
University of Mississippi University of Mississippi

eGrove eGrove

Electronic Theses and Dissertations Graduate School

1-1-2021

DACHash: A Dynamic, Cache-Aware and Concurrent Hash Table DACHash: A Dynamic, Cache-Aware and Concurrent Hash Table

on GPUs on GPUs

Hao Zhou
University of Mississippi

Follow this and additional works at: https://egrove.olemiss.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Zhou, Hao, "DACHash: A Dynamic, Cache-Aware and Concurrent Hash Table on GPUs" (2021). Electronic
Theses and Dissertations. 2080.
https://egrove.olemiss.edu/etd/2080

This Thesis is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for
inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information,
please contact egrove@olemiss.edu.

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F2080&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=egrove.olemiss.edu%2Fetd%2F2080&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/2080?utm_source=egrove.olemiss.edu%2Fetd%2F2080&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

DACHASH: A DYNAMIC, CACHE-AWARE AND CONCURRENT HASH TABLE ON

GPUS

A Thesis
presented in partial fulfillment of requirements

for the degree of Masters of Science
in the Department of Computer and Information Science

The University of Mississippi

by

Hao Zhou

May 2021

Copyright Hao Zhou 2021
ALL RIGHTS RESERVED

ABSTRACT

GPU acceleration of hash tables in high-volume transaction applications such as com-

putational geometry and bio-informatics are emerging. Recently, several hash table designs

have been proposed on GPUs, but our analysis shows that they still do not adequately fac-

tor in several important aspects of a GPU’s execution environment, leaving large room for

further optimization.

To that end, we present a dynamic, cache-aware, concurrent hash table named DACHash.

It is specifically designed to improve memory efficiency and reduce thread divergence on

GPUs. We propose several novel techniques including a GPU-friendly data structure, a re-

order algorithm, and dynamic thread-data mapping schemes that make the operations of

hash table more amendable to a GPU architecture. Testing DACHash on an NVIDIA GTX

3090 achieves a peak performance of 8.65 billion queries/second in static searching and 5.54

billion operations/second in concurrent operation execution. It outperforms the state-of-the-

art SlabHash by 41.53% and 19.92% respectively. We also verify that our proposed technique

improves L2 cache bandwidth and L2 cache hit rate by 9.18× and 2.68× respectively.

ii

ACKNOWLEDGEMENTS

Firstly, I would like to express my grateful thanks to my supervisor Dr. Byunghyun

Jang for his supports of my graduate study and research. I was encouraged by his hard-

working and passion. I also would like to thank Dr. Yixin Chen and Dr. David Troendle for

their technical advice. With their help, I was able to make progress in my research.

I would also like to thank Dr. Conrad Cunningham and everyone else who helped me

in many ways in the department. I was lucky to study in the department as an undergraduate

working with Dr. Cunningham and to start my graduate study in the HEROES lab along

with Dr. Jang, Dr. Troendle, and other lab members.

Lastly, I would like to thank my father Zhou Honghai, my mother Han Yumei, my

sister Zhou Wen, and my girlfriend Wu Yujie for their selfless mental supports.

Special thanks go to Dr. Byunghyun Jang, Dr. Yixin Chen, Dr. Feng Wang, and Dr.

David Troendle for serving on my thesis committee.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vi

INTRODUCTION . 1

TECHNICAL BACKGROUND . 4

2.1 General-Purpose Computing on Graphics Processing Unit 4

2.2 Hash Table . 7

RELATED WORK . 9

BASIC DESIGN AND IMPLEMENTATION 11

4.1 Base data structure and organization 11

4.2 Operations supported . 12

4.3 Memory stack . 14

REORDER . 15

DYNAMIC MAPPING SCHEMES . 19

PERFORMANCE EVALUATION . 23

7.1 Impact of Parameters . 24

7.2 Contribution of Reorder Algorithm 27

7.3 Build Rate Comparison . 30

iv

7.4 Static Search Comparison . 31

7.5 Concurrent Operations Comparison 34

CONCLUSIONS . 36

BIBLIOGRAPHY . 37

VITA . 40

v

LIST OF FIGURES

4.1 Basic structure of DACHash. Bucket 0 (B0) has two super nodes and other
buckets have one super node. Each super node has a small array of key-value
pairs as well as a next pointer. 12

4.2 DACHash uses a concurrent stack to support dynamic memory allocation. All
pre-allocated super nodes are pushed into the stack at the beginning. Two
threads t0 and t1 compete for the same stack top index in this example. . . . 14

5.1 Example of poor data reuse. A warp of 4 threads processes keys 0, 3, 7, 8.
The shaded nodes indicate the visiting super nodes by the warp. Initial state. 16

7.1 The performance impact of super node size. Expected lengths 0.5 and 1 in-
dicate that there are 1 and 2 super nodes per bucket respectively. Note that
when each bucket owns more than one node, dynamic memory allocation is
necessary. 25

7.2 The performance impact of the length of combined buckets. The total number
of buckets is 219. 26

7.3 The performance impact of threshold across different settings. The total num-
ber of elements is fixed at 222 and the expected length varies. 28

7.4 The performance impact of the proposed reorder algorithm. The total number
of elements stored in the table is 222. 29

7.5 Build rate comparison. The total number of elements inserted in the table is
222. 31

7.6 Static search comparison. 33
7.7 Concurrent operation comparison. The total number of operations is 222 and

node size is 16*4 bytes. Note that we use the dynamic mapping schemes in
this experiment. 35

vi

Chapter 1

INTRODUCTION

GPUs have become the platform of choice for many compute and data intensive applications

in various fields. Traditionally CPU centric data structures are finding GPU solution. Hash

table offering fast data access in near constant time is an important data structure in the

fields of computational geometry and bio-informatics, but not well researched. Designing a

high-performance hash table on massively multi-threaded GPUs is a challenging task. Tens

of thousands of active threads attempting simultaneous hash table access can cause severe

performance degradation unless carefully designed. Traditional lock-based implementations

suffer from high thread contention [1], leaving non-blocking methods a better choice for the

GPU environment [2], [3], [4]. Nonetheless, any approach must accommodate and address

the fact that GPUs are very sensitive to memory access patterns and thread divergence [5].

In this thesis, we present a hash table specifically designed and optimized for a GPU

architecture. We propose several novel techniques to address two major sources of GPU

inefficiency - memory access patterns and thread divergence.

First, we introduce a GPU-friendly chaining structure to support hash collisions. This

enables mutability via dynamic memory management for new data to be stored or old data

to be deleted, while avoiding the need for repeated rebuilds from scratch. We optimize the

chaining structure into a GPU-friendly linked-list of super nodes, where each super node

1

is a small array of key-value pairs. This improves memory access patterns, which is an

important design consideration for a GPU’s SIMT (Single Instruction Multiple Threads)

execution model.

Second, we improve the efficiency of dynamic memory management by pre-allocating

a large memory pool and using a concurrent stack to manage memory buffer allocation and

deallocation dynamically. This helps reduce the overhead of searching candidates to delete,

and the cost of memory allocation and deallocation on GPUs.

Third, we reorder input data elements based on their hash values to improve cache

performance. Rather than using expensive traditional sorting, our proposed reorder algo-

rithm efficiently groups operations on the fly, increasing the likelihood of data reuse and

coalesced memory transactions. To our knowledge, this is the first attempt to study and

improve the locality of hash table data structures on GPUs.

Lastly, we design a novel dynamic mapping scheme that can switch between two dif-

ferent thread-data mapping schemes depending on the shape of hash table: A one-to-one

mapping scheme maps each thread to a key so that threads process their keys individu-

ally; and a many-to-one mapping scheme maps each thread to a key, but an entire warp

(32 threads) cooperatively processes 32 keys sequentially. Our proposed dynamic mapping

scheme automatically switches between these two mapping schemes to achieve better per-

formance.

Our experiments show that on a latest NVIDIA GPU, GTX 3090, our proposed

DACHash achieves a static searching throughput and concurrent operations throughput of

8.65 billion queries/second and 5.54 billion operations/second respectively. It outperforms

the state-of-the-art SlabHash [6] (7.55 billion queries/second and 4.41 billion operations/sec-

ond). On average, DACHash is 41.53% and 19.92% faster than SlabHash under these two

categories. We also profile and verify the cache performance of DACHash using the NVIDIA

Visual Profiler. It shows our proposed technique improves L2 cache bandwidth and hit

rate by 9.18× and 2.68×, demonstrating that the improved cache performance can yield a

2

significant overall performance boost.

3

Chapter 2

TECHNICAL BACKGROUND

2.1 General-Purpose Computing on Graphics Process-

ing Unit

Graphics processing unit (GPU) is a specialized electronic circuit made to firstly accelerate

computer graphics application. GPUs are virtually in every computer systems including

phones, embedded systems and severs. Modern GPUs are very powerful at processing com-

pute and data intensive workloads since their special-designed parallel structure makes them

more efficient than CPUs in processing algorithms in parallel.

GPUs employ Single Instruction, Multiple Threads (SIMT) execution model where

single instruction stream operates on multiple data streams (SIMD) by a group of multiple

threads. However, SIMT is still different from SIMD in that instructions are executed by

a group of threads in a lock-step fashion. SIMT execution model has been implemented

on modern GPUs and is relevant for general-purpose computing on graphics processing

units (GPGPU). Essentially, GPUs perform instructions efficiently in a parallel manner but

operate at lower frequencies with a large number of cores. Thus, they typically target high

throughput.

General-purpose computing on graphics processing units (GPGPU) is a computing

4

model that uses GPU for non-graphics processing. In other words, GPU processes workloads

that are traditionally performed by CPU.

Two main parallel computing platforms are available nowadays, i.e., Compute Unified

Device Architecture (CUDA) by NVDIA and Open Computing Language (OpenCL). In this

thesis, we use CUDA as our platform.

2.1.1 CUDA

In November 2006, NVIDIA introduced CUDA, a general purpose parallel computing plat-

form and programming model that take advantages of the parallel compute engine in NVIDIA

GPUs to solve many complex computational problems in a more efficient way than on a tra-

ditional CPU [7]. CUDA comes with a software environment where programmers are allowed

to use a high-level programming language such as C/C++. On hardware side, CUDA sched-

ules thread blocks onto its available Streaming Multiprocessors (SMs). More specifically, a

thread block consists of a certain number of warps where a warp is a set of 32 threads in a

thread block. All 32 threads in a warp execute the same instruction in a lock-step fashion.

2.1.1.1 CUDA Functions and Primitives

In the thesis, atomic functions and warp-level primitives [7] are leveraged to solve issues in

hash tables.

1. Atomic functions perform a read-modify-write atomic operation on one 32-bit or 64-bit

word stored in global or shared memory.

• atomicAdd(address, val): reads the old value located at the address in global or

shared memory, computes (old + val), and stores the result back to memory at

the address. All three operations are performed in one atomic transaction. The

function will return old value.

5

• atomicSub(address, val): reads the old value located at the address in global or

shared memory, computes (old - val), and stores the result back to memory at

the address. All three operations are performed in one atomic transaction. The

function will return old value.

• atomicExch(address, val): reads the old value located at the address in global or

shared memory and stores val back to memory at the address. Two operations

are performed in one atomic transaction. The function returns old value.

• atomicCAS(address, compare, val): reads the old value located at the address in

global or shared memory, computes (old == compare ? val : old) , and stores

the result back to memory at the address. These three operations are performed

in one atomic transaction. The function returns old (Compare And Swap) value.

2. NVIDIA GPUs execute warps of 32 parallel threads using SIMT where each thread

accesses its own registers, loads and stores from memory addresses, and follows diver-

gent control flow paths. The CUDA compiler and the GPU hardware work together

(explicitly or implicitly) to ensure all threads of a warp execute the same instruc-

tions as frequently as possible to minimize thread divergence and maximize execution

performance.

• shfl(data, lane): moves data at the laneth of the warp to other threads in the

same warp. It is a fast mechanism for simultaneously exchanging data between

threads in the same warp without use of shared memory.

• ballot(predicate): evaluates predicate for all non-exited threads in a warp and

returns an integer whose N th bit is set if and only if predicate evaluates to non-

zero for the N th thread of the warp and the N th thread is active. It is a fast

voting mechanism in CUDA.

6

2.2 Hash Table

A hash table is an efficient data structure that maps keys to values. A hash table uses a

hash function h() to compute an index, also called a hash value, into a list of buckets, where

the wanted value will be found. In general, the key k is hashed by h() and the resulting hash

value tells where the corresponding value is stored.

Ideally, the hash function generates unique hash values for different keys, also called

perfect hash function, but most of hash table designs adopt a non-perfect hash function

design, which causes collisions where hash function generates the same hash value for more

than one keys, that is h(k1) = h(k2), where k1 is not equal to k2. It is known that collisions

could be solved in multiple ways, such as open addressing and separate chaining. Another

well-known issue for hash tables is dynamic resizing, where either all entries (key-value pairs)

are re-hashed into another hash table with larger size or dynamic allocation is in play.

A well-designed hash table is efficient in terms of lookup (or search) since each lookup

is independent of the number of key-value pairs stored in the hash table. Usually, the average

cost for searches is O(1), which is much efficient compared to search trees O(logN) and array

structures O(N). For this reason, hash tables are widely used in various applications such

as computer graphics and database applications.

The prposed DACHash in this thesis uses separate chaining and dynamic allocation

techniques to support hash collisions and dynamic resizing, respectively.

2.2.1 Concurrent Hash Table

A concurrent hash table is a hash table that allows concurrent accesses by multiple threads.

Contention therefore becomes an issue in such hash tables. More specically, concurrent hash

tables suffer from a variety of contention problems such as ABA problem, race conditions,

and deadlocks. Accordingly, there is a variety of ways to solve contention problems such as

atomic instructions, locking, and etc.

7

2.2.2 Challenges on GPUs

There are two major challenges when implementing a hash table on GPUs - memory access

pattern and thread divergence.

2.2.2.1 Memory Access Pattern

A traditional hash table presents a sparse data (key-value pairs) storage. The property of

this kind of hash tables makes the hash table inefficient on GPUs. For instance, when GPU

threads search keys in the hash table, threads could be mapped to different locations of the

hash table due to the sparse data storage, which can decrease the GPU’s SIMT throughput

of memory accesses since adjacent threads access sparse memory location which results in

non-coalesced memory accesses.

2.2.2.2 Thread Divergence

Some hash tables support different operations such as search, update, delete, and insert,

where times to finish these operations are different. In this case, when implementing such

hash tables on GPUs, thread divergence cannot be ignored because CUDA schedules every

32 threads into a warp which execute instructions in a lock-step fashion. If some of threads

in a warp take longer time to execute instructions, the other threads in the same warp have

to wait until all 32 threads converge.

8

Chapter 3

RELATED WORK

Several hash table designs and implementations have recently been reported for GPUs in

the literature.

Alcantara et al. [8] built a hash table on GPUs, which performs parallel insertions

and retrievals. Their work is based on Cuckoo Hashing [9] and relies on atomic operations

during multi-threads table construction. The authors use a set of hash functions to find a

key in multiple candidate locations for insertion as Cuckoo Hashing does. Evicted keys need

to be inserted into another location until no more evicted keys exist. A careful design of a

set of hash functions is required since hash functions determine the frequency of rebuilding

from scratch. The order of hash functions also matters.

Garcia et al. [10] presented a parallel hashing method where their hashing could reach

high load factor but with a low rebuilding failure rate. The authors designed a coherent

hash function to leverage coherence in memory and further increase locality in memory. In

addition, coherent hashing also makes groups of threads execute consistent paths.

Khorasani et al. [11] proposed a hashing method called Stadium Hashing (Stash) and

Stash with collaborative lanes (clStash). Stash Hashing has two basic structures: a table for

keeping all keys and values, and a compact auxiliary structure called a ticket-board to main-

tain a ticket (consists of the availability bit and the info bits) for every bucket in the table.

9

The availability bit determines if the bucket is occupied and the info bits store information

of the key. This design reduces unnecessary accesses to the actual table content according

to the availability bit and the info bits, which speeds up retrievals. By solving collisions via

double-hashing (primary and secondary hash functions), Stash allows concurrent execution

of mixed insertions and retrievals. The secondary hash function generates a step size that

could hurt the memory performance on GPUs. clStash improves warp execution efficiency

by redistributing tasks to early-finished threads in a warp.

SlabHash [6] proposes further improvements to the efficiency of warp execution and

memory coalescing. The authors proposed a warp-cooperative work-sharing (WCWS) strat-

egy, where all threads in a warp process one operation at a time by utilizing warp-synchronous

programming and warp-wide communications. This design presents less thread divergence

when compared to other hash tables. The authors also take advantage of array and linked-

list structures to further serve their WCWS strategy. The SlabHash designs slabs which are

arrays with key-value pairs stored. Each slab has the size of 128 bytes that matches the size

of a cache line on GPUs. The SlabHash also designs a specialized memory pool to implement

dynamic allocation.

Gao et al. [12] adopted a structure similar to SlabHash. In addition, the paper

discusses the throughput of the WCWS strategy. They show that when the number of

elements stored in the table is large, it could achieve higher throughput. Otherwise, the

throughput is relatively low. Gao et al. solves the problem by proposing an adaptive model.

In addition, the authors present a reader-writer lock based synchronization and bucket-level

synchronization to ensure atomicity of hash operations (individual hash operations or groups

of hash operations).

WarpCore [13] proposed a fast hash table on GPUs. They proposes a memory-

compact bucket list to support flexible multi-value storage, a hashing scheme to improve

global memory access patterns by leveraging CUDA cooperative groups, and an efficient

techniques to support multi-GPUs.

10

Chapter 4

BASIC DESIGN AND

IMPLEMENTATION

In this chapter, we introduce the basic design and implementation of DACHash, including

base data structure, organization, supported operations, and memory management.

4.1 Base data structure and organization

Each DACHash bucket is designed as a linked-list of small arrays consisting of key-value

pairs as shown in Fig. 4.1. The array offers contiguous, linear memory access patterns, while

a linked-list chain offers easy, concurrent modification.

In our design, each node in the linked-list chain holds multiple interleaved key-value

pairs. We call these nodes super nodes. The first super node connected to a bucket head is

pre-allocated. Subsequent super nodes are dynamically allocated or deallocated at run time

as needed.

The base data structure and organization of DACHash offer several optimization op-

portunities. First, the combined array/linked-list structure enables a natural way to support

collisions. Second, a chaining technique allows dynamic allocation, instead of needing to

11

Figure 4.1. Basic structure of DACHash. Bucket 0 (B0) has two super nodes and other
buckets have one super node. Each super node has a small array of key-value pairs as well
as a next pointer.

rebuild the hash table from scratch. Third, array structures achieve GPU-friendly memory

access patterns compared to a linked-list’s scattered memory accesses. Fourth, super nodes

offer flexible thread-data mapping scheme options, e.g., one-to-one or many-to-one mapping

schemes.

4.2 Operations supported

We implement five basic hash table operations on unique keys. CUDA atomic funtions ensure

correctness. Note that, although not implemented, duplicate keys can be accommodated

without significant design changes. The supported operations are:

Search is responsible for finding a key in the hash table and returning its value. If

no key is found, it returns null. The operation starts by hashing a key to a bucket. Searching

begins at the bucket’s first super node. If no key matches, it continues traversing the bucket’s

super nodes until a matching key is either found or it reaches the end of the bucket list.

Insert adds a key-value pair to the hash table. Since keys must be unique, we must

first ensure the key exists in the hash table. If it does, the operation acts as update, replacing

12

the old value with a new value. If it does not exist, it is inserted into the hash table. A new

super node may be dynamically allocated if needed. When inserting a new key-value pair

into the table, it first looks for an empty slot in the first super node of the bucket. If an

empty slot exists, an atomicCAS() (a CUDA atomic function) ensures a correct insertion.

If the first super node is full, the thread traverses the super node list until it finds an empty

slot. If it reaches the last node in the bucket, the thread dynamically allocates a new super

node and connects the new node after the bucket’s last super node using an atomicCAS().

Although multiple threads may try to connect their super nodes after the last super node

simultaneously, only one thread will succeed. The failing threads deallocate their nodes and

retry until they succeed. Once successful, the threads redo their insert operation using the

bucket’s new last super node.

Update finds the key to update its value. If the key is found, it replaces its value

with the new value using an atomicExch(). Otherwise, the new pair is inserted.

Delete is similar to the search operation, but returns no value. It starts its traversal

at the first super node in the bucket the key maps to. If found, it marks the key as logically

deleted. If not, it continues traversing super nodes looking for the matching key until it

reaches the last super node in the bucket. This operation does not deallocate empty super

node. Deallocation is done by the clean operation (see below).

Clean compacts the bucket’s super node linked-list, ensuring only the last super node

has any empty slots. We implement the clean operation as a separate kernel, so no other

operations interfere when cleaning the hash table. Deallocated super nodes are pushed back

to our memory stack for later use. The clean operation is only required when the memory

stack is empty.

13

Figure 4.2. DACHash uses a concurrent stack to support dynamic memory allocation. All
pre-allocated super nodes are pushed into the stack at the beginning. Two threads t0 and
t1 compete for the same stack top index in this example.

4.3 Memory stack

The insert, update, delete and clean operations may require dynamic super node allocation

or deallocation. To support this, we pre-allocate a large number of super nodes and place

them on a concurrent stack. A pop allocates a super node and a push deallocates a super

node concurrently as shown in Fig. 4.2. This is a simple, fast, GPU friendly alternative to

a CPU-side malloc() or free().

14

Chapter 5

REORDER

Input keys are hashed to different buckets. When they are mapped to threads, a warp suffers

from poor locality because the super nodes within and across buckets are likely scattered

in memory. Memory requests from threads in a warp are highly likely to reside in different

cache lines (uncoalesced) rather than a single line (coalesced). Such poor spatial locality

causes multiple memory transactions, which in turn, significantly increases memory traffic.

SlabHash [6] proposed a work-sharing strategy within warps to increase coalesced memory

accesses. However, it still suffers repeated linked-list traversals, which is another source of

poor locality. Suppose a warp processes a list of query keys {0, 3, 7, 8} and the size of

warp is 4, as visualized in Fig. 5.1. The warp processes key 0, finds the key in bucket 0,

and loads the first super node. With this access, other keys stored in that super node are

loaded together but not used. The same issue occurs for key 3 and key 7. In the mean time,

the super node loaded for key 0 may have been evicted from the cache. When processing

key 8, the warp starts over from the beginning, and loads the first super node of bucket 0,

then it loads the second super node that contains key 8. In this case, the first super node is

loaded twice. Even if the warp issues coalesced memory requests, it may not end up being

an efficient use of data as it can still cause extra global memory transactions and waste

potential use of other keys in the loaded super nodes.

15

Figure 5.1. Example of poor data reuse. A warp of 4 threads processes keys 0, 3, 7, 8. The
shaded nodes indicate the visiting super nodes by the warp. Initial state.

16

We observed that such inefficiencies are caused by the randomly arranged input data

list. Reordering can improve the data locality and cache performance (i.e., hit rate and

bandwidth). Sorting is the traditional way of reorganizing data. However, not only is a sort

expensive on GPUs, but also a strictly ordered sort is not required for our purpose. We

need only group the keys with the same hash value together. To this end, we propose a

reorder algorithm. In our reorder algorithm, we take advantage of a pre-allocated memory

buffer on GPUs to partition data according to their hash values. Keys with the same hash

value compute their indexes in this pre-allocated memory buffer so that keys with the same

hash value are physically close and adjacent to each other in memory. By doing so, when

each thread claims its key, the adjacent threads are more likely mapped to the same bucket.

In this way, when traversing bucket’s super nodes, threads in a warp probably request the

same or nearby super nodes, resulting in fewer memory transactions. Compared to scattered

memory requests, the total number of global memory transactions can decrease significantly.

Since the input keys are partitioned based on their hash values, when warps process these

keys, the same or nearby super nodes are likely loaded from the cache directly, so that the

cache performance increases as well.

Algorithm 1 details our proposed reorder algorithm. It utilizes a pre-allocated GPU

memory buffer named ReorderSpace with the same or larger size than keysList but with an

additional dimension. Note that the size of ReorderSpace is B * M, where B is the number

of buckets and M is calculated by dN/Be (line 1-4) where N is the total number of keys in

keysList, and the size of Record is B in order to keep track of the latest index of buckets.

The row index is defined by bucket (hash) value, and an atomicAdd() is used to find the

corresponding index of that key in that row (line 8). By doing so, keys with the same hash

value will be mapped to the same row in ReorderSpace. However, for our input keys, we

cannot ensure that keys have a perfect uniform distribution across buckets. In this case, we

have to arrange keys with the indexes that are greater than M to a nearby location (line

9-11). It checks whether the next row has an empty spot to add. If so, it updates index. If

17

not, check the row after the next row until an empty spot is found. Lastly, we add keys to

ReorderSpace (line 12). Since the size of ReorderSpace is equal to or greater than the size of

keysList, it guarantees all keys will have a spot to be added.

However, the reorder algorithm delays operations until the reorder process com-

pletes. This causes a synchronization problem. To this end, we utilize host-side device-

synchronization via CUDA API. In order to speed up the reorder algorithm, we also improve

the algorithm. Instead of grouping keys with the same hash value, we group keys with nearby

hash values. Originally, B is equal to the total number of buckets in our hash table. By

decreasing B (line 3), we can group the keys with nearby hash values into one row. For

instance, if we decrease B to B/4, every four hash values will be grouped together, e.g., 0,

1, 2 and 3 (4 values). In keysList, the probability of adjacent data elements that can be

mapped to the same row of ReorderSpace increases, so the throughput of reorder is further

improved.

Algorithm 1: Pseudocode for the proposed reorder algorithm.

input: ReorderSpace
keysList
Record

1 N = lengthOf(keysList);
2 B = totalNumberOfBucket();
3 // B = totalNumberOfBucket() / lengthOfCombinedBuckets;
4 M = dN/Be;
5 key = keysList[threadId];
6 bucket = hash(key);
7 // bucket = hash(key) / lengthOfCombinedBuckets;
8 index = atomicAdd(Record[bucket], 1);
9 while index >= M do

10 index = atomicAdd(Record[(++bucket) mod B], 1);
11 end
12 ReorderSpace[bucket][index] = key;

18

Chapter 6

DYNAMIC MAPPING SCHEMES

There are two common thread-data mapping schemes used in hash table design: 1) a one-to-

one mapping scheme, which maps each thread to a single key so that threads can process their

32 keys individually. Note that threads in a warp could possibly exit at different times due to

the different operations they may have. The threads tend to have scattered memory access

patterns when reading from or writing to GPU memory; and 2) a many-to-one mapping

scheme, which maps a warp to 32 keys but 32 threads in a warp work and communicate with

each other to cooperatively process a single key at a time. Threads in a warp will converge at

the same time because all 32 threads in the warp will execute the same low-level instructions

and the memory access pattern is likely to be coalesced. In general, each scheme shows

different performance characteristics. The one-to-one mapping scheme outperforms when

thread divergence is not an issue (e.g., threads in a warp process same type of operations),

while the many-to-one mapping scheme is a better choice when execution efficiency matters

(e.g., threads within a warp process different types of operations).

In order to better utilize two different schemes, we propose our dynamic mapping

schemes where DACHash selects one scheme over the other based on, so-called expected

length. The expected length ε, is defined as the average number of super nodes per buckets.

Therefore the selection of the proposed dynamic mapping schemes D, is expressed as the

19

following.

D =


O if ε < τ

M otherwise

where O is one-to-one mapping scheme, M is many-to-one mapping scheme, and τ is a

threshold.

Algorithm 2: Pseudocode for one-to-one mapping scheme.

1 key = keysList[threadId];
2 value = valuesList[threadId];
3 bucket = hash(key);
4 superNode = getNextSuperNode(bucket);
5 do
6 for i← 0 to NODE SIZE-1 do
7 if superNode[i].key == key then
8 SEARCH();
9 or DELETE();

10 or UPDATE();

11 end

12 end
13 superNode = getNextSuperNode(superNode);

14 while superNode != nullptr ;
15 if UPDATE() failed && isUPDATE then
16 INSERT();
17 end

Our implementations of these mapping schemes are shown in Algorithm 2 and 3

respectively. In the one-to-one mapping scheme, groups of threads may have different oper-

ations to perform and their finishing times are likely to be different, resulting in low execution

efficiency. The many-to-one mapping schemes partitions thread blocks into tiles and the size

of tile is specified by CG SIZE which can be {1, 2, 4, 8, 16, 32}. It enables threads commu-

nication by using CUDA primitives such as shfl() and ballot(), and lastly tiles would perform

different hash operations, i.e., search, delete, update, and insert. In the many-to-one map-

ping scheme, tiles are more likely to execute the same low-level instructions so that thread

20

Algorithm 3: Pseudocode for many-to-one mapping scheme.

1 key = keysList[threadId];
2 value = valuesList[threadId];
3 bucket = hash(key);
4 operation = operationsList[threadId];
5 superNode = getNextSuperNode(bucket);
6 tile = tiled partition〈CG SIZE〉(this thread block()); laneId = tile.thread rank();
7 for lane← 0 to CG SIZE-1 do
8 // a tile processes operations from 0 to CG SIZE-1;
9 share data in the laneth of tile by tile.shfl();

10 do
11 tile reads superNode and finds target key by tile.ballot();
12 if found then
13 SEARCH();
14 or DELETE();
15 or UPDATE();

16 else
17 share the next superNode by tile.shfl();
18 end

19 while superNode != nullptr ;
20 if UPDATE() failed && isUPDATE then
21 INSERT();
22 end

23 end

21

divergence is minimized, and the memory access pattern is also improved.

22

Chapter 7

PERFORMANCE EVALUATION

We evaluated our proposed DACHash on an NVIDIA GTX 3090, which is based on the

AMPERE microarchitecture [14] with compute capability of 8.6, 10496 CUDA cores, and

24 GB off-chip global memory. We compiled our code with the CUDA 11.2 compiler. We

divide our performance evaluation into three parts. First, we show the performance impact

of various parameter values for the super node size, the length of combined buckets in our

proposed reorder algorithm, and the threshold τ for dynamic mapping schemes. Second,

we demonstrate the effectiveness of our reorder algorithm. Lastly, we compare our results

using the state-of-the-art SlabHash [6] as a baseline for different categories, such as build

rate, static search throughput, and concurrent operation throughput. In our experiments,

we assume all keys are unique.

23

7.1 Impact of Parameters

7.1.1 Super Node Size

We measured the impact of the number of elements per super node1 on performance while

keeping the total input keys size fixed. We built a hash table with randomly generated

keys and different super node sizes. Then we created the shuffled query list with the same

keys existing in the hash table to perform search operations. We kept our reorder algorithm

enabled for this experiment. Fig. 7.1 shows the results of super node sizes of 4*4, 8*4, 16*4,

and 32*4 bytes.

Our experiment results show that super node size significantly affects the performance

of our hash table. When super node size is small, the traversal speed is faster as each thread in

the operation may need to traverse the entire bucket to find its target. When a bucket holds

more than one super node, the performance impact of super node size decreases relatively

due to dynamic memory allocation overhead and the bucket traversal time. In the following

experiments, we choose 16*4 bytes to be our super node size for the following reasons. First,

the way that we optimize the reorder algorithm (e.g., combining keys with nearby hash

values) leaves smaller super node more reasonable. Suppose that the size of the super node

is 32*4 bytes (e.g., the size of a cache line), when some threads in a warp load a super node,

other threads are not likely to be mapped to the same super node, which results in more

global loads. With a smaller super node (e.g., 16*4 bytes), the reorder algorithm decreases

the repeated global loads because threads in a warp may load their super nodes directly from

the cache. Second, smaller super nodes (e.g., 4*4 or 8*4 bytes) may trigger more dynamic

allocations as the number of total key-value pairs stored in the hash table increases, which

decreases the performance.

1Note that the choices of super node sizes are guided by CUDA cooperative groups [7] where cooperative
groups only allow finer granularity at level {1, 2, 4, 8 ,16, 32}. Expected length indicates how many super
nodes exist per bucket.

24

Figure 7.1. The performance impact of super node size. Expected lengths 0.5 and 1 indicate
that there are 1 and 2 super nodes per bucket respectively. Note that when each bucket
owns more than one node, dynamic memory allocation is necessary.

7.1.2 Length of Combined Buckets in the Reorder Algorithm

The objective of our reorder algorithm is to combine nearby buckets and partition data ele-

ments based on those combined buckets (line 7 in Algorithm 1). We measured the efficiency

of our reorder algorithm on various lengths of combined buckets using search operations.

Fig. 7.2 shows the experimental results. When the reorder algorithm is disabled (i.e., length

of combined buckets is 0), we form a baseline for our search operation where the keys in the

query list are randomly organized. Note that the total time consists of two components -

the search and the reorder time. As we increase the number of combined buckets, the total

time decreases because our reorder algorithm makes searching more cache-friendly. However,

from the figure one can see that when too few or too many buckets are combined, the effi-

ciency of our reorder algorithm diminishes. We observed two reasons for that. When there

are too few combined buckets, the reorder algorithm suffers from poor cache performance as

analyzed in Chapter 5. The input query list for reorder resides in contiguous memory but

25

Figure 7.2. The performance impact of the length of combined buckets. The total number
of buckets is 219.

the data elements are randomly located. So, every time a cooperative group or a warp reads

memory (e.g., 128 bytes), it achieves coalesced memory access. But when writing to different

buckets (line 12 in Algorithm 1), the threads in the same warp or group are more likely to

write to different cache lines, which results in an inefficient memory access pattern. When

there are too many combined buckets, contention becomes an issue even though writing to

memory could be efficient. This causes many threads to modify the same memory unit (line

8 and line 10 in Algorithm 1). In Fig. 7.2, when the number of combined buckets is roughly

between 32 and 256, our hash table shows best performance with the total 219 buckets. In

general, we find the ratio between total buckets and the number of combined buckets, 1/256

(i.e., combining 256 buckets for the different number of total buckets), is a good choice.

26

7.1.3 Threshold for Dynamic Mapping Schemes

We conducted this experiment to determine when we should switch between the one-to-

one mapping and the many-to-one mapping schemes. Note that the many-to-one mapping

scheme is designed to solve the thread divergence issue. So in order to better understand the

difference of two schemes on the thread divergence issue, we conducted the experiment on two

different settings. In the uniform operation setting (e.g., all searches), Fig. 7.3a shows that

the one-to-one mapping and many-to-one mapping schemes have no performance crossover

point, which indicates that one-to-one mapping scheme consistently outperforms when all

threads perform the same operation. In the mixed operation setting (e.g., searches and

updates) of Fig. 7.3b, however, we see a performance crossover point roughly at an expected

length of 0.6. We believe that before the crossover point, the one-to-one mapping scheme

wins due to its higher throughput, and after the crossover point, the many-to-one mapping

scheme presents less thread divergence by having threads in warps work together to finish

an operation at a time so that the threads possibly converge at the same time. Based on

our experiment, we chose an expected length of 0.6 as the value of the threshold τ for our

dynamic mapping schemes. Note that the dynamic mapping schemes go in effect only when

a setting of the mixed operations is required.

7.2 Contribution of Reorder Algorithm

We performed experiments to show the effectiveness of our proposed reorder algorithm by

enabling and disabling it, and measuring changes in cache hit rate and cache bandwidth using

the performance counters provided in the NVIDIA Visual Profiler [7]2. When disabled, the

keys in the input query list are randomly arranged. As shown in Fig. 7.4, reorder enabled

always outperforms reorder disabled across different expected lengths. The average speedup

is around 4.33×.

2Note that the data is retrieved from NVIDIA GTX 1070 since either the visual profiler or the nvprof
doesn’t support GTX 3090 yet with a compute capability of 8.6 that is higher than that of 7.0.

27

(a) Uniform operations

(b) Mixed operation

Figure 7.3. The performance impact of threshold across different settings. The total number
of elements is fixed at 222 and the expected length varies.

28

Figure 7.4. The performance impact of the proposed reorder algorithm. The total number
of elements stored in the table is 222.

7.2.1 Effectiveness of Reorder

We use search operations in this experiment. When the reorder algorithm is disabled, the

keys in the input query list remain unchanged. As shown in Fig. 7.4, given different expected

lengths, enabling the reorder algorithm always gives better performance. The average speed

up is around 4.33×. It is noteworthy that our reorder algorithm achieves small speed ups

only when the expected length is short. This is because when it is short (e.g., less than 0.2),

the number of buckets is too many, the total number of data that each row can hold is small

(i.e., M = dN/Be in Algorithm 1). In this case, since the key distribution across buckets is

not perfectly uniform, the reorder algorithm has to find available locations for some keys in

other rows, which decreases the performance of the reorder algorithm.

29

7.2.2 Cache Performance

We also conducted a search experiment to measure the effectiveness of our reorder algorithm

on L2 cache performance (data provided by the NVIDIA Visual Profiler) under different

situations. From Table 7.1, one can see with reordering enabled, our proposed DACHash

boosts L2 cache bandwidth by 9.18×, and L2 cache hit rate by 2.68×. In short, as mentioned

early in Chapter 5, the effect of memory operations on GPU performance cannot be ignored.

By applying our proposed reorder algorithm, we can improve data locality because adjacent

threads will possibly map to the same or nearby buckets. Therefore, the overall performance

is improved by increasing L2 cache bandwidth and hit rate.

Reorder enabled Reorder disabled

L2 Cache Bandwidth 901.25 GB/s 98.196 GB/s
L2 Cache Hit Rate 91.00 % 34.00 %

Table 7.1. L2 cache performance comparison.

7.3 Build Rate Comparison

We compared the build rate of DACHash to those of SlabHash. As shown in Fig. 7.5, our

proposed DACHash performs better than the state-of-the-art SlabHash when the expected

length roughly ranges from 0.1 to 0.6. The peak building rate of DACHash is 3.42 billion

elements/second, compared to 2.9 billion elements/second in SlabHash with the total number

of buckets of 222. However, we noticed that our hash table suffers when the expected length

is very low (e.g., 0.0625). We think this is due to the limitation of the reorder algorithm as

we mentioned in Section 7.2.1. The reorder algorithm has to update indexes for some data

in other rows. Also, our build rates are lower when expected length is high (e.g., 0.6). We

believe there are two reasons for it. The first reason is that when we have larger expected

length, we also expect the time for traversing the super nodes to find empty spots longer.

Increased traversal times decrease the overall build rate. The second reason is that when

30

Figure 7.5. Build rate comparison. The total number of elements inserted in the table is 222.

we have fewer buckets, the contention on the same memory unit (line 8 in Algorithm 1)

intensifies so that the overall throughput decreases.

7.4 Static Search Comparison

For static search comparison, we have two different setups as shown in Fig. 7.6. For both

setups, we first build a hash table with randomly generated key-value pairs, then create

a query list with the same keys but re-arranged to perform search operations. The total

number of elements varies in Fig. 7.6a, while the expected length varies in Fig. 7.6b.

Fig. 7.6a shows the result of DACHash compared to SlabHash when the total num-

ber of queries varies. The peak performance of DACHash is 8.66 billion elements/second,

while the peak performance of SlabHash is only 7.55 billion elements/second. On average,

DACHash is improved by 7.1% compared to SlabHash. It is noteworthy that DACHash

under-performs when the total number of elements is small or large while the expected

31

length is fixed (e.g., 0.5). Recall that we synchronize the reorder algorithm by adopting a

host-side CUDA API. So when the total number of elements is small (e.g., 219), our reorder

algorithm suffers from the extra kernel launch and its extra synchronization time, which

increases the overall finishing time. When the total elements ranges from 225 to 228, our

reorder algorithm suffers from the situation where writing to different buckets in the reorder

algorithm results in an inefficient memory access pattern. Also, one can see that DACHash

outperforms SlabHash when the total elements ranges from 220 to 224. The reason is that

our reorder algorithm indeed finds a balance point at which the benefits of reordering out-

weigh its drawbacks. In addition, one may notice that in Fig. 7.6a, we have an extra base

line. This is a baseline measuring the performance of purely one-to-one mapping scheme

without any other techniques involved. Note that when the total number is small (e.g.,

219), either DACHash or SlabHash under-performs the baseline. We think this is due to the

GPU characteristics of latency hiding. When the total number of elements is small, GPUs

actually hide memory latency fairly well. This also implies why we prefer to design a reorder

algorithm instead of using a sorting algorithm directly because sorting may perform well on

a small data scale but will suffer on a large data scale.

Fig. 7.6b also demonstrates the searching performance where the expected length

varies. The experiment shows that DACHash outperforms SlabHash and achieves a search-

ing throughput above 8.65 billion elements/second and improves SlabHash by 41.53% on

average. However, there are several observations: First, the performance of our hash table

decreases when the expected length increases. This is because, in this experiment, we rely

on the one-to-one mapping scheme so that when the expected length increases, the bucket

traversal time to find the matching key also increases, and the contention on the same mem-

ory unit will increase as well along with the increased expected length. Second, when the

expected length is small (e.g., <0.1), SlabHash could perform better than DACHash. We

believe the reason is that our reorder algorithm is less efficient when mapping to other rows.

32

(a) The expected length is 0.5.

(b) The total number of elements is 222.

Figure 7.6. Static search comparison.

33

7.5 Concurrent Operations Comparison

DACHash also supports concurrent execution of the search, update, and delete operations.

In the experiment, we tested the performance in two groups. One is a mix of 80% search

operations and 20% updates operations (10% update and 10% delete operations respectively).

The other is a mix of 60% search operations and 40% updates operations (20% update and

20% delete operations respectively). Fig. 7.7 shows the DACHash and SlabHash results. It is

clear that DACHash outperforms Slabhash by 19.92% on average, and the peak performance

of DACHash with the dynamic mapping schemes is 5.54 billion operations/second, while

SlabHash has the peak performance of 4.41 billion operations/second. We believe there

are mainly three reasons that account for the difference. First, the optimized structure of

DACHash enables each thread to traverse its target bucket no matter what operations it

has. This helps reduce thread divergence and improve warp execution efficiency. Second,

our proposed reorder algorithm is more cache-friendly. Even though GPUs hide memory

latency by scheduling available thread blocks, frequent memory operations still deteriorates

the efficacy of latency hiding. So in our reordered input list, keys with the same or nearby

hash values are grouped together. This increases the likelihood of threads in a warp being

mapped to the same or nearby super nodes, so that the cache hit rate improves. Third, our

dynamic mapping schemes, especially the many-to-one mapping scheme, minimizes the effect

of thread divergence by making threads in a group process operations cooperatively with the

help of CUDA primitives such as shfl() and ballot(), thus improves the overall performance.

Also, note that when there are more update operations such as 20% update and 20% delete,

the throughput for them is lower than that of 10% update and 10% delete. We believe that

updates operations (e.g., update and delete) may trigger more memory operations so that

they are more expensive than search.

34

Figure 7.7. Concurrent operation comparison. The total number of operations is 222 and
node size is 16*4 bytes. Note that we use the dynamic mapping schemes in this experiment.

35

Chapter 8

CONCLUSIONS

In the past decade, rapidly growing data in numerous fields such as computational geometry

and bio-informatics have given rise to research in high throughput hash tables. Hash table

suffers from poor memory performance and thread divergence on GPUs. We present a

dynamic, high throughput, GPU architecture-aware hash table in this thesis. Our proposed

reorder algorithm and dynamic mapping schemes help improve the performance of hash table

significantly, and beats the state-of-the-art implementation reported in the literature. We

conducted experiments in three different categories to compare against the state-of-the-art

solution SlabHash to verify our proposed DACHash. We also demonstrated the effectiveness

of our proposed reorder algorithm by presenting the performance counters for L2 cache hit

rate and bandwidth from the NVIDIA Visual Profiler.

36

BIBLIOGRAPHY

37

BIBLIOGRAPHY

[1] Y. Xu, L. Gao, R. Wang, Z. Luan, W. Wu, and D. Qian, “Lock-based synchronization for
gpu architectures,” in Proceedings of the ACM International Conference on Computing
Frontiers, 2016, pp. 205–213.

[2] M. M. Michael, “High performance dynamic lock-free hash tables and list-based sets,”
in Proceedings of the fourteenth annual ACM symposium on Parallel algorithms and
architectures, 2002, pp. 73–82.

[3] P. Misra and M. Chaudhuri, “Performance evaluation of concurrent lock-free data struc-
tures on gpus,” in 2012 IEEE 18th International Conference on Parallel and Distributed
Systems. IEEE, 2012, pp. 53–60.

[4] L. Verkleij, “Boosting shared hash tables performance on gpu,” Ph.D. dissertation,
University of Twente, Enschede, The Netherlands, 2016.

[5] B. Lessley and H. Childs, “Data-parallel hashing techniques for gpu architectures,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 1, pp. 237–250,
2019.

[6] S. Ashkiani, M. Farach-Colton, and J. D. Owens, “A dynamic hash table for the gpu,”
in 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2018, pp. 419–429.

[7] D. Guide, “Cuda c programming guide,” NVIDIA, July, 2013.

[8] D. A. Alcantara, V. Volkov, S. Sengupta, M. Mitzenmacher, J. D. Owens, and
N. Amenta, “Building an efficient hash table on the gpu,” in GPU Computing Gems
Jade Edition. Elsevier, 2012, pp. 39–53.

[9] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms, vol. 51, no. 2, pp.
122–144, 2004.

[10] I. Garćıa, S. Lefebvre, S. Hornus, and A. Lasram, “Coherent parallel hashing,” ACM
Transactions on Graphics (TOG), vol. 30, no. 6, pp. 1–8, 2011.

[11] F. Khorasani, M. E. Belviranli, R. Gupta, and L. N. Bhuyan, “Stadium hashing: Scal-
able and flexible hashing on gpus,” in 2015 International Conference on Parallel Archi-
tecture and Compilation (PACT). IEEE, 2015, pp. 63–74.

38

[12] L. Gao, Y. Xu, C. Xu, R. Wang, H. Yang, Z. Luan, and D. Qian, “Towards a general
and efficient linked-list hash table on gpus,” in 2019 IEEE 21st International Confer-
ence on High Performance Computing and Communications; IEEE 17th International
Conference on Smart City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). IEEE, 2019, pp. 1452–1460.

[13] D. Jünger, R. Kobus, A. Müller, C. Hundt, K. Xu, W. Liu, and B. Schmidt, “Warpcore:
A library for fast hash tables on gpus,” arXiv preprint arXiv:2009.07914, 2020.

[14] NVIDIA. (2021) Nvidia ampere architecture. [Online]. Available: https://www.nvidia.
com/en-us/data-center/ampere-architecture/

39

VITA

Hao Zhou

EDUCATION

Master of Engineering student in Computer Science at the University of Missis-
sippi, August 2019 - May 2021. Thesis title: “DACHash: A Dynamic, Cache-
Aware and Concurrent Hash Table on GPUs”.

Bachelor of Science (May 2019) in Computer Science, University of Mississippi,
Oxford, Mississippi.

ACADEMIC EMPLOYMENT

Graduate Research Assistant to Prof. Byunghyun Jang, Department of Com-
puter and Information Science, University of Mississippi, Spring 2020 - Spring
2021. Research activities include: developing concurrent data structures on GPUs
and solving the problem of fabric defect detection by computer vision and deep
learning algorithms.

Graduate Teaching Assistant, Department of Computer and Information Science,
University of Mississippi, August 2019 - Spring 2020. Responsibilities include:
tutoring students taking computer science courses (e.g., Java, C/C++ and Data
Structure) in their assignments and projects.

PUBLICATIONS

(In review) H. Zhou, D. Troendle and B. Jang, “DACHash: A Dynamic, Cache-
Aware and Concurrent Hash Table on GPUs,” The 30th International Conference
on Parallel Architectures and Compilation Techniques (PACT’21).

H. Zhou, B. Jang, Y. Chen and D. Troendle, “Exploring Faster RCNN for Fabric
Defect Detection,” 2020 Third International Conference on Artificial Intelligence
for Industries (AI4I), 2020, pp. 52-55, doi: 10.1109/AI4I49448.2020.00018.

ACADEMIC AWARDS

Summa Cum Laude, University of Mississippi (UM), May 2019.

National Scholarship, Ministry of Education of the P.R. China, 2015

Outstanding Freshmen, North China University of Technology, 2014

40

	DACHash: A Dynamic, Cache-Aware and Concurrent Hash Table on GPUs
	Recommended Citation

	tmp.1639426070.pdf.tWQlB

