
<object > ::= '{' '}' | '{' <pairlist > '}'
<pairlist > ::= <pair> ',' <pairlist >
<pair> ::= <name> ':' <json>
<name> ::= <string >

Figure 6.3. JSON Syntax in BNF

The snippet in Figure 6.2 shows a possible XML representation of the list. This XML

example includes the XML elements “customers”, “customer”, “customerID”, “firstName”,

“lastName”, and “Email” with three levels of nesting. The elements at the most deeply nested

level have plain text content.

6.1.2 JSON Concepts

Now consider JSON. Like XML, JSON is a textual language for data interchange [33, 73].

Like XML, JSON is a “metalanguage” than can be specialized to represent custom languages

within the larger family of languages. However, unlike XML, JSON has a relatively simple

syntax that should be familiar to most programmers. It is more or less based on a subset of

the JavaScript programming language. The syntax is also easy for machines to parse.

We can express the general syntax of JSON in Backus-Naur Form (BNF) as Figure 6.3

shows, where the lexical tokens <number> and <string> are defined similarly to those in C or

Java. Whitespace can be inserted between any pair of tokens (or at the beginning or the end

of the JSON document). (We constructed this BNF specification from the syntax diagrams

at http://json.org [33].) A JSON document consists of an array, an object, or a primitive

value [33, 73]. A JSON array consists of a sequence of zero or more JSON values enclosed

in square brackets and separated by commas. A JSON object consists of a collection of zero

or more name-value pairs (also called properties) enclosed in curly braces and separated
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{ "customers": {
"customer":

[
{ "customerID": "4287644",

"firstName": "John",
"lastName": "Brown",
"Email": "jb@ir.net"

},
{ "customerID": "6592756",

"firstName": "Sarah",
"lastName": "Smith",
"Email": "ss@yx.net"

}
]

}
}

Figure 6.4. A List of Two Customers Represented as a Tree in JSON

by commas. Each name and its corresponding value are separated by a colon. A name

must be enclosed in a pair of double quotation marks, and it should be unique within the

object’s collection. A JSON value can be any JSON array, object, or primitive value. The

set of primitive types is limited to strings, numbers, Booleans (i.e., “false” and “true”),

and “null”. A string value is a sequence of zero or more characters enclosed in a pair of

double quotation marks. The numbers include both integer and floating point formats.

The code snippet presented in Figure 6.4 represents the list shown in Figure 6.1 in a

JSON format. The JSON document consists of an object having just one name-value pair.

This pair maps the name "customers" to a value that is an array. The array includes two

values, both of which are objects with the same structure. Each object has four name-value

pairs that map the names of fields to their string values.

6.1.3 Comparing JSON and XML

Which is better for our purposes, JSON or XML?

Various researchers compare JSON and XML. For example, Zunke et al. [133] compare
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the performance of the two notations and ul Haq et al. [125] analyze them comprehensively

in the context of Web technologies. The main advantages of XML over JSON are:

• XML is preferable for complex structures and validation. XML is more suited for

applications manipulating various data types [25].

• XML has mature standards for expressing the structure of the document such as XML

schema. These standards enable the XML document to be validated [130].

• The XML schema tools [4] are more mature for document validation than the JSON

Schema tools are [60]. The JSON Schema standard is still in work (at draft 8 [60]) and

thus the tools are experimental.

The advantages of using JSON over XML are:

• JSON is widely supported and requires no use of add-on software libraries [115].

• JSON is less verbose than XML.

• JSON is faster. That is, JSON documents can be parsed quickly and easily compared

with the slow, cumbersome parsing of XML documents.

JSON is simpler than XML. It is a simple, text-based language that represents data

using a nested combination of data structures common to most programming languages,

sets of name-value pairs and sequences of values. It is both readable by humans and easy for

computers to parse and map to and from internal data structures. JSON is thus a convenient

notation for transmitting and storing structured data.

JSON is better supported by client-side Web software than XML. It is essentially a

subset of JavaScript, which is supported by all browsers. By using JSON, we avoid the

need for add-on libraries to access data from a browser’s Document Object Model (DOM).

JSON is estimated to parse up to one hundred times faster than XML in modern browsers

[16, 61]. Given its prominence in Web applications, it is a good choice for our research; most
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mainstream developers are familiar with JSON and it is supported by many libraries and

tools.

For our purposes, JSON has several advantages over XML. So, we tentatively adopt it to

express our feature models as structured text to enable them to be conveniently exchanged

and archived. However, JSON also has several shortcomings that make some aspects of this

research difficult, requiring us to devise workarounds. JSON supports fewer data types than

XML or general purpose programming languages. The JSON Schema is not yet an unam-

biguous, finalized standard, which means that validation programs may not be consistent

in their results for some border cases [104]. It also has mixed support for name uniqueness

specifications. It can specify that the items within an array must be unique, but it does not

support similar specifications for object and property names.

6.2 Raster/Vector Processing Feature Model

In this section, we formulate a new feature model that we use in this and the following

chapters. Figure 6.5 shows an example feature model for a raster/vector image manipulation

SPL. This simple feature model uses the Geospatial Data Abstraction Library (GDAL) and

OpenGIS Simple Features Reference Implementation (OGR) libraries [43] in Python 3.8.

This feature model documents the common and variable aspects of a set of applications de-

veloped by the National Center for Computational Hydroscience and Engineering (NCCHE)

at the University of Mississippi.

Figure 6.5 depicts an SPL with the product line concept RasterVectorProcessing. This

feature indicates the purpose of the SPL. The figure shows a mandatory Library feature with

two children.

• The GDAL library, shown as a mandatory feature, is selected by default.

• The OGR library, shown as an optional feature, can either be selected or not selected

to be in a product.
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Figure 6.5. Feature Model for a Raster/Vector Image Manipulation SPL
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The RasterVectorProcessing image manipulation SPL accepts raster files (as results of

flood simulations) to perform calculations to determine flood hazard risks and potentially

lethal flood zones. For small rasters, the SPL’s GDAL feature includes gdal_calc.py, a

command line raster calculator that uses NumPy [99] array syntax. For larger rasters, the

SPL offers the mandatory ReadingAlgorithm feature for reading raster files. This feature

offers two mechanisms in an OR relationship, enabling the user to select one or both.

• The CustomBlock feature encapsulates an algorithm that determines the best block size

(tile) to read the rows and columns in a raster file, thus enhancing the read/calculate

time.

• The NativeBlock feature uses whatever the raster’s reading mechanism to read column-

by-column, row-by-row, or using the native block size retrieved from the raster band.

The SPL offers an optional Polygonize feature, which converts the calculated raster areas

into polygons and creates a shape file. This feature has four operations from which the user

can select only one, because the children are grouped in an alternative relationship. These

operations edit the shape file.

• DeleteEmptyPolygons deletes empty polygons from the shape file.

• Dissolve dissolves polygons and merges them into one larger polygon.

• AreaCalc calculates the area of a polygon.

• AddFields adds fields (e.g., id, description) to an outputted raster file.

These operations under the Polygonize feature require the OGR library for accessing and

manipulating vector shape files

The SPL also offers an output format through the optional OutputFormat feature, which

has the shape file as a default and two optional features to include PNG and/or JPEG

output files.
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6.3 Encoding Feature Models in JSON

This section presents the chapter’s first contribution: how to accurately encode feature

models in JSON.

The JSON-based language [61] defined in this chapter can serve as a precise medium for

communication of feature models among independent tools and work sites. This language

can allow these to work in isolation from each other and to communicate feature models

among themselves using a portable, text-based format. It can make extending the system

with future tools convenient and provide a system-independent format for archiving feature

models.

Figure 6.6 shows a JSON encoding of part of the feature model from Figure 6.5. In this

encoding, we represent a feature as a JSON object [61] with the following properties:

• id, which is the feature’s unique name string

• type, which is the string mandatory, optional, or root

• parent, which is the feature’s parent’s name string

• relation, which is the string OR, the string alternative, or an empty string

• requires, which is an array of zero or more feature names

• excludes, which is an array of zero or more feature names

• children, which is an array of zero or more feature objects

As we see in Figure 6.6, the outer layer of the JSON structure for a feature model is an

object representing its concept (root) node. This feature always has the value of its type

property set to root, its relation property set to an empty string, and its requires and

excludes properties set to empty arrays (i.e., []). No other feature can have type root. Its

children property is set to an array holding its child features.
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{
"id": "RasterVectorProcessing",
"type": "root",
"parent": "",
"relation": "",
"requires": [],
"excludes": [],
"children": [

{
"id": "Library",
"type": "mandatory",
"relation": "",
"requires": [],
"excludes": [],
"children": [

{
"id": "GDAL",
"type": "mandatory",
"relation": "",
"requires": [],
"excludes": [],
"children": []

},..........
]

},
{

"id": "Polygonize",
"type": "optional",
"relation": "",
"requires": [

"OGR"
],
"excludes": [],
"children": [

{
"id": "DeleteEmptyPolygons",
"type": "optional",
"relation": "alternative",
"requires": [],
"excludes": [],
"children": []

},..........
]}]

}

Figure 6.6. Example of a JSON-encoded Feature Model
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function encodeFM(current_feature)
examine the current_feature in the feature model

let id, type, parent, relation, requires, and excludes
be current_feature's JSON property values

let childrenFM be an array of all the child features
for current_feature

let children be the array of JSON objects resulting
from applying encodeFM to each element of childrenFM

return the JSON-encoded feature model object with the
properties id, type, relation, requires, excludes,
and children as described above

function encode_all(feature_model)
if feature_model is empty then

return '{}'
else

return encodeFM(root_of(feature_model))

Figure 6.7. JSON encodeFM Function

In the JSON encoding, the arrays requires, excludes, and children denote sets. They

cannot have repeated elements.

The feature names in a requires or excludes array must be ids for defined features

that do not have the type mandatory. Mandatory features are preselected and cannot be

deselected when configuring a product. In addition, a feature can neither require nor exclude

one of its ancestors in the feature model.

Now, let us consider how to encode the entire feature model in JSON. We can describe

that process with the recursive function encodeFM defined in Figure 6.7. Function encodeFM

takes an arbitrary feature current_feature from a valid feature model and returns that

feature and all its descendants encoded in the JSON structure described in Figure 6.6. If we

apply the process described by encodeFM function to the top-level feature in a valid feature

model (e.g., as depicted by a valid feature diagram), we can construct the encoding of the

entire model. In Figure 6.7, we show this as the encode_all function. It is easy to see that

the feature model’s JSON encoding (returned by encode_all) is equivalent to the original

feature model.
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A JSON-encoded feature model must conform to the feature model’s syntax and seman-

tics. In the future, we plan to define an appropriate JSON Schema [60, 104] to be able

to validate much of the feature model encoding using standard JSON validators (e.g., Ajv

[105]). However, JSON Schema cannot express some constraints such as the uniqueness of

feature names within the model and the restrictions on the cross-tree relationships. For these

aspects, we expect to need a custom semantic validator.

6.4 Translating Feature Models

This section presents the chapter’s second contribution: how to translate valid RDB-

encoded feature models to and from JSON.

This chapter describes an approach to feature modeling with similar goals to our approach

in Chapter 3. Chapter 3 uses a mainstream relational database (RDB) to encode a feature

model as a directed acyclic graph. For the purposes of this chapter, that design consists of

three tables.

• The feature table defines the set of features, representing each feature by a unique id.

• The featuresRelations table specifies the relationType between features fromFeature

and toFeature. The relation types include hierarchical (mandatory, optional, OR, and

alternative) and cross-tree (requires and excludes) relationships.

• The Relationships table lists the static set of possible relationships between features.

In addition, Chapter 4 specifies algorithms that generate a dynamic, Web-based user interface

that enables users to construct and modify valid RDB-encoded feature models. Similarly,

Chapter 5 specifies algorithms that extend the user interface to enable users to configure

valid products.

This chapter seeks to provide a JSON encoding for feature models that can also serve

as an exchange and archival mechanism for the RDB-encoded feature models. This section

presents this chapter’s second contribution: how to translate valid RDB-encoded feature
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rdbTojsonTranslator
Data: valid RDB-encoded feature model
Output: returns feature and all its descendants encoded in JSON
function encode(feature)
if feature exists in RDB feature model then

// fetch feature’s id from feature table
// fetch id’s parent from toFeature column of featuresRelations table
// fetch type of id-parent relationship from relationType column of

featuresRelations
// collect arrays of id’s requires, excludes, and child feature

relationships from featuresRelations
// call encode on each child feature and collect resulting JSON objects

in children array
// return JSON object with properties id, type, parent, relation,

requires, excludes, children

else
// ERROR (should not occur)

end function

Figure 6.8. RDB-to-JSON Feature Model Translator

models to and from our JSON-encoded models. Together, the two translators enable the

RDB-based and JSON-based tools to be used as a part of an integrated system.

Figure 6.8 sketches the RDB-to-JSON translation algorithm. It is a recursive algorithm

that does a depth-first traversal of the parent-child tree encoded in the RDB. During the

traversal, it gathers information about the tree’s nodes and edges that it subsequently uses

to construct equivalent structures in the JSON-encoded tree.

If we apply the encode function from Figure 6.8 to the root feature of a valid RDB-

encoded feature model, then its return value is a valid JSON-encoded feature model that is

equivalent to the RDB-encoded feature model.

If we assume that a JSON document correctly encodes a valid feature model (e.g., is an

output of the RDB-to-JSON translator), the JSON-to-RDB translator works similarly to the

RDB-to-JSON translator. (We leave the syntactic and semantic validation of JSON-encoded

feature models for future work.) As shown in Figure 6.9, the algorithm traverses the JSON-

encoded tree and gathers information about the tree’s nodes and edges that it subsequently
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jsonTordbTranslator
Data: valid JSON-encoded feature model
Result: adds JSON feature and all its descendants to RDB
procedure decode(feature)
if feature is a valid JSON feature object then

// fetch id, parent, requires, excludes, and children from feature object
// create new row of feature table for id
// create new row of featuresRelations table with id in fromFeature,

parent in toFeature, and type in relationType column
// for each feature A that requires (or excludes) feature B, create new

row in featuresRelations with A in fromFeature, B in toFeature, and
requires (or excludes) in relationType column

// call decode for each object in children array

else
// ERROR (should not occur)

end procedure

Figure 6.9. JSON-to-RDB Feature Model Translator

uses to populate the feature and featuresRelations tables [116]. The Relationships

table is a static table that is the same for all feature models.

If we call the decode procedure from Figure 6.9 with a valid JSON-encoded feature

model as its argument and with an “empty” database, on return the database represents a

feature model that is equivalent to the argument. By an “empty” database we mean that the

feature and featuresRelations tables have no rows and that the Relationships table is

prepopulated with the static definitions of the relationships.

6.5 Manipulating JSON-Encoded Feature Models

This section presents the chapter’s third contribution: how to ensure the validity of

JSON-encoded feature models while inserting, modifying, and deleting features.

In this section, we define operations to create, modify, and delete features. All three

operations preserve the validity of the JSON-encoded feature model. If initiated with a valid

model, each terminates with a valid model that has been updated appropriately. These

JSON operations have the same functionality as the corresponding RDB operations defined

in Chapter 4. In this section, we focus on the algorithm to create a new feature.
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createFeature
Data: name, type, parent, relation, requires, excludes, children

1 newFeatureObj ← {’id’: name, ’type’: type, ’parent’: parent, ’relation’: relation, ’requires’:
requires, ’excludes’: excludes, ’children’: children}

2 if feature is unique then
3 if parent is empty string AND type == ’root’ then
4 numOfKeys ← get number of JSON object’s keys
5 if numOfKeys returns 0 then
6 newFeatureObj ← {’id’: name, ’type’: ’root’, ’relation’: ”, ’requires’: ”,

’excludes’: ”, ’children’: children}
7 write newFeatureObj to to JSON feature model file
8 return

9 if type is ’optional’ or ’mandatory’ AND relation is ’OR’ or ’alternative’ or "" then
10 if if parent is valid feature in feature model then
11 parJSON ← lookup parent object in the JSON structure
12 if parJSON does hasChildren then
13 relationship ← parJSON.children.relation
14 if relationship == relation then
15 desArr ← getDescendants(parJSON, parent)
16 ascArr ← getAscendants(parJSON, parent)
17 mergeArr ← merging ascArr and desArr
18 Push newly created feature’s id and parent to mergerArr
19 requireExclude(requires, ’requires’, mergerArr)
20 requireExclude(excludes, ’excludes’, mergerArr)
21 assign new feature to parent in newFeatureObj

22 else
23 write newFeatureObj to JSON feature model file

Figure 6.10. Operation to Create a Feature

Figure 6.10 shows the feature creation algorithm that adds a new feature to the JSON-

encoded feature model. Its inputs are the properties of a feature object as described in

Figure 6.6.

The operation first verifies that the feature’s name is unique among the defined features.

Then the operation checks whether a parent feature is passed. If a parent is not passed and

the model does not already have a root, then the new feature becomes the root (concept)

node. If a root already exists, then the operation exits with an error. If a parent is passed

and the parent feature exists, then the new feature becomes a regular child feature of that
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getDescendants
Data: parentObj
Output: array of feature descendants up to root

1 listOfChildArray ← get list of parent’s children
2 tempArray ← []
3 for ( item in listofChildArray ) {
4 tempArray.push(item)
5 childObj ← lookup item (child object) in JSON file
6 if child has property .children then

// recursive call for child
7 getDescendants(childObj)

8 return tempArray

Figure 6.11. Algorithm to Get a Feature’s Descendants

parent. If the parent does not exist, then the operation exits with an error. If no error

has occurred, then the operation checks the correctness of the type, relation, and parent

properties passed. If the feature model is empty, the user can leave out the parent property.

If the parent property is passed, the algorithm retrieves the parent object from the

JSON-encoded model to determine what types of relationships exist between the parent and

its children. The operation then checks whether the relationship matches what the user

passes in the relation property. After passing these checks, the operation determines the

newly created feature’s ascendants and descendants by passing the parent object to two

algorithms: getDescendants and getAscendants.

Figure 6.11 shows the getDescendants algorithm. It first stores the child features in an

array. Then, for each item in the array, it checks whether that item has children. If the item

does have children, the algorithm gets that item’s object and then calls itself recursively with

that object as its argument. The algorithm then returns an array that has all descendant

features from the feature being created down to the leaves. The getAscendants algorithm

has similar steps but instead, looks for the property parent instead of children.

The create operation (Figure 6.10) merges the arrays returned by the getAscendants

and getDescendants algorithms and then passes the result to a third algorithm (shown in
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requireExclude
Data: requires or excludes arg, ’requires’ or ’excludes’ as strings, mergerArr
Output: Require or exclude operation gets accepted and updated in JSON structure or an

error is shown
1 for ( item in requires or excludes ) {

// mergerArr contains ascendants, descendants, parent, created feature
2 if feature to get required/excluded not in mergerArr then
3 itemObj ← get feature’s object from JSON structure
4 if itemObj exists in JSON structure then

// check itemObj’s property type to identify if it’s mandatory or
optional

5 if itemObj.type == ’mandatory’ then
// can’t require or exclude mandatory features

6 continue
7 else
8 update properties requires and excludes in newFeatureObj defined in the

creation algorithm

Figure 6.12. Algorithm to Enforce Cross-tree Constraints

Figure 6.12) that enforces the requires and excludes constraints. This algorithm first

iterates through the items in the require (or exclude) argument’s array. If an item is in the

merged array (which holds ascendants, descendants, parent, and the feature being created),

the algorithm skips this item; otherwise, the algorithm continues to process the item. The

next step is to retrieve the item’s object from the JSON structure, if it exists. Then the

algorithm checks the item object’s type property to ensure that no mandatory feature is

required or excluded. If the type property is optional, then the feature to be required or

excluded passes all the checks and the algorithm pushes the update to the JSON structure.

The algorithm skips any item whose type property is mandatory.

The modify operation is similar to the feature creation operation. When modifying a

feature property such as id, type, or relation, the operation applies the same checks that

are applied in feature creation, but no new JSON feature is created and stored. Instead,

the operation first determines whether the feature to be modified actually exists in the

JSON structure. If the feature exists, the operation retrieves its object and then checks
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the id property against the features in the feature model. After completing the requested

modifications (if correct), the operation updates the object and stores it back in the JSON

structure.

The delete operation takes one additional step. If the deleted feature is the root of the

feature model, the operation allows the user to either create another root or delete the whole

feature model. If the deleted feature has children, then the user has the choice of either

assigning the children to another existing feature or deleting the feature along with all its

descendants.

As a proof of concept, we implemented and tested these operations using both Python

3.8 and the JavaScript (ECMAScript 2017) in a Chrome browser version 87.0.4280.88. Both

programs performed these operations on a JSON document that had been deserialized into a

programming language data structure. After each operation, the updated JSON document

was serialized back into an external file.

6.6 Evaluation and Conclusion

This chapter addresses Research Question 4 from Section 1.3: Can JSON technologies

be used to represent feature models correctly and enable them to be exchanged in

textual form?

In this chapter, we demonstrate that the answer is “Yes”. In this research, we first design

the following:

1. A JSON-based language for encoding valid feature models.

In Section 6.3, we define the syntax and semantics for a custom JSON language to

represent “traditional” feature models and design an algorithm to encode a valid feature

model (e.g., as represented by a feature diagram) in the language. We thus argue that

the JSON encoding for the feature model is semantically equivalent to the original

model.
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2. Algorithms to translate a RDB encoding of a valid feature model to the JSON encoding

and vice versa.

In Section 6.4, we design two algorithms for translating back and forth between the

RDB encoding of feature models defined in Chapter 3 and the JSON encoding defined in

Section 6.3. Figure 6.8 defines the RDB-to-JSON translation algorithm and Figure 6.9

the JSON-to-RDB translation algorithm.

Given that both the RDB and JSON encodings are equivalent to the conceptual feature

model, they are also equivalent to each other. To evaluate the RDB-to-JSON conver-

sion algorithm, we argue that it correctly maps from an arbitrary valid RDB-encoded

feature model to the corresponding JSON-encoded feature model. Similarly, to eval-

uate the JSON-to-RDB conversion algorithm, we argue that it correctly maps from

an arbitrary valid JSON-encoded feature model to the corresponding RDB-encoded

feature model.

3. Algorithms for manipulating valid JSON-encoded feature models.

In Section 6.5, we designed algorithms for creating new features and modifying and

deleting existing features in JSON-encoded feature models. These algorithms have the

same functionality as the algorithms given in Chapter 4 for the RDB encoding, except

that these algorithms access the JSON data structure. If we use these algorithms to

implement the Web forms defined in Chapter 4, then the Web forms must have the same

properties and behaviors. Thus, the correctness arguments for the JSON algorithms

are essentially the same as the one given in Section 4.3 for the corresponding algorithm

from Chapter 4.

Second, we implemented the designs for the JSON encoding, the RDB-to-JSON and

JSON-to-RDB translators, and the algorithms for creating, modifying, and deleting features.

We implemented (and tested) these operations using both Python 3.8 and the JavaScript

(ECMAScript 2017) in a Chrome browser version 87.0.4280.88. Both programs perform these
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operations on a JSON document that has been deserialized into a programming language

data structure. After each operation, the updated JSON document is serialized back into an

external file.

Third, we tested the above implementations. We first converted the RDB-encoded Raster-

VectorProcessing feature model (shown in Figure 6.5) to JSON using the RDB-to-JSON

translator. We then converted the JSON encoding back to an RDB encoding using the

JSON-to-RDB translator. We also tested the create, modify, and delete operations by per-

forming the operations on the JSON encoding. The feature model, stored in an external

JSON file, was updated after each operation..

In this chapter, we have thus demonstrated that the answer to Research Question 4 is

“Yes”. We have designed an approach that can encode an arbitrary “traditional” feature

model accurately in a JSON document in a manner that is equivalent to the RDB encoding

defined in Chapter 3. We have also designed and implemented programs that can translate

a valid RDB encoding of a feature model to an equivalent JSON encoding and vice versa.

In addition, we have operations to create, modify, and delete features in a JSON-encoded

feature model.
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CHAPTER 7

ENCODING FEATURE MODELS IN DOCUMENT-ORIENTED DATABASES

This chapter addresses specific Research Question 5 from Section 1.3: Can a document-

oriented NoSQL database be used to accurately encode feature models?

To answer this question, we explore a novel approach that encodes valid feature models

for storage in document-oriented databases and preserves the model’s validity while creating,

modifying, deleting, and extracting information about features. We use MongoDB, a source-

available, cross-platform, document-oriented database system.

A preliminary version of this work appears in the proceedings of the ACMSE 2021 con-

ference [118].

7.1 Document-Oriented Databases in a Nutshell

Since the 1970s, relational databases (RDBs) have been the most prominent approach to

organizing large data collections [128]. Following this approach, in Chapter 3 we describe

how to use the rows and columns of three RDB tables to encode feature models.

However, in recent years, a number of alternative storage structures have emerged. These

are often grouped under the broad term NoSQL [74]. In this chapter, we investigate the

type of NoSQL databases called document-oriented databases. In Chapter 8, we investigate

another type called graph databases.

A document-oriented database (also called a document store) is useful for storing semistruc-

tured data [1, 26] sets—that is, data sets that lack the stable tabular structure needed

by RDBs but exhibit some useful, perhaps evolving, internal structure. For example, a

document-oriented database may be used to store hierarchical structures such as those ex-
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pressed in JavaScript Object Notation (JSON) [33, 73] or Extensible Markup Language

(XML) [24, 51].

In this chapter, we investigate the document-oriented database MongoDB [15, 80], which

stores data in Binary-JSON (BSON) documents with optional schemas. BSON is the binary

representation of JSON-like documents that MongoDB uses to store data. MongoDB orga-

nizes the documents into collections (in contrast to the tables used in RDBs like MySQL);

one database can contain many collections [80]. Our approach encodes a feature model as

BSON documents and manipulates the models using the MongoDB Query Language (MQL).

MQL is a rich query language for fetching and manipulating documents. It includes the

usual CRUD (Create, Read, Update, and Delete) operations plus text search, geospatial,

and other useful queries [80].

A feature model is primarily a tree structure. MongoDB is thus a good choice for rep-

resenting and storing feature models. We can store tree structures in MongoDB using the

following patterns (or data models) [80]:

• Model Tree Structures with Parent References pattern, which organizes the documents

into a tree-like structure with a parent reference associated with each child’s document

• Model Tree Structures with Child References pattern, which organizes the documents

into a tree-like structure with child documents attached to the parent’s document

• Model Tree Structures with Array of Ancestors pattern, which organizes the documents

into a tree-like structure using an array to record the path from the node back to the

root

To represent the hierarchical nature of feature models using MongoDB model tree struc-

tures, we choose to apply the first two patterns, using model tree structures with both parent

and child references. The third pattern, which lists an array of ancestors, is helpful for some

feature model query operations, but it requires that the ancestor array exist at all times.
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This makes importing a complete database difficult. We do that for the experiments in

Chapter 9.

In the following section, we demonstrate that it is possible to encode feature models in

MongoDB databases using the model tree structures it provides.

7.2 Encoding Feature Models in MongoDB

We encode feature models in MongoDB databases using a collection of documents equiv-

alent to the RDB encoding’s featuresRelations table (and, hence, equivalent to the CSV

encoding) defined in Chapter 3. Each document in the collection specifies the same unique

relationship between two features given by a row in featureRelations table (or by a line

in the CSV file). That is, the document corresponds to a directed edge in the conceptual

feature diagram. It consists of the following three properties:

• fromFeature, whose value is a valid feature name string that denotes the “parent”

feature of the relationship

• toFeature, whose value is a valid feature name string that denotes the “child” feature

of the relationship

• relationType, whose value is an integer code in the inclusive range 0 to 5 that denotes

the relationship between and fromFeature and toFeature

The meanings of the relationType values are the same as given in the RDB encoding’s

Relationships table.

Figure 7.1 shows a part of a MongoDB collection that encodes the feature model for

the Raster/Vector Image Manipulation SPL from Figure 6.5. It shows the features Raster-

VectorProcessing and VisualizingData as separate documents. Each document refers to the

other using its parent (fromFeature) or child (toFeature) property while the relationType

property describes the relationship between the child feature and its parent. In the example,

the relationship type 0 indicates that the child is an optional feature. Features connected
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{
fromFeature: "root",
toFeature: "RasterVectorProcessing",
relationType: "1"

}

{
fromFeature: "RasterVectorProcessing",
toFeature: "VisualizingData",
relationType: "0"

}

Figure 7.1. Parent and Child Features’ Documents

together via the requires or excludes relationships are represented in similar documents, with

the relationType set to 4 or 5. Figure 7.2 shows a portion of the feature model for the

Raster/Vector Image Manipulation SPL as displayed by the MongoDB Compass GUI

7.3 Loading and Emptying Feature Models

As noted in Section 7.2, a MongoDB collection that encodes a feature model is equivalent

to the corresponding RDB and CSV encodings, as they are described in Chapter 3. Thus,

we can conveniently import a feature model into MongoDB using the corresponding CSV

file. It can be loaded using the following MQL query:

mongoimport -d dbName -c collectionName
--type CSV --file fileName --headerline

This query is a MongoDB shell command that loads a CSV file into a collection collectionName,

which resides in the database dbName. The command –headerline ensures that the first

line of the CSV file, which contains the headings (field names) is not loaded as a feature

document.

We use the above import operation to load feature models in the experiments in Chap-

ter 9. In the experiments, we also use an operation to empty a MongoDB collection. That

operation can be done with the following query using the MongoDB Compass GUI:

dbName.collectionName.remove( { } )
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Figure 7.2. Features for the Raster/Vector Image Manipulation SPL Stored in MongoDB
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This query drops the collection from the database. If this command runs on MongoDB

shell, then the database that contains the collection must be specified with the command

use dbName. This allows the query to be executed using db.collectionName.remove().

In the following sections, we show how we manipulate feature models using MongoDB

and its query language MQL.

7.4 Creating Features in MongoDB

In this section, we develop algorithms for creating, modifying, and deleting features in

MongoDB similar to the algorithms defined in Section 4.3. These MongoDB algorithms have

the same functionality as the corresponding RDB algorithms except that they access the

MongoDB database using MQL queries instead of the MySQL database using SQL queries.

In this section, we focus on the algorithm to create a new feature.

To add a new feature to a feature model in MongoDB, we need the new feature’s name,

its parent’s name, its relationship type with its parent, its requires list, and its excludes

list. These values must be passed as arguments fName, fParent, relationType, requires,

and excludes, respectively, to the createFeature) algorithm shown in Figure 7.3. This

algorithm specifies how to insert a new feature into the MongoDB-based feature model

encoding.

The createFeature algorithm uses three queries that are done using MQL queries.

1. Checking whether a feature with name fName does not already exist.

We construct the needed MQL query by substituting the feature name for fName in

the following template:

{$or: [
{ fromFeature : fName },
{ toFeature: fName}

]}
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Procedure createFeature(fName, fParent, relationType, requires, excludes)
Ensure that fName doesn't exist in the feature model
Ensure that fParent exists in the feature model
Ensure that relationType matches the parent and its children
Ensure that requires arg not empty
arr1 = fetch all features that have mandatory relationship
arr2 = fetch all ancestors of parent arg
arr3 = concatenate arr1 and arr2 and add fName
let arr4, reqArr = []
foreach item in requires:

if item not in arr3
Append item to reqArr

Ensure that excludes arg not empty
arr4 = concatenate arr3 and reqArr
foreach item in excludes:

if item not in arr4
push item to excArr

insert to the database the document:
{"fromFeature": fParent, "toFeature": fName,
"relationType": relationType}

foreach item in reqArr:
insert to the database the document:

{"fromFeature": fName, "toFeature": item,
"relationType": "4"}

foreach item in excArr:
insert to the database the document:

{"fromFeature": fName, "toFeature": item,
"relationType": "5"}

Figure 7.3. Create Feature in MongoDB
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This MQL query checks whether the feature with the name fName exists either as

a parent (fromFeature) or as a child (toFeature). It uses the MongoDB find()

method to check whether there is a document that contains that property defined in

the template. If the query returns a nonzero value, then the algorithm exits with the

error “feature name already exists”.

2. Checking whether the parent and relationtype arguments are correct.

This can be done using the query template defined in the previous item by replacing

fName with the value of the fParent argument. The relationType value can then be

retrieved from the returned data.

3. Fetching parent’s ancestors. Finding ancestors is a recursive algorithm that takes the

parent feature (fParent) as an argument and returns all the ancestors up to the root

document. We construct the needed MQL query by substituting the parent’s feature

name for fParent in the following template:

{"$and":[
{"toFeature": fParent },
{"relationType": { "$in": [ "0", "1", "2", "3"] }}

]}

This MQL query checks whether there is a document with the parent feature argument

stored as its child while relationType is not equal to requires (4) or excludes (5) since

the parent-child relationships in feature models don’t include cross-tree constraints. If

an ancestor is found, the algorithm stores the ancestor feature along the path and

then calls itself recursively with the toFeature property from the returned document

as the new value for fParent until generating an array of all ancestors from the parent

argument up till root.
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7.5 Generating the Product Configuration Form in MongoDB

The product configuration algorithm follows steps similar to the one shown in Figure 5.4.

The algorithm starts by fetching the top-level document from the feature model by using

the MQL query

{"fromFeature": "root"}

and passing the result to the display feature algorithm. The featuredisplay algorithm

traverses the feature model in a depth-first fashion. It uses the same query to fetch the

children of the current document.

7.6 Evaluation and Conclusion

This chapter addresses Research Question 5 from Section 1.3: Can a document-

oriented NoSQL database be used to accurately encode feature models? In partic-

ular, this chapter uses the document-oriented database system MongoDB.

To answer this question, we first designed a document-oriented MongoDB database to

store an arbitrary “traditional” feature model. This design stores the model in a collection of

MongoDB documents. Each document within the collection consists of the three properties

fromFeature, toFeature, and relationType. It defines “parent” feature fromFeature and

“child” feature toFeature to have the relationship relationType. Within the collection,

any two features have at most one such relationship defined.

Each document in the collection specifies the same kind of unique relationship between

two features that a row in the RDB encoding’s featuesRelations table and a line in the CSV

encoding do (as defined in Chapter 3). Thus, if a MongoDB collection, a featuresRelations

table, and an CSV file all specify the same set of feature-to-feature relationships, then all

encode the same feature model. Moreover, each of these feature-to-feature relationships

corresponds to a directed edge in the conceptual feature diagram. Thus, the encoding of the

feature model in MongoDB is equivalent to the conceptual feature model.
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Given the defined equivalence between the CSV encoding and the MongoDB encoding,

we designed an operation to load a feature model into a MongoDB database from a CSV file.

This operation produces a MongoDB collection that encodes the feature model defined in the

CSV file. We also designed an operation to empty a MongoDB collection, thus removing any

feature model it encodes. Both of these operations are used in the experiments in Chapter 9.

We also designed algorithms for creating new features and modifying and deleting existing

features in MongoDB-encoded feature models. These algorithms have the same functionality

as the corresponding algorithms defined in Chapter 4 for the RDB encoding, except that

the MongoDB database is accessed using the queries defined in Section 7.4. If we used

these algorithms to implement the Web forms defined in Chapter 4, then Web forms must

have the same properties and behaviors. Thus, the correctness arguments for the MongoDB

algorithms are essentially the same as the one given in Section 4.3 for the corresponding

algorithm from Chapter 4.

In addition, we designed an algorithm that traverses the MongoDB-encoded feature

model, determines the relationships and constraints between features, and generates a dy-

namic Web form. The algorithm has the same functionality as the one given in Figure 5.2 for

the RDB encoding, except that the MongoDB database is accessed using the query defined

in Section 7.5. This form enables a user to configure valid products from the SPL. This Web

form must have the same properties and behaviors as the one given in Chapter 5. Thus, the

correctness argument for the MongoDB algorithm is the same as the one given in Section 5.3

for the corresponding algorithm from Chapter 5.

Second, we implemented the MongoDB database design, the operation to load a database

from the CSV file, the operation to empty a database, the algorithms for creating, modifying,

and deleting features, and the algorithm to generate a product configuration form. For most

of these, we developed Python 3.8 programs that access the MongoDB database using the

pymongo driver. For others (such as the empty operation), we used both Python and the

MongoDB Compass GUI.
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Third, we tested the above implementations as a part of the experiments conducted

in Chapter 9. These experiments loaded ten different feature models into the MongoDB

database. For each stored feature model, the experiment created a new feature, generated

the product configuration form, and then emptied the database. We ensured that each

operation behaved as required.

In this chapter, we have thus demonstrated that the answer to Research Question 5 is

“Yes”. We have designed an approach that can encode an arbitrary “traditional” feature

model accurately in a document-oriented MongoDB database in a manner that is equivalent

to the RDB and CSV encodings defined in Chapter 3. We have also designed and imple-

mented operations to load a feature model into a database; empty a database; create, modify,

and delete features in an encoded feature model; and generate a product configuration form

from the encoded model. Furthermore, we have shown that the approach is practical by

using the implementations in the experiments in Chapter 9.

109



CHAPTER 8

ENCODING FEATURE MODELS IN GRAPH DATABASES

This chapter addresses specific Research Question 6 from Section 1.3: Can a graph-

oriented NoSQL database be used to accurately encode feature models?

To answer this question, we explore a novel approach that encodes valid feature models

for storage in graph databases and preserves the model’s validity while creating, modifying,

deleting, and extracting information about features. We use the graph database system

Neo4j [20, 94, 129].

8.1 Graph Databases in a Nutshell

A graph is a collection of nodes (or vertices) and edges connecting nodes. In computer

science, graphs are abstract data types used to represent certain data structures such as

hierarchical data [129]. A graph data structure uses nodes to store data entities and edges

to store relationships between entities. An edge has a start node, an end node, a type, and a

direction. As shown in Figure 8.1, graphs can be directed, where all edges have an associated

a direction, or undirected, where no edge has a direction.

Graphs can be cyclic or acyclic. Cyclic graphs are directed graphs that contain at least

one graph cycle, which is a path from at least one node back to itself. Acyclic graphs are

directed graphs that contain no graph cycles.

In Chapters 3 and 7, we propose designs to represent the hierarchical data of feature mod-

els in relational and document-oriented databases, respectively. Although these approaches

can precisely describe feature models, querying these databases (i.e., traversing a tree) can

be a time-consuming process [128], especially when manipulating large feature models with

thousands of features.
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Figure 8.1. Directed and Undirected Graphs

Figure 8.2. Neo4j Property Graph Concept

A graph database uses a graph structure to represent and store data. It defines nodes to

store data entities and edges to store relationships between entities. A prominent example

is the Network Exploration and Optimization 4 Java (Neo4j) [20, 129]—an open-source,

NoSQL, graph database system created by Neo4j, Incorporated [88]. In this chapter, we

investigate the use of the graph database Neo4j to store and manipulate feature models.

In Neo4j, data are organized in a property graph. The graph shown in Figure 8.2 has the

three Neo4j nodes FR1, FR2, and FR3 representing the data entities of the graph with the two

Neo4j relationships CHILDOF and REQUIRES between them. A Neo4j relationship connects

two nodes and always has a direction. For each Neo4j node and relationship, we can attach

Neo4j properties to give more information about data entities and their relationships. In

Figure 8.2, each node just has one property: id.

Neo4j uses Cypher [87], a rich query language to fetch data from the database. In the

following section, we illustrate how to use Cypher queries to encode feature models in Neo4j
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databases.

8.2 Encoding Feature Models in Neo4j

As described in Chapter 3, a feature model is a directed acyclic graph (DAG) (i.e., a

graph with no cycles) with labelled edges. A node represents a feature and thus has a name

that is unique within the model. A directed edge represents the relationship between the

features at its start and end nodes. It is labelled with the type of relationship that exists

between the two features. The relationship between features may be one of the parent-child

relationships (mandatory, optional, OR, and alternative) or one of the cross-tree constraints

(requires and excludes). The feature model’s DAG has exactly one node, called the root,

that has no incoming edges. All other nodes have exactly one incoming edge labeled with

a parent relationship but may have any number of (including zero) incoming edges labeled

with cross-tree constraints.

The Neo4j database system is designed to store and manipulate graphs. Thus, encoding a

feature model in Neo4j is a relatively straightforward process. It can encode feature models

more directly than can MySQL and MongoDB, in which special data model designs are

needed to store and interpret the hierarchical data.

Consider the RasterVectorProcessing feature model shown in Figure 6.5. To store this

feature model in Neo4j, we design a Neo4j graph structure in which the nodes, relationships,

and properties represent the model’s syntax and semantics. We add a node to the Neo4j

database for a feature name if and only if the same feature name appears in the feature

model. Similarly, we add a relationship to thr Neo4j database if and only if there is a

directed edge of the same type and direction between the same two features in the feature

model.

As we did with the MongoDB encoding in Chapter 7, we use the CSV encoding (and,

hence, the RDB encoding’s featureRelations table) from Chapter 3 as a guide in designing

the Neo4j graph encoding. By doing so, we make it easy to load a feature model into a Neo4j
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database from a CSV file. A line of the CSV encoding (or row of the featureRelations

table) records the unique relationship between two features. We identify this relationship

with three values:

• fromFeature, which is a valid feature name string that denotes the “parent” feature of

the relationship (i.e., the start node of an edge in the DAG)

• toFeature, which is a valid feature name string that denotes the “child” feature of the

relationship (i.e., the end node of an edge in the DAG)

• relationType, which is an integer code in the inclusive range 0 to 5 that denotes the

relationship between and fromFeature and toFeature

The meanings of the relationType values are the same as given in theRelationships table.

There is also a Neo4j relationship linking node fromFeature to node toFeature whose rType

property is set to the relationType value.

In the Cypher query language, there are two ways of creating nodes and relationships:

• The CREATE query creates a distinct new node regardless of whether a previous node

with the same name exists.

• The MERGE clause first checks whether a node with the exists. If it does not already

exist, then it creates it as a distinct new node. If it does already exist, then it creates

a distinct new node as with CREATE.

As we see in next section, the MERGE clause is the key to encoding a feature model accurately.

Suppose we have an arbitrary feature model M. By defining the Neo4j encoding as we do

above, we can see that M’s Neo4j encoding is equivalent to M’s CSV and RDB encodings

(as defined in Chapter 3). Given that M’s CSV and RDB encodings are equivalent to M’s

MongoDB encoding (as defined in Chapter 7), then M’s Neo4j and MongoDB encodings are

also equivalent. All of these encodings of M are also equivalent to M’s conceptual feature
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diagram. We exploit these equivalences and use the CSV encoding to load all three databases

(MySQL, MongoDB, and Neo4j) for the experiments in Chapter 9.

8.3 Loading and Emptying Feature Models

In the operation to load a feature model from a CSV file into Neo4j, we use the MERGE

clause to prevent the duplication of features in the graph. Building a feature model by

loading data from a CSV file with headers fromFeature, toFeature, and RelationType

requires a LOAD statement with three MERGE clauses:

LOAD STATEMENT
MERGE (parent:feature { id: line.fromFeature })
MERGE (child:feature { id: line.toFeature })
MERGE (parent)-[:Relation {rType: line.relationType}]->(child)

The first two MERGE clauses above create a parent and child node, respectively, each of which

has an id property. The third MERGE clause creates the relationship between the parent

and child nodes. This relationship’s direction points from the parent to the child and has a

property rType. This property is an integer value in the inclusive range 0 to 5, which are the

codes for the feature relationships defined in the featuresRelations table from Chapter 3.

Figure 8.3 depicts the RasterVectorProcessing feature model as a Neo4j graph after it

has been loaded from the CSV file using the MERGE clauses above. (The image was created

using the Neoj4 Desktop [94], an application that can create and manipulate Neo4j databases

locally.) For the requires and excludes relationships, the Neo4j relationships point toward

the feature being required or excluded. For example, if A requires B, then the relationship is

A->B.

To empty a database in Neo4j, we use the following query:

"MATCH (n) DETACH DELETE n"

This query deletes all nodes along with their relationships and empties the database.

Note that for performing queries in Neo4j, a targeted database should be started (running)

through the Neo4j Desktop/server in order to perform such operations.
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Figure 8.3. Feature Model for Raster/Vector Image Manipulation SPL in in Neo4j
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In the following sections, we show how we manipulate feature models with Neo4j using

its query language Cypher.

8.4 Creating Features in Neo4j

In this section, we develop algorithms for creating, modifying, and deleting features in

Neo4j similar to the algorithms defined in Section 4.3. These Neo4j algorithms have the

same functionality as the corresponding RDB algorithms except that they access the Neo4j

database using Cypher queries instead of the MySQL database using SQL queries. In this

section, we focus on the algorithm to create a new feature.

The differences between the Neo4j algorithm and the RDB-based algorithm from Chap-

ter 4 are the implementations of the Cypher queries for the checks carried out in the algo-

rithm. These include the following.

• Checking if the new feature name argument exists:

"MATCH (n {id: featureName}) return n"

The MATCH statement is similar to SELECT in SQL. It matches all nodes that has an id

property with the featureName as its value. If the query returns a row of data, the

algorithm exits with an error.

• Checking if the parent argument exists and if the relationType argument matches

the parent’s relationship with its children (if children exist):

"MATCH (p:feature {id: parentName})-[r]->
(feature) return feature.id, r.rType"

The query above does three things. First, the MATCH statement checks if the parent

argument exists (checked with the id property). Second, it searches for children (if they

exist) and returns a list of rows that contains the child features (through feature.id)

along with their relationships’ types with the parent (through r.rType). If the parent
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exists and the relationship argument matches one of the relationships returned, then

the check is passed.

• Finding all mandatory features to be excluded from the requires and excludes con-

straints:

"MATCH (p)-[:Relation {rType: '1'}]->(c:feature) return c"

This query uses the relationship property to search for mandatory features. This can be

identified by the rType property that has a value of ’1’, which indicates a mandatory

feature.

• Finding parent’s ancestors up until the root to be excluded from requires and excludes

constraints:

"MATCH p=()-[:Relation*]->(c:feature {id: parentName})
return p"

This query traverses the graph for any given node and returns a list of ancestors of the

node up until the root. The (*) next to the RELATION statement is a variable-length

pattern matching [90], which can describe the relationships and the intermediate nodes

by specifying a length in the relationship description of a pattern [90]. In this query,

the length is (*) with bounds, which returns a full path.

This query illustrates one advantage of Neo4j over MySQL and MongoDB databases.

To collect the ancestors of a given feature in a feature model encoded in MySQL

or MongoDB requires recursive algorithms and SELECT statements. In Neo4j, this

traversal can be expressed in one query.

8.5 Generating the Product Configuration Form in Neo4j

To generate a product configuration form from a feature model encoded in Neo4j, we

develop an algorithm with similar steps to the algorithm shown in Figure 5.4.
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The differences are in fetching the top node and passing it to the display function and

in fetching the children for each passed feature to the function recursively in a depth-first

search manner.

The first query is fetch the top node:

"MATCH (p {id: 'root'})-[:Relation]->
(c:feature) return c"

This query performs a MATCH statement to find the child of the root conceptual node. It

returns the top feature RasterVectorProcessing, which represents the software product line

concept.

The second query is to fetch the children for a feature:

"MATCH (p:feature {id: featureName})-[r]->
(feature) return feature.id, r.rType"

This query performs a MATCH query on a feature and returns a list of rows containing children

along with their relationship type with the parent feature.

8.6 Evaluation and Conclusion

This chapter addresses Research Question 6 from Section 1.3: Can a graph-oriented

NoSQL database be used to accurately encode feature models? In particular, this

chapter uses the graph database system Neo4j.

To answer this question, we first designed a graph-oriented Neo4j database to store an

arbitrary “traditional” feature model. This design stores the feature model’s directed acyclic

graph straightforwardly as a Neo4j graph. We add a node to the Neo4j database for a feature

name if and only if the same feature name appears in the feature model. We attach the feature

name to the node as the value of its id property. Similarly, we add a relationship to the

Neo4j database if and only if there is a directed edge of the same type and direction between

the same two features in the feature model. We attach the type to the relationship’s rType

property. Thus, the encoding of the feature model in Neo4j is equivalent to the conceptual

feature model.
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Each relationship in the Neo4j graph also specifies the same kind of unique relationship

between two features that a row in the RDB encoding’s featuesRelations table and a line in

the CSV encoding do (as defined in Chapter 3). Thus, if a Neo4j graph, a featuresRelations

table, and an CSV file all specify the same set of feature-to-feature relationships, then all

encode the same feature model.

Given the defined equivalence relation between the CSV encoding and the Neo4j encoding,

we designed an operation to load a feature model into a Neo4j database from a CSV file.

This operation produces a Neo4j graph that encodes the feature model defined in the CSV

file. We also designed an operation to empty a Neo4j database, thus removing any feature

model it encodes. Both of these operations are used in the experiments in Chapter 9.

We also designed algorithms for creating new features and modifying and deleting existing

features in Neo4j-encoded feature models. These algorithms have the same functionality as

the corresponding algorithms defined in Chapter 4 for the RDB encoding, except that the

Neo4j database is accessed using the queries defined in Section 8.4. Thus, the correctness

arguments for the Neo4j algorithms are essentially the same as the one given in Section 4.3

for the corresponding algorithm from Chapter 4.

In addition, we designed an algorithm (similar to the one in Figure 5.4) that traverses the

Neo4j-encoded feature model, determines the relationships and constraints between features,

and generates a dynamic Web form like the one given in Figure 5.2. This form enables a user

to configure valid products from the SPL. This Web form must have the same properties

and behaviors as the one given in Chapter 5. Thus, the correctness argument for the Neo4j

algorithm is the same as the one given in Section 5.3 for the corresponding algorithm from

Chapter 5.

Second, we implemented the Neo4j database design, the operation to load a database from

the CSV file, the operation to empty a database, the algorithms for creating, modifying, and

deleting features, and the algorithm to generate a product configuration form. For most of

these, we developed Python 3.8 programs that access the Neo4j database using the neo4j
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driver. For others (such as the empty operation), we used both Python and the Neo4j

Desktop GUI.

Third, we tested the above implementations as a part of the experiments conducted in

Chapter 9. These experiments loaded ten different feature models into the Neo4j database.

For each stored feature model, the experiment created a new feature, generated the product

configuration form, and then emptied the database. We ensured that each operation behaved

as required.

In this chapter, we have thus demonstrated that the answer to Research Question 6 is

“Yes”. We have designed an approach that can encode an arbitrary “traditional” feature

model accurately in a graph-oriented Neo4j database in a manner that is equivalent to the

RDB and CSV encodings defined in Chapter 3. We have also designed and implemented

operations to load a feature model into a database; empty a database; create, modify, and

delete features in an encoded feature model; and generate a product configuration form from

the encoded model. Furthermore, we have shown that the approach is practical by using the

implementations in the experiments in Chapter 9.
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CHAPTER 9

COMPARING DATABASE FEATURE MODEL ENCODINGS

This chapter addresses specific Research Question 7 from Section 1.3: Which database

system is the best for encoding feature models?

To answer this question, we evaluate the three database encodings for feature models de-

fined in the previous chapters against sets of objective and subjective criteria. In particular,

we consider:

• the relational database (MySQL) encoding from Chapter 3

• the document-oriented database (MongoDB) encoding from Chapter 7

• the graph database (Neo4j) encoding from Chapter 8

We select the criteria carefully to help us determine which encodings are “best” from

various perspectives.

• For the objective evaluation, we define, conduct, and analyze the results from a set of

experiments to determine how well each database encoding performs selected opera-

tions as the feature models increase in size. We give the details beginning in the next

section.

• For the subjective evaluation, we identify several issues of interest to software devel-

opers, evaluate how well each database system handles each issue, and then analyze

the results to determine how suitable each system is for the development of feature-

modelings applications. We give the details in Section 9.4.

To unify the results of the evaluations and answer the research question, we consider a typical

usage scenario for a feature-modeling application in Section 9.5.
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9.1 Setting Up the Experiments

To evaluate the three database encodings objectively, we define ten different feature

models of varying sizes and heights, five different performance tests, and a procedure for

conducting the experiments in this section. In Section 9.2, we present the data we collected

from conducting the experiments.

9.1.1 Feature Models

To test the performance of the database encodings, we define ten feature models. The

smallest is the RasterVectorProcessing feature model defined in Chapter 6 (shown in Fig-

ure 6.5). We also randomly generate nine feature models ranging in size from 500 features

to 24,000 features. We select this range based on feature model sizes found in the literature,

where feature models vary in size. One example of a large feature model is the Linux ker-

nel variability model, which contains 5426 features [119]. Other large real-world examples

include feature models with more than 18,000 features from the automotive industry [64].

Table 9.1 shows the height and number of features, requires, and excludes for the feature

models we use in our experiments.

Model# #Features Height #Requires #Excludes
1 19 3 1 1
2 500 8 15 8
3 1000 6 45 14
4 2000 5 0 0
5 6500 20 341 377
6 10000 8 250 278
7 13000 15 370 302
8 15500 27 412 305
9 18000 45 742 617
10 24000 61 1223 1167

Table 9.1. Feature Models Used in the Experiments

To generate the random feature models, we use a PHP (version 8.0) program running on

an Apache Web server (Win64 version 2.4.46). The program encodes the generated models in
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CSV files as described in Section 3.3. We also encode the RasterVectorProcessing model

in a CSV file.

The experimental procedure loads each feature model from its CSV file into each of

the database encodings for the performance tests to be run. The feature model encodings

and load operations are described in Chapter 3 for MySQL, Chapter 7 for MongoDB, and

Chapter 8 for Neo4j.

9.1.2 Performance Tests

To test the performance of each database encoding, we also define five performance tests.

These include four tests to determine the time required to:

• Load a feature model into the database from a CSV file

• Create a feature and add it to the feature model stored in the database after performing

semantics checks

• Generate a product configuration form by traversing the complete feature model

• Empty the database

We also define a fifth performance test to determine the Size of the database (i.e., the amount

of storage space required).

We choose the five performance tests to be representative of the workloads that occur in

practice. The load and empty tests exercise the database operations used in storing a feature

model. The size test records the space needed to store a feature model in the database. The

create test exercises the database operations used in checking the validity of a new feature and

inserting it into a stored feature model. The generate test exercises the database operations

used in traversing every feature in the feature model to generate a product configuration

Web form. Product configuration is a key aspect of the feature modeling research reported

in this dissertation and an important functionality provided by feature modeling tools.
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We do not elaborate on the create and generate tests here because the corresponding fea-

ture creation and product configuration operations are discussed sufficiently in the database-

specific chapters: relational databases (MySQL) in Chapters 3, 4, and 5; document-oriented

databases (MongoDB) in Chapter 7; and graph databases (Neo4j) in Chapter 8. We imple-

ment the feature creation and product configuration algorithms in Python 3.8 because:

• MySQL supports Python with the mysql.connector driver [7]

• MongoDB supports Python with the pymongo driver [77]

• Neo4j supports Python with the neo4j driver [89]

We implement the database load and empty operations using queries specific to the

database system. The MySQL, MongoDB, and Neo4j operations are described in Chapters 3,

7, and 8, respectively.

9.1.3 Experimental Procedure

The experimental procedure consists of nested loops that iterate over the database en-

codings, feature models, and performance tests. The procedure repeats each performance

test several times and then computes the average and other statistics for the measurements

collected for each test. We define the following parameters for the experimental procedure.

• DB = the collection of database encodings

• FM = the collection of feature models

• PT = the collection of time-based feature model performance tests

• N = the number of repetitions of the test runs

The following pseudocode, expressed in terms of the above parameters, outlines the experi-

mental procedure:
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PROCEDURE(DB,FM ,PT,N):
For each db in DB:

For each fm in FM:
Repeat N times:

For each pt in PT:
Perform pt, measuring time to complete

Compute and record statistics for this run
including mean , minimum , maximum for each pt

As we did for the performance tests, we implement the experimental procedure in Python

3.8 because it is well supported by all three database systems. We measure the time by im-

porting the Python time module and using its time() function. This function returns the

time as a floating point number expressed in seconds since the beginning of the epoch: Jan-

uary 1, 1970, 00:00:00 Coordinated Universal Time (UTC) [110]. For instance, to calculate

the elapsed time for a code fragment, we call the time() function before and after the

fragment, record the two values, and then subtract the first value from the second.

In the procedure description above, the collection PT does not include the size perfor-

mance test. It is performed separately because that information cannot be determined

programmatically for all three database systems.

• For MySQL, we get the size of the database in megabytes (MB) using the SQL query

SELECT table\_schema dbName,
sum( data_length + index_length )/1024/1024
'db size in MB' FROM information_schema.TABLES
GROUP BY table_schema

This query can be executed using the MySQL shell, the GUI, or a Python program via

the mysql.connector.

• For MongoDB, we get the size of the MongoDB collection in bytes by using the Mon-

goDB shell (mongo) function db.CollectionName.stats().storageSize.

• For Neo4j, we calculate the size of the database using other information.
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The Neo4j query language does not provide a query to determine the size of the

database, although the Neo4j Desktop (the database GUI) can determine the size.

The recommended method for calculating the size of a Neo4j graph database is to (1)

count all nodes, relations, and properties, (2) multiply each count by the size of that

entity in bytes, and (3) sum the results [113]. A node takes 15 bytes, a relationship

takes 34 bytes, and a property 41 bytes. So, instead of using a Python program, we

retrieve the graph information for each feature model using the GUI and calculate the

size using an Excel spreadsheet.

9.2 Collecting the Experimental Results

As described in Section 9.1, the experiments involve three types of database encodings,

ten different feature models, and the performance tests load, empty, create, and generate.

For each database encoding, the experimental procedure iterates over the feature models and

then performs the collection of performance tests ten times. For each test, the procedure

measures the time it takes. After all repetitions, the procedure computes the minimum,

maximum, and mean statistics for the collection of measured times.

We thus collect the results of these time-based performance tests in 30 tables. Each of

the tables records the statistics for the load, empty, create, and generate performance tests

on one pairing of a database encoding with a feature model. We examine these tables in the

next three subsections. We present our analyses of the results, including plots of the data,

in Section 9.3.

We perform the size performance tests for the database encodings separately from the

time-based tests. The results of these tests are given in Section 9.2.4. Table 9.32 records the

disk space needed to store each feature model for each of the three database encodings.

We conducted the experiments in the following execution environment:

• Intel® CoreTM i7-6650U processor with 4 megabytes (MB) of cache and 16 gigabytes

(GB) of RAM
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• Samsung MZFLW256HEHP-000MV solid state drive (SSD) 256GB with a sequen-

tial write rate of 314.9 megabytes per second (MB/sec), sequential read rate of 723.6

MB/sec, and sequential mixed rate of 303.9 MB/sec.

• Windows 10 Pro operating system version 2004

• MariaDB (a fork of MySQL) version 10.4.17 (in the XAMPP 8.0.0 development envi-

ronment)

• MongoDB version 4.4.2 (including Compass)

• Neo4j version 4.1.3 (including Desktop)

• Python 3.8 with the drivers mysql.connector [100] for MySQL, pymongo [48] for

MongoDB, and neo4j [89] for Neo4j

9.2.1 MySQL Results

For the MySQL-based feature model encoding, the experimental procedure ran the per-

formance tests load, empty, create, and generate on each of the ten feature models ten times

and measured the time needed to complete the test. It then computed the minimum, maxi-

mum, and mean values of the times. The statistics for each feature model are given in the

following tables:

1. Table 9.2 for the Raster/Vector Image Manipulation SPL defined in Chapter 6, which

has 19 features

2. Table 9.3 for the feature model with 500 features

3. Table 9.4 for the feature model with 1000 features

4. Table 9.5 for the feature model with 2000 features

5. Table 9.6 for the feature model with 6500 features
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6. Table 9.7 for the feature model with 10,000 features

7. Table 9.8 for the feature model with 13,000 features

8. Table 9.9 for the feature model with 15,500 features

9. Table 9.10 for the feature model with 18,000 features

10. Table 9.11 for the feature model with 24,000 features

Analyses and plots of the data for each performance test are given in Section 9.3.

Test Minimum Maximum Mean
Load 0.001994 0.012335 0.006917
Empty 0.068674 0.137555 0.087411
Create 0.000996 0.016715 0.004163
Generate 0.004979 0.006981 0.006170

Table 9.2. MySQL Test Times in Seconds for Feature Models with 19 Features

Test Minimum Maximum Mean
Load 0.009301 0.018071 0.011589
Empty 0.063812 0.121399 0.079190
Create 0.016438 0.020461 0.018759
Generate 0.272952 0.296449 0.288086

Table 9.3. MySQL Test Times in Seconds for Feature Models with 500 Features

Test Minimum Maximum Mean
Load 0.016954 0.060831 0.025431
Empty 0.065823 0.150595 0.088861
Create 0.001994 0.006979 0.003789
Generate 0.749706 0.844134 0.780360

Table 9.4. MySQL Test Times in Seconds for Feature Models with 1000 Features
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Test Minimum Maximum Mean
Load 0.026928 0.030917 0.028324
Empty 0.064826 0.175531 0.084973
Create 0.002991 0.004986 0.004529
Generate 2.229544 2.419636 2.280450

Table 9.5. MySQL Test Times in Seconds for Feature Models with 2000 Features

Test Minimum Maximum Mean
Load 0.084774 0.210049 0.125500
Empty 0.058842 0.097710 0.071633
Create 0.043455 0.062836 0.052017
Generate 9.454666 10.275765 9.594424

Table 9.6. MySQL Test Times in Seconds for Feature Models with 6500 Features

Test Minimum Maximum Mean
Load 0.130561 0.268377 0.154142
Empty 0.067025 0.182787 0.090511
Create 0.046760 0.075539 0.053453
Generate 29.882542 43.839573 33.115606

Table 9.7. MySQL Test Times in Seconds for Feature Models with 10,000 Features

Test Minimum Maximum Mean
Load 0.189491 0.364410 0.232332
Empty 0.060837 0.128081 0.082952
Create 0.013002 0.024932 0.017807
Generate 85.923167 149.575551 110.274189

Table 9.8. MySQL Test Times in Seconds for Feature Models with 13,000 Features

Test Minimum Maximum Mean
Load 0.193652 0.375610 0.280743
Empty 0.060830 0.178522 0.089541
Create 0.015955 0.033907 0.024135
Generate 113.723715 165.636194 152.582528

Table 9.9. MySQL Test Times in Seconds for Feature Models with 15,500 Features

Test Minimum Maximum Mean
Load 0.196885 0.275901 0.222032
Empty 0.072550 0.208823 0.096513
Create 0.017201 0.022192 0.018369
Generate 142.851873 172.387218 152.738201

Table 9.10. MySQL Test Times in Seconds for Feature Models with 18,000 Features
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Test Minimum Maximum Mean
Load 0.209529 0.379513 0.250805
Empty 0.067095 0.232254 0.120001
Create 0.021827 0.031912 0.025261
Generate 227.475839 260.394062 237.876649

Table 9.11. MySQL Test Times in Seconds for Feature Models with 24,000 Features
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9.2.2 MongoDB Results

For the MongoDB-based feature model encoding, the experimental procedure procedure

ran the performance tests load, empty, create, and generate on each of the ten feature models

ten times and measured the time needed to complete the test. It then computed the min-

imum, maximum, and mean values of the times. The statistics for each feature model are

given in the following tables:

1. Table 9.12 for the Raster/Vector Image Manipulation SPL defined in Chapter 6, which

has 19 features

2. Table 9.13 for the feature model with 500 features

3. Table 9.14 for the feature model with 1000 features

4. Table 9.15 for the feature model with 2000 features

5. Table 9.16 for the feature model with 6500 features

6. Table 9.17 for the feature model with 10,000 features

7. Table 9.18 for the feature model with 13,000 features

8. Table 9.19 for the feature model with 15,500 features

9. Table 9.20 for the feature model with 18,000 features

10. Table 9.21 for the feature model with 24,000 features

Analyses and plots of the data for each performance test are given in Section 9.3.
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Test Minimum Maximum Mean
Load 0.025928 0.057845 0.033585
Empty 0.008975 0.037898 0.014859
Create 0.002991 0.020943 0.007580
Generate 0.000995 0.000999 0.000997

Table 9.12. MongoDB Test Times in Seconds for Feature Models with 19 Features

Test Minimum Maximum Mean
Load 0.030917 0.065200 0.042423
Empty 0.008975 0.014959 0.012199
Create 0.006982 0.012964 0.009578
Generate 0.309173 0.394088 0.340311

Table 9.13. MongoDB Test Times in Seconds for Feature Models with 500 Features

Test Minimum Maximum Mean
Load 0.041278 0.055528 0.044493
Empty 0.008203 0.014144 0.010425
Create 0.009978 0.013103 0.011318
Generate 1.117192 1.350086 1.230210

Table 9.14. MongoDB Test Times in Seconds for Feature Models with 1000 Features

Test Minimum Maximum Mean
Load 0.056850 0.065632 0.059075
Empty 0.009248 0.019647 0.011115
Create 0.003766 0.006981 0.004672
Generate 2.724871 2.946841 2.824609

Table 9.15. MongoDB Test Times in Seconds for Feature Models with 2000 Features

Test Minimum Maximum Mean
Load 0.133007 0.175335 0.148040
Empty 0.009266 0.016313 0.011973
Create 0.026670 0.037415 0.029049
Generate 12.099744 12.778247 12.400493

Table 9.16. MongoDB Test Times in Seconds for Feature Models with 6500 Features

Test Minimum Maximum Mean
Load 0.190235 0.245325 0.208793
Empty 0.009838 0.017073 0.012191
Create 0.040402 0.043981 0.041824
Generate 35.283151 48.529585 39.553670

Table 9.17. MongoDB Test Times in Seconds for Feature Models with 10,000 Features
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Test Minimum Maximum Mean
Load 0.265323 0.342685 0.288418
Empty 0.009594 0.019411 0.014130
Create 0.016253 0.030916 0.019787
Generate 91.386352 158.888846 103.543996

Table 9.18. MongoDB Test Times in Seconds for Feature Models with 13,000 Features

Test Minimum Maximum Mean
Load 0.301629 0.340774 0.316446
Empty 0.009513 0.021008 0.011433
Create 0.063110 0.080366 0.068223
Generate 124.309522 171.399285 129.508539

Table 9.19. MongoDB Test Times in Seconds for Feature Models with 15,500 Features

Test Minimum Maximum Mean
Load 0.343081 0.409188 0.375360
Empty 0.009763 0.022586 0.013922
Create 0.019912 0.036864 0.022385
Generate 171.974277 220.431957 188.721628

Table 9.20. MongoDB Test Times in Seconds for Feature Models with 18,000 Features

Test Minimum Maximum Mean
Load 0.426939 0.479269 0.448579
Empty 0.008906 0.013278 0.010428
Create 0.081581 0.087570 0.084208
Generate 261.150933 307.459409 266.890339

Table 9.21. MongoDB Test Times in Seconds for Feature Models with 24,000 Features
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9.2.3 Neo4j Results

For the Neo4j-based feature model encoding, the experimental procedure procedure ran

the performance tests load, empty, create, and generate on each of the ten feature models ten

times and measured the time needed to complete the test. It then computed the minimum,

maximum, and mean values of the times. The statistics for each feature model are given in

the following tables:

1. Table 9.22 for the Raster/Vector Image Manipulation SPL defined in Chapter 6, which

has 19 features

2. Table 9.23 for the feature model with 500 features

3. Table 9.24 for the feature model with 1000 features

4. Table 9.25 for the feature model with 2000 features

5. Table 9.26 for the feature model with 6500 features

6. Table 9.27 for the feature model with 10,000 features

7. Table 9.28 for the feature model with 13,000 features

8. Table 9.29 for the feature model with 15,500 features

9. Table 9.30 for the feature model with 18,000 features

10. Table 9.31 for the feature model with 24,000 features

Analyses and plots of the data for each performance test are given in Section 9.3.
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Test Minimum Maximum Mean
Load 0.029920 1.507966 0.189593
Empty 0.012965 0.042885 0.020246
Create 0.060838 0.720073 0.137232
Generate 0.051862 0.169544 0.087965

Table 9.22. Neo4j Test Times in Seconds for Feature Models with 19 Features

Test Minimum Maximum Mean
Load 0.060532 0.093185 0.072242
Empty 0.012804 0.024150 0.015956
Create 0.008009 0.046874 0.014309
Generate 0.787748 0.954446 0.872124

Table 9.23. Neo4j Test Times in Seconds for Feature Models with 500 Features

Test Minimum Maximum Mean
Load 0.221351 0.268822 0.231621
Empty 0.018796 0.024894 0.021524
Create 0.008863 0.020945 0.010660
Generate 1.916304 2.111225 1.968274

Table 9.24. Neo4j Test Times in Seconds for Feature Models with 1000 Features

Test Minimum Maximum Mean
Load 0.693919 0.759823 0.725667
Empty 0.029720 0.036664 0.033966
Create 0.056267 0.196119 0.072811
Generate 3.670924 4.155175 3.886160

Table 9.25. Neo4j Test Times in Seconds for Feature Models with 2000 Features

Test Minimum Maximum Mean
Load 10.253567 11.788021 10.919712
Empty 0.076301 0.097736 0.083201
Create 0.010961 0.037795 0.015276
Generate 9.923098 11.655733 10.547466

Table 9.26. Neo4j Test Times in Seconds for Feature Models with 6500 Features

Test Minimum Maximum Mean
Load 26.036468 28.616515 27.324511
Empty 0.121134 0.183801 0.139862
Create 0.013711 0.036901 0.020672
Generate 25.613209 29.345878 27.395161

Table 9.27. Neo4j Test Times in Seconds for Feature Models with 10,000 Features
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Test Minimum Maximum Mean
Load 52.354977 61.173256 57.922738
Empty 0.228389 0.588427 0.319346
Create 0.134256 0.881606 0.252533
Generate 62.268842 76.526353 66.337345

Table 9.28. Neo4j Test Times in Seconds for Feature Models with 13,000 Features

Test Minimum Maximum Mean
Load 84.520338 121.792918 99.218970
Empty 0.217852 0.311166 0.264296
Create 0.136768 0.759222 0.274160
Generate 83.571676 87.650565 85.020761

Table 9.29. Neo4j Test Times in Seconds for Feature Models with 15,500 Features

Test Minimum Maximum Mean
Load 102.861199 118.050459 105.977191
Empty 0.244262 0.346071 0.296565
Create 0.117670 0.269819 0.160748
Generate 92.617326 96.710604 94.717800

Table 9.30. Neo4j Test Times in Seconds for Feature Models with 18,000 Features

Test Minimum Maximum Mean
Load 167.643698 183.148403 173.797135
Empty 0.329170 0.429861 0.364161
Create 0.015922 0.042856 0.025865
Generate . 156.859509 162.810076 159.988004

Table 9.31. Neo4j Test Times in Seconds for Feature Models with 24,000 Features
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9.2.4 Database Size Results

The size performance test calculates the space required for a feature model. We ran the

test on each of the ten feature models and measured the total space required in megabytes.

Table 9.32 shows the results after calculating the sizes for the ten feature models for each

database encoding.

Model# Size MySQL MongoDB Neo4j
1 19 0.015625 0.019531 0.002883
2 500 0.046875 0.023438 0.065370
3 1000 0.078125 0.035157 0.134157
4 2000 0.109375 0.046875 0.250135
5 6500 0.296875 0.125012 0.852258
6 10000 0.484375 0.195313 1.368162
7 13000 0.645881 0.230468 1.711436
8 15500 0.801005 0.269530 2.020330
9 18000 0.947225 0.324219 2.488201
10 24000 1.515625 0.402344 3.083975

Table 9.32. Storage in Megabytes for Each Database Encoding and Feature Model

An analysis and plot of the data for this performance test are given in Section 9.3.

9.3 Analyzing the Performance Test Results

Section 9.2 presents the results of our experiments. We conducted experiments on three

different database encodings (MySQL, MongoDB, and Neo4j) using ten different feature

models of varying sizes. For each database encoding and feature model, we performed four

different time-based performance tests (load the database, empty the database, create and

insert a new feature, and generate the product configuration form). We repeated each test ten

times and computed the mean time for the test to complete. For each database encoding and

feature model, we also performed a space-based performance test to determine the database

size.

In this section, we analyze the results of our experiments. We seek to determine how

the various database encodings perform on each performance test as the size of the feature
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model increases. We show five plots, one for each of the performance tests. Each plot shows

the ten feature models in increasing size along the x-axis and time (or space) in increasing

value along the y-axis.

9.3.1 Load Performance Tests

Figure 9.1 shows a plot of the results of conducting the Load performance tests for the

three database encodings and ten feature models. For each database encoding and feature

model, it shows the mean time (in seconds) taken to load a feature model that is encoded

in a CSV file.

Figure 9.1. Combined Results for the Load Performance Tests

From the tables in Section 9.2 and the plot, we observe that all tested feature models

load into both MySQL and MongoDB in less than 0.5 seconds, with only a slight increase

as the feature model size increases. A feature model loads into MySQL slightly faster than

the corresponding model loads into MongoDB.

Neo4j performs differently. In tests of feature models up to 2000 features, it loads the

models in less than 0.75 seconds, slower than the other two database systems but not pro-
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hibitively so. However, the time begins to grow explosively beginning with the feature model

of size 6500.

Why does Neo4j perform so poorly as the feature models increase in size? As discussed in

Chapter 8, the poor performance seems to result from how we must construct the Neo4j graph

database from the set of feature-to-feature (i.e., node-to-node) relationships in the feature

model’s CSV encoding. If we naively use the fast CREATE statement in Neo4j’s Cypher query

language to create the Neo4j nodes, a feature with M relationships with other features (e.g.,

with several child or required/excluded features) would be created as M separate nodes in

the graph. Instead we must use the MERGE clause to create the nodes without duplication.

In Neo4j, query evaluation is usually lazy. That is, “most operators pipe their output rows

to their parent operators as soon as they are produced” [94]. Thus, “a child operator may

not be fully exhausted before the parent operator starts consuming the input rows produced

by the child” [94]. The parent and child operators can execute concurrently and the child

operators can be stopped as soon as no further output is needed.

However, some query evaluation must be done in an eager fashion. If an operator needs

“to complete execution in its entirety” [94] before its result can be used by its parent, then

it must be executed eagerly. Such operations may result in high memory usage [94] as

well as losing the advantages of laziness. Examples of eager operators include sorting and

aggregation.

If a CREATE statement has a MERGE clause, then the MERGE must complete before the

CREATE can be executed. The operation to load a Neo4j database from a CSV file involves

three MERGE clauses as defined in Section 8.3). So, as the size of the feature model gets

large, the load operation becomes slow.

If being able to quickly load a feature model from an external CSV file is a significant

factor in the choice of feature model storage, then both MySQL and MongoDB seem to be

good choices regardless of the size of the feature model. Neo4j is also acceptable for a modest

size feature model of a few thousand nodes, but its performance deteriorates for larger feature
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models. However, we do not expect that the load time for a feature model is typically a

significant factor in most practical situations. We expect feature models to be loaded once

and then used repeatedly for other operations such as generating product configuration

forms. Alternatively, a feature model may be constructed and modified incrementally rather

than loaded all at once.

9.3.2 Empty Performance Tests

Figure 9.2 shows a plot of the results of conducting the Empty performance tests for the

three database encodings and ten feature models. For each database encoding and feature

model, it shows the mean time (in seconds) taken to execute the test.

Figure 9.2. Combined Results for the Empty Performance Tests

From the tables in Section 9.2 and the plot, we observe that MongoDB required less than

0.02 seconds to empty a database for all the feature models we tested, regardless of size.

Emptying a feature model in MySQL was slower, taking approximately 0.1 seconds, with

perhaps a slow increase beginning with the feature model of size 13,000.

Again, Neo4j performs differently. In tests of feature models up to 2000 features, it takes
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more time than MongoDB but less than MySQL. However, with a feature model size of 6500,

Neo4j’s time exceeds the time for MySQL and continues to grow erratically as the size of

the feature model increases. It has an odd spike in the time requirement for the model of

size 13,000 before decreasing and beginning to grow again. However, it is important to note

that even with the model of size 24,000, the empty time is still less than 0.4 seconds.

Emptying a Neo4j database often exhibits irregular behaviors. For instance, sometimes

a larger feature model (e.g., the size 15,500 model in our experiments) can take less time

than a smaller one (e.g., the size 13,000 model).

In Neo4j research discussions, the recommended way to empty a database is “to stop the

database, delete the graph store (data/graph.db (pre v3.x) or data/databases/graph.db

(3.x forward) or similar) directory, and start the database” [52]. These steps cause Neo4j to

build a fresh and empty database.

Another process recommended for emptying databases with 100,000 or more nodes is to

use the Awesome Procedures for Neo4j (APOC) library [57], which provides many useful

support procedures for Neo4j database querying. We installed APOC as a Neo4j Desktop

plugin and edited the Neo4j configuration file to cause it to be activated and loaded. We

loaded and deleted a database using APOC. However, this procedure did not yield a signifi-

cant difference in the time because our largest feature models are considerably smaller than

100,000 nodes.

If being able to quickly empty a database is a significant factor in the choice of feature

model storage, then both MongoDB and MySQL seem to be good choices regardless of the

size of the feature model. Neo4j behaves more erratically, but even with a feature model of

24,000 features, its performance is likely not prohibitive. However, we do not expect that the

empty time for a feature model is typically a significant factor in most practical situations.
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9.3.3 Create Performance Tests

Figure 9.3 shows a plot of the results of conducting the Create performance tests for the

three database encodings and ten feature models. For each database encoding and feature

model, it shows the mean time (in seconds) taken to execute the test.

Figure 9.3. Combined Results for the Create Performance Tests

From the tables in Section 9.2 and the plot, we observe that the time to create a feature

and add it to the feature model stored in a database is generally smaller in MySQL and

MongoDB than in Neo4j. The times increase slightly as the feature models get larger. All

three database systems have somewhat erratic behavior, but Neo4j seems much more erratic

than the others. However, all of the create times are quite small regardless of feature model

size—no more than 0.3 seconds in the worst cases.

As is evident from a few discussions archived on the Neo4j community websites and

Stackoverflow.com, the minor timing differences observed for Neo4j are expected for re-

quests to the Neo4j server from the Neo4j Desktop. Neo4j uses caching and thus the first

few queries have irregular times because of the need “to warm up the cache” [123]. The

Cypher compiler caches the execution plan for the Cypher queries (i.e., caches queries it has
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processed before). However, when a query is seen again, the Neo4j-Shell gives better timing

results.

Also, as we noted in the discussion of the load performance test, the use of the CREATE

statement with MERGE clauses can also slow down the creation and insertion of new features.

In future work, it may be useful to experiment with sequences of creation, modification,

and deletion operations drawn from a more diverse workload. This may yield additional

useful data about the performance, especially of Neo4j.

If being able to quickly create and insert a feature is a significant factor in the choice of

feature model storage, then both MongoDB and MySQL seem to be good choices regardless

of the size of the feature model. Neo4j behaves more erratically, but even with the larger

feature models its performance is still quite acceptable and may improve as the “cache warms

up”. Although the Web interface does involve feature creation, modifications, and deletion,

it does its work incrementally. Thus, it only needs a few such operations at a time.

9.3.4 Generate Performance Tests

Figure 9.4 shows a plot of the results of conducting the Generate performance tests for the

three database encodings and ten feature models. For each database encoding and feature

model, it shows the mean time (in seconds) taken to execute the test.

From the tables in Section 9.2 and the plot, we observe that for feature models up to

size 6500 all database systems perform similarly, with Neo4j usually taking more time than

MySQL and MongoDB. However, the time for the generate test increases significantly in

the range between 6500 and 10,000 features. Beyond 10,000, all seem to increase more

or less linearly, but MySQL and MongodB increase with steeper slopes than Neo4j. (The

performance of MySQL seems a bit erratic, but still is more or less linear overall.) Neo4j

generates the form more quickly for larger feature models.

The test to generate the product configuration does not modify the feature model. Its

functioning relies heavily on traversals of the graph. As we expected, the graph-based
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Figure 9.4. Combined Results for the Generate Performance Tests

database system performs significantly better in these kinds of operations than in opera-

tions that modify the feature model.

If being able to quickly generate a product configuration Web form is a significant factor

in the choice of feature model storage, then any of the models perform reasonably for models

up to about size 6500. However, Neo4j performs significantly better as the models grow

beyond size 10,000. Thus, Neo4j is a good choice for feature models of any size.

9.3.5 Size Performance Tests

Figure 9.5 shows a plot of the results of conducting the Size performance tests for the

three database encodings and ten feature models. For each database and feature model, it

shows the size of the database’s storage requirements in megabytes.

From Table 9.32 and the plot, we observe that the storage requirements (size) of the three

database encodings grow approximately linearly with the size of the feature model. This is

what we would expect. The MongoDB line has the shallowest slope and, hence, grows more

slowly than the others. The MySQL line has a steeper slope, and the Neo4j line has the

steepest slope of the three.
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Figure 9.5. Combined Results for the Size Performance Tests

For the feature model with 24,000 nodes, MongoDB requires about 0.4 MB, MySQL

about 1.5 MB, and Neo4j about 3.1 MB. MongoDB requires just 13 percent of the space

that Neo4j does. We note, however, that the Neo4j database’s size is a calculated value while

the other two are measured, so this may not be a totally fair comparison. We also note that

these storage requirements just include the essential aspects of the feature model; they do

not include the full amount of storage needed for code, build scripts, and other metadata in

a practical system.

If keeping the database storage requirement small is a significant factor in the choice of

feature model storage, then MongoDB seems to be the best choice by far. However, the stor-

age requirements for MySQL and Neo4j do not seem prohibitive when using contemporary

systems with large, fast disks or solid state drives (such as the 256 gigabyte drive we used

for our testing).

9.3.6 Performance Test Analysis Summary

We summarize the analysis of the performance test results on the three different database

encodings as follows:
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• MySQL and MongoDB both perform well on the feature model load test, regardless of

the size of the feature model. Neo4j performs poorly as the feature model gets larger

than 6500 features, likely because of the use of the MERGE clauses to merge new features

and relationships into the feature model’s graph.

• Regardless of the size of the feature model, MongoDB performs the best of the three

on the feature model empty test, with MySQL also performing acceptably. However,

Neo4j’s performance deteriorates for feature models larger than 10,000 features.

• MySQL and MongoDB both perform well on the create test, regardless of the size of

the feature model. Neo4j’s performance is more erratic, likely because of the effects of

query caching.

• For feature models larger than 10,000 features, Neo4j performs the best of the three

on the test to generate a product configuration Web form. For smaller feature models,

all three perform similarly.

• As shown in the size test, MongoDB is by far the most efficient in its use of storage

space. It is followed by the less efficient MySQL, which, in turn, is followed by the

even less efficient Neo4j.

In practical situations, we do not expect the small performance differences among the

database encodings on the empty and create operations to be significant. We do not expect

the emptying of a database to be a frequently occurring operation. For a Web interface such

as the one presented in Chapter 4, operations like the create test do occur, but execution

times of no more than 0.3 seconds should not degrade the Web interface’s response time

noticeably.

MySQL and MongoDB have excellent performance on the load performance test. What

about Neo4j as the size of the feature model gets large?
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One large feature model discussed in the scientific literature is the Linux kernel variability

model [119], which has 5426 features. Consider the “large” feature model with 6500 features

used in this experiment, which is close in size to the Linux kernel variability model. It has a

height of 20, irregular branches where some paths are longer and contain more features than

others, 341 features required by other features, and 377 features excluded by other features.

Neo4j takes approximately 12 seconds to load this feature model from a CSV file. Given that

we expect the loading of a feature model from an external file to be an infrequent operation,

a 12-second load time is not a substantial issue for most applications.

Other large feature models discussed in the scientific literature have 18,000 or more

features [64]. Consider the “huge” feature model with 18,000 features used in this experiment.

Neo4j takes approximately 106 seconds to load this feature model from a CSV file. If the

load operation must be performed frequently, Neo4j’s performance becomes problematic.

However, if this operation is seldom performed, then Neo4j’s performance for other operations

may lessen the effect of the long load times.

Neo4j is built around the concept of a graph, directly storing the relationships between

entities. As a graph database, Neo4j is optimized for operations that navigate through the

entities and relationships of a graph. Feature models are essentially directed acyclic graphs,

so some of our operations on feature models can exploit these capabilities of Neo4j (e.g.,

for finding ancestors or finding paths to leaves). As we expect, Neo4j excels in the perfor-

mance test to generate a product configuration form, which requires traverals of the feature

model’s graph. However, the superior performance of Neo4j over MySQL and MongoDB

only becomes evident for feature models with more than 10,000 features.

The size performance test reveals that the Neo4j encoding has a much larger storage re-

quirement than MongoDB and MySQL. For example, the feature model with 18,000 features

requires about 1 MB of storage in MySQL and about 2.5 MB in Neo4j. If Neo4j’s excellent

performance on the generate and similar operations is important, then its higher storage

costs may be worthwhile.
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For feature models with 10,000 or fewer features, any of the database encodings seem to

perform sufficiently well. However, for larger models, Neo4j’s superior performance on the

generate test indicates that it may be a better approach.

9.4 Analyzing the Subjective Criteria

In addition to the objective performance criteria considered in the previous sections,

we also consider subjective criteria in our evaluation of the feature model encodings in

the MySQL, MongoDB, and Neo4j database systems. To define the subjective criteria,

we first identify key issues of interest to developers of feature-modeling applications. We

then evaluate how well each database system handles each issue and analyze the results to

determine how suitable each system is for the development of feature-modelings applications.

We define the following subjective criteria for this research:

• Maturity and level of support

• Ease of installation

• Ease of programming

In this section, we analyze each criterion in turn.

9.4.1 Maturity and Level of Support

To analyze the subjective criterion on system maturity and level of support, we pose the

following questions:

• How long has the database system existed and how widely is it used?

• How well is the database system supported?

• How well does the database system support popular programming languages?

• How well are users of the database system supported (e.g., by documentation, tutorials,

and mechanisms for getting questions answered)?
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We then evaluate each database system using these questions.

9.4.1.1 Relational Database Systems and MySQL (MariaDB)

Relational database systems date back to the 1970s. ACM Turing Award winner Edgar

F. Codd proposed the revolutionary concepts underlying relational database systems while

working for International Business Machines (IBM) Research Laboratory in the early 1970s.

Codd’s seminal research paper “A Relational Model of Data for Large Shared Data Banks”

[32] applied “elementary relation theory to systems which provide shared access to large banks

of formatted data”. Although initially slow to catch on, many different relational database

systems have been released as proprietary products by companies such as IBM, Oracle, and

Microsoft and as widely used open-source projects such as PostgreSQL and MySQL.

MySQL is one of the most widely used relational database systems. It was developed

by the Swedish company MySQL AB in the mid-1990s as a free and open-source software

project. In 2008, Sun Microsystems acquired MySQL AB. Then, in 2010, Oracle acquired

Sun Microsystems. Because of concerns about Oracle’s commitment to maintaining MySQL

as a viable, free and open-source product, Michael Widenius, one of the founders of MySQL

AB, created an open-source fork of MySQL called MariaDB in 2010 [40].

Although MariaDB [71] is just over a decade old, it is a continuation of a quarter century

of MySQL development and a half century of experience with relational database systems.

MariaDB is managed and supported by the non-profit MariaDB Foundation [72] as an open-

source project with a diverse team of sponsors and contributors. In addition, enhanced

services are offered by the separate MariaDB corporation. The first version of MariaDB

released in 2011 was 5.1, following MySQL’s version numbering. As of March 2021, the most

recent stable release is 10.5.9. Sponsors and/or large users of MariaDB include technology

companies such as Google, Microsoft, Alibaba, Mozilla, and Wikipedia.

In our research, we use the XAMPP software platform [9], which bundles MariaDB

with the Apache HTTP server and the PHP and Perl programming languages. The bundle

includes phpMyAdmin, a GUI for accessing MariaDB databases. MariaDB also supports
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connectors from other languages such as Python, JavaScript, Ruby, C/C++, Java, and C#.

A full list of supported programming languages is given on the MariaDB company website

[70].

MariaDB users are supported by a wealth of information sources. The MariaDB website

[71] provides a complete set of documentation and other websites provide tutorials. Given

that MariaDB remains mostly compatible with the popular RDB system MySQL, there are

also a number of technical books and articles relevant to MariaDB [39, 40, 128]. In addition,

MariaDB users can seek help on various question-and-answer forums for professional pro-

grammers (e.g., stackoverflow.com) and use various collaborative software project hosting

platforms (e.g., GitHub.com).

9.4.1.2 Document-oriented Database Systems and MongoDB

In the past two decades, a number of alternatives to relational database systems have

emerged. These are often grouped under the broad term NoSQL [74]. One type of NoSQL

databases is the document-oriented database. This type is useful for storing semistructured

data sets such as JSON and XML documents. Well-known examples include MongoDB,

Couchbase, CouchDB, and Firestore. In this research, we use MongoDB, partly because of

its compatibility with JSON documents.

In 2007, the company 10gen—now named MongoDB, Inc. [79]—created the document-

oriented database system MongoDB. It released version 1.0 of MongoDB as an open-source

product in 2009. MongoDB, Inc. continues to support the community server as an open-

source product and an expanded enterprise server and cloud services as commercial products.

As of March 2021, the most recent stable version is 4.4.4. According to the MongoDB website

[79], the software is used by over 50,000 companies. Other database products or services also

support MongoDB-compatible application programming interfaces (APIs) for their offerings

(e.g., Amazon DocumentDB and Microsoft’s Azure Cosmos DB).

In our research, we use the MongoDB Compass [78], a GUI which includes a MongoDB

server. MongoDB supports drivers for languages such as PHP, Perl, Python, JavaScript,
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Ruby, C/C++, Java, and C#. A full list of supported programming languages is given on

the MongoDB website [81].

The user-level support for MongoDB is similar in scope to that of MariaDB, but, as a

newer system, it has fewer overall information sources. MongoDB, Inc. provides a complete

set of documentation [80] and other websites provide tutorials. There are also a number

of technical books and articles relevant to NoSQL in general and MongoDB in particular

[15]. In addition, MongoDB users can seek help on various question-and-answer forums for

professional programmers (e.g., stackoverflow.com) and use various collaborative software

project hosting platforms (e.g., GitHub.com).

9.4.1.3 Graph Database Systems and Neo4j

Another type of NoSQL databases is the graph database. This type of database uses a

graph structure to represent and store data. It defines nodes to store data entities and edges

to store relationships between entities. Many of the concepts of graph databases go back

to the hierarchical and network database systems of the 1960s [8, 120]. Unlike relational

database systems, contemporary graph database systems differ considerably from those of a

half century ago.

Neo4j is an open-source graph database that was created by Neo4j, Inc. Version 1.0 was

released in 2010. The company continues to support the community edition as an open-source

product and an expanded enterprise edition and cloud services as commercial products. As

of March 2021, the most recent stable version is 4.2.3. Neo4j is used by many companies

including eBay, Airbnb, Lyft, and Caterpillar.

In our research, we use the Neo4j Desktop [91], a GUI which includes a Neo4j server.

Neo4j supports drivers for languages such as PHP, Perl, Python, JavaScript, Ruby, C/C++,

Java, and C#. A full list of supported programming languages is given on the Neo4j website

[93].

The user-level support for Neo4j is similar in scope to that of MariaDB and MongoDB,

but, as a newer system not deployed as widely, it has fewer overall information sources.
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Neo4j, Inc. provides excellent documentation, manuals, free courses, and a community forum

[88]. In addition, there are several published technical articles [128] and books about Neo4j

[129] and its query languages Cypher [87] and Gremlin [20]. As a newer product, Neo4j

has less support than MySQL and MongoDB on the general question-and-answer forums for

professional programmers such as stackoverflow.com.

9.4.1.4 Most Mature and Best Supported?

MariaDB, MongoDB, and Neo4j all have positive aspects. All three have at least a decade

of development and use. All three seem to be stable software systems with adequate support

for repairing flaws and evolving to meet the needs of their users. All three have drivers for

most major general-purpose programming languages. All three have good documentation

and reference materials. All three are open-source projects, but MariaDB seems to have the

most diverse team of contributors. MongoDB and Neo4j seems to be primarily supported

by the like-named companies.

However, MySQL (and, hence, MariaDB) is clearly the most mature and has the best

support among the three database systems we examined. The popular MongoDB system also

seems to be more mature and better supported than the younger and less widely used Neo4j.

This ranking is backed up by Stack Overflow’s 2020 Annual Developer Survey [122], which

had 49,537 responses from professional developers. In the survey question on databases,

MySQL tops the list as the “most discussed”, MongoDB comes in fourth, and Neo4j does not

appear, but the software review site G2 ranks Neo4j as the highest rated among the graph

database systems reviewed [42].

9.4.2 Ease of Installation

To analyze the subjective criterion on ease of installation, we pose the following questions:

• How convenient is the database system’s installation process?

• How much disk space does the installed system require?
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• How easy is to install drivers to enable programming languages to access the databases?

We then evaluate each database system using these questions. In this evaluation, we focus

primarily on installation of the database system software on the Windows platform for use

from Python 3.8 programs.

9.4.2.1 MySQL Installation

To support our use of MySQL, we installed the XAMPP “stack” [9], a free and open-

source, cross-platform Web server distribution developed by Apache Friends. XAMPP bun-

dles the Apache HTTP server, the MariaDB database system [71, 111] (which is a fork of

MySQL), the phpMyAdmin GUI for MariaDB, the PHP and Perl application programming

languages, and related tools. The Windows version downloads as a Windows installer pro-

gram (i.e., .exe file). The full installation of XAMPP requires 716 megabytes of file space.

Our use of the XAMPP installer was convenient and trouble-free.

To enable our Python 3.8 programs to connect to a MySQL database, we installed the

sql.connector driver [100] using the single command:

pip install mysql-connector-python

This pip program invocation selects the current version of the Python package

mysql-connector-python from the Python Package Index (PyPi) and installs it, making

this driver available for import by Python programs on the computer system. The use of

pip was thus also convenient and trouble-free.

We also installed the MySQL driver (mysql) for NodeJS through the ExpressJS server-

side framework. This effort was successful. PHP is already installed for MariaDB (MySQL)

through the XAMPP software.

9.4.2.2 MongoDB Installation

To support our use of MongoDB, we installed MongoDB Compass, a free interactive GUI

[80]. The Windows version downloads as a Windows installer program (i.e., .exe file). The

153



full installation requires 113 megabytes of file space for the MongoDB Compass GUI and

911 megabytes for the MongoDB Community Server version 4.4.2. Our use of the MongoDB

Compass installer was convenient and trouble-free.

To enable our Python 3.8 programs to connect to a MongoDB database, we installed the

pymongo driver using the single command:

pip install pymongo

As with MySQL, our use of pip was also convenient and trouble-free.

In addition, we installed the MongoDB driver mongodb for NodeJS through the ExpressJS

server-side framework. This effort was successful. For PHP, we also installed the mongodb

driver.

9.4.2.3 Neo4j Installation

To support our use of Neo4j, we installed the Neo4j Desktop [88], a free integrated

development environment (IDE) for Neo4j development. The Windows version downloads

as a Windows installer program (i.e., .exe file). Because Neo4j is written in Java, the

software requires that a Java Virtual Machine (JVM) runtime be available on the machine.

If the JVM is not already installed, then it must also be downloaded and installed separately

from the Neo4j Desktop. The full installation of Neo4j requires 648 megabyes for the Neo4j

Dekstop version 1.4.1. The JVM requires an additional 126 megabytes. Our use of both the

Neo4j Desktop and JVM installers were convenient and trouble-free.

To enable our Python 3.8 programs to connect to a Neo4j database, we installed the

neo4j driver using the single command:

pip install neo4j

As with MySQL and MongoDB, our use of pip was also convenient and trouble-free.

We also installed the Neo4j driver (neo4j-driver) for NodeJS through the ExpressJS

server-side framework. This effort was successful. Installing a PHP driver for Neo4j required

testing several drivers to find a working version called NeoClient [46], a driver that has

subsequently been upgraded and renamed the GraphAware Neo4j PHP Client [47].
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9.4.2.4 Easiest to Install?

In general, the installation of all three database systems and their GUIs went smoothly.

They were packaged by their developers as convenient Windows installers, which made their

installation a simple one-step process. Of course, if a JVM runtime was not available on

the system already, the installation of Neo4j also required a separate step to install it. The

disk space required for the database system installation is reasonable for complex, modern

software systems—ranging from about 650 MB for Neo4j (not counting the JVM) to 1025

MB for MongoDB. In addition, installing the Python drivers using pip was also a convenient

one-step process that we carried out without any glitches. Installation of the NodeJS and

PHP drivers also went smoothly, except that we did encounter some difficulty in finding and

installing a functional PHP driver for Neo4j.

9.4.3 Ease of Programming

To analyze the subjective criterion on ease of programming, we pose the following ques-

tions:

• How convenient is it to precisely encode feature models in the database systems?

• How convenient is it to precisely manipulate feature models in the database systems?

We then evaluate each database system using these questions.

9.4.3.1 MySQL Programming

To encode a feature model in a MySQL database, we use a design consisting of three tables

as explained in Chapter 3. We adopt the adjacency matrix as our method for representing a

model. The three-column featuresRelations table has a parent feature in the first column,

a child feature in the second column, and the type of relationship from the parent to the child

in the third column. We include a row in this table if and only if there is a corresponding

edge in the feature model. The Features table also stores all features in the feature model
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and the Relations table stores the relationship codes and their names. By using SQL or

phpMyAdmin, it is easy and straightforward for us to implement this design.

As we also discuss in Chapter 3, a feature model can also be encoded in a CSV file

with the same structure as the featuresRelations table. MySQL can readily export the

featuesRelations table to a CSV file and import (or load) it from that format.

We use both MySQL’s query language SQL [40] and a programming language (e.g.,

PHP or Python) to access and manipulate a feature model stored in a MySQL database

as described above. SQL is the well-known standard language for storing, manipulating,

and retrieving data in any relational database. It provides an excellent set of powerful

statements and clauses for manipulating stored data. We use SQL to fetch a feature model’s

information and a programming language driver to send queries and receive information from

the database. In Chapter 4, we show how to use these capabilities to create and insert a new

feature, modify an existing feature, and delete an existing feature from a feature model. In

Chapter 5, we also show how to use these capabilities to generate a Web form for configuring

valid products by traversing the stored feature model.

We find the use of both the relational model and SQL queries to be simple and familiar.

That is a strength of the MySQL encoding of feature models. However, a graph is not a

native concept in relational databases (as it is in graph databases). So, a complex algorithm

is needed to perform any operation that requires traversing the feature model’s graph.

9.4.3.2 MongoDB Programming

To encode a feature model in a MongoDB database, we use a design that stores a fea-

ture model in a collection of MongoDB documents as explained in Chapter 7. Each doc-

ument within the collection consists of the three properties fromFeature, toFeature, and

relationType, similar to the featuresRelations table discussed above in the MySQL de-

sign. A document defines the parent feature fromFeature to have a relationship of type

relationType with the child feature toFeature. Within the collection, any two features

have at most one such relationship defined. Each feature consists of one document. Thus,
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a feature model with 500 features would consist of 500 documents stored in a collection.

By using MongoDB Compass with MQL or a programming language with an appropriate

driver, it is easy and straightforward for us to implement this design.

The MongoDB encoding is thus quite similar to the featuresRelations table in the

MySQL design and, hence, to the CSV encoding. Using either Compass or a programming

language with an appropriate driver, we can readily export a MongoDB collection to a CSV

file and import (or load) it from that format.

In Chapter 7, we chose a particular data model (pattern) for encoding a feature model

that made some of our operations straightforward. However, there are other data models

we could have chosen [80]. These models might be useful in circumstances where we would

need to emphasize different operations.

MQL is a rich query language for fetching and manipulating documents in a MongoDB

database. It includes the usual CRUD (Create, Read, Update, and Delete) operations plus

text search, geospatial, and other useful queries [80]. The query language is simple and easy

to use and interpret.

We find MongoDB documents as a convenient and intuitive way to encode feature models

and MongoDB’s query language a powerful way to manipulate the feature models. However,

much like MySQL, a graph is not a native concept in MongoDB. So, a complex algorithm is

needed to perform any operation that requires traversing the feature model’s graph.

9.4.3.3 Neo4j Programming

To encode a feature model in a Neo4j database, we use a design for a graph database

to store an arbitrary feature model. This design stores the feature model’s directed acyclic

graph straightforwardly as a Neo4j graph. Each node of the Neo4j graph corresponds to

a feature and each edge from one node to another corresponds to a relationship of the

specified type between the corresponding features. By using the Neo4j Desktop with the

Cypher query language [87] or a programming language with an appropriate driver, it is

easy and straightforward for us to implement this design.
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The Neo4j encoding is thus quite similar to the featuresRelations table in the MySQL

design and, hence, to the CSV encoding. Using either the Neo4j Desktop or a programming

language with an appropriate driver, we can readily export a Neo4j database to a CSV file

and import (or load) it from that format.

Cypher [87] is a rich query language for fetching and manipulating graph structures in a

Neo4j database. It is simple and easy to use and interpret. Although developed by Neo4j,

Inc. for use with the Neo4j graph database, Cypher (i.e., openCypher [95]) has been been

implemented for a number of other graph database systems and is part of an effort to specify

a new Graph Query Language (GQL) international standard [58].

Neo4j is a graph database. Thus, it is straightforward to store a tree-like structure such

as a feature model in a Neo4j database. In Neo4j, a traversal (e.g., to get all ancestors of a

node) can be stated directly as a single Cypher query. Neo4j provides several builtin path-

finding algorithms such as Breadth-First Search and Depth-First Search. These are quite

helpful for traversing the hierarchical structure of a feature model. (More about the path-

finding algorithms provided by Neo4j through Cypher can be found in the Neo4j Website’s

documentation for path-finding algorithms [92].) The Neo4j Desktop can also display a

graphical view of the entire stored feature model. It also provides tools that enable a user

to manipulate the feature model directly by manipulating its visual representation [91].

9.4.3.4 Easiest to Program?

All three database systems can encode feature models precisely and conveniently, al-

though each encodes the feature model’s graph structure in different ways. The relational

database system MySQL uses its familiar table structure to store the graph’s nodes and

edges and the powerful standard query language SQL to access the feature model. The

document-oriented database system MongoDB uses its JSON-like documents to store the

graph’s nodes and edges and the powerful MongoDB-specific query language MQL to access

the feature model. The graph database system Neo4j uses its native graph concepts of enti-

ties and relationships between them to store the graph’s nodes and edges and the powerful
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query language Cypher to access the feature model.

Given that Neo4j was designed to store and manipulate graph-like structures, its rep-

resentation is the most natural for feature models. Neo4j’s visualization and manipulation

tools also enhance Neo4j’s support for a feature model as a graph.

However, MySQL’s support of the standard query language SQL means it might be easier

to port the MySQL application to other relational database systems. MongoDB and Neo4j

currently use query languages developed primarily for those systems and that are not yet

standardized.

All three database systems enable programs to access and manipulate the stored feature

models. For all three, we designed algorithms to create, modify, and delete a feature. For

all three, we also designed algorithms to generate a product configuration form. The imple-

mentations of these algorithms use the database systems’ query languages, particularly the

ability to embed query language statements in programming languages.

Neo4j’s built-in support for graph traversals in its query language gives Neo4j an advan-

tage in expressing algorithms such as those for generating the product configuration form. As

we saw in the Generate performance test in Section 9.3.4, this can give Neo4J a performance

advantage in some situations as well.

9.4.4 Subjective Criteria Analysis Summary

We summarize our analysis of the subjective criteria (maturity and level of support, ease

of installation, and ease of programming) for the three database database systems (MySQL,

MongoDB, and Neo4j) as follows:

• With a quarter century of development, MySQL is the most mature and best supported

of the three database systems. Its 2010 fork MariaDB (that we use) continues to build

on that legacy.

However, all three database systems are reasonably stable, open-source, cross-platform

products with a sufficient level of support and maturity for the purposes of our project.
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• The Windows installer programs make the installation of each of the database systems

a trouble-free, one-step process on Windows 10. Similarly, the pip tool also makes the

installation of an individual Python driver a trouble-free, one-step process. The result

is similar for installing NodeJS and PHP drivers in most cases.

However, we did encounter difficulty in finding and installing a functional PHP driver

for Neo4j, the newer and least widely used of the three database systems.

• Neo4j supports graphs as its native structure, so it provides the most straightforward

support for encoding and manipulating feature models. The support for graph traversal

built into Neo4j and its powerful query language also make many of our algorithms

easier to express and more efficient to execute in that environment. MySQL and

MongoDB do not directly support graph structures and their traversals.

However, all three database systems can encode feature models precisely and conve-

niently, and all enable programs to access and manipulate the stored feature model

as needed by our feature modeling application. So, the choice is partly a matter of

the personal experiences and preferences of the software developers. MySQL’s support

for the international standard query language SQL and MongoDB’s use of JSON-like

documents are advantages for some.

Neo4j, the newest product with the smallest user base, probably entails the most risk, but

it has also stimulated significant interest in several growing application areas and it is cur-

rently considered the leading graph database system. Neo4j’s support of the openCypher [95]

and Graph Query Language (GQL) [58] international standardization efforts may mitigate

some of the long-term risk in using Neo4j and graph databases in general.

9.5 Answering the Research Question

Now, let us return to the chapter’s research question. Which database system is the best

for encoding feature models?
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The answer is, as often is the case for such a question, that the “best” choice depends on

the circumstances. The summary of the performance test results in Section 9.3.6 and of the

subjective criteria in Section 9.4.4 articulate some issues to consider, or rules of thumb, for

various circumstances.

In terms of the subjective criteria, the “best” choice is partly a matter of the experience

and preference of the software development organization. MySQL is the most mature and

better supported, Neo4j is the least mature and least well supported, and MongoDB is in

between, but all three are sufficiently mature and well supported for our feature modeling

project. The installation of the database systems and drivers for all three are straightforward.

Some of the Neo4j drivers for some languages may be works in progress, but we experienced

no problems with the Python drivers. The graph database Neo4j provides the most direct

encoding of the feature model’s graph and a query language specialized for efficient graph

operations. Although MySQL and MongoDB do not directly support graph concepts or

operations, their organizational concepts and powerful query languages enable feature models

to be encoded and manipulated effectively.

In terms of the performance tests, the “best” choice likely depends upon how the feature-

modeling application is used. A reasonable usage scenario seems to be that a feature model is

loaded once from a CSV file, evolved incrementally using the Web interface from Chapter 4,

and used frequently to configure products using the live-preview Web form from Chapter 5.

We assume that the feature-modeling application is executed on the same kind of platform

on which we conducted the experiments (i.e., on a typical personal workstation in 2021). In

this scenario, the empty performance test is of low relevance, the load, create, and size tests

are of medium relevance, and the generate test of high relevance.

Given our experimental results, the performance depends upon how many features are

in a feature model. For the purposes of our discussion, let us use the two sizes we used in

Section 9.3.6—a “large” model with 6500 features and a “huge” model with 18,000 features.

For the “large” model in our usage scenario, any of the database encoding performs
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reasonably. All three encodings perform similarly on the performance tests except that

Neo4j has a longer load time and uses more file space than the other two. However, Neo4j’s

12 second load time and 0.85 megabyte space requirement are not a significant issue for these

medium relevance tests.

For the “huge” model in our usage scenario, the Neo4j encoding is likely the “best”. It has

excellent performance on the high relevance test to generate a product configuration form.

Unfortunately, it has poor performance on loading the feature model from the CSV file (106

seconds) and a larger file space requirement (2.5 MB) than the other two systems. However,

we assume the feature model is only loaded once and that the file space usage is not an issue,

even though 2.5 times what MySQL requires.

Given this usage scenario, Neo4j seems to be the “best” from a performance perspective,

allowing us to accommodate huge models. Thus, the choice becomes one of the preferences

of the software developers. We find Neo4j very interesting because of its specialization for

storing and manipulating graphs.

However, we need to investigate Neo4j more broadly and deeply than we have done in this

study. We need to study how we can more fully exploit its graph encoding and manipulation

capabilities and how to optimize its performance (especially for loading feature models).

We should also study how its query language is evolving toward an international standard.

We need to develop a more complete pragmatic understanding of how to use Neo4j for the

feature modeling application. We leave these to future work.

9.6 Conclusion

This chapter addresses specific Research Question 7 from Section 1.3: Which database

system is the best for encoding feature models?

To answer this question, we evaluate the three database-based feature model encodings

defined in the previous chapters with respect to a set of objective and subjective criteria. In

particular, we consider:
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• the relational database (MySQL) encoding from Chapter 3

• the document-oriented database (MongoDB) encoding from Chapter 7

• the graph database (Neo4j) encoding from Chapter 8

To evaluate the encodings objectively, we define a set of experiments in Section 9.1 to

determine how each encoding performs for several different feature models using several

different performance tests.

We define ten feature models. The smallest is the RasterVectorProcessing feature

model defined in Chapter 6 (shown in Figure 6.5). We also define nine feature models

ranging in size from 500 features to 24,000 features, a size range that is representative of

feature models in the real world. Table 9.1 shows the height and number of features, requires,

and excludes for each model. For the experiments, we encode each feature model in a CSV

file that will be loaded into a database system during the experiments.

To test the performance of each database-based feature model encoding, we also define

five performance tests. We select these tests to be representative of the workloads that occur

in practice. These include four tests to determine the time required to:

• Load a feature model into the database from a CSV file

• Empty the database

• Create a feature and add it to the feature model stored in the database after performing

semantics checks

• Generate a product configuration form by traversing the complete feature model

We repeat each time-based performance test ten times for each pairing of a database encoding

with a feature model, collect the times to complete the test, and compute the average time.

We also define a fifth performance test to determine the Size of the database (i.e., the amount
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of storage space required), which we do once for each pairing of a database encoding with a

feature model.

We show the results of the experiments in Section 9.2 and their analysis in Section 9.3.

Section 9.3.6 summarizes this objective analysis.

To evaluate the encoding subjectively, in Section 9.4 we analyze the following criteria for

each database system:

• Its maturity and level of support

• Its ease of installation

• Its ease of programming

For each criterion, we examine each database system to determine its suitability with respect

to that criterion. Section 9.4.4 summarizes this subjective analysis.

Finally, in Section 9.5, we seek to answer the research question: Which database system

is the best for encoding feature models? As we might expect, the answer is “It depends!”

164



CHAPTER 10

CONCLUSION

The research proposed in this dissertation seeks to answer the following general research

question: Can mainstream Web and database technologies (relational, document-

oriented, and graph) be used effectively to construct syntactically and semanti-

cally correct feature models and to configure products from these models? And,

if so, which database system is best for encoding feature models?

To achieve this, our research aims to answer the following specific research questions:

1. Can relational database tables be used to accurately encode feature models?

In Chapter 3, we demonstrated that the answer to this question is “Yes”. We encoded

an arbitrary “traditional” feature model (as defined in Section 2.2) accurately as a

directed acyclic graph in three relational database tables [116]. We also defined an

equivalent feature model encoding in a CSV file. Furthermore, we showed that the

design is practical by providing a proof-of-concept implementation and applying it to

an example. Section 3.4 argues that our encoding is correct and gives a more detailed

evaluation of our contributions related to this research question.

We published a preliminary version of this work in 2017 [116].

2. Can mainstream Web and relational database technologies be used to con-

struct correct feature models interactively and incrementally?

In Chapter 4, we demonstrated that the answer to this question is “Yes”. We pro-

posed a novel design based on mainstream Web and relational database concepts. Our

design uses three dynamic Web forms that incrementally construct feature models by
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interactively gathering information about the features and their relationships from the

user [117]. These feature models are stored in a relational database designed accord-

ing to our approach [116] described in Chapter 3. We implemented the Web interface

design using mainstream relational database and Web technologies. The implementa-

tion validates its inputs and ensures that the feature model stored in the database is

syntactically and semantically correct at any time. Section 4.3 argues that our design

is correct and gives a more detailed evaluation of our contributions related to this

research question.

We published a preliminary version of this research in 2020 [116].

3. Can mainstream Web and relational database technologies be used to con-

figure correct products corresponding to a feature model?

In Chapter 5, we demonstrated that the answer to this question is “Yes”. We designed

and implemented a Web form that, given a syntactically and semantically correct

feature model stored in the relational database [116, 117], enables the user to select

any set of features from the feature model that corresponds to a correct configuration

of a product. Section 4.3 argues that our design is correct and gives a more detailed

evaluation of our contributions related to this research question.

We published preliminary versions of this work in 2017 [116] and 2020 [117].

4. Can JSON technologies be used to represent feature models correctly and

enable them to be exchanged in textual form?

In Chapter 6, we demonstrated that the answer to this question is “Yes”. We designed

an approach that can encode an arbitrary “traditional” feature model accurately in

a JSON document in a manner that is equivalent to the RDB encoding defined in

Chapter 3. We also designed and implemented programs that can translate a valid

RDB encoding of a feature model to an equivalent JSON encoding and vice versa. In

addition, we have operations to create, modify, and delete features in a JSON-encoded
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feature model. Section 6.6 argues that our design is correct and gives a more detailed

evaluation of our contributions related to this research question.

We published preliminary version of this work in 2021 [118].

5. Can a document-oriented NoSQL database be used to accurately encode

feature models?

In Chapter 7, we demonstrated that the answer to this question is “Yes”. We designed

an approach that can encode an arbitrary “traditional” feature model accurately in a

document-oriented MongoDB database in a manner that is equivalent to the RDB and

CSV encodings defined in Chapter 3. We also designed and implemented operations

to load a feature model into a database; empty a database; create, modify, and delete

features in an encoded feature model; and generate a product configuration form from

the encoded model. Furthermore, we showed that the approach is practical by using

the implementations in the experiments in Chapter 9. Section 7.6 argues that our

encoding is correct and gives a more detailed evaluation of our contributions related

to this research question.

6. Can a graph-oriented NoSQL database be used to accurately encode feature

models?

In Chapter 8, we demonstrated that the answer to this question is “Yes”. We designed

an approach that can encode an arbitrary “traditional” feature model accurately in

a document-oriented Neo4j database in a manner that is equivalent to the RDB and

CSV encodings defined in Chapter 3. We also designed and implemented operations

to load a feature model into a database; empty a database; create, modify, and delete

features in an encoded feature model; and generate a product configuration form from

the encoded model. Furthermore, we showed that the approach is practical by using

the implementations in the experiments in Chapter 9. Section 8.6 argues that our

encoding is correct and gives a more detailed evaluation of our contributions related
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to this research question.

7. Which database system is the best for encoding feature models?

To answer this question in Chapter 9, we evaluated the three database encodings

(defined in Chapters 3, 7, and 8) against sets of objective and subjective criteria. We

selected the criteria carefully to help us determine which encodings are “best” from

various perspectives.

To evaluate the database encodings objectively, we defined a set of experiments to

determine how each performs for ten different feature models using five different per-

formance tests. We selected feature models ranging in size from 19 features to 24,000

features, a range that should include most real-world models. We selected performance

tests that are representative of the workloads that occur in practice. We conducted

the experiments and collected measurements, and then we analyzed the results with

a focus on determining how well each database encoding performs on the tests as the

feature models increase in size. We then stated a few rules of thumb to guide decisions

about which is best under what circumstances.

To evaluate the database systems subjectively, we identified three different issues of

interest to software developers and elaborated each by defining a set of two-to-four

related questions. We evaluated each database system against the questions. We then

analyzed the results with a focus on determining how suitable each database system

is for the development of feature-modelings applications. We then again stated a few

rules of thumb to guide decisions about which is best under what circumstances.

To unify the results of the analyses, we considered a typical usage scenario for a feature-

modeling application and two representative feature models—one “large” model and

one “huge” model. Within this scenario, we can suggest which encoding may be “best”

for our feature-modeling application. In general there is no one best choice, but, by

applying the rules of thumb, software developers can make good choices.
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CHAPTER 11

FUTURE WORK

In this dissertation research project, we have investigated and answered seven research

questions. However, like most research efforts, new questions arise from the process of

answering the old ones. In this chapter we identify several questions that we, or others, can

explore in future research.

1. How can we extend our feature-modeling approach to enable concrete software products

to be generated from a feature model?

We plan to extend the database design to include information about the internal de-

sign and implementation of features. Our objective is to be able to build products

corresponding to a selected product configuration.

2. How can we extend our feature-modeling approach to incorporate complex cross-tree

constraints?

In this dissertation, we consider normal cross-tree constraints that most researches

use in their work (e.g., feature A requires feature B or feature A excludes feature

B). Some recent work on large feature models suggest the use of complex cross-tree

constraints, which are sets of propositional formulas that cannot be expressed using

simple constraints (i.e., requires and excludes) [64]. We plan to investigate whether

complex cross-tree constraints are a useful extension to our approach and, if so, how

to incorporate them effectively.

3. How can we validate the syntax and semantics of feature models encoded in JSON?
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One promising approach is to use the emerging JSON Schema technologies, as defined

in the draft standard [59] and implemented by prototype tools such as the JavaScript

(Node.js) package Ajv [105]. We plan to define a schema that specifies and enables

validation of most aspects of the syntax of JSON-encoded feature models. We plan to

use the JSON Schema types and its properties such as type, pattern, properties,

required, additionalProperties, items, and enum to make the syntactic rules pre-

cise. We also plan to use the $defs and $ref properties to define and document simple

abstractions that are used within a schema, such as for the “feature name”, “feature

tree”, “feature list”, “type”, and “relationship” validators.

4. How can we improve the performance of the Neo4j encoding, particularly in operations

to create new nodes and load databases from external files?

In Chapter 9 we noted in the discussion of the load performance test that the use of

the CREATE statement with MERGE clauses slows down the creation and insertion of new

features. Also, in the discussion of the create performance test, we noted that Neo4j’s

caching of queries sometimes results in erratic behaviors. In future work, it may be

useful to experiment with sequences of creation, modification, and deletion operations

drawn from a more diverse workload. This may yield additional useful data that can

enable us to better exploit Neo4j’s use of lazy and eager evaluation and query caching.

5. How can we improve the performance of our feature-modeling system by changing the

implementation languages and/or drivers?

In our experimental study, we used the interpreted application languages Python, PHP,

and JavaScript and their available drivers. We may be able to improve performance

by switching to a compiled language such as Java and its drivers. We may also be

able to improve performance by experimenting with alternative drivers for our current

languages.

6. Which Neo4j query language best supports encoding and manipulating feature models?
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For the Neo4j-related research in Chapters 8 and 9, we used Cypher, a declarative

language for querying graph databases [95]. It is an easy to use graph query language

that provides powerful statements and clauses for manipulating and traversing graphs.

Neo4j also supports Gremlin [20], a graph traversal query language that is both declar-

ative and imperative. A strength of Gremlin is that it allows users to define and use

their own custom algorithms for graph traversals. They can potentially optimize the

traversals to fit the specific natures of their applications. Cypher, by contrast, does

not allow customization. Instead, it seeks to choose the best algorithm for a particular

circumstance from among its builtin traversal algorithms. We plan to compare the

two languages using objective and subjective criteria similar to the ones we used in

Chapter 9.

7. Which document-oriented database is more suitable to encode and manipulate feature

models?

For the research in Chapters 7 and 9, we used the document-oriented database system

MongoDB. We plan to investigate other document-oriented database systems such as

CouchDB [6] and ArangoDB [11]. Both are free and open-source systems with positive

reviews. We plan to compare either CouchDB or ArangoDB against MongoDB using

objective and subjective criteria similar to the ones we used in Chapter 9.

8. Which graph-based database is more suitable to encode and manipulate feature mod-

els?

For the research in Chapters 8 and 9, we used the graph database system Neo4j. We

plan to investigate other graph database systems such as Dgraph [37] and ArangoDB

[11]. Both are free and open-source systems with positive reviews. We plan to com-

pare either Dgraph or ArangoDB against Neo4j using objective and subjective criteria

similar to the ones we used in Chapter 9.
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