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exceed 0.44 kcal mol™ for the OB2 and OB3 isomer of (H20) 10. Table II is a statistical analysis
of RMSD and AE values found in Table I. Both the energetic error (AE) and the structural errors
(RMSD) tend to increase with the size of the water cluster. For this set of 76 (H,0), structures,
the B3LYP/6-31+G(d,2p) structures deviate from the MP2/haTZ oncs on average by a few
hundredths of an A and by just a couple of tenths of a kcal mol™ on average on the MP2/haTZ
structure.

Table III contains a similar set of data for the formic acid tetramer structures. Results for
the CA, CZ, PA1, PA2 and PA3 structures are quite similar. AE values are on the order of a few
tenths of a kcal mol™, and the RMS deviations are on the order of a few hundredths of an A. The
errors associatcd with the B3LYP/6-31 +G(d,2p) optimizations of the other structures, however,
are nearly an order of magnitude larger. The energetic errors exceed 2 kcal mol ™ and the RMS
deviations grow as large as 0.710 A. These two rather disparate sets of results yield average
errors of 1.05 kcal mol™ and 0.218 A respectively, for the 11 formic acid tetramer structures
examined in this study.

The contrasting errors can be understood by examining the difference between the
structurcs of the two groups of formic acid tetramers. In the first group (with the small errors) of
tetramers are essentially planar and are held together by a network of hydrogen bonds. (See, for
example, structure PA1 in Figure 4.) The other group of structures (with the large errors), still
contains hydrogen bonding but attractive n-type interactions between the m electron clouds of the
formic acid molecules also stabilize the system. These interactions give rise to “stacked”
structures such as the one in Figure 5. Like most DFT methods, the B3LYP functional does not
include dispersions. Therefore, it is not surprising that B3LYP/6-31+G(d,2p) optimized

structures have large errors for this second group of formic acid tetramer structures.
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