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ABSTRACT

JOANNA C. ROCHESTER: Random Walks, Absorption, and Enumeration of
Returns

(Under the direction of William Staton)

The general notion of a Markov Chain is introduced in Chapter 1, and a theorem is

proven characterizing the two-state Markov Chain. The concept central to the thesis,

the Random Walk, is introduced in Chapter 2 and a thorough analysis is presented

of a Random Walk in one dimension with a single absorbing state. A theorem is

which provides probabilities of absorption for arbitrary starting points. The

theoretical results are then tested by computer simulation, yielding a very satisfying

match with the predictions of the theorem. Finally, in Chapter 3 a modification of

the Random Walk without absorbing states is presented and analyzed. The expected

number of returns to the origin is derived, and again is tested by computer simulation.

In this case as well, the simulated results provided a nice empirical verification of the

theoretical result. Techniques employed in the work vary across the undergraduate

ciurriculum. Linear algebra appears in the powers of matrices and in the use of

eigenvalues in Chapter 1. Probability concepts such as independence play a small role.

First order linear difl^erential equation techniques are used in Chapter 2. Infinite series

are evaluated in Chapters 2 and 3, and linear homogeneous recursion equations are

solved in Chapter 3. Some use is made of Catalan Nmnbers and Binomial Coefficients

proven



well. The computing necessary for the simulations in Chapter 2 and Chapter 3as

was done in the MATLAB language on the University of Mississippi’s supercomputer

accessed through Sweetgum. This thesis was typeset using LATEX.
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1  Preliminaries

Many situations studied in the natural and social sciences involve systems which

can be in one of an array of states, and which, from time to time, evolve from one

state into another. In some such systems, there is what might be called a systemic

memory, whereby the system takes into consideration its past, speaking figuratively,

when deciding how to move forward. In other situations, there is no such memory,

so that the system, when in a certain state one, has the same probability of evolving

into another state two regardless of how the system arrived in state one. It is such

systems, called Markov chains, which are studied in this thesis. The main focus will be

a particular type of Markov chain called a Random Walk, defined more formally later,

in which states can be pictured as integer points of a line and transitions are made

only to nearby points. Once again, using figurative language, the questions considered

in this thesis will involve ’’escaping” and ’’returning”. The techmques employed here

will range across many courses I have taken as an undergraduate.  There will be

matrices, eigenvalues, infinite series, reciusion equations, linear differential equations,

binomial coefficients, and Catalan numbers. In this thesis, I will proceed from the

general to the specific. At the outset, very general definitions will be given, especially

the definition of a Markov Chain. After illustrating with examples, I will prove a

theorem completely characterizing the 2-state Markov Chains. I will then proceed

I
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to a particularly interesting and useful instance of the Markov Chain concept, the

Random Walk. Most of the research in this thesis is devoted to instances of this

oiicept. I begin with a number of definitions.

Definition 1 [2j An mxn matrix, where m and n are positive integers, is an array

{ajj|l < i < m, 1 < j < 7t} of numbers. An n-vector is an nxl matrix.

Definition 2 [2] If A = {ai^ } and B = {6^} are mxn matrices, then the sum A + B

is the mxn matrix C whose entry Ctj = Oij 4- 6^.

Definition 3 [2j If A is an mxn matrix and B is and nxp matrix, then the product

n

AB is the mxp matrix C whose entry Cij = ̂  ciikbkj-
k=l

Definition 4 [2] If A = {ay} is an nxn matrix and  1 < k, I < n, then the minor

Mki is the {n — l)a:(n — 1) matrix obtained by removing each entry whose first index

is k or whose second index is 1.

matrix A = {ay} is defined inductivelyDefinition 5 [2] The determinant of an nxn

as follows:

if n=lail

det[A) = <

l)^'^*det(Mii) ifn>l
^2=1

2



Definition 6 [2j .4 scalar A is said to be an eigenvalue of A if there exists a nonzero

vector X such that Ax = Xx .

Definition 7 [2j .4 matrix is said to be stochastic if its entries are nonnegative and

the entries in each column add up to 1.

Definition 8 [2] A Markov chain is a finite or countable infinite set of states {5^}

along with a set } of transition probabilities with the stipulation that for fixed i,

LP^J = 1-

One should conceptualize a Markov chain as a system of states evolving at discrete

time intervals. The transition probability pij represents the probability that at any

of the discrete times, the system evolves from state S{ into state Sj.

Definition 9 [^.j A transition matrix A of a Markov chain is a stochastic matrix

where each entry aij represents the probability of moving from state i to state j.

It should be noted that the appearance of the matrix will vary with the numbering

of the states. This is of no consequence.

Definition 10 [2] A stationary matrix of a Markov chain is lim„_oo(^’^)j the limit

exists, where A is a transition matrix of that Markov chain.

3



Now that, the idea of a Markov Chain has been presented, I would like to stop and

give a few prac'tical examples of how Markov Chains can be used. The first example

that I would like to introduce is a well-known problem called the ’’Gambler s ruin,

see 4 .

Imagine that you enter a casino with a fortune of $k and gamble, $1 at a time,

with probability p of doubling yoiu: stake and probability q of losing it. The resources

of the casino are regarded as infinite, so there is no upper limit to you fortune. But,

what is the probability that you leave broke?

Let hi = probability [hit 0), for z = 1,2,... then h is the minimal nonnegative

solution to

ho = 1,

hi — phi^i -|- qh for i=l,2, ...

li p q this recurrence relation has a general solution

h, = A + B{lY.

U p < q, which is the case in most successful casinos, then the restriction 0 < hi < 1

forces B = 0, so Tij = 1 for all z. U p > q, then since /zq = 1 we get a family of

solutions

i-l)

h, = ilY ̂  A{1 -

for a nonnegative solution we must have >1 > 0, so the minimal nonnegative solution

4



= (p)'- Finally, \ip = q the recurrence relation has a general solution

and again the restriction 0 < hi < 1 forces B = 0. so hi = 1 for all i. Thus, even if

you find a fair casino, you are certain to end up broke. This is why the paradox is

called gamblers’ ruin.

is h

To further explain the idea of the Markov chain,  I would like to illustrate the

simple two-state Markov chain. In this instance, there are only two possible states

that you can be in. So, at all times, you are either in state 1 or state 2. Then, for

each unit of time, if you are already in state 1, you have a certain probability, say a, ̂

of moving from state 1 to state 2. Therefore, you have a 1 — o; probability of staying

in state 1. Similarly, if you are already in state 2, you have a probability, say 0 of

moving from state 2 to state 1. Thus you have q.  \ — 0 probability of staying in state

2. This type of Markov chain can be expressed with a very simple transition matrix:

/ \
1 -a a

A =

0  1-0

At this point, I will prove a very satisfactory little theorem characterizing the

two-state Markov chain defined above. This is original work, presented to me as an

exercise, although the theorem was of course, already known.

Theorem 1 For a two-state Markov chain with transition matrix

5



\
1 - a Q

3  1-3
\

the stationary matrix IS

Q

0+/3 a+i3

3 Q

y a+3 o-f^ j

unless a = 3 = 1.

must first find theProof of Theorem 1. To solve for the stationary matrix, we

eigenvalues of the transition matrix. Therefore, we find

(1 - q) - A a
= l_Q_A-/? + a/3 + ̂A-A + aA + A2-Q/3

0 [\-0)-X

Canceling then leaves A^ + A(o + /? - 2) + 1 - Q- 3 This can be factored into

(A — 1)(A — 1 -f Q leaving our eigenvalues to be  1 and 1 — a — /3.

Now that we have our eigenvalues, we can make a diagonal matrix so that we

can write our transition matrix in the form A = xDx~^. Using the eigenvalues, this
\/

01
diagonal matrix becomes D =

0  l-a-3
\
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To find the stationary matrix, we must first consider the transition matrix A raised
\/

01
to the nth power. Hence we have = x

-1
X \

0  {l-a-P)
\

To continue, we \vant to diagonalize by multiplying the diagonal matrix by x

on the right to find the particular diagonal matrix for this problem.

on

the left and

So we have

/ \\- / \  /
an auil - ot - P)""1 0ail ai2

A

a2i ^22(1 ~ ̂
n

0  {l-a-0)y Q21 0,22
Continuing, we have

/  V

/
\ / \

ail ai2(l - a- p) b bi211

^21 a22(l — Ct — P) 621 622
/  \

/ \

a + 6(1 — a — /?) c-\-d{l- a- P)
n

\ e + f{l - a - P)’' g + h{l-a-P)

where a,b,c,d,e,f,g,h are expressions involving the entries of x.

n

At this point, we will call the ij entry of A” by the name PJj where i and j take on

the values 1 and 2. We will start by looking at First notice that Fi*! = 1 = a + 6

and P\ = 1 — ~ O'+ b{l — a — P)a .

7



Now we have a system of two equations and two unknowns. The solution to this

^ and 6 =
Q

. Hence, we havesystem is a = Q-<-J

0 a
(1-a-/?)".P.1

n
1

Q + a +

Again, we will first notice that —

- 0). Then we have P°2 = 1 = c + d and = ot = c-\- d[l - a - 0).

Now we have another system of equations. Here the solution is c =

Moving on, we will next look at P^2-

c + d( 1 — Q

— Q
and d =a

Q+/3 ‘a+0

Thus, P
n    Q

12 a-^0 (1-a-/?)"●
a

Q +J

Next w'e will focus on P2”. First we note that P

^21 = f = e + / and P^^ = 0 = e + /(I -

equations with solution e = and / = Hence,a+p -● a+p

n
2

- 0). Oa

= e + /(l-Q-/?)"■ Then,1

nce again we have a system of

_P ^
a + 0 a + 0

Finally, we want to look at P22- Note that P22 =  ^ “

I = g + h and P22 = I - 0 = g + h{l - a - 0). This system leaves us with a solution

9 ~ ^ = '^10- Thus we have

{l-a-0)rpn
21 —

— 0)'^. So, P22 —a

0a
(l-a-0r.p2

n
2 —

a + 0 a-\- 0

8



W e now will look at the transition matrix raised to the nth power as a whole.

Thus we ha\'e

\

J + ̂(1 - a~3)

-^(1-Q-^)

n
a-(- 0:+>3.4^ =
3 n n

\ a+3

Now we note that -l<(l-a-^)<lsoasn

oc, the second part of each becomes 0. So now we see that we have the

Stationary matrix

00, {1-a- p)’' -> 0. Thus,

as n

( \3 Q

ct+3 q+a3 □limn^oo =

3 a

\ ct+3 a+3

This theorem provides

of as a wonderful conclusion to this first chapter. Note that in the final, stationary

matrix, both entries in the first column and both entries in the second column are

gather from this is that it makes no difference where

one starts. The fraction of time spent in a given state is independent of the starting

state.

with a beautiful outcome that I would like to take noteus

exactly the same. What we can

I

;,i
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2  Doom

Mo\'ing on, we will spend this chapter looking at  a specific type of Markov Chain,

a random walk. First I will add a few more definitions.

Definition 11 [4] *4 random walk in one dimension is a Markov chain in which the

set of states is a set of integers and in which the transition probabilities are all zeros

Pn,n+i> andpn^n-i. In Other words, at a given time, transitionsexcept possibly for ,n *

only made to adjacent states.are

escape fromDefinition 12 [4] A state i is called an absorbing state if there is

this state. In other words, pij is 0 unless i = j.

no

A random walk on the positive integers is considered, with one as an absorbing

state and constant transition probabilities left and right from every positive state,

of escaping to infinity fromUsing a variety of mathematical tools, the probability,

state n is calculated. We consider a conceptually simple random walk on the positive

integers as follows: Let p, ̂ > 0 and p + g = 1. If the system is in state one at time

-n)

t, the system stays in state one at time t + 1. If the system is in state n > 1 at time

t, it moves to state n — I with probability p and to state n + 1 with probability q.

In this situation, state one is called the absorbing state. Once there, the system

is doomed to remain there ever after. We wish to investigate the probability that the

10



system ends in state one given that it starts in state n. For this purpose, we define:

the probability that the system starting in state  n ends in state one as t —*

Infoimally. we van think of a„ as the probability of doom for a system in state n,

as the probability of escape. Clearly, we begin with a, = 1. The probabifity

is related to a„_, and a

00.

n

in the obvious way: for n > 1, fln+i = + Q0,n+2^

an

and 1 - a

using the multiplication of probabilities and the fact that moving left and moving

right at time t are disjoint events. Rearranging yields

an
rH-1

1 P
0>ti+2 —

qq

Here we are assuming q^O, which is valid except in the clearly doomed situation

where every possible move is to the left. It will be helpful to use this recmsion to

express all a ^ > 2 in terms of U2- A bit of computation shows

= (mzE) . p
^  9-P ^ ̂  c

which will be extraordinarily useful below, and which can be verified with a fairly

routine induction argument.

ni

for n > 2 a n-l
(l-a2)n
^(9-p)

It is now clear that if we can determine aa, the probability of eventual doom for

a system starting in state 2, we will have an explicit formula for every a„. To this

end, we note that every path from state 2 to state 1 involves an odd number of steps,

a sequence of 2k steps starting to the right and ending atsay 2/c + 1 steps. First,

11



2, followed by a single step to the left. Each path from state 2 back to state 2

must iinolve an equal number of steps right and steps left and the number of steps

exceed the number of steps right in any initial segment of the path.

Hence, when k =: \^ there is only one such path RL. When /c = 2, there are 2 such

paths RRLL and RLRL. For k = 3, we have 5 paths, RRRLLL, RRLRLL, RLRRLL,

RLRLRL, and RRLLRL. Let Cjt denote the number of paths of 2k steps. Each path

ha^ probability and since

(^‘2 =

state 2

left must never

each path is followed by a single step left, we have

A:=0

well-known combinatorial sequence calledNow, the quantity we have called C, is a

the Catalan number, defined precisely as we have defined our Ck- There is an elegant

closed formula for these Catalan niunbers, in particular

1

[1fc+i

Our task of determining ao now reduces to finding

(fc^)

For this purpose, we define

oo

= E 1
k + l

k=0
oo

1= pE 1
A:=0

oo

/w = E^av+‘-fc=0

Kpq)and we note ao = ̂
9
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We pause to note the following recursion formula for the binomial coefficients in

our series;

which is simple cancelation of fractions.

:x:

Now, fix) = x:
k=0

/(0) = 0
and <

/'(O) = 1

Using the recursion

DC

/'W = H-xE(4-f)(»
k=l

k=l

= 1 + ixf'(x) - 2/(x),

or

/'(-) + = 1
l-4x’

This, happily, is a routine first order linear differential equation encountered in

the first part of an introductory differential equations text [5l. To solve, one finds an

and solves:1
integrating factor, here l-4x

(~Ji-4x y -
1

(l-4x)7 ’

This translates with the aid of the initial conditions into

1 —\/l—4x
f{x) = 2

13



Henc'e.

_ /(/X/) I-V l--\pqao

n->
'-*7

^ ~ \/~t<7" --W+ 1ao

L-{^-2q)
d p>q2q

a-2 =

I-C29-1)
\{p<q2q

So,

1  \i p> q
do = \

J  ifp<<?.

It must be noted that our derivation is not valid for p = q. The fact that a2 = 1

when p = q follows from continuity,

have determined 02, we have an easy computation to derive a formulaNow that we

for every a^:

i) If p > g, tt2 = 1 and so

'  ̂ q—p '

— qo-2~pan
q-p

= ̂  + o

= 1,

and doom is statistically certain;

ii) If p < gr, = q and so

14



r; - ;
i-ij.a Vri 7 7-P

=
7" 7

=
V q >

and for reasonable values of p, escape is conceivable from any state other than state

7-p

i
7-p

one.

This is a complete and satisfactory solution to the original question we asked. For

concreteness, we illustrate with p = ̂'
\

1
a'2 — 2

1
^10 — 512

^100 — ~ 0

For p = .49:

q2 = If ss .96

(2io ~ .698

<^100 ~ -019

and, happily, we can report high likelihood of escaping doom for those not starting

too close!

In order to test this result empirically , I have written, with the assistance of

Professor Tristan Denley, a program in the MATLAB language to simulate the random

15



walks wliirh are evaluated theoretically above. Of course, in the theory above, an

infinite* niiinber of st(*ps is assumed in each walk. In practice, this is impossible. The

following program runs simulations of a size N steps where N is given as input. Each

run begins at state n and moves left with probabihty p and right with probability

1 — p, where n and p are also given as inputs. 100 repetitions are run and the average

number of absorbtions is recorded. The simulation program, called ’’hillavmod”, is

as follows;

function [average, add] = mountain(N,p, n)

add = zeros{\, 100):

for z = 1 : 100

c=rand(l,N);

d = (cip);

f=2*d-ones(l,N);

for j = l:N ps(j)=sum(f(l,l:j)); end

cross=sum( (ps==n));

add(i)=cross;

x=l:N;

plot(x,ps,’r’)

hold on

16



plot(x,n*ones(l,N))

end

average = sum(add > 0)/100.0;

\

17



The following is the graphical output of’liillavmod.
»

8

6

4

\
2

2

4

6

8
3 5 7 8 92 4 6I I
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Now \vc will look at a comparison of theoretical and simulated results with diJffer-

ciit probabilities p. and starting at different states n, on the number line.

Simulation 4Simulation 3Simulation 1 Simulation 2Theoreticaln P

.80.872 .86.47 .887 .91

.759 .55.40 .73.667 .62

.98.979 .55 .991 1

.71.685 .48 .723 .73 .68

.71.748 .49 .756 .68 .69

Without any formal statistical analysis, I conclude the chapter by noting that the

sim\ilated results seem to cluster beautifully around the theoretical prediction.

19



3  Counting Returns

In this chapter, a uiodiHi'd random walk is considered, a walk with no absorbing

state oxpanck'd into two dimensions. The problem considered is enumerating the

imniber of returns to the diagonal line y = x. If the problem were to be visuahzed

in one diinension. the formulation of the problem would be coimting returns to the

origin.

'onsider a random walk in wliich states are pairs (a, b) of non-In particular, we t

negati\'e integers with transition probabilities as follows: Prom (a, 6) there is proba

bility p of moving to (a,b + 1) and probability ̂   = 1 — p of moving to (a+ 1,6). This

can be pi('tured as lattice points in the first quadrant with probability p of moving

north one step and probability q of moving east one step. If one starts at the origin,

then any state lying on the line y — x represents  a moment when the number of

steps north and the number of step east are equal. The question may be also asked

starting from any point, and in this chapter, starting states (n, 0)

be considered. In such cases, hitting the line y  x means that the number of steps

north is n more than the number of steps east.

the x-axis wiUon

To derive an expression for the expected nmnber of hits starting from (n,0), we

note that the line y = x may be hit at any point (n + k.n + k) where k > 0. Such

a hit requires exactly k steps east and n-\-k steps north. This happen incan

20



●h of whic h lu\s probability p

series (‘xprc'ssioii tor the expcx'tation:

k = i)

wavs, eac Slimming over /c > 0 yields the following

or

rc

00

In order to .sum this series, we define the function fn{x) = XI
it=0

that the desired c'xpec'tatioii is p”/n(P9)- We are in the happy situation of having
00

available from chapter two an expression for fo(x), in particular, /o(x) = X ”

k
k=0

\
fc=0

1

Now, to begin searching for a recinsive relationship among the /n’s, note that

0 = (*;.vm=2(r). Hence.

k=0

k=0

= J- V ('2''+2')2x V k+l )
k=Q

= X ^ (shifting indices by r = k + l)

k+\X

r=l

= ^ifo(x) - 1)

= W / - - !)●2X V '

With closed expressions for h{x) and fi{x) as a basis, we now seek a 2nd degree

recursion relation among the /n’s. In particular, we show that for > 2, Ux) =n

21



i/„_i(x) - 7/,.-j(.r). To show this, having/o(x) and/i(i) in hand, we consider for

n > 2.

fjx) = T

= uniT') -
k={)

= f: - f

DC

^● = 0 k = 0
DC

u-^2r= E ('-r'V-'
r=l

DC

= ^E(

● -E(
r=l

_ i f;
r=l

=  (x)-l)-i(/n-2(x)-l)

r-1
r

n — 1

r=l

= i/„_i(x) - ;^/,.-2(x).

-1
(shifting indices by r = /c + 1)

\

We have a 2nd order recursion relation satisfied by the various functions fn{^)-

Indeed the recursion relation is linear and homogeneous, so standard techniques may

be applied [1][3]. Rewrite to obtain

/„(x)-i/„_,(x) + i/„-2(x)=0.

The auxiliary equation is

r2 1 1 = 0.-r + -X  X

The critical values of r are easily obtained using the quadratic formula with a = 1,

and c = ^, to yield
-1b =
X

l + \/l—4x
ri = 2x

l-yl^4x
r2 = 2x

22



I

It. follows that for all n.

1-^1^ v»1  ♦ % 1 -tx VM
fni^r) = ri( ^ C 1

2 s

with constant functions ci aiul r> to be determined by the known values of /o(a:) and

fiijc). Hence, when n = 0, we have

1
Cl Cj,V 1 - u

and when n = I we have

l-y1^
tA

I
- l)=0(i^^)+C2( ).2xV 1-lx

It is rontine to show that

Cl = 0 and

1
C-2 =

\/T — 4x ■

Putting all pieces together, we now have

1
fn{x) = v'l-4x

The expe<'ted number of hits of the diagonal given the starting point (n,0) is

l-v'l-4pi;
)"

1
p"f )( ■n{pq) = p"(- 2pqT^Apq

This concludes the proof of the following theorem:

Theorem 2 In the random walk of this chapter, the expected number of returns,

starting from (n,0), is

1
p"( l-4pq

In case p < q, this formula depends heavily on n, as one would expect. Since the

23



i wouKl U'iul to drifring "downward”, the expected number of returnstendcuu V p <

would cU'arly !>»' largt'sr if one started at the origin. In the casep > the following

littlu tlu'orein ini^hi 1h' unexpec'ted.

Theorem 3 If j) > the cjpected number of returns is exactly
1

independent of2p-l

n.

Proof of Theorem 3. Up > then - Apq = yjl - 4p(l -p) = ̂4p2 -4p +1 =

= (?)" and we have, from

5TT)(i)" =

‘-'w j
i-C^p-i)1 -

2p - 1. Now. ( = ( 2pq2pii

Theorem 2. that, the expet'ted number of crossings is p^^(
1 1 □

2p-r

While I did not anticipate that this expectation would be independent of n, once

noted, I quickly saw the intuitive explanation. If the expectation from (0,0) is E,

then, starting from (n, 0), one is certain to cross the diagonal because p > At the

moment of first hitting the diagonal, the situation is exactly as if one had started

from (0, 0), so the expectation should be E.

To rim a simulation of this new result, I modified the simulation program that

was presented in Chapter 2 so that it counts and averages crossings instead of ab

sorb t ions. Now we will compare the theoretical result with the simulated result for

various choices of N, p, and n and show the graphs of the simulated results
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The' followiiio IS rlu' i;raphiral output of "hillav.

6

4

2

\

2

4

6

8
3 5 6 7 8 92 4I I
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I'hroiH'tiral Simulation 1 Simulation 3 Simulation 4Simulation 2n P

■) 2.12 2.031.64 2.12o .  / ● j

6.1)0 7.166.49 6.126.15o .45

16.67 15.01 17.0517.3 14.38.470

1.48 1.211.65 1.421.553 .4

5.544.4 4.37■j 4.89.610

i  in Chapter 2. I note the dose agreement between the simulated and theAgain,

theoretical.
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4  FutLirG Qi-i^stions

c'iiii bo thought of as extensions or modifi-

Ono c'ouid put in more absorbing states. In the

one-ciiiiu*iisi<)imi situ<itioii. thi.s would bo ossontiallv the Gambler’s Ruin Problem-

One could look into liio,lu'i dimensions, but in that case, it is problematic about what

Bet urns to any point or lino would be extraordinarily rare. One could

count r(‘turns t(^ n g,iv('i,i piano in 3 dimensions, say the x-y plane, but that would be

2-diinonsional problem. Perhaps it would be of interest to

look at unbounded seditis of rotation, such as an hyperboloid, pick a starting poinl^’

and compute probabilities of remaining inside

could be asked in any dimension.

I am interested in the techniques I have used to try to find sums for strange-looking

infinite series. It seems interesting to me that  I was able to use differential equations

to sum infinite series, which reminded me of the use of infinite series to solve differen-

series whose coefficients involve

Catalan numbers or Fibonacci

numbers can often be summed using techniques like those in this thesis. There must

surely be an interesting relationship between the linear homogeneous recursion rela

tion I studied in Mathematics 301 and the linear homogeneous differential equations

The > n\iiiu‘r< *us questions thatre art

cations of tin' \v(*rk I havt' done.

to count.

e.ssentiallv the saiiu' ius a

outside, the solid. Such questions, or

tial equations in Mathematics 353. Perhaps infinite

well-known numbers such as binomial coefficients or

27



I

I

I studied in Mathemarirs 353. In both these situations, the solution involved roots of

a charartc'i isr ic polynomial. If the opportunity arises, I will welcome the chance to

think more about these questions.
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