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Abstract

We study the zero divisor graphs, determined by equivalence classes of zero divisors
of a ring R. with exactly five vertices. In particular, we determine which graphs
with exactly five vertices can be realized as the zero divisor graph of a ring. We
provide rings for the graphs which are possible, and prove that the rest of graphs

can not be realized via any commutative ring. There are thirty-four graphs in

total which contain exactly five vertices.
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0.1 Introduction

In 1988. I. Beck [?] introduced the idea of the zero divisor graph. By this notion.
a ring R is represented by a simple graph, where each vertex corresponds to an
element of the ring. Vertices a and b share an edge if and only if ab = 0. By
a simple graph we mean that there are no loops (i.e., an edge from a to a) or
multiple edges between any two vertices. Each of these graphs is connected with
diameter two, since every vertex is adjacent to zero.

Example The zero divisor graph for the ring R = Z/6Z contains the elements

{0,1,2.3,4,5}, and is shown below.
NS
3 N4 ’ \
4 5
In 1999, Anderson and Livingston [?] elaborated on Beck’s idea of zero divisor
graphs. In their graph, only zero divisors are represented. Therefore, any element
of the ring which is not a zero divisor is not shown. The notation for these graphs

is I'(R). These are also simple graphs and are connected.

Example (Revisited) The zero divisors of the ring R = Z/6Z are {2,3,4}.

2

/

3 I(z/6z)

\

4
In 2002, S. Mulay (?] demonstrated how a graph could be constructed from

equivalence classes of zero divisors. Once again, these graphs are simple and

connected. The notation for a graph constructed from equivalence classes is [z (R).
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Example (Revisited) The equivalence classes of zero divisors of the ring R =

Z/6Z are {[2].[3]}.

3] T'5(Z/6Z)
To illustrate the relationship between I'(R) and I'g(R), we provide the exam-

ple below. Note that T'(R) “collapses”, in some sense, to I'g(R), since we are
identifying zero divisors.

Example Consider the graphs for Z/12Z:

NN
SN

I(Z/12Z)

2] [6] 4] 3] Te(Z/122)

The goal of this project is to examine the five point zero divisor graphs con-
structed from equivalence classes and to determine which five point graphs can be
zero divisor graphs of some ring. For each graph which is a zero divisor graph of
some ring, we provide a ring associated to it. For those graphs which are not, we
prove that no ring exists such that I'g(R) takes the necessary form. We note that
there are thirty-four total graphs with exactly five vertices [?, pp.216-217], but we
need only focus on the connected ones in this project since it has been shown [?],

[?]. [?] that zero divisor graphs are always connected. Therefore we will consider




the twenty-one connected five point graphs. See the Appendix for a complete list
of the graphs.

Finally, to motivate this project, we provide one more example. The ring
R = (Z/6Z)(X], all polynomials with coefficients from Z/6Z, is infinite, and there-
fore the zero divisor graphs of Beck and Anderson & Livingston can not be drawn.

However, I'g(R) takes the same form as I'g(Z/6Z) in our earlier example.




0.2 Background

The following is background information regarding rings and related concepts. A
standard reference for this material is the book by J. Gallian [?]. The book by H.

Matsumura is a standard reference for the material on commutative ring theory

7).

L

Definition A ring R is a set with two binary operations, addition and multi-

plication, such that for all a,b,c in R:

—

.a+b=b+a
2. (a+b)+c=a+(b+c)

3. There is an additive identity 0. That is, there is an element 0 in R such that

a+0=aforallainR.

4. There is an element —a in R such that a + (—a) = 0.

(@2}

. a(be) = (ab)c
6. a(b+c)=ab+acand (b+c)a=ba+ca

Note that a simple example of a ring is the set of integers, denoted Z. The
“integers modulo n”, for example Z/6Z or Z/12Z, are also rings.

Definition A ring R is commutative if multiplication is commutative; i.e., if
ab = ba for every a, b in R. A ring has unity if it has a multiplicative identity:
i.e., if there is an element 1 in R such that la = al for all a in R.

Definition A zero divisor is a nonzero element a of a ring R such that for

sonme nonzero element b in R, ab = 0.



Note that Z is commutative and has unity one, and it contains no zero divisors.
Note also that Z/12Z contains zero divisors, namely 3 and 4 because (3)(4)=0 in
Z/12Z.

Definition In general, an annihilator element b of an element a is one such
that ab = 0.

Definition An ideal A of a ring R is a nonempty subset where if a,b are in A
thena —bisin 4, and if a isin A and 7 is in R, then ar and ra are both in A.

Definition The annihilator ideal of a is defined as ann(a) = {r € R |
ra = 0}. It is an ideal of R.

Definition A unit in a ring R is a nonzero element u such that there exists
another nonzero element u~! such that wvu™! =u"lu=1.

Definition A field is a commutative ring with unity such that every nonzero
element is a unit.

Definition An equivalence relation, denoted ~, on a set S is a binary

relation that satisfies the following three conditions:

l.a~aforala€es.

0o

a ~ bimplies b~ a for all a,b € S.

-a~band b~ cimply a~cforallabc€S.

w

The set [a] = {z € §: z ~ a} is called the equivalence class of a.
Example For a commutative ring R with unity, denote a ~ b if and only if

ann(a) = ann(b), for all a,b € R. Note that:
1. ann(a) = ann(a) for all a € R.

2. ann(a) = ann(b) implies ann(b) = ann(a) for all a,b € R.

9



3. ann(a) = ann(b). ann(b) = ann(c) imply ann(a) = ann(c) for all a.b,c € R.

This is an equivalence relation on R. The set [a] = {r € R : ann(z) = ann(a)} is
the equivalence class of a.

Definition The graph of equivalence classes of zero divisors of a ring
R. denoted by T'g(R), is the simple graph associated to R whose vertices are the
classes of zero divisors determined by the above relation, and with each pair of
distinct classes [u], [v] joined by an edge if and only if [u] - [v] = 0, where [u] - [v] is
defined to be [uv]. (This is well-defined [?], [?].)

Definition Some graph theory definitions are as follows:

1. A path of length n between two vertices u and v is a sequence of distinct
vertices w; of the form u = wy — w; — - -+ — w,, = v such that w;_; —w; is an
edge for each 7. The distance between u and v is the length of the shortest

path.
2. A connected graph is one in which there is a path between any two vertices.

3. The diameter of a graph is the greatest distance between any two vertices.
For zero divisor graphs determined by equivalence classes, the diameter is

three or less.

Finally, a number of strategies will be useful in determining which five point

graphs are not zero divisor graphs of any ring.

Strategies

1. If there is an edge between two points on the graph, then we say the two
pouints connected annihilate one another. Specifically, when multiplied to-

gether, the products of the two connected points is zero. Note that by

6



definition, a five point zero divisor graph contains five points, each of which

has a distinct group of annihilators.

2. If two points on the zero divisor graph appear to have the exact same an-
nihilators (that is they share edges with the exact same other vertices) and
they are not adjacent to one another, then at least one is self-annihilating.
In other words, at least one of the points must annihilate itself. Otherwise,

the two points would represent the exact same class.

3. If two points on the zero divisor graph appear to have the exact same annihi-
lators and they are adjacent to one another, then at least one of those points
must not annihilate itself. Otherwise, then two points would represent the

exact same class.

4. To show that a five point graph is not the zero divisor graph of some ring, we
will assume that it is and then construct a new sixth class from the original

five.



0.3 Negative Results

Claim 0.3.1. The graph pictured below is not possible.

1)

//r

[s] lu]

4 o
Proof. We will find a new class of zero divisor not represented on the graph.
Consider the class [ru]. The element is not zero, otherwise there would be an edge
directly from [r] to [u]. But it is a zero divisor. Note that ann[ru] contains at least
s. t. and v. Now examine the annihilators of the individual vertices. Annr] does
not contain t. Ann[s] does not include v. Annt] does not include v. Ann[u] does
not include s. Ann[v] does not include s. Thus ann[ru] would represent a new

element on this graph. =

Claim 0.3.2. The graph pictured below is not possible.

[t
%

/

7

[s] [u]

(S E——
Proof. We will find a new class of zero divisor not represented on the graph.
Consider the class [tv]. The element is not zero, otherwise there would be an
edge directly from ¢ to v. But it is a zero divisor since r(tv) = 0. Note that

te is annihilated by at least 7, s, and u. Now examine the annihilators of the



individual vertices. Ann[r] doesn’t contain ¢t. Ann[s] doesn’t contain u. Annlt]
doesn’t contain r. Ann[u] doesn’t contain s. Ann[v] doesn’t contain u. Thus

Ann{tv] would represent a new element on the graph. ; 4

Claim 0.3.3. The following graph is not possible.

[t

Proof. We will find a new class of zero divisor not represented on the graph.
Consider the class [r+¢]. It is a zero divisor because the individual elements r and
t share an annihilator, but the two do not represent the same class (otherwise they
would share a vertex.) The only annihilator of 7 + ¢ is s since the only element
which annihilates both r and t is s. Now examine the annihilators of the individual
vertices. Ann[r| includes v. Annlt] includes u. Ann[s] includes u. Ann[u] includes

v. Ann[v] includes u. Thus Ann[r+t] would represent a new element on the graph.

O

Claim 0.3.4. The following graph is not possible.

[t
N

[u]

|
[v]

Proof. We will find a new class of zero divisor not represented on the graph.

[r] —

Consider the class [tv]. This element is not zero, otherwise there would be an
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edge directly from ¢ to . But it is a zero divisor since u(tv) = 0. Note that
tv is annihilated by at least s. 7, and u. Now examine the annihilators of the
individual vertices. Ann|[r| doesn’t include u. Ann[s] doesn’t include u. Annl[t]
doesn’t include Ann{u] doesn't include s. Annfv] doesn’t include s. Thus

Ann[te] would represent a new element on the graph. O

Claim 0.3.5. The following graph is not possible.

(5]

[u]

/

[

Proof. We will find a new class of zero divisor not represented on the graph.
Consider the class [t + v]. It is a zero divisor because the individual elements t
and v share an annihilator, but the two do not represent the same class (otherwise
they would share a vertex.) The only annihilator of ¢ + v is u. Also, both 7 and
s are not annihilators of [t + v]. Now examine the annihilators of the individual
vertices. Ann(r] includes s. Annls) includes r. Ann[t] includes s. Ann[u] includes

s. Ann[e] includes . Thus Ann[t+v] would represent a new element on the graph.

a

Claim 0.3.6. The following graph is not possible.

10



Proof. \We will ind a new class of zero divisor not represented on the graph. First
consider r and v. Since [r] and [v] appear to have the same annihilator, by Strategy
(2). we can assume that r? = 0 because otherwise [r] = [v]. Consider s and u.
Say s* = 0 otherwise [s] = [u]. We will now find a new class of zero divisor
not represented on the graph. Consider [r + u]. It is a zero divisor because the
individual elements r and u share an annihilator, but the two do not represent
the same class (otherwise they would share a vertex.) Ann[r + u] includes r. It
does not include s or v. Now examine the annihilators of individual elements.
Ann{r] includes s. Ann[s] includes v. Annt] includes s. Ann[u] includes v. Ann(v]

includes s. Thus Ann[r 4+ u] would represent a new element on the graph. O

Claim 0.3.7. The following graph is not possible.

1]

) /—> [ul
] >< [1|'l

Proof. We will find a new class of zero divisor not represented on the graph.

s
(

Consider s and «. By Strategy (3) say u® # 0 because otherwise [s] = [u]. Consider
7 and v. By Strategy (2) one must be self-annihilating, otherwise [r] = [v]. Thus
say 12 = 0. We will now find a new class of zero divisor not represented on the
graph. Consider [r + u]. It is a zero divisor because the individual elements » and
u share an annihilator, but the two do not represent the same class. Ann[r + u]
includes s and r. It does not include u, ¢, or v. Now examine the annihilators
of individual elements. Ann[r], Ann [s], Ann[t], and Annfv] include u. Annfu)

includes v. Thus Ann[r + u| would represent a new element on the graph. a

11



Claim 0.3.8. The following graph is not possible.

Proof. We will find a new class of zero divisor not represented on the graph.
Consider [s] and [t]. By Strategy (2) say s2 = 0 because otherwise [s] = [t]. We
will now find a class of zero divisor not included on the graph. Consider the class
of [sv]. This element is not zero, otherwise there would be an edge directly betwen
s and v. But it is a zero divisor because there is some nonzero element which
multiplies sv to zero. Not that Ann[sv] includes at least 7, u, and s. Now examine
the annihilators of the individual elements. Ann[r], Ann[s] , and Annft] do not
include u. Ann[u] does not include r. Ann[v] does not include s. Thus Ann[sv]

would represent a new element on the graph. a

Claim 0.3.9. The following graph is not possible.

Proof. We will show that this graph cannot possibly be constructed by equivalence
classes. Note that su # 0 but rsu = tsu = vsu = 0, so [su] = [s]. Moreover, it
implies that su? # 0, hence u? # 0. By symmetry, [tv] = [v] and t* # 0. Next,

consider s + ¢. which is annihilated by r, but not t or u. The only candidate for

12



[s + ¢! ix [rl. The implications of this are r? = s> = v? = 0 since r(s + v) =
sls +v)=v(s —-1v)=0.

We consider tu. which is annihilated by s and v. The candidates for [tu] are
(1. [s]. and [¢]. By symmetry. we need only consider [r] and (s].

Case It {tu] = [r] This means that t?u # 0, tu® # 0, but t2u? = 0. It follows
that {t?u] = [¢] and [tu®] = [s]. Moreover, [t?] # [v] since t? is not annihilated by
w: likewise [1?] 5 [s]. On the other hand, ¢? is annihilated by s, hence [t?] # [u];
likewise [u*] # [¢t]. Thus. the possibilities for [t?] are [r], [s], and [t]. If [t?] =
[r]. then t*¢ = 0. which contradicts [tv] = [v]. For the same reason [t?] # [s].
Therefore. the only remaining possibility is the case [t?] = [t]. Then [u?] has to
be [s] since [t?u?] = 0. But the class of s is self-annihilating, hence su? = 0, a
contradiction.

Case II: [tu] = [s] This means that t?>u = 0. Thus [¢?] = [v], and hence t?v =0
since v is self-annihilating. But this contradicts the fact that [tv] = [v].

In conclusion, [tu] represents a new class. ]

Claim 0.3.10. The following graph is not possible.

(t]

/7

[8) ———— 4]

[r] —————[v]
Proof. We will find a new class of zero divisor not represented on the graph.Consider
the element r + v. By Strategy (2), we can assume that 72 = 0, otherwise [r] = [u].

So r + ¢ is annihilated by 7 but not by s or u. Now we see that 7 + v represents a

13



new element on the graph because t and u are not annihilated by r, r is annihilated

by s. and s and v are annihilated by u. a

Claim 0.3.11. The following yraph is not possible.

Proof. We will find a new class of zero divisor not represented on the graph. By
Strategy (3) we can assume that r? # 0, otherwise [r] = [u]. Therefore, r +v is
annihilated by u but not by r or s. Because s is in the annihilators of r and ¢, and
T is in the annihilators of s, u, and v, we see that 7 + v represents a new element

on the graph. a

Claim 0.3.12. The following graph is not possible.

[s] ————=[u]

=

[r) ———[v]

Proof. We will find a new class of zero divisor not represented on the graph.

Notice that by Strategy (3), r? # 0 and v? # 0 (without loss of generality) because
otherwise [r] = [u] = [v]. Now consider the element r + v. It is annihilated by s
and u but not by r or v. Note that 7(r+v) = r2 # 0 and v(r +v) = v? # 0. Notice
that . 5. w. and ¢ are all annihilated by r or v, and that ¢ is not annihilated by

w. Therefore r + v represents a new class. O

14




Claim 0.3.13. The following graph is not possible.

Proof. We will find a new class of zero divisor not represented on the graph.
Counsider ¢+ ¢. Its annihilators include u and do not include 7 or s. An examination
of the annihilators shows that s is in the annihilators of r, ¢, and « and r is in the

annihilators of s and ¢. Thus ¢ + ¢ represents a new class. (]

Claim 0.3.14. The following graph is not possible.

[s] - [u]

(7] [v]

Proof. We will ind a new class of zero divisor not represented on the graph.

Counsider the element r + s. By Strategy (3), 72 # 0 and s* # 0 otherwise [r] = [v]
and [s] = [u]. Notice, then that » + s is annihilated by u and v, but not by r, s, or
t. An examination of the annihilators shows that 7, ¢, u. and v are all annihilated

by s. and that s is annihilated by r. Thus  + s represents a new class. O

Claim 0.3.15. The following graph is not possible.

15




i
5] _//h \uJ

i ——

pProof We will find a new class of zero divisor not represented on the graph. First
note that «? = 0 otherwise [r] = [u]. Likewise, v? = 0 otherwise [s] = [v].
Therefore. & + v is annihilated by ¢. u, and v but not by r or s. However, an
examination of the annihilators shows that every vertex is adjacent to either 7 or

s. Thus Ann{u + v] determines a class distinct from each vertex, and hence [u + )]

would represent a new element on the graph. O

Claim 0.3.16. The following graph is not possible.

7] (v]

Proof. We will find a new class of zero divisor not represented on the graph. First

note that by Strategy (3) 02 # 0 otherwise ['r] = [1:], Also note that w2 =0
otherwise [s] = [u]. Now consider u + v. Its annihilators include 7, ¢, and u but
not s or v. However, every vertex on the graph is adjacent to one of these two

vertices. Thus [u + v] represents a new element on the graph. g

Claim 0.3.17. The following graph is not possible.

16



rj
Proof. We will find a new class of zero divisor not represented on the graph.
Consider all points. By Strategy (3), 72 # 0. s # 0, t* # 0, and u? # 0, otherwise
any combination of these would represent the same class. Now wel will find a
class of zero divisor not represented on the graph. Consider [r +t]. It is a zero
divisor because the individual elements r and t share an annihilator, but the two
do not represent the same class. Note that Ann[r + t] includes s, u, and v. It
does not include 7 or ¢. Now examine the annihilators of the individual elements.
Ann[r], Ann(s], Annt]. Ann[u], and Ann[v] each include r. Thus Ann(r + ¢] would

represent a new element on the graph. u

17




0.4 Positive Results

In this section. we show that four of the (connected) five vertex graphs can be
realized as T () for some ring R. Many of these rings will be factor rings R = S/,
where S is a polvnomial ring with coefficients from Z/pZ for a prime number p
and [ is some ideal. Note that if [ = (a,b). then a general element of I looks like
sy -+ sobo where sypos0 € S0 Also. I? = (a2, ab, b%) and I® = (a3,a2b,ab2,b3). A

general element of R = S/T looks like r = s + I, where r = 0 if and only if s € .

Proposition 0.4.1. Set R = — _(_Z/QZ)[[X’ Y. Z]]

(N3.X2Y X2Z Y2 22 XY Z)
(.r.y.z). where & (resp.. y. =) represents the coset of X (resp.. Y, Z) in R.We
claim that T g(R) has the graph shown below.

and let m be the ideal

1
-
AN
s/ )
/,,

First of all. note that the nonzero generators of m? are (x2, vy, zz,yz) and that
m? = 0 in R: i.e., each of x, y. and = annthilates every element in m2. Since every
polynomial of degree three is equal to zero in R, a general element of R looks like
a+bxr +cy+dz+exr?+ fry+ gyz + hxz, where the coefficients a, b, ¢, d, e, f, g. and
h are all either O or 1. However, whenever a # 0, this polynomial is a unit since
the other terms all lie in m [?, p. 4]. Therefore, the only possible zero divisors live
in m and have the form br + cy + dz + ex? + fzy + gyz + hzz.

e ann(.r?) = m. This (first) class will be represented by [z?].

Note that all the generators of m annihilate 2. Therefore m C ann(zr?). On

the other hand. we already have ann(z?) C m. Thus, ann(z?) = m.

18



Remarg .40 The same argument applies to the elements zy. ¥2. T and any
combination of these terms. Therefore, all of these terms, and any combination of
them, qetermine the class 7).

Remarg (1.4.3. We claim that for any zero divisor a. ann(a + 72) = ann(a); ie..
o+ 1% = inl. To sce this. note that each zero divisor 3 lives in m = ann(z°), hence
Ha + 2) = Ja equals zero if and only if 3 € ann(a). Moreover, this same argu-
ment applies to ry. ¥=. £3. and any combination of these terms. Therefore, only

linear combinations of the zero divisors of degree one will provide new equivalence

classes.

o ann(r) = (m?). This (second) class will be represented by [z]-

Note that o is annihilated by every element in m?. hence m* C ann(z). We
leed to establish the reverse containment. Let «v € ann(z), where v = br+cy+dz.
Then 0 = r(br + ¢y + dz) = ba? + cxy + duz. Since b,¢,d € Z, and 7°, zy and
Iz are linearly independent over Zy, we must have b = ¢ = d = 0. Therefore, no
degree one term annihilates r; i.e., ann(z) C (m?), and hence, ann(z) = (m?).

s ann(y) = (y.m?). This (third) class will be represented by [y].

Note that y is annihilated by every element in m? and y itself, hence (y, m?) C
ann(y). We need to establish the reverse containment. Let o € ann(y), where
@& = br + cy +dz. Then 0 = y(bz + cy + dz) = by + dyz. Since b,d € Z; and
Iy and rz are linearly independent over Z,, we must have b = d = 0. Therefore,
the only degree one term that annihilates y is y itself; i.e., ann(y) C (y,m?), and
hence. ann(y) = (y, m?).

e An analogous argument, with the roles of y and z switched, shows ann(z) =
(=.m?). This (fourth) class will be represented by [z].

e anu(y + z) = (y + =, m?). This (fifth) class will be represented by [z].

19



Note that y = = is annihilated by every element in m? and y + 2 itself, hence
(y + z.m?) C ann(y + z). We need to establish the reverse containment. Let
« € ann(y + ). where a = br + cy +dz. Then 0 = (y+2)(bz + cy +d2) =
bry + brz + (¢ + d)yz. Note that if b =0 and ¢ = d = 1, then the right hand side
is zero. Therefore, there is some dependence among these terms. We consider all
the cases carefully in the chart below. (Note that any triple containing only one

nonzero term has already been considered in the classes above.)

(b,c. d) bry +brz + (¢ + d)y=

(1. 1. 0) Ly +rs+y:z #0in R
(1. 0. 1) Xy + o+ ys #0in R
(0.1.1) 2yz =0in R
(1,1, 1) ry+ 2z #0in R

Therefore, the only degree one term that annihilates y + z is y + z itself; i.e.,
ann(y + 2) C (y + z.m?). and hence. ann(y + 2) = (y + z,m?).

Finally. in the remainder of our argument, we show that the remaining degree
one terms do not result in any new classes.

o ann(x + y) =m e, [v+y) = [1).

Note that & + y is annihilated by every element in m?, hence m? C ann(r +y).
We need to establish the reverse containment. Let o € ann(z + y), where o =
br + cy + d=. Then 0 = (r + y)(br +cy +dz) = bz? + (b+ c)zy + dzz + dyz. We
consider all the cases carefully in the chart below. (Note that any triple containing

only one nonzero term has already been considered in the classes above.)
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(b. . ) br? + (b= c\ry +drz +dy:2

(1. 1.0 22y =0t #0in R
(1.0.1) 2 ry sty #0in R
(0. 1. 1 Ty -+ I+ ys #0in R

(1.1.1) P 2ry+rzt+yr=r2+(r+y):  #0inR
Therefore. no degree one term annihilates r + y: i.e., ann(z +y) C (m?), and

hence, ann(x + y) = (m?): ie. [+ y] = [2].
Remark 0.4.4. By a symmetric argument. [z + 2] = [z].

o ann(r + y -+ ) = ann(r).

Note that r+y+z is annihilated by every element in m?, hence m® C ann(z+y+
z). We need to establish the reverse containment. Let o € ann(x+y+z), where v =
br+cy+dz. Then 0 = (r+y+z2)(br+cy+dz) = br*+(b+c)ry+(b+d)zz+(c+d)y2.
We consider all the cases carefully in the chart below. (Note that any triple

containing only one nonzero term has already been considered in the classes above.)

(b, c. d) br? + (b+ c)ry + (b +d)rz + (¢ + d)yz

(1, 1,0) 2?4+ 2zy+rztyz =2 +xz+yz #0in R
(1,0, 1) 2% + 2y + 272 + Yz #0in R
(0,1, 1) Ty +rz+2yz =y + 22 #0in R
(1.1.1) 2+ 2ry 4 202 + 2yz =22 #0in R

Therefore, no degree one term annihilates = +y+ 2; i.e., ann(z+y+2) C (m?),
and hence. ann(r +y + 2) = (m?); ie. [r+y+2] = [1].
In conclusion, to see that the graph above is I'g(R), take t = s =uq,r=

y,v=2z and u=y+ z.
Y,

(Z)22)[[X,Y, Z)) ond
(X3.Y3, 23 XY, X?Z, X 22, Y*Z,YZ, X* +Y?)
let m be the ideal (xr.y.z), where x (resp., y, z) represents the coset of X (resp.,

Proposition 0.4.5. Set R =
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Y. Z) i R, We claim that Tg(R) has the graph shoun below.

S —— 1
. [

. ™~

(R

First of all. note that the nonzero generators of m? are (2%, 22,9% y2,2?) and
that m* = 0 in R:ic.. each of r.y. and = annihilates every element in m2. There-
fore, a general element of R looks like a+bx +cy+dz +ex?+ fy? + g2 + hrz +1iyz,
where the coetficients a.b.c.d.e, f,g.h, and 7 are all either 0 or 1. However,
whenever a # 0. this polynomial is a unit since the other terms all lie in m
(7, p. 4]. Therefore, the only possible zero divisors live in m and have the form
br +cy +dz + er’ + fy* + g2% + hrz +1yz.

o ann(r?) = m. This (first) class will be represented by [z?).

Note that all the generators of m annihilate z2. Therefore m C ann(z?). On

the other hand. we already have ann(x?) C m. Thus, ann(z?) = m.

Remark 0.4.6. The same argument applies to the elements zz, y%, yz, 2%, and any
combination of these terms. Therefore, all of these terms, and any combination of

them. determine the class [2?].

Remark 0.4.7. We claim that for any zero divisor o, ann(e + z?) = ann(a); i.e.,
[ + 2% = [a]. To see this, note that each zero divisor 3 lives in m = ann(z?),
hence 3(a + r?) = Ba equals zero if and only if 8 € ann(a). Moreover, this
same argument applies to xz, y?, yz, 22, and any combination of these terms.

Therefore. only linear combinations of the zero divisors of degree one will provide

new equivalence classes.
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o ann(r! = (y.m-). This (second) class will be represented by [z].

Note that o is annihilated by every element in m* and y, hence (y,m?) C
ann(r). We need to establish the reverse containment. Let o € ann(x), where
o« = br -+ cy + dz. Then 0 = r(br + cy + dz) = ba* + dzz. Since b,d € Z; and
% and w2 are linearly independent over Zo, we must have b = d = 0. Therefore,
the only degree one term that annihilates r is y; i.e.. ann(z) C (y, m?), and hence,
ann(r) = (y.m?).

e An analogous argument, with the roles of z and y switched, shows ann(y) =
(r.m?). This (third) class will be represented by [y]-

e anu(z) = (m?). This (fourth) class will be represented by [z].

Note that = is annihilated by every element in m?. hence (m?) C ann(z). We
need to establish the reverse containment. Let o € ann(z), where o = bz +cy+dz.
Then 0 = z(br + cy + dz) = bzxz + cyz + dz*. Since b,¢,d € Zy and zz,y2 and
=% are linearly independent over Z,. we must have b = ¢ = d = 0. Therefore, no
degree one term annihilates z; i.e., ann(z) C (m2), and hence, ann(z) = (m?).

o ann(r + y) = (r +y,m?). This (fifth) class will be represented by [z + y].

Note that x + y is annihilated by every element in m? and z + y, hence (z +
y.m?) C ann(r + y). We need to establish the reverse containment. Let o €
ann(r + y), where o = b + ¢y +dz. Then 0 = (z +y)(bz +cy+dz) = br® +cy* +
drz + dyz. Note that if b = ¢ = 1 and d = 0, then the RHS is zero. Therefore,
there is some dependence among these terms. We consider all the cases carefully
in the chart below. (Note that any triple containing only one nonzero term has

already been considered in the classes above.)
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(b.c. ) br? + cy® + drz +dyz

(1.1.0) 4+ 2 =0in R
(1.0.1) r’+ ez 4y #0in R
(0. 1. 1) Y+ rz+yz #0in R
(1.1. 1) gyt t=2 #0in R

Therefore. the only degree one term that annihilates x + y is ¢ + y itself; i.e.,
ann(r — y) C (r + y.m?). and hence, ann(x +y) = (z + y,m?).

Finally. in the remainder of our argument, we show that the remaining degree
one terms to do not result in any new classes.

o ann(r + ) = m? ie. [+ 2] =[z]

Note that r+ = is annihilated by every element in m?, hence (m?) C ann(z +2).
We need to establish the reverse containment. Let o € ann(z + z), where o =
br + cy + dz. Then 0 = (x + 2)(bx + cy + dz) = bz® + (b + d)zz + cyz + d2*. We
consider all the cases carefully in the chart below. (Note that any triple containing

only one nonzero term has already been considered in the classes above.)

(b, c. d) br? + (b + d)xz + cyz + d2?

(1. 1. 0) %+ 1z +ys #0in R
(1,0.1) 2422 #0in R
(0.1, 1) rz 4 yz + 22 #0in R
(1.1, 1) r? 4+ yz + 22 #0in R

Therefore, no degree one term annihilates x + 2; i.e., ann(z +2) C (m?), and

hence, ann(r + z) = (m?); ie., [z + 2] = [z].
Remark 0.4.8. By a symmetric argument, [y + z| = (2.

oann(r+y+z2)=m%ie, [r+z]=[z]

2
Note that = + y + = is annihilated by every element m m%, hence (m?) C
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ann(r-+y-=). Weneed to establish the reverse containment. Let « € ann(z+y+2).
where a = br + ¢y +dz. Then 0 = (r+y+ 2)(br + cy + dz) = ba? + ey? + d=* +
(b+d)rz+ (c+d)yz. We consider all the cases carefully in the chart below. (Note

that any triple containing only one nonzero term has already been considered in

the classes above.)

(bh. c. d) b + cy® +d=? + (d + b)rz + (d + ¢)y2

(1,0.0) T+ 12 #0in R
(0.1,0) ¥y +y: #0in R
(0. 0. 1) 4 rz4oyz #0in R
(1.1, 0) 2yt rs 4y #0in R
(1.0, 1) 2422y #0in R
(0. 1. 1) Y+t 4oz #0in R
(1. 1. 1) R #0in R

Therefore, no degree one term annihilates r+y+z; i.e., ann(z +y+2) C (m?),
and hence, ann(r +y + z) = (m?); ie, [z +y+2] = [2].
In conclusion. to see that the graph above is T'g(R), take s = r=rv=

yu==z,and t =r +y.

(Z/32)([X.Y]]
(X3, Y3, XY, (X +Y)(X +2Y))
ideal (r.y). where r (resp., y) represents the coset of X (resp., Y) in R. We

Proposition 0.4.9. Set R = and let m be the

claim that T g(R) has the graph shown below.
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First of all, note that the nonzero generators of m? are (z2,y?) and that m® = 0
in R; i.e., both r and y, annihilate every element in m?. Therefore, a general
element of R looks like a + br + cy + dz? + ey?, where the coefficients a,b,¢,d, e,
and m are all either 0. 1 or 2. However, whenever a # 0, this polynomial is a
unit since the other terms all lie in m (?, p. 4]. Therefore, the only possible zero
divisors live in m and have the form bz + cy + dr? + ey®.

o ann(x?) = m. This (first) class will be represented by [z%].

Note that all the generators of m annihilate z2. Therefore m C ann(z?). On

the other hand, we already have ann(z?) C m. Thus, ann(z?) = m.

Remark 0.4.10. The same argument applies to 2z, cy? and bz? + cy?, for any
b,c € Zj. Therefore, all of these terms, and any combination of them, determine

the class [x?].

Remark 0.4.11. We claim that for any zero divisor «, ann(c + z?) = ann(«); i.e.,
[a + %] = [a]. To see this, note that each zero divisor 3 lives in m = ann(z?),
hence J(a + 1%) = Ba equals zero if and only if 3 € ann(e). Moreover, this same
argument applies to 212, cy?, and bz? 4 cy®. Therefore, only linear combinations

of the zero divisors of degree one will provide new equivalence classes.

e ann(r) = (y,m?). This (second) class will be represented by [z].

Note that r is annihilated by every element in m? and y, hence (y, m?) € ann(xz).
We need to establish the reverse containment. Let « € ann(z), where o = br +cy.
Then 0 = z(br + cy) = bz?, which is zero only when b = 0. Therefore, the
only degree one term that annihilates z is y; i.e., ann(z) C (y,m?), and hence.
ann(r) = (y, m?).

o An analogous argument, with the roles of r and y switched, shows that
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ann(y) = (r.m?). This (third) class will be represented by [y].
o ann(r + y) = (r + 2y.m?). This (fourth) class will be represented by [z + y].
Note that r + y is annihilated by every element in m? and z + 2y, hence
(r + 2y.m?) C ann(x + y). We need to establish the reverse containment. Let
«v € ann(x + y), where o = br + cy. Then 0= (z + y)(b:c. +cy) = bz? + cy®. Note
that if b = 1 and ¢ = 2, then the right hand side is zero. Therefore, there is some

dependence among these terms. We consider all the cases carefully in the chart

below.

(b, ¢) bz? + cy?

(1. 0) r? #0in R
0.1) o2 £0in R
(1. 1) x? 4 2 #0in R
(2. 0) 2r? #0in R
0,2) 2y £0in R
(1,2) 224292 —0inR
(2. 1) 212 + y? = 2(x + 2¢?) =0in R

(2, 2) 202 + 22 =2(z*+y?) #0inR
Therefore, the only degree one terms that annihilate z+y are z+2y and 2z +y;

i.e.. ann(r + y) C (z + 2y, m?), and hence, ann(z +y) = (¢ + 2y, m?).
e ann(x + 2y) = (z +y, m2). This (fifth) class will be represented by [z + 2y].
Note that r + 2y is annihilated by every element in m? and = + y, hence
(r + y,m?) C ann(r + 2y). We need to establish the reverse containment. Let
v € ann(r + 2y), where « = bz + cy. Then 0 = (z + 2y)(bzr + cy) = ba’® + 2cy*.
Note that if b = ¢ = 1, then the right hand side is zero. Therefore, there is some

dependence among these terms. We consider all the cases carefully in the chart




below.

(b, ¢) br? + 2cy?

(1, 0) x? #0in R
(0. 1) 242 #0in R
(1. 1) r? + 2y? =0inR
(2.0) 27 #0in R
(0. 2) y? #0in R
(1. 2) 12 4y #0in R
(2.1) 202422 #0in R
(2.2) 2% +y*=22"+2?) =0inR

Therefore, the only degree one terms that annihilate z + 2y are z + y and
20 + 2y: i.e., ann(z + 2y) C (z + y, m?), and hence, ann(z + 2y) = (¢ + y, m?).

Finally, in the remainder of our argument, we show that the remaining degree
one terms do not result in any new classes. Note that ann(2z + 2y) = ann(z +y)
since 2r + 2y = 2(2 + y) and 2 is a unit in R; i.e., o € ann(2z + 2y) if and only if
a(r +y) = 0. Likewise, ann(2z + y) = ann(z + 2y) since 2z +y = 2(z + 2y) and
2 is a unit in R. Thus, the five classes above are the only distinct classes.

In conclusion, to see that the graph above is ['g(R), take u = r2t=15=
y.r=x+y, and v =z + 2y.
Proposition 0.4.12. Set R = Z/p°Z. We claim that T'g(R) has the graph shown

below.

[t]

i
|

[,.

[ [u]

[v]

28




Note that every nonzero element in R is either a unit or a zero divisor. In
particular. 7 in R is a unit if and only if ged(r,p) =1 and T is a zero divisor in R
if and only if ged(r, p) = p. Since p is a prime, T is a zero divisor in R if and only
if ged(r, p) = p. The classes [p], [p?. [°], [p%], [p°] are distinct since p € ann(p®)
but p is not in any of the other annihilators. Likewise. p* € ann(p*) but p? is not
in any of the other (smaller) annihilators. Continue in this way to see that all
these classes are distinct. Finally, consider a zero divisor 7 of R. We can write 7
as upk, where ged(u,p) = 1; i.e., Wis 2 unit in R and has an inverse 7! Clearly
ann(;’;) C aml(m) since any element that annihilates 1_)E will annihilate a product
of pk. Let t € ann(upk). Then 0 = tup* = u~1-0 = w1 tupk = 0 = tpF; ie.,
ann(up*) = ann(pk). In conclusion, the five classes already identified are the only
distinet classes.

In conclusion, to sce that the graph above is Tg(R), take t = p,s = phv =

pd.r =pi, and u = pd.

In summary, graphs (2), (6), (9), and (11) in the Appendix can each be realized
as the zero divisor graph of some ring R. The remaining graphs in the Appendix

can not.
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