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ABSTRACT 

  

Acquiring geophysical information requires selection of the geophysical method based 

upon the defining physical property and a survey design with adequate resolution but cost effective 

based upon the size of the area to be surveyed.  The objective of this study is to use artificial neural 

nets (ANNs) to design an optimal survey. The developed approach is tested for the case of soil 

pipe surveying using electromagnetics.  Soil pipes are tortuous voids located within 1.5 m depth 

of the ground surface.  They trend perpendicular to the slope and have cross-sectional dimensions 

on the order of millimeters to tens of centimeters.  The contrast in electrical conductivity (EC) is 

significant especially if the soil pipe is filled with air.  Based upon these characteristics an EM38B 

is chosen to survey the area. The EM38B is relatively fast and its maximum exploration depth is 

approximately 1.5m. The measured apparent electrical conductivity (ECa) is a dipole dependent 

weighted average over a soil volume of about 1m3.  A benchmark high resolution survey was 

conducted having a 2D cross grid pattern with a 0.5m line spacing to ensure an overlap of soil 

volume being interrogated.   The benchmark data set is then decimated (7 options) based upon 

orientation and line spacing options to simulate various surveying patterns. ANN models are 

developed using the various reduced datasets. The quantile method is used to generate a table to 

guide the choice of survey for a given ECa range. To validate the concept, an exercise is conducted 

starting with a reconnaissance survey consisting of a few lines based on surface features of soil 
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pipes. Using the table as a guide, a survey plan is proposed and the ANN models are created using 

this data set. The measured and model generated data are used to create the 2D ECa map using 

kriging interpolation. This map is in good agreement with the benchmark ECa map, although the 

second map required 60% less data.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Motivation of Research 

Geophysical methods are cost effective methods for estimating spatial geological structure 

and composition of the earth. Furthermore, these methods can be repeated without destruction of 

the surface allowing for monitoring over time. Numerous standardized data-acquisition procedures 

are used to interpret desired subsurface parameters. Some major decisions that must be made 

before data acquisition are: suitability of instruments for the survey, selection of a traversing 

pattern, the size of the grid and its orientation, orientation and height of the instrument, and spacing 

between the measurements. Although less than a boring program, cost is still a major consideration 

in geophysical surveying. Finding a procedure that acquires the optimum amount of data is 

necessary to maintain a favorable cost/benefit ratio Appropriate survey design is therefore critical 

to the cost of the experiment in terms of the robustness, accuracy and precision of recovered 

geological information (Maurer et al., 2010). The acceptable survey design should ensure 

acquisition of required data that best resolve specific subsurface features or parameters of interest 

(Maurer and Boerner, 1998; Curtis and Maurer, 2000).  

Artificial neural network (ANNs) are algorithms and mathematical models to reproduce 

the knowledge acquisition and information processing of the human brain (Zupan and Gasteiger, 
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1993). ANNs work as an alternative to classical mathematics and traditional techniques and have 

the capability to incorporate nonlinear issues. Feed forward-back propagation approaches in ANN 

modeling is the most common modeling procedure that is successfully used in engineering 

applications (Ghaboussi et al.,1991; Najjar et al.,1996; Yasarer and Najjar, 2010).  Application of 

ANN modeling in geophysics is also reported in the literature (Poulton et al., 1992; Roth and 

Tarantola, 1994; Langer et al., 1996 and McCormack et al., 1993). Due to the continuous 

modification and improvement of ANN modeling, it’s performance should be evaluated for 

challenging and complex problems. The motivation behind this research is the application of the 

ANN modeling approach to minimize the data collection effort for electromagnetic surveying of 

soil pipes.  

 

1.2 Research Objectives 

The geophysical method needs to be chosen based upon the properties of interest. 

Instrument selection and survey design depend upon the size of the area to be surveyed and the 

required resolution of the survey, which determine the acquisition time and therefore the primary 

cost of the survey. Application of ANNs have gained popularity in geophysics but no evidence has 

been found where ANNs are used for designing EM surveys. In this study, the advantage of using 

ANNs to obtain a cost-efficient EM data acquisition geometry for mapping subsurface soil erosion 

pipes is investigated. These soil pipes are a major contributor to the formation of gullies resulting 

in loss of agricultural farmland. 
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1.3 Work Scope 

The thesis is composed of six chapters. The scope of each chapter is described as follows:  

Chapter 1-Introduction: This chapter briefly presents the motivation of the research, 

research objective, and scope of work. 

Chapter 2-Literaure Review: This chapter describes geophysical survey design parameters, 

measurement of apparent electrical conductivity (ECa) of soil using an EM38B, overview of 

ANNs, and application of ANN methods in geophysics. 

Chapter 3- Electromagnetic Survey at Goodwin Creek, MS: Presents a general description 

of the site, selection of suitable EM equipment, data acquisition and processing, EM signatures of 

soil pipes and a plan view of soil pipes. 

Chapter 4-Survey Design using ANNs: In this chapter, ANNs are used to choose 

appropriate survey orientation and line spacing. 

Chapter 5-Survey Design from a Reconnaissance Survey: This chapter describes how the 

concept of designing and optimized EM survey beginning from an initial reconnaissance survey. 

Chapter 6-Conclusion: Presents a summary of the work and provides recommendations for 

future research. 
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1. CHAPTER 2 

 

LITERATURE RIVEW 

 

2.1 Introduction 

Geophysical surveys have become popular for near surface applications because they are 

cost and time effective and measurements can be easily repeated without altering the soil profile. 

Among the available geophysical methods, electromagnetic induction (EMI), ground penetrating 

radar (GPR), electrical resistivity (ER), seismic refraction, and multichannel analysis of surface 

waves (MASW) have been the most widely applied in soil studies. In this chapter, geophysical 

survey design parameters, measurement of apparent electrical conductivity (ECa) of soil using an 

EM38B, description of artificial neural network system, and application of neural network 

methods in geophysics are introduced. 

  

2.2 Geophysical Survey Design Parameters 

Major decisions must be made before conducting any geophysical survey. These are: 

choice of instruments for the survey, selection of a traversing pattern, determining the size of the 

grid and its orientation, in some cases the orientation and height of the instrument, and the spacing 

between the measurements. These preliminary decisions about geophysical surveys are described 

in this section.
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2.2.1 Choice of Suitable Geophysical Instrument 

A general introduction to the different geophysical instruments is shown in Table 2.1 

(Clark, 1996). 

 

Table 2.1: List of geophysical instruments 

Type of Instrument Application 

Metal Detector These instruments are inexpensive and fast. They are very efficient for 

determining the location of metallic objects. 

 

Ground Penetration 

Radar 

Ground Penetration Radar (GPR) is capable for providing estimates of 

the relative depths of features. 3D images of underground features can 

be created using GPR. 

 

Conductivity Meter This instrument is suitable for distinguishing different types of soil i.e. 

silt and sand. Sometimes it is used for distinguishing stone from soil. 

They are capable for detecting significant interference from lightning 

and electrical wires. 

 

Resistivity Meter Resistivity meter is excellent for distinguishing soils and also soils from 

rocks similar to conductivity meter. A resistivity meter is slower but less 

affected by noise than a conductivity meter. 

 

Seismic Speed of seismic refraction survey is slow but it shows excellent 

performance for the estimations of the depth to bedrock. It is also 

suitable for determining the location holes refilled with soil. 

 

The decision about which instrument to use should be based on what types of features are 

of interest. Based on the description of survey site one instrument may be best, while another 

parameter may indicate that another instrument should be used. The decision should be made based 

on which physical property is most important and follow that recommendation. It is wise to 

evaluate several parameters rather than just one. 

A geophysical survey may be done on a single site using different instruments. This allows 

a greater variety of features to be detected. The findings of such surveys will be more certain where 
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more than one instrument detects the same feature.  But the multi-instrument survey increases the 

project cost. A survey with three different instruments may not triple the cost of a geophysical 

survey, but this survey will probably cost over twice that of a survey done with a single instrument 

(Bruce, 2004). 

 

2.2.2 Selection of Traversing Pattern 

During a geophysical survey, an instrument is carried, pulled, or pushed about the area of 

interest and measurements are made at many points. These measurements are often compiled into 

cross-sections or maps that show the distribution of values. There are many different methods for 

exploring an area and interpolation of data. Figure 2.1 represents typical traversing patterns used 

in geophysical surveying. Reconnaissance is done initially to look at the survey area. Most surveys 

are done with a rectangular pattern. A radial pattern is followed to explore around a known feature. 

A polygonal pattern is used when it is impossible to walk in the survey areas. A point-by-point 

pattern is used to measure specific selected points and a circumferential pattern is excellent for a 

tall conical mound. 
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Figure 2.1: Typical traversing patterns of geophysical survey (Bruce, 2004). 

 

2.2.3 Instrument Setup 

Survey orientation and height of the instrument can change the readings of some 

geophysical instruments. Usually the instruments are kept close to the surface of the ground to get 

the greatest spatial resolution of underground features. In the presence of brush or grass at the 

surface, the instruments may need to be raised. Typical orientation and height of common 

geophysical instrument is shown in Table 2.2. 
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Table 2.2: Typical orientation and height of common geophysical instrument 

Type of Instrument Orientation Height 

Magnetometer 

The sensors require a special 

orientation to allow the 

instruments to operate with 

minimum noise. 

Heights for the lowest sensor range 

between 30 to 50 cm. The full range of 

heights is between 0 to 2 m. The greatest 

heights are best for deep features. 

 

Ground Penetration 

Radar 

Radars to be operated with 

the electrical dipoles of the 

antennas perpendicular to 

the line of traverse. 

 

Usually, GPR should be placed 5 cm 

above the surface. 

Conductivity Meter 

There are two different 

orientations i.e. rotation 

about a vertical axis and 

rotation about a horizontal 

axis. 

 

Directly on the surface or waist height 

based on instrument. 

Resistivity Meter 

The orientation is 

determined by the direction 

of the survey line of the 

moving electrodes. To detect  

 thin and linear features, this 

orientation is very effective. 

 

In general, spacing is equal to the 

anticipated depth of exploration. Deeper 

features must be detected by increasing 

the spacing of electrodes. 

 

Seismic 

Orientation has no major 

effect on survey. 

The geophones are usually buried to 

reduce acoustic noise. The spacing 

between geophones is typically in the 

range of 0.25m to 2 m. The spacing 

affects spatial resolution. The depth of 

exploration is affected by distance 

between the impact point and the farthest 

geophone. 

 

2.2.4 Size of Grid and Orientation 

For covering a large survey site with a rectangular traversing pattern, the area needs to be 

broken up into smaller square, rectangular and parallelogram areas. These smaller square or 

rectangular areas are called grids. It is possible to locate points correctly in a parallelogram, but 

creating rectangular grids is much faster. Grids should be oriented in a way to reduce survey effort. 
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Typically, the side of any grid can be between 10 and 100 m. 20-m square grids are very common 

and can be measured in a fraction of a day. Lines should be short enough to see from one end of 

the grid to the other. But larger grids are more efficient because they reduce the number of survey 

lines. Extra time is not required to set up the instrument for each new line. For large survey sites, 

it is fastest to cross the length of it with a single long traverse if it is less than about 200 m. One 

directional survey along the grid lines is good practice. The standard orientation is to run the survey 

towards true north. Alignment with magnetic north is also acceptable.  

 

2.2.5 Spacing Between Measurement 

Selecting appropriate line spacing for geophysical measurements reduces cost and time. 

The smallest spacing is based upon the size of the smallest features. In general, the spacing between 

successive measurements for any geophysical survey is usually between 0.5 m to 2 m (Bruce, 

2004). If the mobility of the survey equipment increases, the spacing between successive 

measurements on a survey line can be decreased. For example, GPR instruments typically make 

depth scans at 1 cm intervals. Measurements on excavated features require 0.2 - 5 cm intervals but 

for boreholes it is usually between 5 - 10 cm. 
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2.3 Measurement of Apparent Electrical Conductivity (ECa) of Soil using an EM38B 

Soil electrical conductivity is an indirect measurement which correlates with different soil 

physical and chemical properties. It is the ability of a material to transmit an electrical current and 

is commonly expressed in units of mS/m (milli-Siemens per meter). Figure 2.1 represents the 

conductivity values of different soil materials. 

 

Figure 2.2: Conductivity values of different soil materials. (LSU AgCenter Pub. 3185 What Is 

Soil Electrical Conductivity?) 

Soil EC is controlled by soil water content, clay content and mineralogy, and soil 

temperature (McNeill, 1980). These controlling factors have led to considerable interest in EM 

techniques to determine soil salinity (Nettleton et al., 1994; Johnston et al., 1997; Lesch et al., 

1998). Other soils related uses of EM include measurement of clay content or depth to clay-rich 

layers (Williams et al., 1987; Doolittle et al. 1994), the depth of flood deposited sands (Kitchen et 

al., 1996) and the depth of splay deposits (Doolittle et al., 1995).  

Electromagnetic induction-based measurements is a non-invasive and non-contact 

measurement technique.  The measurement interrogates a finite sampling volume of the soil and 
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the resulting value is commonly referred to as the apparent conductivity (ECa). The EM-ECa 

sensor most often used in agriculture is the EM38, manufactured by Geonics Limited of 

Mississauga, Ontario, Canada (http://www.geonics.com). 

 

2.3.1 Soil Water Content 

Sheets and Hendrickx (1995) measured the ECa along a 1950 m transect in New Mexico 

over a 16-month period and found a linear relationship between conductivity and soil water 

content. Brevik et al. (1998) found that soil water content had a significant influence on soil ECa. 

Brevik and Fenton (2002) said that soil water content was the single most important factor 

influencing EC in central Iowa.  

 

2.3.2 Drainage 

Droughty areas typically have distinct textural differences from those with excess water. 

Soils in the middle range of the conductivity, which are both medium-textured and have medium 

water-holding capacity, may be the most productive. Since water holding capacity typically has 

the single greatest effect on crop yield, this is likely the most valuable use of EC measurements. 

Poor water infiltration can lead to poor drainage, waterlogging, and increased ECa. Jaynes et al., 

(1995) used ECa as an estimator of herbicide partition coefficients, theorizing that both were 

responding to changes in the soil drainage class. 

 

2.3.3 Cation Exchange Capacity (CEC) 

CEC is related to the percent of clay and organic matter (OM). Mineral soils enriched in organic 

matter, or with chemical fertilizers (e.g., NH4OH) have higher CEC than non-enriched soils. As 
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the percent of clay and organic matter increase, the CEC also increases. Researchers have found a 

correlation between conductivity and CEC through its relationship to clay. Williams and Hoey 

(1987) used ECa to estimate within-field variations in soil clay content. McBride et al. (1990) 

related ECa measurements to CEC and exchangeable Ca and Mg. 

 

2.3.4 Salinity 

An excess of dissolved salts (Cl-, SO4
2-, NO3

2-, PO4
3-, Na+, K+, Ca2+, Mg2+, NH4+, etc.) in 

the soil contributes to salinity which is readily detected by EM equipment. Inadequate leaching 

and excessive use of fertilizer will cause increases in the EC of soil. 

 

2.3.5 Temperature 

As temperature decreases to the freezing point of water, soil ECa decreases slightly. ECa 

decreases about 2.2% per degree Centigrade due to the increased viscosity of water and decreased 

mobility of ions.  Electrical conductivity decreases sharply when the temperature of soil water is 

below the freezing point. 
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2.4 Operation of Electromagnetic (EM) Equipment 

The induction of an electromotive force by the motion of a conductor across a magnetic 

field or by a change in magnetic flux in a magnetic field is called electromagnetic induction. This 

either happens when a conductor is set in a moving magnetic field (when utilizing AC power 

source) or when a conductor is moving in a stationary magnetic field. The general equation 

governing electromagnetic induction equipment is,  

Hs

Hp
=

iωμECs2

4
 (Mcneill,1980)                            Equation 2.1 

 

Here, Hs= Secondary magnetic field at the receiver coil, Hp= Primary magnetic field at the 

receiver coil, 𝜔= 2πf [f= frequency (Hz)], 𝜇=Permeability of free space, EC= Soil Conductivity 

(mS/m), s= Inter coil spacing(m), i=√(-1). 

Commonly used EM equipment includes EM31, EM34 and EM38.  EM equipment has 

two operational modes - vertical dipole mode and horizontal dipole mode. The inter coil spacing 

or frequency can be varied to determine the variation of conductivity with depth. The effective 

exploration depth in a layered earth geometry is approximately 0.25 to 0.75 times the inter coil 

spacing for the horizontal dipole mode and 0.5 to 1.5 for the vertical dipole mode.  The inter coil 

spacing of the EM 38 and EM 31 are 1m and 3.66m respectively. For the EM34, the inter coil 

spacing can be 10m, 20m or 40m. 

The EM38B is composed of a transmitter coil and a receiver coil installed 1.0 m apart at 

opposite ends of a non-conductive bar. It operates at a frequency of 14.6 kHz.  Figure 2.3 depicts 

the operation of the EM38B. The transmitter coil is energized with an alternating current from a 9 

V battery, which generates a time-varying magnetic field in the earth. This primary magnetic field 
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(Hp) induces current to flow in the soil. These current loops induce their own magnetic field (Hi). 

The induced field is superimposed on the primary field and both Hp and Hi are measured in a 

receiving coil (Rx) at the other end of the instrument. The measurement is expressed by the ratio 

of the primary magnetic field (Hp) to the secondary magnetic field (Hs = Hp + Hi). It is a function 

of the different conductivities and the magnetic susceptibility in the subsoil as given by Equation 

2.1. 

 

Figure 2.3: Operation of EM38B made by GEONICS (TN-6, GEONICS Limited) 

Measurements of ground conductivity can be made with the instrument in either the vertical 

or horizontal dipole orientation (Figure 2.4). In the horizontal orientation the instrument measures 

to a depth of about 0.75 m with the greatest sensitivity just under the instrument. With the 

instrument in the vertical orientation it measures to a depth of about 1.5 m with the greatest 

sensitivity at about 0.4 m (TN-6, GEONICS Limited). Magnetic susceptibility is a measure of how 

much a material will become magnetized in an applied magnetic field.  This additional parameter, 

important when searching for metallic objects, is determined using the in-phase part of the signal. 
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(a) 

 

(b) 

Figure 2.4: (a)Vertical dipole mode and (b) Horizontal dipole mode of EM instrument. 

The EM38 requires initial calibration and zeroing before the start of data collection. Before 

the start of a measurement and at various times during the survey, apparent conductivity and in-

phase readings should be obtained at a reference location outside the survey area. In EM surveys, 

drift represents differences in repeat measurements due to thermal distortion (change in 

temperature) of the coils. The EM38B provides good spatial resolution. It can collect 10 data points 

per second. For maximum resolution, the measurement stations should be close to a meter. Correct 

station spacing will be based on an estimate of the lateral dimensions of the anticipated 
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conductivity anomalies.  

 

2.5 Accuracy Issues in Electromagnetic (EM) Survey 

For accurate interpretation of the large amounts of ECa data, it is necessary to understand 

and consider issues related to how the data were collected and the intended application of the 

survey. It is well known that soil conditions, including temperature and moisture, influence ECa 

(McNeill, 1992). In non-saline soils, where the variation in ECa across a field will in general be 

much smaller, operational differences could be significant. Ambient conditions such as air 

temperature, humidity, and atmospheric electricity can also affect measurement of ECa with the 

EM38. Of these, air temperature generally has the largest effect (Geonics,1998). 

With the advent of GPS technology, researchers have developed systems to mobilize the 

EM38 and synchronize its output with GPS positioning data (Carter et al., 1993; Jaynes et al., 

1993; Cannon et al., 1994; Kitchen et al., 1996). Mobility of the EM38B system could potentially 

introduce error in ECa surveys. With the system it is impractical to mount a GPS antenna 

immediately above the EM38B. The distance between the GPS antenna and EM38B creates a 

position error, or offset, in the direction of travel. The output of the EM38B is designed for static 

operation, so operating speed can have an impact on data. Sudduth et al. (2001) found that in the 

vertical dipole mode ECa changed slightly with increasing operating speed (-0.4 mS/m per m/s). 

They also showed that the ECa changed about 1%/cm height of the sensor above the ground. 

They suggested using a uniform speed and minimum height for field surveying.  
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2.6 Artificial Neural Networks 

Artificial neural networks (ANNs) are algorithms and mathematical models that attempt to 

reproduce the knowledge acquisition and information processing of the human brain (Zupan and 

Gasteiger, 1993). ANNs work on the principles of biological neural networks. In the human body, 

the neuron consists of three main elements i.e. soma, dendrites and axons. Neurons are 

interconnected using axons and dendrites to transfer information. The nervous system is a neural 

network composed of these interconnected neurons (Simson, 1990). Artificial neural networks 

(ANNs) systems typically consist of the following basic components (Agrawal and Daiutolo, 

1992): 

• A neuron or node 

• An activation function associated with each node 

• A real-valued bias associated with each node 

• Transfer function 

• Propagation rules  

• Learning rules. 

Similar to the human neural system, the ANN approach involves the gradual increase of 

acquired knowledge resulting from long-term experimentation. 
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2.6.1 Basic Elements of ANNs 

Artificial neural networks (ANNs) consist of four main parts: 

• Input layer 

• Hidden layer(s) 

• Connection weights 

• Output layer 

A schematic diagram of an ANN structure is depicted in Figure 2.5 and each part is 

described in this section. Usually a network performs three tasks sequentially (Najjar et al., 1996): 

• Entry of input variables to input layer 

• Information processing within hidden layer(s) 

• Output generation in output layer. 

 

 

Figure 2.5: Schematic diagram of an ANN structure (Hakan, 2010) 
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2.6.1.1 Input Layer(s) 

The input layer is the simplest layer of a network. It contains the input nodes and no 

mathematical operations are performed in this layer. The input layer is responsible for receiving, 

processing and forwarding information to the hidden nodes. Input variables depend on the number 

of input nodes which are assumed to influence the output. The performance of the network is 

influenced by the number of input variables. 

 

2.6.1.2 Hidden Layer(s) 

The hidden layer may contain one or more layers consisting of a set of nodes which 

processes information within the network body. The hidden layer processes the information passed 

on from the input layer and feeds it forward towards the output layer. In other words, it facilitates 

the flow of information between the input nodes and the output node via the connecting links. The 

accuracy of the developed models is considerably affected by the number of the hidden layers as 

well as the number of neurons involved within each layer. 

 

2.6.1.3 Connection Weight(s) 

Connection weights act as the interconnecting links between the neurons in the layers. Each 

neuron is connected to every other neuron in the next layer via individual links. The magnitude of 

connection weights is responsible for adjusting the output magnitude of the neuron. No side 

connections are used in this modeling procedure. 

 



20 

 

2.6.1.4 Output Layer 

One or multiple neurons can be found in the output layer of a network. The output neuron 

is responsible for computing a value for a certain parameter or variable. 

 

2.6.2 Transfer Functions 

While calculating the output of a neuron, a transfer function is required because the input 

could be very large or negative. To introduce nonlinearity in the model and to avoid large or 

negative values, an additional nonlinear transformation is required in the neuron’s input to produce 

an output. Various types of transfer functions are used in ANN. 

The sigmoidal function is one of most widely used functions in ANN modeling due to the 

nonlinear relation. It is represented by following equation: 

f(input) =
1

1+e−(input)
                                                                                       Equation 2.2 

The sigmoidal function is preferred by users as it can accept any input in the range of (-

∞,+∞) and map it into the  ranges (0,+1). 

The hard timer function can have two values: 0 and 1. This function is used only for 

ON/OFF or 1/0 outputs. This function is characterized by a threshold value of 9.                                               

The output of the threshold logic function varies between 0 and 1 but the relation between 

these two values is linear. The interval width of the function is represented by α; the interval starts 

at 9 and has a width of 1/ α (Zupan et al.,1993). 
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2.6.3    Back Propagation Learning Algorithm 

Back propagation learning algorithms are used in ANN modeling to improve its 

performance. A number of layers (i.e. input layer, hidden layer(s) and output layer, including a 

specified number of neurons) are connected together to create a back propagation neural network 

system. It is seen that one layer of hidden units can approximate any function with a finite number 

of discontinuities to arbitrary precision, provided the activation function of the hidden unit is non-

linear (Hornik et al., 1989; Funahashi, 1989; Cybenko, 1989; Hartman et al., 1990). In most cases, 

a single layer of hidden nodes is used for a feed-forward network. 

Once inputs pass through a network to calculate the output of a neuron in the output layer, 

the error is determined by comparing the calculated outputs to the actual values. This procedure is 

consequently used for error function determination. The error function works to adjust the error 

by modifying the connection weights linked to the output. Initially, the connection weights are 

typically assigned random or specified values. The obtained output value using the initial 

connection weights is usually not close to the actual output value. The error correction is done by 

propagating the error backwards. Using the adjusted connection weights, the new error is 

determined and is used to readjust the connection weights. This process is continuously repeated 

on all training datasets until the error is reduced to a predetermined minimum or an allowed 

tolerance (Najjar et al., 1997). The final connection weights which produce an allowable error are 

then stored to represent the network.  

 

 



22 

 

2.6.4    ANN Model Development 

ANN models are usually developed following four sequential steps. In the first step, the 

database is divided into three different classes for training, testing, and validation. Usually 50% of 

the total data is selected randomly for training. The remaining 50% of the data is divided equally 

for testing and validation. In the second step, the network is trained and tested to determine the 

optimum hidden nodes and number of iterations. The three best-performing networks are selected 

based on their statistical accuracy measures. In the third step, the three best performing networks 

are validated using the validation data set. Finally, the selected networks are re-trained using all 

the data in order to increase the prediction accuracy of the network structures. 

To compare the performance of networks, statistical accuracy measures such as the average 

square error (ASE), mean absolute relative error (MARE) and coefficient of determination (R2) 

are evaluated. During the evaluation process, training, testing, validation and overall performance 

parameters should be considered. Minimum values of ASE and MARE and a maximum value of 

R2 play key roles during performance evaluation. The ASE, MARE and R2 value are expressed by 

the following equations: 

 

ASE = 
∑ (Xi

A−Xi
p

)2N
i=1

N
 

                Equation 2.3 

MARE = 
∑ | Xi

P−Xi
A|)/Xi

AN
i=1(

N
 

Equation 2.4 

R2 = 1- 
∑ (Xi

A−Xi
p

)2N
i=1

∑ (Xi
A−Xi̅̅ ̅)2N

i=1

 
Equation 2.5 

 

where, Xi
A = Actual value, Xi

P = Predicted value,  Xi
̅̅ ̅̅ =  Mean of 𝑋𝑖

𝐴 ,N = Total number of data 
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More information about ANN modelling can be found in the following references: 

Rumelhart et al. (1986); Hopfield (1982); Haykin (1999); Fausett (1994); Herz (1991); Ghaboussi 

et al. (1991). 

 

2.6.5    Development of Graphical User Interface (GUI) 

At the end of an ANN modeling procedure, a file is generated which contains the biases 

and connection weights for determining outputs with the acceptable amount of error. A Graphical 

User Interface (GUI) can be built to predict outputs for any input within the range. Microsoft 

Visual Basic or any other suitable programming language can be used to generate a GUI from the 

biases and connection weights. 

 

2.7    Application of ANNs in Geophysics 

In the last decade, neural networks methods have gained popularity for geophysical 

applications. Neural networks have been used for: determining subsurface target location using 

electromagnetic surveying (Poulton et al., 1992); seismic inversion purposes (Roth and Tarantola, 

1994; Langer et al., 1996); waveform recognition (Murat and Rudman, 1992); shear-wave splitting 

(Dai and MacBeth, 1994); seismic deconvolution (Wang and Mendal, 1992); event classification 

(Dowla et al., 1990); well log analysis (Huang et al., 1996); and trace editing (McCormack et al., 

1993). However, there are no reported studies on the use of ANN for survey design.  
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CHAPTER 3 

 

ELECTROMAGNETIC SURVEY IN GOODWIN CREEK, MS 

 

3.1 Survey Site 

Goodwin Creek Experimental Watershed (GCEW) is located in Panola County, 

Mississippi (Figure 3.1). The relatively flat cropland (slope <2%) currently occupies only 6% of 

the area, whereas the hilly forest and pasture lands occupy 39 and 55%, respectively (Kuhnle et 

al., 2008). The relatively flat (<2% slope) alluvial plains are typically Falaya silt loam and Collins 

silt loam soil series (Zhang et al., 2012). The surrounding hillslopes (2%–8% slope) are generally 

Grenada silt loam and Loring silt loam with some gullied land. The transition areas (2%–5% 

slope), which are in cropland, tend to be either Calloway silt loam or described as gullied land
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Figure 3.1: Location of Goodwin Creek, MS and the three catchments (Wilson et al., 2015). 

Ephemeral gullies result from the junction of rills that form a branching or tree-like pattern 

of channels. They can also be formed by internal erosion that leads to pipe (tunnel) collapse. Five 

factors influence ephemeral gully formation: overland flow discharge & duration, slope and flow 

depth, planform curvature, soil characteristics, and vegetable characteristics. The research site 

(Figure 3.1) consists of three catchments based on soil pipe collapse features (Wilson et al.,2015). 

Among the three catchments, C2 and C3 contain soil pipe collapse features (i.e. sinkholes, flute 

holes and gully windows), but no pipe collapse features were identified in C1. In 2013, the main 

catchment C2 had 56 flutes holes while C3 had 14 flute holes. The flutes holes of catchment C2 

averaged 29cm deep, 20cm wide and 25cm long, while the flute holes of catchment C3 averaged 

56cm deep, 32cm wide and 38cm long. 

For this study, electromagnetic surveying was conducted over a small section (20 m x 15 

m) of C3 catchment (Figure 3.2a), having established collapse features that stem from internal soil 
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pipes. Two m) of C3 catchment (Figure 3.2a), having established collapse features that stem from 

internal soil pipes. Two gully windows, marked as holes formed due to soil pipe collapses, are 

located within the study area. A surface depression is located between the gully windows. 

Information related to typical soil features and elevation was collected from the USGS database. 

Using ArcGIS, a map was produced representing the soil features and elevation contour of the 

study area (Figure 3.2b).  

  

(a) (b) 

Figure 3.2: (a) Study area with collapse features and (b) elevation and soil information. 

 

3.2 Selection of Suitable EM Equipment 

The maximum depths of soil collapse features at C3 are between 30 cm and 115 cm, 

depending upon the type of feature (Wilson et al., 2015). Soil pipes are tortuous voids located 

within 1.5 m depth of the ground surface. They have cross-sectional dimensions from millimeters 

to meter. The contrast in apparent electrical conductivity (ECa) is significant especially if the soil 
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pipe is filled with air. Based upon these characteristics, an EM38B was used to conduct 

electromagnetic surveys in this study area.  The EM38B has an inter coil spacing of 1m and 

provides measurements within two effective depth ranges: 0-1.5 m in the vertical dipole mode and 

0-0.75 m in horizontal dipole mode.  Apparent electrical conductivity (ECa) and in-phase 

measurements can be collected using a Geonics EM38B (Figure 3.3). The measured ECa is a 

dipole dependent weighted average over a soil volume of about 1m3. Therefore, the resolution 

limitation dictates that information can be used to infer locations having soil pipes but it can’t 

provide information specific to the soil pipes themselves. The sensitivity in the horizontal mode is 

highest directly below the instrument, while sensitivity in the vertical dipole position reaches a 

maximum at approximately 30–40 cm below the instrument. 

 

Figure 3.3: EM survey to detect soil collapse features. 

 

3.3 Data Acquisition and Processing 

The EM38B must be powered for thirty minutes before the start of measurements to allow 
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for the instrument to warm up and minimize instrument drift. All metal objects from the operator 

must be removed. Before the start of a measurement and at various times during the survey, 

apparent conductivity and in-phase readings were obtained at a reference location outside the 

survey area. The differences in these repeat measurements quantify the instrument drift due to the 

change of temperature (Robinson et al., 2004). Recalibration needs to be done between two 

successive measurements of ECa if the reference location changes more than 1 mS/m. Table 3.1 

illustrates the calibration information of a reference location while conducting the survey. As the 

change in ECa was 1mS/m between the start and end of the survey for one direction, no calibration 

was performed. 

 

Table 3.1: Calibration table for EM data collection on January 30, 2020. 

Survey 

Orientation 

Calibration ECa 

(mS/m) 

Start Time  End Time Calibration 

Check 

ECa 

(mS/m) 

 

Perpendicular to 

soil pipes 

11.09 am 7 11.16.30 am 11.53.07 am 11.55 am 8 

Parallel to soil 

pipes 

11.55 am 8 11.59.55 am 12.40.50 pm 12.42 pm 9 

 

 

The survey was conducted by continuously walking and acquiring data at ten readings per 

second to ensure high spatial sampling. Data were collected and stored using an Archer2 with 

location information received from an Emlid Reach RS+ GPS. Real-time quality control (QC) was 

performed visually using the Archer2 display. 

Geonics DAT38W software was used to download data from the data logger (Archer2). 

The software was also used to merge GPS and EM38B readings. Once the data were downloaded, 

readings from the reference location were used for drift correction using linear interpolation. The 
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timestamp of each data point was used to pick the correct encompassing reference reading for 

interpolation. Semi-variogram analysis using drift corrected data was then conducted to determine 

input parameters for kriging interpolation. ArcGIS software was used to generate ECa maps using 

ordinary kriging interpolation. 

 

3.4 Response of EM38B on Soil Pipes 

Four survey lines (Figure 3.4) using the EM38B were acquired in order to observe 

characteristic anomalies associated with internal soil pipes. Survey lines L1 and L2 were around 

700 cm in length and were located between gully windows. Survey line L2 passed over the surface 

depression. Survey lines L3 and L4 were around 360 cm and 870 cm respectively and located on 

either side of a gully window. The EM38B provides position-dependent but not explicit depth-

dependent information. 
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Figure 3.4: Plan-view of the survey area showing relative locations of the surface features and 

acquisition lines (L1, L2, L3, and L4). 

For the vertical dipole survey, changes in ECa along the line L1(Figure 3.5) was small. The 

larger values of vertical ECa on the end of the lines were associated with the harder soil while the 

lower ECa values were in areas having internal soil pipes. The apparent electrical conductivity 

also exhibits small fluctuations in signal strength at length scales much smaller than the spacing 

between antennae. Such behavior can be expected when one antenna traverses a small object 

located close to the surface. One would expect these types of signals to occur in pairs with a 

separation distance equal to the antennae separation distance. An air-filled soil pipe is expected to 

cause a drop in the apparent electrical conductivity but its response when it is smaller than the 

antennae spacing and close to the surface requires further investigation. 
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(a)  (b)  

  

(c)  (d)  

Figure 3.5: Vertical ECa for survey line: (a) L1, (b) L2, (c) L3 and (d) L4 

The vertical dipole ECa of survey line L2 is shown in Figure. 3.5(b). There is a large change 

in ECa over the surface depression, located at a distance of 200 cm. The vertical ECa shows a 

signature expected when the system traverses a small metallic object close to the surface. When 

traversing a small, shallow, metallic object, a sudden decrease in ECa and drop in the in-phase 

component occurs as each antenna crosses the object. It is postulated that this depression is a 

partially filled-in sinkhole with a material of lower conductivity and a small metallic object very 
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close to the surface. If correct, this demonstrates that small metallic objects can easily dominate 

the signatures and would have to be accounted for if small scale features in EM data are used for 

soil pipe detection. 

Changes in vertical ECa are not significant for survey line L3 (Figure 3.5c). Changes in 

vertical ECa for line L4 are also small (Figure 3.5d), but it is evident that the vertical ECa shows 

a drop in apparent conductivity starting at 500 cm and extending up to 750 cm, which could be an 

effect of the soil pipes.  

With the accepted state of interpretation of EMI data, the EM38B cannot detect individual 

pipes but appears to show reduced ECa in regions having soil pipes. 

 

3.5 Mapping of Soil Pipes in EM Plan View 

To ensure high spatial sampling, a benchmark survey (Figure 3.6a) was conducted on a 50 

cm line grid oriented approximately parallel and perpendicular to the topography resulting in a 

total of 14676 data points. These measurements were conducted in order to produce a plan-view 

visualization (map) of the area. A semi-variogram analysis was conducted using ArcGIS and 

following parameters were used for ordinary kriging interpolation. 

Table 3.2: Parameters used for kriging interpolation using ArcGIS 

Type Lag Size Lag Number Major Range Nugget Partial Sills 

Gaussian 2.88 12 33.43 0.51 154.87 
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(a) (b) 

Figure 3.6: (a) GPS grid at 50 cm x 50 cm interval used for generating vertical ECa map, (b) 

Vertical dipole ECa map using Kriging Interpolation 

A vertical ECa map for the study site is shown in Figure 3.6(b). The vertical ECa has a 

range from about 3 mS/m to greater than 10 mS/m. The range of ECa at the study site is small and 

could imply a fairly uniform soil type based on traditional soil classifications. For example, clay-

rich soil has an electrical conductivity of 2.5 – 10 mS/m, and topsoil has an electrical conductivity 

of 5 - 25 mS/m (Katsube et al., 2004). However, such conjecture makes it difficult to explain the 

trends in ECa. For a constant soil type, the distribution of soil moisture would be a controlling 

factor of the ECa. Due to drainage, it is expected that the soil moisture and therefore the ECa 

should decrease upslope. However, the trend in ECa does not correlate with elevation but increases 

transversely to the gully at a constant elevation. Another possibility for variations in ECa is the 

difference in soil structure between the upper soil layers and the underlying fragipan horizon. If 

the top granular layer is thicker, it could result in a higher ECa.  
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The ECa maps indicate that all the surface features (gully windows and depressions) 

indicative of soil piping are located within a low vertical ECa zone of 5.1 - 6 mS/m. This 

observation suggests that EMI can be used to define “zones” where soil piping networks are 

prevalent. 
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CHAPTER 4 

 

 SURVEY DESIGN USING ANN 

 

4.1 Introduction 

To detect probable locations of soil pipes, survey orientation is essential. The survey line 

spacing and directions are determined by the operator based on the problem at hand. In this chapter, 

ANN is used to choose the appropriate survey orientation and line spacing for an EM38B to 

determine the probable location of soil pipes with the minimum amount of effort. 

 

4.2 Survey Orientation and Line Spacing 

4.2.1 Data Separation for Developing ANNs Models 

EM data was collected with 50 cm line spacing and the survey lines were parallel and 

perpendicular to the soil pipe features (i.e. holes (gully windows) and depression. A lot of effort 

was required to collect the data. This large data set is decimated to represent data collection efforts, 

with specific orientation and line spacing for ANN analysis. Figure 4.1 shows the process in data 

analysis for determining optimal surveys. Seven different surveys (referred to as patterns 1 to 7) 

are designed with different survey orientations and spacing as listed in Table 4.1 and displayed in 

Figure 4.2. Patterns 1-5 require the EM data to be collected in automatic mode, whereas patterns 

6 and 7 would be in manual mode. Surveyors having no GPS connection would use manual mode.
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All proposed surveys would require significantly less effort than the benchmark survey.  

 

Figure 4.1: Flow chart for choosing optimal survey patterns 

 

Table 4.1: Data separation for different survey orientation and spacing 

Pattern 

No 

Orientation and Spacing No of 

Data 

ECa(mS/m) 

Max Min 

1 1D survey with 50 cm line spacing perpendicular to 

soil pipe features 

7371 

 

26.19 0.25 

2 1D survey with 50 cm line spacing parallel to soil 

pipe features  

7302 

 

25.17 0.75 

3 2D survey with 1m line spacing 7335 

 

25.77 0.75 

4 1D survey with 1m line spacing perpendicular to 

soil pipe features 

3750 

 

25.77 2.66 

5 1D survey with 1m line spacing parallel to soil pipe 

features  

2560 

 

25.17 0.75 

6 0.5m grid spacing 1205 

 

25.77 1.62 

7 1m grid spacing 304 

 

25.77 4.71 
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(a) (b) (c) 

   

(d)  (e) (f) 

 

 

 

 (g)  

Figure 4.2: Different survey orientation and spacing: (a) pattern 1; (b) pattern 2; (c) pattern 3; 

(d) pattern 4; (e) pattern 5; (f) pattern 6; (g) pattern 7 
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4.2.2 Application of ANNs for Selecting Uniform Survey Pattern 

For each proposed survey, the measurement location, easting and northing, are used as 

input parameters and the ECa is used as the output parameter. Before running ANN models, the 

output parameter is normalized between 0 and 37.16 mS/m. The data is then subdivided into 50% 

for training, 25% for testing, and the remaining 25% for validation. Training and testing are done 

together for a number of cases. After training and testing, 3 optimum networks are selected based 

on the minimum ASE and minimum MARE and maximum R2 respectively. The performance of 

these selected networks is validated with the validation dataset and then retrained with the full data 

set. A single ANN network [A_(X_Y_Z) _B] is chosen based on its performance (minimum ASE, 

MARE and maximum R2) during validation stage.  The network is characterized by four 

parameters: A is the number of inputs, B is the number of outputs, X is the initial hidden node, Y 

is the final hidden node, and Z is the number of iterations. Table 4.2 presents the ANNs analysis 

for the 1D survey with a 0.5m survey line spacing. Network [2_(4_11_20000) _1] is chosen as the 

best ANN based on its performance in the validation stage. This procedure is repeated for all other 

surveying scenarios to obtain their respective statistical accuracies. Final ANNs networks, R2 for 

linear regression, and statistical accuracy measures of the developed models for different survey 

patterns are presented in Table 4.3. 
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Table 4.2: Optimal ANNs selection for 1D survey 0.5m line spacing perpendicular to soil pipe 

features (pattern 1) 

ANN Network 2_(4_11_20000)_1 2_(8_11_20000)_1 2_(9_11_20000)_1 

 

TR 

 

ASE 0.00023 0.00031 0.00029 

MARE 7.49 8.70 8.76 

R2 0.99 0.99 0.98 

TS 

 

ASE 0.00023 0.000312 0.000288 

MARE 7.65 8.83 8.92 

R2 0.99 0.99 0.99 

VAL 

 

ASE 0.00021 0.00028 0.00026 

MARE 7.33 8.47 8.55 

R2 0.99 0.99 0.99 

TR ALL 

 

ASE 0.00022 0.00023 0.00018 

MARE 7.20 7.26 6.64 

R2 0.99 0.99 0.99 

 

Table 4.3: Performance of the “best” ANNs for each survey design pattern 

Pattern 

No 
ANNs Network 

No 

of 

Data 

R2         

(Linear 

Reg) 

ASE MARE 
R2 

(ANNs) 

1 2_(4_11_20000)_1 7371 0.80 0.00022 7.20 0.99 

2 2_(1_5_20000)_1 7302 0.77 0.00029 9.53 0.98 

3 2_(2_7_20000)_1 7335 0.79 0.00033 7.22 0.99 

4 2_(8_11_20000)_1 3750 0.81 0.00026 5.68 0.99 

5 2_(1_5_20000)_1 2560 0.76 0.00033 7.59 0.98 

6 2_(9_11_20000)_1 1205 0.78 0.00028 6.07 0.99 

7 2_(5_8_20000)_1 304 0.77 0.00044 6.25 0.98 

 

After evaluating the performance of each model for TR ALL (Training ALL), they are 

ranked based on minimum ASE, MARE and maximum R2. In Table 4.4, it is seen that pattern 1, 

pattern 4 and pattern 6 are the best 3 survey designs for conducting EM surveys for this site. It 

should be noted that although the number of data points for pattern 6 is much lower than pattern 1 

and pattern 4, from a practical standpoint it takes more effort to conduct such a survey and should 

probably only be used if automatic mode is not available on the EM38B. 
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Table 4.4: Comparison of developed ANN patterns 

Pattern 

No 

No 

of 

Data 

R2 

(Linear Reg) 
ASE MARE R2(ANNs) Rank 

1 7371 0.80 0.00022 7.20 0.99 1 

4 3750 0.81 0.00026 5.68 0.99 2 

6 1205 0.78 0.00028 6.07 0.99 3 

2 7302 0.77 0.00029 9.53 0.98 4 

3 7335 0.79 0.00033 7.22 0.99 5 

5 2560 0.76 0.00033 7.59 0.98 6 

7 304 0.77 0.00044 6.25 0.98 7 

 

Plots of predicted vs. actual ECa for the best three survey orientations are shown in Figure 

4.3. In spite of having high R2 values, the developed ANN models cannot predict any ECa values 

less than 5 mS/m in Patterns 1 and 4 even though 2.65% of the total collected data had ECa values 

less than 5 mS/m. This is of concern because EM anomalies associated with air-filled soil pipes 

will have low ECa values. 

The connection weights and biases of the developed ANN network are used to generate 

(predict) 7305 additional data points for pattern 1, 10926 for pattern 4 and 13471 for pattern 6. 

Then the subset of measured values and the generated data points are merged together to prepare 

maps using ArcGIS. The semi variogram analysis is conducted before applying kriging 

interpolation to the data sets. Figure 4.4 represents the interpolated maps for the benchmark survey 

and the three best models using Kriging interpolation. Only Figure 4.4b shows some evidence of 

soil pipe features. The soil pipe features (i.e. hole and depression) are located near the low vertical 

ECa zones of 3.1-4 mS/m and 4.1-5 mS/m. The difference between the ANN derived maps and 

the benchmark survey are shown in Figure 4.5. These ECa differences between (±1 mS/m) are 

assumed to be within the measurement error on the EM38.  Measurements outside this range,the 
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gray and red areas, are considered significant differences between the ANN derived maps and the 

benchmark map.  As one might expect, the more data, the better the agreement.  There are very 

few gray and red zones visible in Figure 4.5a. This is because the maximum number of real data 

was used to generate Model 1. As the number of real data decreases, more gray and red zones are 

observed for patterns 4 (Figure 4.5b) and 6 (Figure 4.5c). 
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(a) (b) 

 

(c) 

Figure 4.3: Predicted Vs. Actual Apparent Electrical Conductivity (ECa): (a) pattern 1, (b) 

pattern 4 and (c) pattern 6. 
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(a) (b) 

  

(c) (d) 

Figure 4.4: Maps generated using Kriging interpolation: (a) From the entire data set (14676) 

measured data), (b) from pattern 1 (7371 measured data and 7305 GUI generated data), (c) 

pattern  4 (3750 measured data and 10926 GUI generated data) and (d) pattern  6 (1205 

measured data and 13471 GUI generated data). 
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(a) (b) 

 

(c) 

 

Figure 4.5: ECa difference maps for: (a) pattern 1, (b) pattern 4 and (c) pattern 6. 
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4.2.3 Application of Quantile Method in ANNs Modeling 

ANNs constructed using the entire site data cannot predict low ECa(<5mS/m) and these 

low values are representative of air-filled soil pipes.   The inability to predict the low ECa values 

might be associated with the large range of ECa. The quantile method is incorporated into the 

analysis to further divide the study area based on ECa. Figure 4.6 represents how the quantile 

method is used with ANN for selecting survey patterns. 

 

Figure 4.6: Application of quantile method in ANN modeling 

 The measured data is used to generate a 2D map using kriging interpolation. Then the entire 

survey area is subdivided into 4 zones based on ECa ranges using the quantile function of ArcGIS 

(Figure 4.7). This process is used for the 4 different data sets to get a uniform ECa range which 

satisfies most of the survey patterns (Figure 4.7). The zones are chosen to be rectangular shapes as 

the survey is usually conducted following regular geometric shapes (i.e. rectangular and square 

shapes). 

Measured Data

Create 2D map using kriging 
interpolation

Divide the study area into 4 zones using ArcGIS quantile 
function

Run previously chosen ANNs networks for each zone and rank them based 
on statistics

For each zone, compare the statistics of best performing ANNs network with it's 
statistics for the whole survey site

If the statistics of a zone is within 5% tolerance limit or 
better, sufficient amount of data is existing in that zone

Select survey pattern with  higher spacing if its 
statistics is within 5% of the existing survey pattern. 

If the  statistics of a zone is less than 5%, higher 
resolution survey is required
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(a) (b) 

  

(c) (d) 

Figure 4.7: Zoning the study area using quantile the method: (a) Benchmark survey, (b) pattern 

1 and (c) pattern 4 and (d) pattern 6 
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Table 4.5 represents the ECa ranges of the respective zones. Zone 2 is the most critical 

zone having the lowest ECa values (1.51- 6.12 mS/m). The ECa of zone 1 is higher than the ECa 

of zone 2. It is seen that zone 1 has two parts which can be denoted as zone 1A and zone 1B. 

Although zone 1 could be analyzed in total, for better accuracy the two parts are analyzed 

separately. Zone 3 and 4 have much higher ECa values than zone 1 and 2.  

 

Table 4.5: ECa ranges for respective zones 

ECa(mS/m) Description of ECa(mS/m) Zone 

1.51-6.12 Very low 2 

6.13-7.81 Low 1A and 1B 

7.82-15.9 Medium 3 

16-25.6 High 4 

 

The next step is to perform ANN analysis on each zone to find the statistical measures of 

the different zones for a specific survey pattern.  For example, 7371 data were collected over the 

entire site using pattern 1.  These 7371 data are divided into four zones based on their ECa range 

and renormalized to run the ANN analysis.  Similarly, the ANN networks for patterns 4 and 6 

provide statistics for every zone.  For a specific zone, the statistics for each pattern are ranked 

based on minimum ASE and MARE and maximum R2. From Table 4.6, it is seen that pattern 1 

gives the best statistics for zones 1, 2, 3 and 4. 
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Table 4.6: Statistical measures of developed ANN models for different zones for different 

survey patterns 

Zone 
Pattern 

No 

No. of  

Data 

R2             

(Linear Reg) 
ASE MARE 

R2 

(ANNs) 
Rank 

1A 

1 1155 0.17 0.00030 5.84 0.51 1 

4 584 0.19 0.00081 7.75 0.52 2 

6 212 0.10 0.00247 6.99 0.47 3 

1B 

1 695 0.50 0.00021 4.87 0.66 1 

4 354 0.44 0.00035 4.61 0.65 2 

6 118 0.45 0.00596 5.35 0.60 3 

2 

1 1381 0.01 0.00185 13.03 0.09 1 

4 707 0.02 0.00358 6.75 0.26 2 

6 228 0.08 0.00641 7.63 0.21 3 

3 

1 1882 0.94 0.00038 3.44 0.97 1 

4 951 0.95 0.00051 3.42 0.97 2 

6 318 0.94 0.00055 3.49 0.97 3 

4 

1 2260 0.75 0.00049 2.05 0.98 1 

4 1156 0.98 0.00052 1.99 0.97 2 

6 330 0.73 0.00087 2.56 0.96 3 

 

The statistics of each zone, Table 4.6, are compared to the statistics of the entire site, Table 

4.4, to determine an optimal survey pattern for each zone. For zone 1A, MARE is lower than the 

MARE of the entire site for pattern 1. For zone 1B, ASE and MARE is lower than the ASE and 

MARE of the entire site. R2 of zone 1A and 1B is moderate considering the number of data points. 

Therefore, survey pattern 1 should be sufficient for zone 1. For zone 2, the statistics provided by 

the ANN network   is significantly lower than the statistics of entire area. This indicates that a 

higher resolution survey of this zone is required. The MARE and R2 of zone 3 and 4 are very 

similar to the MARE and R2 of entire site for pattern 1. It is also seen that the statistics (i.e. MARE 

and R2) provided by pattern 4 is within the 5% tolerance limit of the statistics of pattern 1 for zone 

3 and 4. Therefore, pattern 4 could be used for zone 3 and 4 to minimize cost. Following the survey 

design in Figure 4.8a, this would require 6765 data to be collected. Using this “measured data” 
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and 7911 data generated using the ANN models results in a database containing 14676 data. This 

database is used to create a 2D map by kriging interpolation (Figure 4.8b). Compared with the 2D 

map of the benchmark survey (Figure 4.8c), no significant difference of ECa is found (Figure 

4.8d). The soil pipe signatures are visible in Figure 4.8b and Figure 4.8c. 
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(a) (b) 

  

(c) (d) 

Figure 4.8: (a) Survey plan based on ECa, (b) 2D ECa map created following proposed survey 

plan, (c) 2D ECa map of benchmark survey and (d) ECa difference map. 
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4.2.4 Selection of Survey Pattern Based on ECa 

The statistical measures (i.e. ASE, MARE and R2) change significantly for the zones having 

low ECa based on the number of collected data. The maximum amount of data is required for the 

lowest range of conductivity. Spacing should be increased gradually observing the increment of 

ECa. Based on the analysis, a survey plan can be proposed for any survey site with similar ranges 

of conductivity (Table 4.7). Reconnaissance data must be acquired to establish the probable ECa 

ranges of the survey site. After doing ANNs modeling using that reconnaissance data, an effective 

survey plan can be designed using Table 4.7. If the reconnaissance data has very good ASE, MARE 

and R2 for a zone having high ECa, the surveyor can select a sparser design spacing for those 

zones. 

 

Table 4.7: EM survey plan based on apparent conductivity of soil (ECa) 

ECa(mS/m) Survey Plan 

 

1.51-6.12 2D survey with 50 cm line spacing 

6.13-7.81 1D survey with 50 cm line spacing perpendicular to soil pipes. 

7.82-15.9 1D survey with 1m line spacing perpendicular to soil pipes. 

16-25.6 1D survey with 1m line spacing perpendicular to soil pipes. 
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2. CHAPTER 5 

 

 SURVEY DESIGN FROM RECONNAISSANCE 

 

5.1 Introduction 

An approach for designing EM survey for soil pipe mapping was developed in the previous 

chapter based on decimating benchmark data from a high-resolution survey.  In reality, the survey 

design will start with minimum data collected using a reconnaissance survey.  In this chapter, the 

approach outlined in Figure 5.1 is followed to map the field site.   

 

5.2 Reconnaissance 

The first step is to collect reconnaissance data using apriority information.  For this 

example, the reconnaissance survey consists of linear acquisition lines constrained to be close to 

visually observed surface features (gully windows) and oriented approximately parallel and 

perpendicular to the natural elevation contours.  Additional survey lines around the perimeter of 

the area and within the area to maintain a 4m line spacing constrained to a rectangular grid are also 

collected. The data is collected using the EM38B in automatic mode so the data along lines will 

be dense.
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Figure 5.2 represents the reconnaissance survey lines of the study area. Information related 

to typical soil type and elevation are obtained from the USGS database.  A total of 2370 data are 

collected and ECa ranges between 2.66 mS/m and 25.17mS/m. For linear regression, the 

coefficient of determination, R2 of the collected data is 0.81. 

 

 

Figure 5.1: Reconnaissance in the study area of Goodwin Creek, MS 

 

5.3 ANNs Modeling using Reconnaissance Data  

Before running ANN models with reconnaissance data, normalization of ECa output is 

conducted. The data is subdivided into 3 sets - 50% for training, 25% for testing, and the remaining 

25% for validation. Models 2_(3_11_20000)_1, 2_(5_11_20000)_1 and 2_(6_11_20000)_1 networks 

are selected as optimum networks based on minimum ASE and minimum MARE and maximum R2 , 

respectively. The statistical accuracy measures of the ANNs analysis are shown in Table 5.1.  

Network 2_ (5_11_20000) _1 is chosen as the best ANN network from the three optimum networks 
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based on their performance in VAL stage.  

 

Table 5.1: Statistical accuracy measures of the developed model using reconnaissance data. 

ANN Network 2_(3_11_20000)_1 2_(5_11_20000)_1 2_(6_11_20000)_1 

 

TR 

 

ASE 0.00032 0.00031 0.00033 

MARE 6.46 6.09 6.19 

R2 0.99 0.99 0.99 

TS 

 

ASE 0.00031 0.00031 0.00033 

MARE 6.34 6.09 6.24 

R2 0.9908 0.9911 0.9905 

VAL 

 

ASE 0.00032 0.00031 0.00033 

MARE 6.19 6.34 6.36 

R2 0.99 0.99 0.99 

TR ALL 

 

ASE 0.00029 0.00026 0.00031 

MARE 5.64 5.73 6.22 

R2 0.99 0.99 0.99 

 

 

Figure 5.2: Predicted Vs. Actual ECa for reconnaissance data 

From Figure 5.2, it is seen that the developed ANN model is not capable of predicting ECa 

less than 5 mS/m in spite of having a high R2 value. The study area needs to be divided into several 
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zones and ANN analysis must be conducted for specific zones. If the ANN model could predict 

low ECa values, no zoning would be required and a uniform survey pattern could be chosen from 

Table 4.1 considering the desired accuracy. 

 

5.4 Survey Design from Reconnaissance Data using ANNs and Quantile Method 

Based on quantile method the study area is divided into 4 different zones (Figure 5.3). Zone 

1(ECa: 6.13-6.743 mS/m) is divided into 2 parts:1A and 1B. Zone 2 (ECa: 4.24-6.12 mS/m) is the 

most critical zone because of low ECa values. Zone 3 (ECa: 7.44-15.1 mS/m) and 4 (ECa: 15.2-

25.1 mS/m) have very high ECa values and the probability of getting soil pipe features is very low.  

To improve the performance of ANNs modeling, the chosen ANN network 2_ (5_11_20000) _1 

is run for each zone. The statistical measures of the zones are listed in Table 5.2. 

 

 

 

Figure 5.3: Zoning the study area using quantile method 
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Table 5.2 : Statistical measures of developed ANN model for different zones using 

reconnaissance data 

Zone No of Data 
R2         

(Linear Reg) 
ASE MARE 

R2 

(ANNs) 

Entire Site 2370 0.81 0.00026 5.73 0.99 

1A 374 0.23 0.00285 4.42 0.77 

1B 122 0.41 0.00267 4.05 0.79 

2 567 0.11 0.00435 7.52 0.34 

3 477 0.93 0.00050 3.59 0.97 

4 832 0.77 0.00068 2.30 0.98 

 

The statistics of a specific zone are compared to the statistics of the entire site. ASE is 

higher but MARE is lower and R2 is similar for the data of zone 3 and 4 compared to the ASE, 

MARE and R2 of the data of entire site. But for lowest ECa zone (zone 2), the statistics are very 

poor (i.e. ASE and MARE are high but R2 is very low). For zone 1A and 1B, the statistics are not 

satisfactory.  

The survey plans listed in Table 4.7 can be used to choose a survey pattern from the 

reconnaissance data because the ECa ranges of the reconnaissance data are similar to the ECa 

ranges mentioned in Table 4.7. From Table 4.7, the recommended survey pattern for a zone having 

ECa between 1.51 and 6.12 mS/m is a 2D survey with 50 cm line spacing. This pattern should be 

used for zones having ECa between 4.24 and 6.12 mS/m to ensure maximum amount of data 

collection. For zone 1, a 1D survey with 50 cm line spacing should be sufficient. For zone 3 and 

4, the statistics are excellent and similar to the entire site. So, no additional data should be required 

for zones 3 and 4. 
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Table 5.3:Proposed survey plan based on reconnaissance data 

Zone ECa (mS/m) Survey orientation and spacing 

 

1 6.13 -7.43 1D Survey 50 cm spacing perpendicular to soil pipe features 

2 4.24 - 6.12 2D Survey 50 cm spacing 

3 7.44 -15.1 No additional Survey is required 

4 15.2 - 25.1 No additional Survey is required 

 

Table 5.4: Statistical measures of ANN models using zone 1A and 1B data for 1D survey with 

50 cm line spacing perpendicular to soil pipes. 

Zone ANNs Network 
No of 

Data 

R2         

(Linear 

Reg) 

ASE MARE 
R2 

(ANNs) 

1A 2_(4_11_20000)_1 1155 0.17 0.00030 5.84 0.51 

1B 2_(4_11_20000)_1 695 0.49 0.00021 4.87 0.66 

 

The EM survey design for the entire site based upon the reconnaissance data and ECa 

ranges is shown in Figure 5.4a. A total 5976 data are required. Two GUIs are created for zone 1A 

and 1B from developed ANN models. The statistical measures of the developed models are shown 

in Table 5.4.  Another two GUIs are developed from ANN analysis of reconnaissance data of zone 

3 and zone 4. 8700 data are generated using the four developed GUIs. 5967 measured data and 

8709 GUI generated data are merged together to create a database of 14676 data. The semi 

variogram analysis is conducted before applying kriging interpolation to the data set. Then a 2D 

map of the study area is created using an 8cm cell size (Figure: 5.4b). This map is compared with 

the 2D map of benchmark survey (Figure 5.4c). Both maps have similar structures near the actual 

soil pipe features. Figure 5.4d shows the difference between the benchmark survey map and the 
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map produced using the optimal survey design.  Assuming a ±1mS/m accuracy in measurements 

(blue and green), the ECa difference is acceptable for most of site with a reduced effort of 60%. 

  

(a) (b) 

  

(c) (d) 

Figure 5.4: (a) Survey plan, (b) 2D map using 5967 measured data and 8709 GUI generated 

data, (c) 2D map using 14676 measured data; (d) map with ECa difference 
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CHAPTER 6 

 

CONCLUSIONS 

 

6.1 Summary 

The goal of this research was to select appropriate survey orientations and line spacings for 

using electromagnetic induction equipment to detect soil pipes in a cost-effective manner. 

Surveying with the EM38B is relatively fast and the maximum exploration depth is approximately 

1.5m, which covers the range of depth of soil pipes. EM surveys show lower apparent electrical 

conductivity (ECa) on soil pipe features than their surroundings. After data acquisition and 

processing, feed forward back propagation algorithms of ANNs were used to determine survey 

orientation and line spacing and optimum data acquisition speed for detecting soil pipes. It was 

found that if a uniform line spacing was chosen for the whole survey site, ANNs could not predict 

the low apparent electrical conductivity (ECa) due to the wide range of values. This issue could be 

solved by dividing the data using the quantile method during ANNs modeling. 

Using ANN modeling for each zone, a table was developed that suggests an optimum 

survey design for a given ECa range. For the zone having the lowest ECa (1.51-6.12 mS/m), a 2D 

survey with 50 cm line spacing is required for maximum data. For zones having an ECa between 

6.13-7.81 mS/m, a 1D survey with a 50 cm line spacing is required. For the zones with higher ECa 
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(7.82-15.9 mS/m and 16-25.6 mS/s), a wider line spacing can be used.  

To validate the concept, an exercise was conducted starting with a reconnaissance survey 

consisting of a few lines based on surface features of soil pipes. Using the table as a guide, a survey 

plan was proposed and the ANN models were created using this data set. The measured and model 

generated data were used to create the 2D ECa map using kriging interpolation. The map was in 

good agreement with the benchmark ECa map, although the second map required 60% less data. 

 

 

6.2 Recommendation for Future Research 

The use of ANNs in geophysical survey design is a new concept. In this research, the aim 

was to design EM surveys to detect soil pipe features. The proposed survey design concept was 

validated using a reconnaissance survey at the same site. However, the approach needs to be 

validated by conducting surveys at multiple sites having different ECa ranges.  

More data needs to be collected and included in the developed ANN models to improve 

model accuracies. These models can be used in future investigations to train and test with new 

data.  

During model development, easting and northing are used as inputs to predict ECa. But 

other data (i.e., elevation, infrared signatures, hyperspectral signatures, height of the instrument, 

data acquisition speed and temperature, etc.) should be collected for use as inputs for future ANNs 

modeling. These models will predict ECa more accurately than the existing models. For a new 

survey site, the origin should be the lowest elevation point of the study area and the distance of the 

other data points should be calculated from that origin. 
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