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Abstract

We study the zero divisor graphs, determined by equivalence classes of zero divisors

of a ring R. with exactly five vertices. In particular, we determine which graphs

with exactly five vertices can be realized as the zero divisor graph of a ring. We

provide rings for the graphs which are possible, and prove that the rest of graphs

can not be realized via any commutative ring. There are thirty-four graphs in

total which contain exactly five vertices.
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0.1 Introduction

In 1988, I. Beck (?) introduced the idea of the zero divisor graph. By this notion,

a ring R is represented by a simple graph, where each vertex corresponds to an

element of the ring. Vertices a and b share an edge if and only if ab = 0. By

a simple graph we mean that there are no loops (i.e., an edge from a to a) or

multiple edges between any two vertices. Each of these graphs is connected with

diameter two, since every vertex is adjacent to zero.

Example The zero divisor graph for the ring = Z/6Z contains the elements

{0,1,2,3,4,5}, and is shown below.

2 1

3 0

4 5

In 1999, Anderson and Livingston [?] elaborated on Beck’s idea of zero divisor

graphs. In their graph, only zero divisors are represented. Therefore, any element

of the ring which is not a zero divisor is not shown. The notation for these graphs

is r(/?). These are also simple graphs and are connected.

Example (Revisited) The zero divisors of the ring  R=  are {2,3,4}.

2

r(z/6Z)3

4

In 2002, S, Mulay [?] demonstrated how a graph could be constructed from

equivalence classes of zero divisors. Once again, these graphs are simple and

conncrtod. The notation for a graph constructed from equivalence classes is r£,’(/?).

1
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Example (Revisited) The equivalence classes of zero divisors of the ring R =

Z/6Z are {[2]. [3]}.

:21

rE(Z/6Z)

To illustrate the relationship between T{R) and Te(R), we provide the exam

ple below. Note that T{R) ‘'collapses", in some sense, to T£;(/?), since we are

identifying zero divisors.

Example Consider the graphs for Z/12Z:

131

r(z/i2Z)

[2] [6] w rE(z/i2Z)[3;

The goal of this project is to examine the five point zero divisor graphs con

structed from equivalence classes and to determine which five point graphs can be

zero divisor graphs of some ring. For each graph which is a zero divisor graph of

some ring, we provide a ring associated to it. For those graphs which are not, we

prove that no ring exists such that Te{R) takes the necessary form. We note that

there are thirty-four total graphs with exactly five vertices [?, pp.216-217], but we

need only focus on the connected ones in this project since it has been shown [?],

[?], [?] that zero divisor graphs are always connected. Therefore we will consider
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the tvveiity-oiie connected five point graphs. See the Appendix for a complete list

of the graphs.

Finally, to motivate this project, we provide one more example. The ring

R = (Z/6Z)[yYj, all polynomials with coefficients from Z/6Z, is infinite, and there

fore the zero divisor graphs of Beck and Anderson  k Livingston can not be drawn.

However, Te{R) takes the same form as Te{1IQ'^) in our earlier example.

3



0.2 Background

The following is background information regarding rings and related concepts. A

standard reference for this material is the book by J. Gallian [?]. The book by H.

Matsumura is a standard reference for the material on commutative ring theory

f? .

Definition A ring i? is a set with two binary operations, addition and multi

plication, such that for all a,6, c in R:

1. a-|-6 = 6-|-a

2. (a -h 6) -f c = a -(- (6 -k c)

3. There is an additive identity 0. That is, there is an element 0 in iti such that

a -f 0 = a for all a in R.

4. There is an element -a in R such that a + (-a)  = 0.

5. a{bc) = {ab)c

6. a{b + c) = ab-\-ac and (6 -f- c)a = ba-{- ca

Note that a simple example of a ring is the set of integers, denoted Z. The

‘integers modulo n”, for example Z/6Z or Z/12Z, are also rings.

Definition A ring R is commutative if multiplication is commutative; i.e.. if

ab = ba for every a, b in R. A ring has unity if it hfcis a multiplicative identity;

i.e., if there is an element I in R such that la  = al for all a in R.

Definition A zero divisor is a nonzero element a of a ring R such that for

some nonzero element b in R, ab = 0.

4



Note that Z is commutative and has unity one, and it contains no zero divisors.

Note also that Z/12Z contains zero divisors, namely 3 and 4 because (3)(4)=0 in

Z/12Z.

Definition In general, an annihilator element b of an element a is one such

that a6 = 0.

Definition An ideal A of a ring Risa nonempty subset where if a,6 are in A

then a - b is in A. and if a is in A and r is in R, then ar and ra are both in A.

Definition The annihilator ideal of a is defined as ann(a) = {r e R \

ra = 0}. It is an ideal of R.

Definition A unit in a ring i? is a nonzero element u such that there exists

another nonzero element such that uu~^ = u~^u = 1.

Definition A field is a commutative ring with unity such that every nonzero

element is a unit.

Definition An equivalence relation, denoted

relation that satisfies the following three conditions:

on a set 5 is a binary

1. a a for all a E 5.

2. a ~ 6 implies b a for all a,b E S.rs^

3. a ~ 6 and 6 ~ c imply a ~ c for all a,b,cE S.

The set [a] = {x E S : x a} is called the equivalence class of a.

Example For a commutative ring R with unity, denote a

ann(a) = ann(6), for all a,bE R. Note that:

b if and only if

1. ann(a) = ann(a) for all a E R-

2. ann(a) = ann(6) implies ann(6) = ann(a) for all a,b E R.

5
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3. ann(a) = ann(6). ann(6) = ann(c) imply ann(a)  = ann(c) for all a, 6, c G R.

This is an equivalence relation on R. The set [a]  = G  : ann(x) = ann(a)} is

the equivalence class of a.

Definition The graph of equivalence classes of zero divisors of a ring

/?. ck'iKjtcd by TeIR), is the simple graph associated to R whose vertices are the

classes of zero divisors determined by the above relation, and with each pair of

distinct classes [ri], [i>] joined by an edge if and only if [li] ● [uj = 0, where [u] ● [uj is

defined to be [w]. (This is well-defined [?], [?].)

Definition Some graph theory definitions are as follows:

1. A path of length n between two vertices u and  v is a sequence of distinct

vertices Wi of the form u = Wq-Wi Wn = v such that Wi-i - Wi is an

edge for each i. The distance between u and v is the length of the shortest

path.

2. A connected graph is one in which there is a path between any two vertices.

3. The diameter of a graph is the greatest distance between any two vertices.

For zero divisor graphs determined by equivalence classes, the diameter is

three or less.

Finally, a number of strategies will be useful in determining which five point

graphs are not zero divisor graphs of any ring.

Strategies

1. If there is an edge between two points on the graph, then we say the two

points connected annihilate one another. Specifically, when multiplied to

gether. the products of the two connected points is zero. Note that by

6



definition, a five point zero divisor giaph contains five points, each of which

has a distinct group of annihilators.

2. If two points on the zero divisor graph appear to have the exact same an-

nihilators (that is they share edges with the exact same other vertices) and

they are not adjacent to one another, then at least one is self-annihilating.

In other words, at least one of the points must annihilate itself. Otherwise,

the two points would represent the exact same class.

3. If two points on the zero divisor graph appear to have the exact same annihi

lators and they are adjacent to one another, then at least one of those points

must not annihilate itself. Otherwise, then two points would represent the

exact same class.

4. To show that a five point graph is not the zero divisor graph of some ring, we

will assume that it is and then construct a new sixth class from the original

five.

7



0.3 Negative Results

Claim 0.3.1. The graph pictured below is not possible.

w

1^!

[^1

Proof. We will find a new class of zero divisor not represented on the graph.

Consider the cltiss [ru\. The element is not zero, otherwise there would be an edge

directly from [r] to [ii]. But it is a zero divisor. Note that ann[ru] contains at least

●s. t. and V. Now examine the annihilators of the individual vertices. Ann[rj does

not contain t. Ann[s] does not include v. Ann[i] does not include v. Ann[ti] does

not include s. Ann(u] does not include s. Thus ann[ru] would represent a new

element on this graph. □

Claim 0.3.2. The graph pictured below is not possible.

/

M

Proof. VVe will find a new class of zero divisor not represented on the graph.

Consider the class [h'). The element is not zero, otherwise there would be an

edge directly from t to v. But it is a zero divisor since r{tv) = 0. Note that

tr is annihilated by at least r, s, and u. Now examine the annihilators of the



individual vertices. Ann[rj doesn’t contain t. Ann[s] doesn’t contain u. Ann[i

doesn't contain r. Ann[w] doesn’t contain s. Ann[i'] doesn’t contain u. Thus

Ann(ti') would represent a new element on the graph. □

Claim 0.3.3. The following graph is not possible.

w

[^1 [u]

lu)
Proof. We will fi nd a new class of zero divisor not represented on the graph.

Consider the class [r + t]. It is a zero divisor because the individual elements r and

t share an annihilator, but the two do not represent the same class (otherwise they

would share a vertex.) The only annihilator of r  + i is s since the only element

which annihilates both r and t is s. Now examine the annihilators of the individual

vertices. Ann[r] includes v. Ann[t] includes u. Ann[s] includes u. Ann[uJ includes

V. Ann(uJ includes u. Thus Ann[r+i] would represent a new element on the graph.

□

Claim 0.3.4. The following graph is not possible.

M

Proof We will find a new class of zero divisor not represented on the graph.

Consider the class [tuj. This element is not zero, otherwise there would be an

9



edge directly from t to v. But it is a zero divisor since u{tv) = 0. Note that

tv is annihilated by at least s. r, and u. Now examine the annihilators of the

u. Ann[sj doesn’t include u. Ann[t]indi\idual vertices. Ann[r] doesn’t include

doesn't include r.

Anii[N'l would represent a new element on the graph.

Ann[{«] doesn’t include s. Ann[r’| doesn’t include s. Thus

□

Claim 0.3.5. The following graph is not possible.

w

Proof. We will hiid a new class of zero divisor nut represented on the graph.

Consider the class [t + v]. It is a zero divisor because the individual elements t

and V share an annihilator, but the two do not represent the same class (otherwise

they would share a vertex.) The only annihilator of t + v is u. Also, both r and

not annihilators of [t + n]. Now examine the cmnihilators of the individual

vertices. Ann[r] includes s. Ann[s] includes r. Ann(tj includes s. Ann['aJ includes

.s. Ann[c) includes r. Thus Ann[i + vJ would represent a new element on the graph.

.S' are

□

Claim 0.3.6. The following graph is not possible.

10



Proof. W'v will hud a new cUusb of zero divisor not represented on the graph. First

consider r and v. Since [r] and [n] appear to have the same annihilator, by Strategy

(2). we can tissiime tliat r~ = 0 because otherwise [r] = [r.']. Consider s and u.

Sa\' .s“ 0 otherwise [s] = [u]. VVe will now find a new class of zero divisor

not represented on the graph. Consider + u]. It is a zero divisor because the

indi\-idnal elements r and u share an annihilator, but the two do not represent

the same class (otherwise they would share a vertex.) Ann[?'+ u] includes r. It

Now examine the annihilators of individual elements.

Annj/J includes ,s. Ann[s] includes!’. Ann[t] includes s. Ann[n] includes!'. Ann[!'

includes .s. Thus Ann[/- + u\ would represent a new element on the graph.

does not include s or v.

□

Claim 0.3.7. The following graph is not possible.

1'

M

Proof We will find a new class of zero divisor not represented on the graph.

Consider s and a. By Strategy (3) say ^ 0 because otherwise [s] = [uj. Consider

r and v. By Strategy (2) one must be self-annihilating, otherwise [r] = [v]. Thus

say = 0. We will now find a new class of zero divisor not represented on the

graph. Con.sider [r -h u]. It is a zero divisor because the individual elements r and

u share an annihilator, but the two do not represent the same class. Ann[r -I- u]

includes s and r. It does not include u, t, or v. Now examine the annihilators

of individual elements. Ann[rJ, Ann [s], Ann[t], and Aim[v\ include u. Ann[u]

includes v. Thus Ann[r u\ would represent a new element on the graph. □

11



Claim 0.3.8. 1 he following graph is not possible.

/

u

proof. ^ 'vill (lud new claas of zero divisor not represented on the grapli.

C^onsicler [sj and [t\. By Strategy (2) say s^ =  0 because otherwise [sj = [t]. We

will now find a class of zero divisor not included on the graph. Consider the class

uf [sv]. 1 his element is not zero, otherwise there would be an edge directly betwen

s and V. But it is a zero divisor because there is some nonzero element which

inidtiplies sc to zero. Not that Ann[su] includes at least r, u, and s. Now examine

the aiinihilators of the individual elements. Annfr], Annls and Ann[i] do not

include u. Ann[n] does not include r. Ann[u] does not include s. Thus Ann[su]

would represent a new element on the graph. □

Claim 0.3.9. The following graph is not possible.

w
/

Ms

Proof. We will show that this graph cannot possibly be constructed by equivalence

classes. Note that su ^ 0 but rsu — tsu = vsu = 0, so [sii] = [s]. Moreover, it

implies that sir ^ 0, hence ^ 0. By symmetry, [tv\ = [u] and 7^ 0. Next,

consider s 4- r, which is annihilated by r, but not t or u. The only candidate for

12



is [r]. The implications of this are 7'“ = = Q since r{s + v) =^,s 4- r

,s(.s -f- r) — r( - 7-) = 0.

WV consider tu. which is annihilated by s and v. The candidates for [iu] are

[/● ! . [s] , and [(●] . B>- symmetry, we need only consider [/*] and [s].

Case I; [f ii] = [/■] This means that t'^u ^ 0, tir ^ 0, but t^u~ = 0. It follows

that [t~u] = [r\ and [tir] = [s]. Moreover, [i'“]  ^ [u] since is not annihilated by

u: likewise [77-] ^ [s]. On the other hand, is annihilated by s, hence [t'“] ^ [zij;

likewise [7/-’] ^ [t^] . Thus, the possibilities for [t~] are [r], [s], and [t]. If [t^] =

[/●]. then t~L' = 0. which contradicts [tv] — [u]. For the same reason ^ [s].

Therelore. the only remaining possibility is the case = [t]. Then [u^j has to

be [s] since [t'~ u-\ = 0. But the class of s is self-annihilating, hence sil'^ = 0, a

contradiction.

Case II; [^77] = [s] This means that t'^u = 0. Thus [t^] = [t?], and hence = 0

since t' is self-annihilciting. But this contradicts the fact that [^7] = [v .

In conclusion, [fr7| represents a new class. □

Claim 0.3.10. The following graph is not possible.

[f]

[u|

Proof. We will find a new class of zero divisor not represented on the graph.Consider

the element /● -i- 7'. By Strategy (2), we can assume that = 0, otherwise [?'] = (77).

So r -4- r is annihilated by r but not by s or u. Now we see that r + v represents a

13



new element on the graph because t and u are not annihilated by r, r is annihilated

by .s. and .s and v are annihilated by u. □

Claim 0.3.11. The following graph is not possible.

f/j

ProoJ. We will tind a new class of zero divisor not represented on the graph. By

Strategy (3) we can assume that r~ ^ 0, otherwise [r] = [u\. Therefore, r + v is

annihilated by a but not by r or s. Because s is in the annihilators of r and t, and

r is in the annihilators of s, u, and we see that  r + v represents a new element

on the graph. □

Claim 0.3.12. The following graph is not possible.

[()

(u|

Proof. We will find a new class of zero divisor not represented on the graph.

Notice that by Strategy (3), 7^ 0 and 'V^ ^ 0 (without loss of generality) because

otherwise [7-] = [77] = [f]. Now consider the element r -\-v. It is annihilated by s

and a but not by r or v. Note that r{r-\-v) = 7'^ 7^ 0 and v{r + v) = 7^ 0. Notice

that /■. .s, u. and r are all annihilated by r or u, and that t is not annihilated by

a. Therefore r + r represents a new class. □

14



The Jollown}g graph is not possible.Claim 0.3.13.

»S 'I

Proof. We will find a new class of zero divisor not represented on the graph.

Consider / -f v. Its annihilators include u and do not include r or s. An examination

of the annihilators shows that s is in the annihilators of ?', t, and u and r is in the

annihilators of s and r. Thus ̂ 4- i’ represents  a new class. □

Claim 0.3.14. The following graph is not possible.

(']

i«i

[t'l

Proof. We will fi nd a new cltiss of zero divisor not represented on the graph.

Consider the element /● 4- ,s. By Strategy (3), ^  0 and ^ 0 otherwise [?'] = [t>]

and [.s] = [a] . Notice, then that ?● 4- s is annihilated by u and v, but not by r, s, or

f. An examination of the annihilators shows that ?■, t, a, and v are all annihilated

by .s. and that s is annihilated by r. Thus r 4-  s represents a new class. □

Claim 0.3.15. The following gi'aph is not possible.

15



[f]
/ //
/
/

I /

i'i

proof. V\o will find a new class of zero divisor not represented on the graph. First

= 0 otherwise [r] = [i^j. Likewise, v- = 0 otherwise [s] = [t’].

and V but not by r or s. However, an

that ii-iiote

Therefore, u v is annihilated bv t. u.

of the annihilators shows that every vertex is adjacent to either r or

class distinct from each vertex, and hence [u + v]5. Tiius Arm[n 4-r| determines

would represent a new element on the graph.

a

□

Claim 0.3.16. The folloiuing graph is not possible.

s

Proof. We will find a new class of zero divisor not represented on the graph. Fiist

7^ 0 otherwise [i'] = [t’]- Also note that vf

otherwise [s] = [u]. Now consider u + v. Its annihilators include r, and u but

not 5 or V. However, every vertex on the graph is adjacent to one of these two

vertices. Thus [a + a] represents a new element on the graph.

= 0
note that by Strategy (3) v 2

□

Claim 0.3.17. The following graph is not possible.

16



t

\N,\
\/

us

/

I'-i
Proof. W'e will fmd a new class of zero divisor not represented on the graph.

Consider all points. By Strategy (3). r~ ̂  0, s“ 7^ 0, t- ̂  0, and v?- ̂  0, otherwise

aii\- combination of these would represent the same class. Now wel will find a

class of zercj divisc^r not represented on the graph. Consider [r + t]. It is a zero

divisor b<‘cause the individual elements r and t share an annihilator, but the two

chj not represent the same cltiss. Note that Ann[7- + f] includes s, u, and v. It

does iKjt include r or t. Now examine the annihilators of the individual elements.

Arin[r], Aim[s], Ann[t], Ann[n], and Ann['c] each include r. Thus Ann[r + t] would

represent a new element on the graph. □

17



Positive Results0.4

In this s(M ti(m. we show that four of the (connected) five vertex graphs can be

reali'/(Ml as F /.-(I\) for some ring R. Many of these rings will be factor rings R = S/R

where S is a polynomial ring with coefficients from Z/pZ for a prime number p

and / is some ideal. Note that it / = (n,6), then  a general element of I looks like

s )h. w here .s G 5. Also, /- = (n'“,a6,6“) and = {a^,a^b,ab^.,b^)- A

general element id' R = S/I looks like r = s + /, where r = 0 if and only if s G /.

spi r > 1

(z/2Z)[[x,y.z]j
and let m be the idealProposition 0.4.1. Set R =

(A'A A'n; A'2z, za a'vz)

(./●. //. ulirrr .r fresp. , p. z) represents the coset of X (resp.. V, Z) in R.We

claim that r^iR) has the graph shown below.

^^1Id

First of all, note that the nonzero generators of are {x^-,xy,xz,yz) and that

m'^ = 0 in R. i.e., each of x, y. and z annihilates every element m m^. Since every

polynomial of degree three is equal to zero in R,  a general element of R looks like

a 4- bx + cy + dz -\- ex^ + fxy + gyz + hxz, where the coefficients a, b, c, d, e, /, p, and

h are all either 0 or 1. However, whenever a, 0, this polynomial is a unit since

the other terms all lie in m [?, p. 4], Therefore, the only possible zero divisors live

in m and have the form hx + cy S dz + fxy + gyz + hxz.

® ann(.r'“) = m. This (first) class will be represented by [x^j.

Note that all the generators of m annihilate x^. Therefore m C ann(.r^). On

the other hand, we already have ann(x^) C m. Thus, ann(x^) = m.

18



f^rniurk- 0,4.2. 'Hh' same argument applies to the elements xy, yz, xz, and any

of these terms. Therefore, all of these terms, and any combination of

determine the class [.r~|.

^<"nuu-k 0.4.3. claim that for any zero divisor a. aiin(a +’^~) —

loi. To see this, note that each zero divisor J lives in m = ann(j ), hencein -f .7-

= ja equals zero if and only li p e ann(Q). Moreover, this same argii-

c. and ail}' combination of these terms. Therefore, only

will provide new equivalence

r^terit aj^plies to xy. yz,

binafwns of the zero divisors of degree onelulled!' corn

classes.

® anii(.r) = (m'^). This (second) class will be represented by [a: ●

N()t(' that .r is annihilated by every element in m’. hence tn^ C ann(a'). We

n«ed to establish tlie reverse containment. Let o  G ann(.r), where fv = bx + cy-\-dz.

T- hen 0 = x{bx 4- cy + dz) = bx^ + cxy + dxz. Since b,c,d G ̂ 2 and xy and

~ are linearly independent over Z2, we must have  b = c — d = 0. Therefore, no

degree one term annihilates x; i.e., ann(a:) C (m^), and hence, ann(a') = (m^).

® ann(i/) = (ty, m'^). This (third) class will be represented by [t/].

Note that y is annihilated by every element in and y itself, hence (2/,m^) C

anii(yy). We need to establish the reverse containment. Let a G ann(y), where

= b.r + cy + dz. Then 0 = y{bx + q/ + dz) = bxy + dyz. Since 6,d G Z2 and

■ry and .rz are linearly independent over Z2, we must have b = d = 0. Therefore,

the only degree one term that annihilates y is y itself; i.e., ann(y/) C (y/,m^), and

hence, ann(iy) = (y/,m^).

« An analogous argument, with the roles of y and 2: switched, shows ann(^) =

(:^ . m'^). This (fourth) class will be represented by [2:].-

● ann(:v + ~) = (.{/ + m^). This (fifth) class will be represented by [z .

fV
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N(jtc‘ that ij - r IS annihilated by every element in m* and y + z itself, hence

{tj -h Z.XXX-) C aiin(.v -- z). We need to establish the reverse containment. Let

fv € ann(i; r). where a = bx + cy + dz. Then 0 = (y + z){bx + cy + dz) =

bxy + bxz -r [r -f d)yz. Note that if 6 = 0 and c  = d = 1, then the right hand side

is zero, rherefore. there is some dependence among these terms. We consider all

the cases carefulh' in the chart below. (Note that any triple containing only one

nonzero term has alread\- been considered in the classes above.)

bxy + bxz + [c + d)yz(b, c, cl)

(1. 1. 0) #0ini?xy + xz + yz

(1. U. 1) 7^0 in/?xy + .rr + yr

(0. 1. 1) = 0 in i?‘2yz

in R(1. 1, 1) xy + xz

Therefore, the only degree one term that annihilates y + 2 is y + 2 itself; i.e..

ann(y + z) C (y + r, m'-). and hence, ann(y + ~)  =(y +

Finally, in the remainder of onr argument, we show that the remaining degree

one terms do not result in any new classes,

o ann(x + y) = m-; i.e., [x + y] = [j].

Note that x + y is annihilated by every element in m^, hence C ann(x + y).

We need to establish the reverse containment. Let  q € ann(x + y), where

bx + cy + dz. Then 0 = (x + y)(6x + cy + dz) = bx^ + {b + c)xy + dxz + dyz. We

consider all the cases carefully in the chart below. (Note that any triple containing

only one nonzero term has already been considered in the classes above.)

Oi =
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b.v- -- (b * 4- dxz + dyz(b. c. d)

7^ 0 in i?

^ 0 in i?

7^ 0 in

( 1. 1. () i J.r.i/ =

x~ - xy 4- xz 4- yz

xy -r xz + yz

X- + 2xy 4- -r; + yz = x~ 4- (j + y)z

Tlu'ietoie. no degree one term annihilates x + y\ i.e., ann(x + y) C (m^), and

hence, ann(.r 4- y) = (m“); i.e.. [x 4- y) = [x].

x~

(1, 0. 1 )

(0. 1 . 1 )

7^ 0 in H(1. 1. 1)

Remark 0.4,4. By a symmetric argument, [x 4-2] = [x].

o ann(.r + y c) = ann(x).

Note that x + y-^z is annihilated by every element in m^, hence m“ C ann(x4-y4-

c). VVe need to establish the reverse containment. Let (\ 6 ann(x4-y4-2), where a =

bx + cy + (lz. Then 0 = (.r-ry4-;)(6x4-cy4-d2) = 6x“'4-(64-c)xy4-(64-(i)x24-(c4-d)y2.

We consider all the cases carefull}' in the chart below. (Note that any triple

ccmtaining oid>' one nonzero term has already been considered in the classes above.)

6x“ 4- (6 4- c)xy 4- (6 4- d)xz 4- (c 4- d)yz(b, c. d)

X" 4- 2xy 4- X2 4- yz = x^ 4- xz 4- yz

x^ 4- xy 4- 2xz 4- yz

xy 4- X.: 4- 2yz = xy + xz

x‘^ 4- 2xy 4- 2x4 4- 2yz = x“

Therefore, no degree one term annihilates x4-y4-4:; i.e., ann(x4-y4-2) C (m ),

ami hence. ann(x 4- y 4- 4) = (m-); i.e., [x 4- y 4- 2] = [.r|.

In ccmclusion, to see that the graph above is Te{R), take t = x^s

y, V = 4, and u = y + 4.

7^0 ini?

^Oini?

7^ 0 in i?

(1, 1,0)

(1,0, 1)

(0, 1, 1)

7^0 ini?(1, 1. 1)

= x,r =

(Z/2Z)[[X,r,Z]| and
Proposition 0.4.5. Set R =

[X‘\ Y\ ZK XY, X^Z, XZ2, Y^Z,YZ\ X^ + Y'^)

be the ideal (x, y,4), where x (resp., y, z) represents the coset of X (resp.,let m

21



V. Z) in R. UV claim that Ve[R) has the graph shown below.

UL" J

\n
:  j

V

First of all. note that the nonzero generators of m‘“ are (x'^,xz,y-,yz,z^) and

that = 0 ill R: i.e.. each ofx.y. and z annihilates every element in . There

fore, a general element of R looks like a + bx -^r qj dz ex'^ + fy"^ + gz^ hxz + iyz,

where tin' eoeffieient.s a. b. c. d. e, f, g, h, and i are all either 0 or 1. However,

whenever a ^ 0. this polynomial is a unit since the other terms all lie in m

?, p. 4]. Therefore, the only possible zero divisors live mm and have the form

bx + eg + dz ex'- -I- f gz~ -I- hxz + iyz.

9 anri(j’'^) = m. This (first) class will be represented by [x"^.

Note that all the generators of m annihilate Therefore m C ann(x^). On

the other hand, we already have ann(x“) C m. Thus, ann(x^) = m.

Remark 0.4.6. The same argument applies to the elements xz, y^, yz, 2^, and any

combination of these terms. Therefore, all of these terms, and any combination of

them, determine the class .

Remark 0.4.7. We claim that for any zero divisor q, ann(a-f x^) = ann(a); i.e.,

[cv -1- x'^] = [a]. To see this, note that each zero divisor P lives in m = ann(x^),

hence d(a -f x^) = 0a equals zero if and only if  ^ G ann(cv). Moreover, this

same argument applies to xc, yz, 2^, and any combination of these terms.

Therefore, only linear combinations of the zero divisors of degree one will provide

new equivalence classes.

22



9 aiiiu./ i - m-’ i . This (second) class will be represented by [j .

Note that ./● is annihilated by every element in m" and y, hence (y,m“) C

aiiii(j). We need to establish the reverse containment. Let a G ann(x), where

= hs r cy -I (Iz. Then 0 = .v{bx + cy + dz) = bx~  + dxz. Since b,d £ Z2 and

x~ and .rz are linearly independent over So, we must have 6 = d = 0. Therefore,

the only degree one term that annihilates x is y; i.e.. ann(i“) C (y,m“), and hence,

aiin(j-) = (y.m“).

« An analogous argument, with the roles of x and  y switched, shows ann(y) =

(j-, m~). This (third) class will be represented by [y .

® ann(c) = (m“). This (fourth) class will be represented by [z .

Note that c is annihilated by every element in m". hence (m^) C ann(.^). We

need to establish the reverse containment. Let a  € ann(.3), where ft = bx+cy+dz.

Then 0 = z{bx + cy + dz) = bxz + cyz + dz^. Since 6,c,d G Z2 and xz,yz and

z'^ are linearly independent over Zo, we must have 6 = c = d = 0. Therefore, no

degree one term annihilates 2; i.e., ann(.^) C (m^), and hence, ann(2) = (m^).

● aiin(a' + y) = (x + y, m“). This (fifth) class will be represented by \x + y .

Note that x + y is annihilated by every element in and a: + y, hence {x +

y,ni-) C ann(j: + y). We need to establish the reverse containment. Let ft G

ann(:r + y), where a = 6:r + cy + d^. Then 0 = (x  + y)(bx + cy + dz) = bx‘^ + cy^ +

dxz + dyz. Note that if 6 = c = 1 and d = 0, then the RHS is zero. Therefore,

there is stnne dependence among these terms. We consider all the cases carefully

in the chart below. (Note that any triple containing only one nonzero term has

already been considered in the classes above.)
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b.r~ -r cij- — dxz dyz(b. r. (1)

,  O

-r !/“ = 0 in i?(L 1. 0) ,r“

# 0 in i?

# 0 in i?

^ 0 in /?

Th(‘r(‘fon\ the only degree one term that annihilates x -\-y isx + y itself; i.e.,

aiin(.r — y) C {x -i- y.m~). and hence, ann(x + y) = (.r+ y,m^).

Finally, in the remainder of onr argument, we show that the remaining degree

one terms to do not result in any new classes,

o aiin(j- + z) = m'“; i.e., [,r + r] = [c .

Note that x + c is annihilated by every element in m^, hence (m^) C ann(x + 2).

VVe need to establish the reverse containment. Let cv € ann(x + 2), where a =

bx + cy + dz. Then 0 = (,r + z)(bx + cy + dz) = bx"^ + (5 + d)xz + cyz + dz"^. We

ccmsider all the cases carefully in the chart below. (Note that any triple containing

only one nonzero term has already been considered in the classes above.)

bx'^ + (6 + d)xz + cyz + dz"^

(1. 0. 1) x~ -f- .rc -f yz

(0. 1. 1) y- + xz yz

(1. 1. 1) 4- y- -I- c

(1). C. d)

2
7^ 0 in i?

7^ 0 in jR

7^ 0 in i?

(1, 1.0)

(1, 0. 1)

(0. 1, 1)

X"- + xc + yc

x'^ +

X- + yz T

x^ + yc +

Therefore, no degree one term annihilates x + 2; i.e., ann(x + 2) C (m^), and

hence. ann(x + 2) = (m^); i.e., [x + 2] = [x .

7^ 0 in i?(T T 1)

Remark 0.4.8. By a symmetric argument, [y+ 2J - 2: .

o ann(.r T y + 2) = m^; i.e., [x + 2] = [2 .

Note that x + y + 2 is annihilated by every element in m^ hence (m^) C
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aiin( - r ). \\V lua'd tu establish the reverse containment. Let a G mi\(x+y-\-z).

where a --= b.r - -f dz. Then 0 = (.r + + z)(bx + cy + dz) = 6x^ + + dz~ +

ib ̂  d).iz - (r' -T- d)i/z. We consider all the cases cai-efiilly in the chart below. (Note

that any triple containing only one nonzero term has already been considered in

the chusses abtA'e.)

(b, c. d) b.r~ + cy- + dz- [d + b)xz + (d + c)yz

(1, 0. 0)

(0. 1, U)

(0. 0. 1)

^ 0 in i?

^OinR

^0 in R

j^OinR

^OinR

7^0 ini?

X- + xz

ir + yz

z- -f .rc + yz

(1. 1, 0)

(1. 0. 1)

(0. 1, 1)

(1. 1)

Therefore, no degree one term annihilates x + y-\-z; i.e., ann(r + y + 2) C (m“),

and hence, ann(x + y + ̂) = (m^); i.e., [a: + y + 2) = [~ ●

In conclusion, to see that the graph above is F£'(i?), take s - x‘^,r = x,v =

y, u = c, and t = x y.

x~ + y- + xr 4- yz

X“ 4- C" -r yz

y~ + z- + xz

^Oini?

(z/3Z)[[x,y]] and let m be theProposition 0.4.9. Set R =
(X^,Y^,XY,(X + Y){X + 2Y))

ideal {x,y). where x (resp., y) represents the coset of X (resp., Y) in fi. We

claim that T£{R) has the graph shown below.

t

s

1^'
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First of all, note that the nonzero generators of m'-^ are {x^,y^) and that = 0

in /?; i.e., both x and y, annihilate every element in Therefore, a general

element of R looks like a + + cy + where the coefficients a, 6, c, d, e,

and m are all either 0. 1 or 2. However, whenever  a ^ 0, this polynomial is a

unit since the other terms all lie in m [?, p. 4]. Therefore, the only possible zero

divisors live in m and have the form 6x + cy + + ey^.

<* ann(x-) = m. This (first) class will be represented by |x^ .

Note that all the generators of m annihilate X“. Therefore m C ann(x^). On

the other hand, we already have ann(x“) C m. Thus, ann(x^) = m.

Remark 0.4.10. The same argument applies to 2x^, cy^ and bx‘^ + cy^, for any

6,c G Z3. Therefore, all of these terms, and any combination of them, determine

the class [x~ .

Remark 0.4.11. We claim that for any zero divisor o, ann(cv + x^) = ann(rv); i.e.,

[q + s‘^] = [a]. To see this, note that each zero divisor lives in m = ann(x“),

hence J(or + x-^) = 6ot equals zero if and only if P 6 ann(o). Moreover, this same

argument applies to 2x^, cy“, and bx"^ + cy^. Therefore, only linear combinations

of the zero divisors of degree one will provide new equivalence classes.

9 ann(x) = (y,m^). This (second) class will be represented by [x .

Note that x is annihilated by every element in and y, hence (y, m^) C ann(x).

We need to establish the reverse containment. Let  a G ann(x), where cv = bx + cy.

Then 0 = x(6x + cy) = 6x^, which is zero only when 6 = 0. Therefore, the

only degree one term that annihilates x is y; i.e., ann(x) C (y,m“), and hence.

ann(x) =

9 An analogous argument, with the roles of x and  y switched, shows that
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ann(.v) This (third) class will be represented by [y .

o cuiii(.r -f y) = (.r + 2y, m‘“). This (fourth) class will be represented by [x + y .

Note that x y is annihilated by every element in and x + 2y, hence

(.r -t- 2y.m~) C ann(.r + y). VVe need to establish the reverse containment. Let

O' G ann(.r + y), where o' = bx + cy. Then 0 = {x  + y){bx + q/) = bx~ + q/^. Note

that if 6 = 1 and c = 2, then the right hand side is zero. Therefore, there is some

dependence among these terms. We consider all the cases carefully in the chart

below.

+ cy^(b, c)

(1.0)

(0. 1) y^

(1. 1)

(2, 0) 2x2

(0, 2) 2i/

(1>2) x2 + 2y2

(2. 1) 2x2 + 2(x + 2t/2) =0in/?

(2,2) 2x2 4-2y2 = 2(x2 + y2) ^ Q in i?

Therefore, the only degree one terms that annihilate x+y are x+2y and 2x+y\

i.e.. ann(x -t- y) C (x + 2y,xn^), and hence, ann(x + ?/) = (^ + 2j/,m2).

● ann(x + 2y) = (x + ;iy, m2). This (fifth) class will be represented by [x + 2y .

Note that x + 2y is annihilated by every element in m2 and x + y, hence

^Oin/?

^Oini?

^OinR

7^ 0 in

^ 0 in i?

= 0 in i?

9  , O
X- + y-

(x 4 y,m2) C ann(x + 2y). We need to establish the reverse containment. Let

= bx + cy. Then 0 = (x + 2y)(bx + aj) = bx^ + 2cy'\(V G ann(x + 2;y), where o

Note that if 6 = c = 1, then the right hand side is zero. Therefore, there is some

dependence among these terms. We consider all the cases carefully in the chart
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below.

bx~ + 2cy-(b. c)

(b 0) 7^0 ini?

7^0 ini?

X“

(0. 1) 2y^

(1. 1) +

(2. 0) 2.r-

= 0 in i?

^Oini?

7^ 0 in i?

7^ 0 in i?

^ 0 in i?

(0. 2) y~

x^ + y-

2x2 + 2y

2x2 + ?/2 = 2(x2 -f 2y^)

Therefore, the onl}^ degree one terms that annihilate x -h 2y axe x + y and

2x + 2y: i.e., ann(x + 2y) C (x + i/,m2), and hence, ann(x + 2y) = {x + y,xn^).

Finally, in the remainder of our argument, we show that the remaining degree

one terms do not result in any new classes. Note that ann(2x + 2y) = ann(x + y)

since 2x + 2y = 2(x + y) and 2 is a unit in i?; i.e., o G ann(2x + 2y) if and only it

a(x + y) = 0. Likewise, ann(2x + y) = ann(x + 2y) since 2x + ?/ = 2(x + 2y) and

2 is a unit in R. Thus, the five classes above are the only distinct classes.

In conclusion, to see that the graph above is F£;(i?), take u = x'^.t = x,s =

y, r = X y, and n = x + 2y.

(L 2)

2
(2. 1)

(2. 2) = 0 in i?

Proposition 0.4.12. Set R = Z//Z. We claim that Te{R) has the graph shown

below.

t

s u

r V
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Note' that every nonzero element in R is either a unit or a zero divisor. In

IDarticular. r in R is a unit if and only if gcd(r,p) = 1 and f is a zero divisor in R

if and onl\- if gcd(r. p) = p. Since p is a prime, f is a zero divisor in R if and only

'p^J. [p^), [p"*], [p^] are distinct since p G ann(p^)

but p is not in any of the other annihilators. Likewise, p^ G ann(p'*) but p^ is not

in any of the other (smaller) annihilators. Continue in this way to see that all

these classes are distinct. Finally, consider a zero divisor n of R. We can write n

cis up^', where gcd(zgp) = 1; i.e., IT is a unit in R and has an inverse Clearly

ann(p^') C ann(np^ ) since any element that annihilates p^ will annihilate a product

of p^'. Let f G ann(np^). Then 0 = tup^ => u~^ ●  0 = u~^ ● tup^ 0 = tp^'; i.e.,

ann(ap^) = ann(p^). In conclusion, the five classes already identified are the only

distinct classes.

In conclusion, to sec that the graph above is Te{R), take t = p,s = p^, v =

and il = p^.

if gcd(r,p) = p. The classes \p

In summary, graphs (2), (6), (9), and (11) in the Appendix can each be realized

. j the zero divisor graph of some ring R. The remaining graphs in the Appendix

can not.

iris
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0.5 Appendix

[itt

1^1[s uu

H

(3)(2)(1)

[«:1^1

M[s':[“;uj [s.

«1[r[rl

(6)(5)(4)

[<1(f) [f]

N  [s[«1 [5]

'^l1<^] MI’i [rl

(9)(7) (8)

30



tt\

us

V.r

(12)(11)(10)

t

i«:

r

(15)(14)(13)

t)

(18)(17)(16)

I

31



(19) (21)(20)

I

32

I



[1] D. Anderson. P. Livingston, The zero-divisor graph of a commutative ring, J.

Algebi'ci, 217 (1999) 434-447.

[2] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), no. 1, 208-226.

[3] J. Gallian. Conternporai'y Abstract Algebra, D. C. Heath and Co., Lexington,

MA 1986.

[4] F. Harary, Graph Theorp, Addison-Wesley Publishing Co., Reading, 1969.

[5j H. Matsnniura, Commutative Ring Theory, Cambridge Studies in Advanced

Mathematics, 8. Cambridge University Press, Cambridge, 1989.

[6] S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra, 30

(2002), no. 7, 3533-3558.

divisor graph determined by equivalence classes[7] S. Spiroff. C. Wickham, A

of zero divisors. Comm, in Alg., to appear.

zero

33


	Five Point Zero Divisor Graphs
	Recommended Citation

	tmp.1622830323.pdf.tQCMr

