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ABSTRACT .
JOANNA C. ROCHESTER: Random Walks, Absorption, and Enumeration of

Returns
(Under the direction of William Staton)

The general notion of a Markov Chain is introduced in Chapter 1, and a theorem is
proven characterizing the two-state Markov Chain. The concept central to the thesis,
the Random Walk, is introduced in Chapter 2 and a thorough analysis is presented
of a Random Walk in one dimension with a single absorbing state. A theorem is
proven which provides probabilities of absorption for arbitrary starting points. The
theoretical results are then tested by computer simulation, yielding a very satisfying
match with the predictions of the theorem. Finally, in Chapter 3 & modification of
the Random Walk without absorbing states is presented and analyzed. The expected
number of returns to the origin is derived, and again is tested by computer simulation.
In this case as well, the simulated results provided a nice empirical verification of the
theoretical result. Techniques employed in the work vary across the undergraduate
curriculum. Linear algebra appears in the powers of matrices and in the use of
eigenvalues in Chapter 1. Probability concepts such as independence play a small role.
First order linear differential equation techniques are used in Chapter 2. Infinite series
are evaluated in Chapters 2 and 3, and linear homogeneous recursion equations are

solved in Chapter 3. Some use is made of Catalan Numbers and Binomial Coefficients



as well. The computing necessary for the simulations in Chapter 2 and Chapter 3
was done in the MATLAB language on the University of Mississippi’s supercomputer

accessed through Sweetgum. This thesis was typeset using LATEX.
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1 Preliminaries

Many situations studied in the natural and social sciences involve systems which
can be in one of an array of states, and which, from time to time, evolve from one
state into another. In some such systems, there is what might be called a systemic
memory, whereby the system takes into consideration its past, speaking figuratively,
when deciding how to move forward. In other situations, there is no such memory,
so that the system, when in a certain state one, has the same probability of evolving
into another state two regardless of how the system arrived in state one. It is such
systems, called Markov chains, which are studied in this thesis. The main focus will be
a particular type of Markov chain called a Random Walk, defined more formally later,
in which states can be pictured as integer points of a line and transitions are made
only to nearby points. Once again, using figurative language, the questions considered
in this thesis will involve "escaping” and "returning”. The techniques employed here
will range across many courses | have taken as an undergraduate. There will be
matrices, eigenvalues, infinite series, recursion equations, linear differential equations,
binomial coefficients, and Catalan numbers. In this thesis, [ will proceed from the
general to the specific. At the outset, very general definitions will be given, especially
the definition of a Markov Chain. After illustrating with examples, I will prove a

theorem completely characterizing the 2-state Markov Chains. I will then proceed




to a particularly interesting and useful instance of the Markov Chain concept, the
Random Walk. Most of the research in this thesis is devoted to instances of this

concept. I begin with a number of definitions.

Definition 1 [2/ An mzn matriz, where m and n are positive integers, is an array

{a,;l1 <1< m,1<j<n} of numbers. An n-vector is an nzl matriz.

Deﬁnition. 2 [2] If A= {a;;} and B = {b;;} are mzn matrices, then the sum A+ B

is the man matriz C whose entry c;j = a;; + bij.

Definition 3 [2] If A is an mzn matriz and B is and nTp matriz, then the product

AB is the mzp matriz C whose entry c;j = Z Qikbk; -

Definition 4 [2/ If A = {a;;} is an nzn matriz and 1 < k,1 < n, then the minor
My 1s the (n — 1)z(n — 1) matriz obtained by removing each entry whose first indez

18 k or whose second indez is .

Definition 5 /2] The determinant of an nzn matriz A = {a;;} 1s defined inductively

as follows:

a 'Lf n=1
det(A) = {

_Z 1)"*idet(My;) ifn>1




Definition 6 [2/ A scalar A is said to be an eigenvalue of A if there ezists a nonzero

vector r such that Axr = \z .

Definition 7 [2/ A matriz is said to be stochastic if its entries are nonnegative and

the entries in each column add up to 1.

Definition 8 /4] A Markov chain is a finite or countable infinite set of states {S;}

along with a set {p;;} of transition probabilities with the stipulation that for fized 1,

Zpi,- = 1.
J

One should conceptualize a Markov chain as a system of states evolving at discrete
time intervals. The transition probability p;; represents the probability that at any

of the discrete times, the system evolves from state S; into state S;.

Definition 9 /4] A transition matriz A of a Markov chain is a stochastic matriz

where each entry ai; represents the probability of moving from state i to state j.

It should be noted that the appearance of the matrix will vary with the numbering

of the states. This is of no consequence.

Definition 10 /;] 4 stationary matriz of a Markov chain is lim, .o (A"), if the limit

exists, where A is a transition matriz of that Markov chain.




Now that the idea of a Markov Chain has been presented, [ would like to stop and
give a few practical examples of how Markov Chains can be used. The first example
that I would like to introduce is a well-known problem called the "Gambler’s ruin,”
see [4].

Imagine that you enter a casino with a fortune of $k and gamble, $1 at a time,
with probability p of doubling your stake and probability g of losing it. The resources
of the casino are regarded as infinite, so there is no upper limit to you fortune. But,
what is the probability that you leave broke?

Let h; = probability(hit 0), for ¢ = 1,2,... then h is the minimal nonnegative
solution to

ho =1,

hi = phiy, + qh;i_q, fori=12, ...

If p # q this recurrence relation has a general solution

hi = A+ B(2)".

If p < g, which is the case in most successful casinos, then the restriction 0<h; <1
forces B = 0, so h; = 1 for all i. If p > q, then since hp = 1 we get a family of
solutions

he = (2 + A(L = (2)7);

for a nonnegative solution we must have A > 0, so the minimal nonnegative solution



ish, = (g)'. Finally. if p = ¢ the recurrence relation has a general solution h; = A+ Bi
and again the restriction 0 < h; < 1 forces B = 0. so k; = 1 for all i. Thus, even if
you find a fair casino, you are certain to end up broke. This is why the paradox is
called gamblers’ ruin.

To further explain the idea of the Markov chain, I would like to illustrate the
simple two-state Markov chain. In this instance, there are only two possible states
that you can be in. So, at all times, you are either in state 1 or state 2. Then, for
each unit of time, if you are already in state 1, you have a certain probability, say o, .
of moving from state 1 to state 2. Therefore, you have a 1 — o probability of staying
in state 1. Similarly, if you are already in state 2, you have a probability, say G of
moving from state 2 to state 1. Thus you have a 1 — 3 probability of staying in state

2. This type of Markov chain can be expressed with a very simple transition matrix:

At this point, I will prove a very satisfactory little theorem characterizing the
two-state Markov chain defined above. This is original work, presented to me as an

exercise, although the theorem was of course, already known.

Theorem 1 For a two-state Markov chain with transition matriz




the stationary matriz is

S _a_
a+8 a+J3
S _a
a+3  a+3

unlessa = 3 =1.

Proof of Theorem 1. To solve for the stationary matrix, we must first find the

eigenvalues of the transition matrix. Therefore, we find

l—a)-)\
( ) “ ::1—-a-—,X——ﬂ—fcﬂ3+38A-A'+CLX+'A2_‘aﬁ

B (1-8)-2A
Canceling then leaves A\* + A(a + 8 — 2) + 1 — a — # This can be factored into

A-1DA=-1+a + ) leaving our eigenvalues to be 1 and 1 —a — B.
Now that we have our eigenvalues, we can make a diagonal matrix so that we

can write our transition matrix in the form A = zDz~!. Using the eigenvalues, this

1 0
diagonal matrix becomes D =

0 l1-a-0




i ' ; iti i aised
To find the stationary matrix, we must first consider the transition matrix A T

1 0

to the nth power. Hence we have A" = 7 T
0 l-a-4)"

: Olvi i rix by x on
To continue. we want to diagonalize by multiplying the diagonal matrix by

; - i i blem.
the left and z=! on the right to find the particular diagonal matrix for this problem

So we have

ap; ap | 1 0 an 0'12(1 —a- ﬁ)n
A = _

az1 Qg 0 (I-a-p0)" an axp(l—a-0)

Continuing, we have

ai ap(l-a-p4)" b1 bio
A =

a2 ap(l-a-p4)" bar  ba2

atb(l-a-p)" c+d(l-a-pF)"

e+fl-a=-pB)" g+h(l-a-pB)"
where a,b,c,d,e,f,g h are expressions involving the entries of x.

At this point, we will call the i entry of A by the name P[; where ¢ and j take on
: | . 01
the values 1 and 2. We will start by looking at P. First notice that P} =1=a+b

andP111=1‘C¥=a+b(1—a—ﬂ).



Now we have a system of two equations and two unknowns. The solution to this

. e oy — 3 — _a .
system is a = =5 and b = ot Hence, we have

n 8 a
11 = +
a+3 a+p

(1-a-p0)"

Moving on, we will next look at P%. Again, we will first notice that P}, =
c+d(l —a— ). Then we have P%, =1=c+d and P} =« =c+d(l —a-p).
Now we have another system of equations. Here the solution is ¢ = ;%5 and d = =3
Thus, P}, = - 5(l-a-0)™

Next we will focus on Pj,. First we note that P35} = e+ f(1—a—pB)" Then,

P} =1=e+ f and P} =3 =e+ f(1 - a-B). Once again we have a system of

equations with solution e = (—ﬁ-ﬁ- and f = a;fﬁ Hence,

n_ BB an
P21_a+6 a+ﬁ(1 o 5).

n 0 _
Finally, we want to look at Pp. Note that Pp = g+ h(l —a — B)". So, Py =

l=g+hand P,=1-3= g+ h(1 —a — (). This system leaves us with a solution

9 =335 @nd h = £ Thus we have

! B
a+ﬁ+a+ﬂ

P2n2= (l—a— )n-

—_— e




We now will look at the transition matrix raised to the nth power as a whole.

Thus we have

_.3 - _ n a a n
_,_171: a*3+q+j(1—a_3) a+,-3_a+/3(1_a—’8)
3 3 n a n
0"*‘*3—0'*'3(1-0_'3) a+3+aiﬂ(1—a—’3)

Now we note that -1 < (1 —a-f8) <1soasn— oo, (1—a—_8)" — 0. Thus,
as n — o, the second part of each P,; becomes 0. So now we see that we have the

stationary matrix

3 a
lim Y O
n—oo = .
3 a
a+3 a+f

This theorem provides us with a beautiful outcome that I would like to take note
of as a wonderful conclusion to this first chapter. Note that in the final, stationary
matrix, both entries in the first column and both entries in the second column are
exactly the same. What we can gather from this is that it makes no difference where
one starts. The fraction of time spent in a given state is independent of the starting

state.



2 Doom

Moving on. we will spend this chapter looking at a specific type of Markov Chain,

a random walk. First [ will add a few more definitions.

y y y o ) X ) h the

DeﬁllitiOll 1 l //‘/ :] I‘(I,nd()rn wal,l.' in one dzmenszon 1S a A/I(LTA,()U chain in whic
e ) 1) 141x) T [ zeros

set of states 1s a set of integers and in which the transition probabzlztzes are all z
r [ ) ) .t'l;ons

emcept pObSlbly fO Pn.n, Pnn+1: andpn,,,_l. n OthCT ’U)O?ds, at a given tzme, transt

are only made to adjacent states.

; ; ] om
Definition 12 /4] A state i is called an absorbing state if there is no escape fr

this state. In other words, p; ; is 0 unless i = j.

A random walk on the positive integers is considered, with one as an absorbing
state and constant transition probabilities left and right from every positive state.
Using a variety of mathematical tools, the probability, a,, of escaping to infinity from
state n is calculated. We consider a conceptually simple random walk on the positive
integers as follows: Let P,q > 0 and p + g = 1. If the system is in state one at time
t, the system stays in state one at time ¢ + 1. If the system is in state n > 1 at time
t, it moves to state n — 1 with probability p and to state n + 1 with probability g.

In this situation, state one is called the absorbing state. Once there, the system

. . . 1 e
is doomed to remain there ever after. We wish to investigate the probability that th

10



system ends in state one given that it starts in state n. For this purpose, we define:
an = the probability that the system starting in state n ends in state one as { — oo.

Informally. we can think of a, as the probability of doom for a system in state n,
and 1 —a, as the probability of escape. Clearly, we begin with a; = 1. The probability
an 1s related to a,_; and a,,, in the obvious way: for n > 1, Gns1 = POn T Q0n+2)
using the multiplication of probabilities and the fact that moving left and moving

right at time ¢ are disjoint events. Rearranging yields

1

Ony2 = =Qnp] = =Cn.

Here we are assuming q # 0, which is valid except in the clearly doomed situation
where every possible move is to the left. It will be helpful to use this recursion to

express all an, n > 2 in terms of a,. A bit of computation shows
forn > 2 a, = (%2=p) 4 P""!(1-ay)
-p 9"~*(q-p)
which will be extraordinarily useful below, and which can be verified with a fairly
routine induction argument.
It is now clear that if we can determine ay, the probability of eventual doom for
a system starting in state 2, we will have an explicit formula for every a,. To this

end, we note that every path from state 2 to state 1 involves an odd number of steps,

say 2k + 1 steps. First, a sequence of 2k steps starting to the right and ending at

11




state 2. followed by 5 single step to the left. Each path from state 2 back to state 2
must involve an equal number of steps right and steps left and the number of steps
left must never exceed the number of steps right in any initial segment of the path.
Hence. when k = 1, there g only one such path RL. When k = 2, there are 2 such
paths RRLL and RLRL. For k = 3, we have 5 paths, RRRLLL, RRLRLL, RLRRLL,
RLRLRL, and RRLLRL,. Let Cy denote the number of paths of 2k steps. Each path
has probability p*gk apg since each path is followed by a single step left, we have
ay = x.éa Ciphtigh, |
Now, the quantity we have called Cy is a well-known combinatorial sequence called
the Catalan number, defined precisely as we have defined our Cy. There is an elegant
closed formula for thege Catalan numbers, in particu.lar
Ck = Flul(ik) (1]

Our task of determining a; now reduces to finding

12



- : : . i in
We pause to note the following recursion formula for the binomial coefficients
Olr Series:

(%) = (4= (33 ]3]

which is simple cancelation of fractions.

Now. f'(z) = i (%)=

k=0

f(0)=0

and

f(0) =1

Using the recursion

or

1
@)+ 25 @) = &
This, happily, is a routine first order linear differential equation encountered in

the first part of an introductory differential equations text [5]. To solve, one finds an

integrating factor, here ﬁgﬁ and solves:

( f(z) v _ 1
V1-4z (1_41:)%'

This translates with the aid of the initial conditions into

flz) = ==,

2

13



Hence,

q 2q
1- —4( -
ay = 12V A1)
2q
1-+v/4g2-.
a1y = 19” —ig+1
2 5
4
1—-(1-2 .
Ay = <
\ -q
So,
p
1 ifp>gq
as = «
E ifp<aq.
\ 9

It must be noted that our derivation is not valid for p = q. The fact that a; =1
when p = q follows from continuity.

Now that we have determined a2, we have an easy computation to derive a formula
for every a,,:

i) If p>¢q,a, =1 and so

=1L +0

=1,
and doom is statistically certain;

i) If p < g, agzgandso

14




PR L et USRS E Y
n q—p .1-"—-(; i]—P)

-2

,n
9T q-p

e _t
_ 1 11(1 : )
q"’-q q=p

_ (pyn-1
= (q) .
and for reasonable values of p, escape is conceivable from any state other than state

one.

This is a complete and satisfactory solution to the original question we asked. For

concreteness. we illustrate with p = %:

ap ~ .698
ajpo ~ .019

and, happily, we can report high likelihood of escaping doom for those not starting

too close!
In order to test this result empirically , I have written, with the assistance of

Professor Tristan Denley, a program in the MATLAB language to simulate the random

15




walks which are evaluated theoretically above. Of course, in the theory above, an
infinite number of steps is assumed in each walk. In practice, this is impossible. The
following program runs simulations of a size N steps where N is given as input. Each
run begins at state n and moves left with probability p and right with probability
1 — p. where n and p are also given as inputs. 100 repetitions are run and the average
number of absorbtions is recorded. The simulation program, called "hillavmod”, is
as follows:

function [arerage. add] = mountain(N, p,n)
add = zeros(1.100);
for: =1:100
c=rand(1,N);
d = (cip);
f=2*d-ones(1,N);
for j=1:N ps(j)=sum(f(1,1:j)); end
cross=sum((ps==n));
add(i)=cross;
x=1:N;
plot.(x,ps,’r’)

hold on

16




plot(x,n*ones(1,N))

end

average = sum(add > 0)/100.0;

17




The following is the graphical output of "hillavmod.”

8 T . T T T
6+
41
2+
5 L
o L
6 L
-5 . : | ' l :
I 2 3 4 5 6 7
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Now we will look at a comparison of theoretical and simulated results with differ-

ent probabilities p. and starting at different states n, on the number line.

n p
2| AT
21 .40
21.55
D | .48
8| .49

Theoretical

Pt

Simulation 1

87

Simulation 2

91

.68

Simulation 3

.86

13

99

.68

.69

Simulation 4

.80
NG
98
11

71

Without any formal statistical analysis, I conclude the chapter by noting that the

simulated results seem to cluster beautifully around the theoretical prediction-

19




3 Counting Returns

In this chapter. a modified random walk is considered, a walk with no absorbing
state expanded into two dimensions. The problem considered is enumerating the
number of returns to the diagonal line y = z. If the problem were to be visualized
in one dimension. the formulation of the problem would be counting returns to the
origin.

In particular. we consider a random walk in which states are pairs (a,b) of non-
negative integers with transition probabilities as follows: From (a,b) there is proba-
bility p of moving to (a.b+ 1) and probability ¢ = 1 — p of moving to (a +1,b). This
can be pictured as lattice points in the first quadrant with probability p of moving
north one step and probability g of moving east one step. If one starts at the origin,
then any state lying on the line y = z represents a moment when the number of
steps north and the number of step east are equal. The question may be also asked
starting from any point, and in this chapter, starting states (n,0) on the x-axis will
be considered. In such cases, hitting the line y = z means that the number of steps
north is n more than the number of steps east.

To derive an expression for the expected number of hits starting from (n,0), we
note that the line y = = may be hit at any point (n + k,n + k) where k > 0. Such
a hit requires exactly k steps east and n + k steps north. This can happen in (n+2k)

k

20




ways. cach of which has probability p"~*¢*. Summing over k > 0 yields the following

series expression for the expectation:

i (nlzk)p"*qu
k=0
or

x< 9

o 5 )

0
In order to sum this series. we define the function f,(z) = 3. ("%*)z* and note

k
k=0

that the desired expectation is p" f,(pg). We are in the happy situation of having

. o0
available from chapter two an expression for fo(z), in particular, fo(z) = ) (2:)$k =

k=0
1

vi-4r’®

Now, to begin searching for a recursive relationship among the fa’s, note that
ok 241 o (241
(3+2) = (350 + (57 =2(*"). Hence,
= (2k+1\ Lk
) =Y ()=
k=0
X (2k42\ .k
= % Z (k:1 ):1:

= L3 (B

F io: (2:):1:’ (shifting indices by r = k + 1)

With closed expressions for fo(z) and fi(x) as a basis, we now seek a 2nd degree

recursion relation among the f,’s. In particular, we show that for n > 2, f,(z) =

21




1 faoi(x) = L fu_2(x). To show this. having fo(r) and fi(z) in hand, we consider for

A=0
_ = n-1-2k n-2k k
—;)[( e ) = ()
— i (n-l~‘.’k)l,k _ é (Yl*zk)rk
her LA har
_ = n+2r—1\ r-1 Y\; n+2r-2\ _r-—1 _
=3 ("t = X (") 2! (shifting indices by 7=k +1)
r=1 X Y‘=1
-1 i (n—l*’r) 1 i (n—‘-f-)r)
I = r - I =

= %fn—l(l') - f n-2(r).

We have a 2nd order recursion relation satisfied by the various functions f,(z)-
Indeed the recursion relation is linear and homogeneous, so standard techniques may
be applied [1][3]. Rewrite to obtain

fo(z) = L faci(2) + 1 fa-2(z) =0.

The auxiliary equation is

72

- %r + -i— = 0.
The critical values of r are easily obtained using the quadratic formula with ¢ = 1,

b==tand c=1,to yield

. 1+y/1-4x
= 2z

1—-y1—4zx

To = 5z -

22



[t follows that for all n.

oy -l dr . -y 1=dr\n
folr) = cpl=—50" = o =5 )

with constant functions ¢, and ¢, to be determined by the known values of fo(z) and
filz). Henee. when no = 0. we have

1

?lT_-GI = 1 =+ ),
and when n = 1 we have

1

‘)L(=
&I Vl—-l.l'

_ 1) . (l*\ 1—-1:) +C_)(l—yl—4.t)
=G 2r - 2r :
[t is routine to show that

c; = 0 and

Putting all pieces together, we now have

fulz) = e (A=x=in)n,

v 1i—dr 2r

The expected number of hits of the diagonal given the starting point (n,0) is

n n 1-/T-4
p fn(pQ) =p (V'T—I‘ipq)( V-zpq pq)n.

This concludes the proof of the following theorem:

Theorem 2 In the random walk of this chapter, the expected number of returns,
starting from (n,0), is

LovT=dpayn p o£ 2

2pq

pn(\/l_lTpa)( 2°

In case p < g, this formula depends heavily on n, as one would expect. Since the

23




tendency p < 4 would lead to drifting “downward”. the expected number of returns
would clearly be largest if one started at the origin. In the case p > %, the following

little theorem might be unexpected.

Theorem 3 If p > 3. the expected number of returns is exactly 5}—};—1, independent of

n.

Proof of Theorem 3. If p > 5. then VT —dpg=\/1-dp(1-p) = /4P —dp+1=

2p — 1. Now. (2 —)" = (l—(gp_l))" = (2_21,)" = (lq_

2pq 2pq 2pq qu)n = (%)n and we have, from

Theorem 2. that the expected number of crossings is p"(Q—;Tl)(%)" = 2p1_1, 0

While I did not anticipate that this expectation would be independent of n, once
noted, I quickly saw the intuitive explanation. If the expectation from (0,0) is E,
then, starting from (n.0). one is certain to cross the diagonal because p > 1. At the
moment of first hitting the diagonal, the situation is exactly as if one had started
from (0, 0), so the expectation should be E.

To run a simulation of this new result, I modified the simulation program that
was presented in Chapter 2 so that it counts and averages crossings instead of ab-
sorbtions. Now we will compare the theoretical result with the simulated result for

various choices of N, p, and n and show the graphs of the simulateq results,

24




The following is the graphical output of “hillav.”

6 1
4+ 7
°r : -
( -
- // -
/
L
W L
6 L
5 L 1 , . ‘ 1
' 2 3 4 5 6 7
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n p
21.75
21 .45
0| .47
31 .4

10| .6

Theoretical

Simulation 1

1.64

6.49

17.3

1.65

4.4

Simulation 2

o
—
(3]

6.15

14.38

1.59

4.89

Simulation 3

15.01
1.42

4.37

Simulation 4

17.05

1.21

5.54

Again. as in Chapter 2. T note the close agreement between the simulated and the

theoretical.
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4 Future Questions

There are nummerous questions that can be thought of as extensions or modifi-
cations of the work I'have done. One could put in more absorbing states. In the
one-dimensional situation. this would be essentially the Gambler's Ruin Problem.
One could look into higher dimensions, but in that case, it is problematic about what
to count. Returns to any point or line would be extraordinarily rare. One could
count returns to a given plane in 3 dimensions. say the x-y plane, but that would be
essentially the same as a 2-dimensional problem. Perhaps it would be of interest t0
look at unbounded solids of rotation. such as an hyperboloid, pick a starting point,
and compute probabilities of remaining inside, or outside, the solid. Such questions
could be asked in any dimension.

I am interested in the techniques I have used to try to find sums for strange-looking
infinite series. It seems interesting to me that I was able to use differential equations
to sum infinite series, which reminded me of the use of infinite series to solve differen-
tial equations in Mathematics 353. Perhaps infinite series whose coefficients involve
well-known numbers such as binomial coefficients or Catalan numbers or Fibonacci
numbers can often be summed using techniques like those in this thesis. There must
surely be an interesting relationship between the linear homogeneous recursion rela-

tion I studied in Mathematics 301 and the linear homogeneous differential equations
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I studied in Mathematics 353. In both these situations, the solution involved roots of
a characteristic polynomial. If the opportunity arises, I will welcome the chance to

think more about these questions.
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