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ABSTRACT

MATTHEW J. STEPHENSON: a-Representability of Vector Lattices

(Under the direction of Gerard Buskes)

The primary topic of this thesis is representation of vector lattices. The related theory

of Boolean algebras is used as a tool to this end. In [1], Brown and Nakano present a

theorem that establishes what we will call cr-representabihty for vector lattices in this

thesis. We cast their proof in the light of the Boolean algebra of bands. Consequently,

we show that it is the Loomis-Sikorski Theorem which makes their proof work. We

then exploit this insight to study a-representability for greater cardinal numbers a.

A primary goal of this thesis is to be self-contadned. As a result of this, the bulk of

the text introduces definitions and theorems, as presented by other authors. We have

liberally used existing theorems and proofs and give credit when ideas and/or exact

proofs are borrowed. The novelty in our approach comes in connecting the work of

Brown and Nakano with the Loomis-Sikorski Theorem and isolating our definition of

or-representability.
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1. Preliminaries

By R we denote the extended real numbers (i

The complement of a subset 17 of X is denoted by or X\U. U f : X\ ̂  X2 is

a map between sets and X2 and C/ C X2, then f~\U)  ={xeXi: f{x) G U}.

If f/ C X, then the characteristic function of U is denoted by

R = RU{+oo, -00}).i.e.

1  :xeU

0  :x4U
l[/(x) =

for X e X

A map f : Xi X2 is said to be surjective or onto if for every y £ X2, there

exists an element x ̂  X\ such that f{x) = y. A map f : Xi X2 is said to be

injective or one-to-one if f{xi) = f(x2) impHes Xi = X2 for all Xi,X2 € Xi. If f is

both injective and surjective, then we say that / is bijective.

A set is called directed if it is equipped with a binary operation that is transitive

and has the property that any two elements have an upper bound. That is, if T is a

nonempty set, then {Y, <) a directed set if

(1) For x,y,z eY, if X <y and y < z,it follows that x < z,

(2) For x,y eY, there exists a z in T such that z>x and z>y.

A sequence is a function on the natural numbers.  A net is a function on a directed

set. Every sequence is therefore a net. Given a set X and a directed set F, the map

^ ● F -> A is denoted by (a;.y).ygr or shortly (x.^).

Let A be a set. A collection r of subsets of X that contains X and 0 and is closed

under unions and finite intersections is called a topology on X. The sets contained in

T are called open sets, and their complements are called closed sets. The pair {X, r)

is called a topological space. Often, if the context is clear, X itself will be called a

topological space.
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In the rest of this section, let X be a topological space. For a point x G a

neighborhood of x is any set that contains an open set containing x. A subset U of X

is open if and only if for every point xofU there exists a neighborhood that contains

X and is completely contained in U. A function f  : Xi~^ X2 between two topological

spaces is said to be continuous if for every open set U in X21 we have is open

in Xi.

A function / : Xi X2 is a homeomorphism if it is continuous, bijective, and its

inverse is continuous. Two topological spaces X\ and X2 are said to be homeomorphic

if there exists a homeomorphism X\ —> X2.

The closure of U is the smallest closed set that contains U and is denoted by U~.

A subset of X is closed if and only if it is equal to its closure. A point a; G X is in the

closure of U if and only if every neighborhood of  x has nonempty intersection with

U.

The interior of V is the largest open set that is contained in V and is denoted by

V°. A subset of X is open if and only if it is equal to its interior. A point a; G X is

in the interior of V if and only if there exists  a neighborhood of x that is completely

contained mV. We have V° =

U C X is nowhere dense if U~° = 0. Consequently,  a nowhere dense subset of

X contains no nonempty open set. A set is meagre if it is the union of countably

many nowhere dense sets. If a statement about elements of X is true except on a

meagre subset of X, then we say the statement is “almost everywhere” true. X is a

Hausdorff space if for any two distinct points x and y, there exist disjoint open sets

U and V such that x eU and ?/ G V.

U C X is said to be regular open if it is equal to the interior of its closure, i.e.

U = U~°. Every regular open set is open. A space  X is called extremally disconnected

if every regular open subset of X is additionally closed. Thus a set is regular open if

and only if it has clopen closure. Moreover, X is called zerodimensional if the clopen

subsets of X form a base for the topology of X, that is, if every open subset of X can

3



be written as the union of the clopen subsets of X. Next we show that extremally

disconnected spaces are zerodimensional (see [6], page 85).

Theorem 1.1. If X is an extremally disconnected compact Hausdorff space, then

X is zerodimensional.

Proof. Take x E X and a neighborhood V of x. There exists an open set U

such that X e U (ZU (Z V. Hence, x e U~° C V, which implies that V can be

written as the union of regular open sets. Hence, the regular open subsets of X form

a base for the topology of X, and since X is extremally disconnected, these sets are

all clopen.
□
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2. Boolean Algebras, Preliminaries

To introduce Boolean algebras, we need some definitions. Basic definitions are

found in [11] unless otherwise noted.

Definition 2.1. For a nonempty set X, the binary relation < is a partial ordering

if the following hold.

(1) X < X for every x e X,

(2) X <y and y < z impfies x < z, and

(3) X < 2/ and y <x implies x = y.

The pair (A, <) is called a partially ordered set

If T is a nonempty subset of a partially ordered set {X, <) and Xq G A is such

that y < xq for every y £ Y, then xq is an upper bound of Y. Moreover, if xq is an

upper bound of Y and xq < x' for all upper bounds x' of Y, then we call xq the

supremum or least upper hound of Y. Lower hounds and infima are defined similarly.

Definition 2.2. A partially ordered set (A, <) is called a lattice if every subset

with two elements has a supremum and an infimum.

Let (A, <) be a lattice, and let x, y be elements of X. We denote the supremum

y} hy xVy. The infimum of {x, y} will be denoted by x Ay. If X has a smallest

element, we denote it by 0 and call it the zero element. If X has a largest element,

we denote it by 1 and call it the unit element.

In a lattice {X, <) with a zero and unit element, x' is the complement of x if

X V x' = 1 and x A x' = 0. If every element of a lattice has a complement, then we say

that the lattice is complemented. We claim that every element of a lattice has at most

one complement (see [11], page 6). Indeed, suppose y and z are both complements
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of X, i.e. xV y = x\/ z = 1 and xAy = x/\z = 0. It follows that

y = yy 0 = yW (x A z) = {yV x) A{y\/ z) = 1A {yV z) = yV z.

Hence, y > z. Similarly, z > y. Therefore, y = z, and the complement of x is

uniquely determined. We denote the complement of an element x in a lattice by x'.

In a lattice {X, <), if x < z and y < z^ then xVy  < z. It follows that

(2.1) (x A y) V (x A z) < X A (?/ V z)

because xAy < xA(?/Vz) and xAz < xA(yVz). A lattice {X, <) is called distributive

if there is equality in (2.1), that is, if

X A (y V z) = (x A 2/) V (x A z)

for all X, y, z in X. We are now equipped to present the definition of a Boolean

algebra.

Definition 2.3. A Boolean algebra is a complemented, distributive lattice with

a unit element and a zero element.

Next we provide the prime example of a Boolean algebra: the collection of all

subsets of a given set X under inclusion.

Example 2.4. V{X) is a Boolean algebra

Let P(X) be the collection of all subsets of a nonempty set X, and take U,V,W e

ViX). We show that the operation of inclusion forms a partial ordering. U is trivially

a subset of itself. UU CV and V CW^ then U CW. Finally, ifUcV and V CU,

it follows that every element of U is mV and vice versa. Therefore, U = V.

Suppose that U c W and V C W. It follows that UUV  C W, and therefore,

t/ U K is the least element of P(X) that contains both U and V. We conclude that

UV V = U UV C X. By a similar argument, U AV = UC\V C X. Hence, V(X) is a

lattice. For any U G P(A’), we have 0 C 1/ CX. Then 0 is the zero element ofV{X),

and X is the unit element of V{X). We claim that X\U is the complement of C/, for

6



U V X\U = U\J X\U = X and U A X\U = Un X\U = 0. The final requirement,

the distributive law, is an elementary exercise in set theory. Consider

xeU A(V\/W)'^x^Ur\{V\jW)

^ X G U and X GV DW

^ {x gU and x gV) oi {x gU and x gV)

X gU nV 01 X gU C\W

^xG{unv)u{unw)

^xG{UAV)V{UAW).

Therefore, we conclude that V{X) under inclusion is a Boolean algebra. This

concrete example of a Boolean algebra will be important in the third chapter when

representation is discussed.

We define a field of sets to be any subset of ̂ ^{X) that forms a Boolean algebra

under the set-theoretical properties of union, intersection, and complementation.

Example 2.5. 'R,0{X) is a Boolean algebra

Let TZO(X) be the collection of regular open subsets of a topological space X (see

.5], page 66). The partial ordering on TlO{X) is inclusion, as in Example 2.4. Recall

that an open set is said to be regular open if it is equal to the interior of its closure.

Note that C/° = for any U G X. Certainly, X and 0 are both regular open

subsets of X, i.e. they are the unit element and zero element in '1ZO{X), respectively.

For U,V G nO{X), we prove that

U AV = UnV

(C/VF) = {/7UF)-°, and

U' = U~^.
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First, we establish inclusions to be used later. Note that

(2.2) V CZCX=^Z-^CV-^

because the closure operation preserves inclusions and complementation reverses

them. As an immediate consequence, V~° C Z~° ifVcZ. Moreover,

(2.3) V is open =>VcY-°

because y ° is the largest among all open subsets of V , and K is an open subset of

V-.

Step 1: If t/ is open, then € 7ZO(X)

If U is an open subset of A, then ([/-^)~° C U~^ because U C C/“°. For the reverse

inclusion, we consider the open set U~^ and apply (2.3), which gives U~^ C (C/“^)~°.

Therefore, f/~^ = (C/"*^)"®, and U~° is a regular open subset of X.

Step 2: 'RO{X) is a lattice

Since {U U V)~^ is open, it follows from Step 1 that {U U V)

regular open. Moreover, U = U~° C {U U F)~° because U C C/ U K. Similarly, V =

V~° C {UU V)-°. Suppose W € 1ZO{X) such that U CW and V CW. It follows

that UUV cW. Hence, {U U V)~° C W~° = W. Therefore, U VV = {U U V)-°.

Next we show that f/ D F is regular open. In one direction, U C\V is a subset of

both U and V, and therefore {UnV)~° C U~°nV~°. We will use the following series

of inclusions to establish the

(U U F)-° is
—c—c

converse:

u~° n v~° c (U-° n v)-° c{un F)-°~° = {un v)~°.

For the verification of the inclusions, we first claim that U C\V~ C (U (1 V)~ if U is

open. Indeed, take a point x in U D V~ and let P be an arbitrary neighborhood of x.

Since PnU is also a neighborhood of x and x eV~, it follows that PDU intersects

V. Thus there is some point in P fl (C/ D F), and we infer that x e (U nV)~. It
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follows that

unv- c{unv)- =^{unv)-^cu^uv-^^unK”°c{unv)-°

for subsets U,V oi X where U is open. We twice use the final inclusion to obtain the

desired result, first by replacing U with the open set U~° and then by interchanging

the roles of U and V. Thus

= {unvr^u~° n c (f/-° n c{un v)~
0—0

where the final equality follows because any subset of the form K ° is regular open.

Therefore, (U n V')"” = U~° n = t/n K, which implies that 17 n 1^ 6 HO{X).

Certainly, U nV C U and U nV CV. Furthermore, if IT € HO{X) such that

C 17 and C K, then WcUnV. Hence, UAV = UnV.

We conclude that 'R,0(X) is a lattice.

Step 4: 'R,0{X) is distributive.

Indeed, for U,V,W e nO{X),

A (K V w) = y n (F u w)-° = u~° n (k u w)-°

= (un(vuw))-°

= {{unV)u(unw))-’‘

= (UAV)V{UAW).

Step 5: U' =

We show that t/ A C/"" = 0 and t/ V C/"' = 7f for [/ 6 110{X). The former follows

immediately from U~'^ C C/“. To establish the latter, we use that the boundary

£/“ n 17' of any open set 1/ is a nowhere dense closed set and therefore that it contains

no nonempty open set. Indeed, if the boundary did contain a nonempty open set,

then that set would intersect U~, but it would not intersect U. Thus the complement

of the boundary U U1/“' is a dense open set, and its closure is the whole space X.

Therefore, (1/ U t/-')-' = 0, and 1/ V1/-' = (1/ U1/-') = X.-C-C
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Hence, 7ZO{X) is a Boolean algebra.

Throughout the remainder of this section, let B be a Boolean algebra. In the

remainder of this section, definitions come from [5] imless noted otherwise. Having

provided two examples of Boolean algebras, we proceed to define ideals.

Definition 2.6. A nonempty subset / of B is called an ideal if

(1) x\/ y Q I whenever x,y E 1 and

(2) X 6 / whenever y € I and x <y

A principal ideal of B is defined by (x) = {y € B  : y < x} for x E B. An

ideal / of B is called a proper ideal if / ̂  B. A proper ideal / of B is called a

maximal ideal if no other proper ideal of B contains /. Maximal ideals contain either

or x\ but not both, for every x E B. Suppose that for some x E B, neither

X nor x' is in a maximal ideal /. The smallest ideal containing / U {x}, which is

the set {y V 2 : y G / and z < x}, is a proper ideal (since it does not contain x')

that properly contains I (since x ̂  /). This contradicts the maximality of /, and

therefore I contains either x or x'. Furthermore, if x, x' E /, then x V x' = 1 G /,

which contradicts the condition that / be a proper ideal of B.

For a Boolean algebra B and an ideal / of B, we say that x is equivalent to y, or

x~y, ifx — yG / and y — x G /, where x — y = x A y'. We show that this relation

IS indeed an equivalence relation, i.e. that it is reflexive, symmetric, and transitive.

Certainly, x ~ x since x — x = 0 G / for any ideal I. Moreover, if x y, then

— y E I and y — x E I, and therefore y ~ x. Hence, the relation is symmetric. For

transitivity, suppose x y and y z. Note that

X

X

X A z' < (x A y') V (y A z').

The right-hand side, which is the supremum of two elements of /, is in /, and therefore

X A z' is also in I. Similarly, z A x' G / because z A y' and y A x' are in I and

z Ax' < (^ A y') V (y A x'). Hence, x ~ z, and is an equivalence relation.
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The equivalence class containing an element x consists of all 2? such that z ~ a;

and is denoted by [x]. The following statements are equivalent:

By definition of equivalence classes, x € [y] if and only if x

= [y], and let z be in both [x] and [y]. It follows that

y by transitivity. Conversely, suppose that x

y, and z € [y]. Thus [x] C [y]. Similarly, we have the reverse inclusion

y] C [x], and therefore

y. Furthermore, suppose

y and that

y, and take z € [x]. Then

z  X and zX r\j

X ~ rs-/

z ~ X ~

.^J = [y. ●

The quotient algebra B/I is the set of all equivalence classes. B/I is a Boolean

algebra with the operations defined by

.^] V [y] = [x V y], [x] A [y] = [x Ay], [x]'= [x'j

for [x], [y] € B/L

If / is a maximal ideal of B, then B/I = {[Ojjl]}- Certainly, I =

^ € B\I. It follows from the maximality of I that x' G /● Since x' A 1 = x' G / and

xAl' = a;AO = OG/, we have [x] — [1].

0]. Take

Definition 2.7. Let Bi and B2 be Boolean algebras. A map ^ —»● B2 is a

Boolean homomorphism if it satisfies

(1) 0(x V y) = (f){x) V (f){y) and

(2) 0(x') = (f)(xy.

If a Boolean homomorphism (j): B\ B2 is bijective, then ^ is an isomorphism, and

B\ and B2 are said to be isomorphic.

Theorem 2.8. Let B\ and B2 be Boolean algebras. A bijective map <j>: B\ B2

isomorphism if and only if both (f> and preserve order.IS an

11



Proof. Suppose that <f> and <f>~^ preserve order. Then <^(0) < <f){x) < for all

X E Bi, and it follows that 0(0) = 0 and 0(1) = 1. Moreover, (j){x) < 0(x V y) and

^{y) < (f>{x V y) for all x,y e Bi. Thus 0(a:) V 0(y) < 0(x V y). If <p{z) > 0(x) V 0(y)

for some z E B, then z > xW y because <j>~^ preserves order. Then <f>(z) > </>(x V y).

Hence, 0(x V y) is the least element such that 0(x V y) > 0(a;) and 0(x V y) > 0(y),

i.e. 0(x) V 0(y) = <f){x V y).

Next we show that 0(x)' = 0(x') for all x G Bi. Certainly, 0 < 0(x),0(x') < 1.

If y is another element of Bi such that 0(y) > 0(x) V 0(x'), then y > x V x' = 1.

Therefore, 0(y) > 1, and it follows that 1 = 0(x)  V 0(x'). Similarly, if 2: is an

element of Bi such that 0(^) < 0(x) V 0(x'), then 2: < x V x'. Thus z < x A x', and

4>{z) < 0(x A x') = 0(0) = 0. Hence, 0(x) A 0(x')  = 0, and we conclude that 0 is an

isomorphism.

Suppose 0 is an isomorphism. It follows that

x<y<=>xVy = y^ 0(x) V 0(y) = 0(y) ̂  0(x) < 0(y).

□Therefore, 0 and 0 ^ preserve order (see [9], page 16).

The map 0 : B -> B// defined by 0(x) = [x] for x  G B is called the natural

homomorphism (see [9], page 30). It is clear that  0 is a homomorphism because

0(x V y) = [x V y] = [x] V [y] = 0(x) V 0(y).
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3. Vector Lattices, Preliminaries

In this section, we introduce vector lattices. Basic definitions in this section are

found in [11] unless otherwise stated.

Given a vector space V

an ordered vector space if

(1) f 9 ̂  f h < g + h ioi f,g,h and

(2) / > 0 => a/ > 0 for all a € M>o and f gV.

We now define vector lattices.

R equipped with a partial ordering <, we call (V, <)over

Definition 3.1. We call {E, <) a vector lattice if

(1) (^,<) is an ordered vector space and

(2) (E,<) is a lattice with respect to the partial ordering.

We will denote a vector lattice {E, <) shortly by E. Throughout this section, E will

be a vector lattice. Next we present several examples of vector lattices.

Example 3.2. R” is a vector lattice

The most basic examples of vector lattices are the n-dimensional Euclidean spaces

R” with regular addition and multiplication and coordinatewise ordering (that is,

for rr = (xi,xa,..., x„) and y = (yi,2/2, ● ● ● ,2/n), x < y when Xk < yk for k =

1» 2,..., n). The supremum of two elements of R” is the coordinatewise supremum:

If X - (xi,a;2,... ,Xn) and y = (^1,1/2,.. ● ,J/n), then (xi V2/i,X2 V 2/2, ● ● ● V z/n) is

the smallest element of R” that is greater than both x and y. Similarly, the infimum

of X and y is (xi A yi,X2 A 2/2, ● ● A 2/n)- Thus R” is a lattice. That the lattice., x„

structure of R” is compatible with the partial ordering follows from basic properties

of real numbers. Let x = (xi, X2,..., x„), 2/ = (yi, 2/2, ● ● ● ,yn), and = (zi, Z2, ● ● ● , z^)

be elements of R”. Indeed, if < y, then x< < 2/* for e = 1,2,... ,n. Therefore,
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-h ̂  < 2/i + for i = 1,2,... ,n, and x -h z < y + z. Moreover, suppose that

X > 0, and let a be a nonnegative real number. Since x* > 0 for each i, it follows that

axi > 0 for every i, which implies that ax > 0.

Example 3.3. is a vector lattice

Let X be a nonempty set or a topological space. By we denote all maps

X —> R. For elements / and g of R-^, we say that  / < ̂ if /(a^) ̂  g{^) for all x 6 X.

Then R"^ is a lattice because the map h defined by h{x) = /(a?) V g{x) is the least

element of R^ that is greater than f and g. Similarly, f Ag £ R'^. If / < then

for any h 6 R^, it is cleeu: that f h < g + h because (/ + h){x) = /(a;) + h{x) <

g{x) + h{x) = (p + h){x) for all x € X. Moreover, if / > 0, then o/(x) > 0 for all x

and for any nonnegative real number a.

We denote the positive part of an element / of a vector lattice by / V 0.

Furthermore, we write f~ = {—/) V 0 and |/| = (—/) V /. The positive cone of a

vector lattice E is defined by E+ = {/ € E : / > 0}. An immediate consequence of

these definitions is that if / G E, then /■*■,/“, |/| G E+.

Next we provide several equalities for elements of E (see [11], page 17).

Theorem 3.4. Let f and g be elements of E.

(1) / = r-r,
(2) r A /- = 0,

(3) |/| = r + /-
(4) fVg + fAg = f-^g and / V ^ / A ^ = |/ - ̂ |.

(5) fyg = |(/ + ^) + i|/_^| and f Ag=^\{f + g)-\\!-gl

Proof. (1) /+-/ = (/ V 0) - / = 0 V (-/) = /-.

(2) 0 = -/- + /- = (/ A 0) + /- = (/ + /-) A /- =  r A

(3) I/I = / V (-/) = {(2/) V 0} - / = 2/+ - it -  n = f^~ /"●
(4) Note that

f  g = {{f - g)^ 0} g = {f - gy -i- g = (g - fV f
14



/Ag = /+{OA(s-/)} = /-{0V(/-</)} = /-(/-</)+.

It follows that fVg + f Ag = f + g, and

f V g - f A g = {/ - gy {g - fy = {f - g)\/ {g - f) == \f - g\.

(5) Follows from adding and subtracting the equalities of (4).

□

{A} is a collection of elements in E such that fo  = sup{A}, then fo A h =

sup{/-y A h} for all h ^ E. Similarly if fi = inf{/y}, then fiV h = inf{/y V /i} for

all h (see [11], page 21). Indeed, let /i be an element of E. It is clear that fo A h

is an upper bound of {f^ A h}. Suppose ^ is an upper bound of this set. Then

p > A A h = /y + /i - V /i) > /y + h - (/o V h). Thus g - h +(fo^ h) > fy for all

7, and therefore g-h+{foVh)> fo. It follows that  g > fo +h-{fo^ h) = fo A h.

Hence fo A h = sup{fy A h}. The proof for /i V /i is similar.

We now present a theorem known as the Riesz decomposition property (see [11],

page 22).

Theorem 3.5. Let f,gi, and g2 be elements in E~^ such that f < gi~\- g2- Then

there exist elements fi, f2 G E~^ such that fi < gi, f2 < 92, o>nd / = /i + A*

Proof. Let A = / a g^. Define A by A = / - A so that / = A + A- Then

fi e E"^, and A < Since A < /> follows that A ^ Moreover, we have

A = /-A = /(/Api) = / + {(-/)V(-pi)} = 0V(/-^i)<0V^2 = ^2.

This completes the proof. □

Example 3.6. C(X) is a vector lattice

Another example of a vector lattice is the set of all real-valued continuous functions

on a topological space X, denoted by C{X). The space C{X) is partially ordered

pointwise in the same way as We show that the pointwise supremum and infimum

of two continuous functions are indeed continuous. Let {fy g)p denote the pointwise
15
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supremum of {f.g} as in Exaimple 3.3. Note that continuity is preserved under

addition, subtraction, and taking of absolute values. Therefore, (/ V g)p = |(/ +

9) ^\f — g\ is a continuous function that is necessarily below all other bounds of /

and g in C{X). We infer that fyg = {fyg)p, where the left-hand side refers to the

supremum in C{X). By a similar argument, we use (5) of Theorem 3.4 to show that

{f,g} has an infimum in C{X). Hence, C{X) is a lattice.

The proof that the partial ordering is compatible with the vector space holds

precisely as in Example 3.3

The positive cone E'^ is an example of a Riesz subspace of E. We call a subset F

of E a Riesz subspace if F is closed under infima and suprema. Note that if /, p G E'^,

then f V g >0 and / A ̂  > 0, and therefore f^g.f^g^

A function lattice is a Riesz subspace of for a nonempty set X. Examples 3.3

and 3.6 are both function lattices.

An ideal / is a Riesz subspace such that if / G / and < |/|, then g € I. A

hand D is an ideal in E such that for every subset of D that has a supremum, the

supremum is in ZP. For an ideal / in E, we define [/] to be the smallest band in E

that contains /. It follows that [/] = {/ G E : |/| = supF, F C /*^} (see [11], page

32).

Definition 3.7. An vector lattice E is called Archimedean if for every / in E+,

the infimum of the set : n = 1,2,...} is zero.

Every Riesz subspace of

A subspace G of a vector lattice E is said to be order dense if for every / > 0 in

E, there exists an element ̂  in G such that 0 g ̂

A sequence {/n} in E is said to be uniformly convergent to / if for some 0 < ̂ G

E"*" there exists a sequence in R decreasing to 0 such that \ f — fn\ ̂  ̂n9 for all n.

Next we define Riesz homomorphisms. Recall that a map (f> between vector spaces

Vi and V2 is linear if 0(a/ -H 6^) = a<f>{f) + b(f>{g) for all /,^ G and all scalars a

Archimedean vector lattice is Archimedean.an

16



and b. Let F be a vector lattice. A map (j>: E ̂   F is called a Riesz homomorphism

if (j>{f y g) = 4>{f) V 4){g) for every f,g e E.

A bijective Riesz homomorphism is a Riesz isomorphism. If : F —> F is a Riesz

isomorphism, then E and F are said to be isomorphic.

Theorem 3.8. Let (f> : E F be a Riesz homomorphism. Then <l>(f) > (f>ig)

whenever f > g.

Proof. Note that <^(0) = 0 because for any scalar a, namely a — 0, we have

0(a/) = a<j){f). Let /i € F, and /i > 0. Then V 0 = ft, andsuppose

= 4>{h V 0) = (f>{h) V 0(0) = 0(ft) V 0 > 0.

Now suppose that f > g. It follows that / - p > 0 and that 0(/ - p) = 0(/) - 0(p) >

0(0). Therefore, 0(/) > 0(^).

Let / an ideal in E. The quotient space E/I consists of the sets [/] = {/i € F :

/i — / € /}, for each f in F. Quotient spaces are endowed with a partial ordering.

Given [/], [^] e E/1, we say that [/] < [g] whenever there exist elements /i € [/] and

Pi € [g] such that /i < Under this ordering, we claim that the quotient space is

actually a vector lattice (see [11], page 116).

□

Theorem 3.9. The quotient space E/I, where I is an ideal of E, is a vector
lattice.

Proof. We first show that <, as defined above, is  a partial ordering. Clearly

/] < [/] because / < /. If [/] < [p] and [p] < [ft], then there exist elements /i G [/],

91,92^ [p], and hi G [ft] such that fi < pi and g2<h\. Therefore

/i < Pi = P2 + (pi - P2) < hi + (pi - P2)*

Since gi - 92 € /, it follows that ftg = fti + (pi - P2) ^ [h]- Hence, fi < ftj, and

[/] < [h].
17



Furthermore, if [/) < [^] and [g] < [/], then there exist elements /i,/2 € [/] and

91^92 € [f;] such that fi < and ̂ 2^/2- Note that

0 ̂  5^1 — /i < (^1 — /i) + (/2 — 92) — (/2 ”■ /i) "1“ (91 92) ^

Since I is an ideal, /i - pi 6 / and [/] = [/i] = [^1] = [g]- This establishes that < is

a partial ordering.

We next prove that the partial ordering is compatible with the structure of the

vector space. If [/] < [p], then there exist elements fi G [/] and gi G [g] such that

fi 9i- The result follows because £“ is a vector lattice. That is, /i ^ 5i ^/i ^

for all a > 0, and therefore a[f] < a[g]. To show that [/] < [g] ^ [/] + W ^ bl +

take fi e [/] and gi e [^] such that fi < gi, and let hi be in [h]. Again since £7 is a

lattice with respect to its partial ordering, /i  + hi < ^1 + h\ with /i + hi G [/ + h] =

;/] + [h] and Pi + hi € [g] + [h]. Thus [/] + [h]  < [g] + [h].

It now remains to be shown that suprema and infima exist in E/I. Take [/], \g] G

E/I. It follows from fVg> f and fVg > g that [fVg] > [/] and [fVg] > [p]. Hence,

we only need to show that for every upper bound h] of /] and p], we have [h] > [/Vp ●

If [h] is an upper bound of [/] and [p], then for any f' G [/],p' e [p], and h' G [h], there

exist elements pi, 72 G / such that h' > /'+ji and h' > p'+j2- Therefore, if j = ji Ap2,

it follows that h' > /' + j and h' > g' + j. Thus h' > (/'+i) V (p'+i) = (/'Vp') + j,

which implies that [h] > [/ v p]. Hence, [/] V [p] = [/ Vp].

To show that E/1 contains infima, note that f + g  — / Vp + /Ap. Thus

./ A p] = [/] 4- [p] - [/] V [p] = [/] A [p]. Therefore E/I is a vector lattice.
□

The sum of two subsets F and G of jF is defined by

F + G^{fi + f2:heFj2eG}.

Lemma 3.10. If F and G are ideals in E, then F +  G is also an ideal in E.

Proof. To show this, let / G F + G, and suppose |p| < |/|. Since / = /i + /z

where fi E F and /a G G, we have p+ < |p| < |/| < |/i| + I/2I. Moreover, p+ can be
18



decomposed into = g\+ g2 where 0 < pi < |/i| and  0 < p2 ̂  I/2I by Theorem 3.5.

Since F and G are ideals, it follows that pi € F and p2 € G. Therefore, g'^ G F + G.

Similarly g~ e F + G, and g = g'^ - g~ € F G.

It, however, is not true that the sum of two bands is a band. For a coimterexample,

consider the vector lattice E = C([—1,1]), the continuous functions on [—1,1], and

let the bands D\ and D2 be defined by

□

Z)i = {/ € F : / = 0 on [0,1]}, and

Z)2 = {/GF:/ = 0on [-1,0]}.

The sum of Di and D2 consists of all f eE for which /(O) = 0. The sum Di + D2 is

an ideal, but not a band, in E. Indeed, the band generated by Di + D2 is the entire

space E (see [11], page 31).

The disjoint complement of a subset F of F is defined by

F'^ = {/ G F : / X p for all p € F},

where / X p if and only if |/| A |pl = 0

Lemma 3.11. If F is a subset of E, then F^ is a band in E.

Proof. Let F be a subset of F*^ with supF

^1 I/I = 0 for every element / of F. It follows that

/o, and let p G F be such that

fo A IpI = sup(/'^ A IpI : f eH) -0.

Moreover, /o A |p| < / a |p| = 0 for every f G H. Therefore /q A |p| — 0, and

l/ol A IpI = (/o+ + /o") A IpI = {U a |pI) + (/o'  a M) = o.

Hence, if / X p for all / G F, then /o = sup H is also disjoint with p. Since every /

in F is disjoint with F, the supremum fo is in F^. Therefore is a band. □

Lemma 3.12. If I is an ideal in E, then I^ — [I]^.
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Proof. Note that if F C G C E, then C Therefore [Z]'^ C Z**. For the

reverse inclusion, let f ̂  and g e [Z]. Since 1^1  = supZo for a subset Zq of Z*^, it

follows that 1^1 A I/I = 0. Therefore f ± g, and  C [Z]*^.

Lemma 3.13. If F and G are Riesz subspaces of E, then {F + G)^ = fl G^.

Proof. Since FcF + GandGcF + G, it follows that (F + G)^ cF^n G^.

Conversely, suppose / G F*^ fl G'^, and take g = g\-\-g2^F + G such that pi G F

and p2 € G. Then

□

/I A IpI < I/I A (Ipil + |p2|) < I/I A Ipil + I/I  A |p2| = 0.

□Therefore / G (F + G)*^.

Lemma 3.14. If E is Archimedean, then D = for all bands D in E.

Proof. Certainly D c D^. Suppose there exists an element g' in but not

in D. li g = lp'|, then 0 < p G D^\D. Let = {h G  F : 0 < h< p}. It is clear

the p is an upper bound of Mg, but it cannot be the supremum because Mg C D and

g i D. Let /' be an upper bound of Mg such that p  < /' does not hold. The element

/ = ^ A /' is then an upper bound of Mg such that  0 < / < P- Thus / G D^, and
0 < 5 - / € D^.

We claim that there exists an element j G D such that 0 < j < p /> for if

f e D^n D'^ = {0}. This isnot, then |p - /| A |/i| = 0 for all A G D, and p

impossible because p - / > 0. Hence for every h e Mg, we have j h e D and

0 < / + A < j + / < ^, and therefore j + A G Mg. In particular if h = j, then it

follows that 2j G Mg. By induction, nj G forn = 1,2,..., that is, 0 < nj < p for

n = 1,2, — This cannot occur in an Archimedean vector lattice. Therefore there

exists no element in D^\D. We conclude that D = for every band of E (see

[11], page 41). □

The structure of Boolean algebras is closely related to the structure of vector

lattices, and in fact, their relation forms the basis for this thesis. We now exhibit a
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natural way in which to associate with each Archimedean vector lattice a Boolean

algebra (see [11], page 46).

Theorem 3.15. If E is an Archimedean vector lattice, then B{E) = {D c E :

D is a hand) is a Boolean algebra.

Proof. We claim that B{E) is a Boolean algebra with respect to partial ordering

under inclusion and operations determined by

A D2 = D\ n D2, D\ V D2 — [^1 + D2 ) D'l — .

The proof comes in three parts,

(i) ̂  is a lattice. Under the partial ordering of inclusion, the largest subset

of two sets is the intersection. Let Di and D2 be in B. For a nonempty subset

D C Di n D2 with sup D = /, it follows that / is in Di and D2 since they are both

bands. Therefore / G Dj n D2, and fl Z?2 € B. Hence, Di A = A H D2.

Let Z)i, L>2 G B. Suppose that Di C D and D2 C D for some D £ B. We show

that [Di + D2] C D and therefore that DiVD2 = [Di  + £>2]- Note that

=(3)(3.1) Di + D2] [Di + ̂2]^“ {Di + D2)
dd

Equality (1) follows from Lemma 3.14. Moreover, (2) follows from Lemma 3.12

and (3) from Lemma 3.13. Then <Z and thus

;L>i + D2] = {Di n Dif CD^=^D.

Hence, B{E) is a lattice,

(ii) B contedns complements. We claim that for an element D of B, its com

plement is the disjoint complement D^. Note that FnF'^ = {0} for any subspace F

of E. It follows that

D A D^ = D(1D^ = {0}
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and

£) V £>●' = (D'' n £»■“)“' = {0}“' = B

The latter equation follows from (3.1) with Di =  D and D2 = D‘‘. Hence, every

element in B has a complement, indeed D^.

(iii) B is distributive. Given D, Z>i, £>2 ^ B, that B \s 2. lattice implies that

{D A Di) V(DaD2)<DA {Di V D2).

For the reverse inequality let / 6 (Z) PI (£>i + Z?2))'‘'- Then / can be written as

/ = /i + /2. /i 6 D-^,/2 e /i e Dt,h e £>?.

Thus /i € Z) n Z)i and /a € £) n Z?2, and / € (f?  n A) + (£> n A)- Hence.

£) n {Di + D2) C D n £>1 + D n A- Then

D A (£>i V A) = DO [D\ + A]

= [Z? n (£>i + A):

c ((Zin A) + (£'n A)1

= {DA A) V (£> A A)-

□Therefore, H is a distributive lattice and hence  a Boolean algebra.

Next we present a theorem that relates the Boolean algebras of bands of two

specific vector lattices (see [6]).

Theorem 3.16. If F is an order dense Riesz subspace of an Archimedean vector

lattice E, then the Boolean algebras B{E) and B{F) are isomorphic.

Proof. Define (f> : B{E) D{F) by <^(D) = D fl F. We first prove that for a

band D oi B{E), the intersection D fl F is a band of F. Take a subset {f^} of D O F

whose supremum over elements of F exists in F. We show that the supremum is

in £> as well. By supp{/y} we denote the supremum over F of {/y}, and similarly,
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sup£;{/-y} is the supremum over the whole space E. Note that supjs{fj} < s\ipp{f^}

because supp{f^} is an upper bound of {fy} in E. Suppose sup£;{/y} ̂  supjp{/y}.

Then sup — sup^{f^} > 0, and by the order denseness of F, there exists an

element f G F such that 0 < / < supp{fy} — sup^l/y}. It follows that for every

element of {/-y},

/-» < sup{/,} < sup{/,} - / < sup{/,}.
E  F F

Thus supp{f^} — f 6 F is an upper bound of the set {fj} in F that is strictly

less than the supremum, which contradicts the definition of supremum. Therefore,

— supjr{/y}. Since D is a band in F, it follows that sup^{/y} G D. Hence,

suppify} E D n F, and n F is a band in F.

We show that cf> is surjective. Let Z) be an element of B{F). We claim that

<f>(D*^) = n F = D. Certainly, is a band in F, and thus n F is a band

in F. Since D <Z F and D c it follows that D C H F. To prove the reverse

inclusion, we use the property of Archimedean spaces that D = for all bands

D. Since F> is a band in F but not necessarily F, this property imphes the equahty

D = = {/ G F : I/I A 1^1 = 0 for all ̂  E F}. Moreover, D F C F^ = F.

Therefore, (f){D^) = D, and 0 is a surjective map.

We prove the injectivity of (j). Suppose (}>[Di)  = </>(F2). Then Fi fl F

Suppose Fl 7^ F2. W^ithout loss of generality, we may assume there exists an / in

Fi\F2. Since Fj is an ideal, / = /+-/", where /■*■,/“ ^ FJ^. It follows that

/+ or f- is not in F2, for otherwise / would be in F2. We may, therefore, assume

that / E D^\D2. Note that / 7^ 0 because 0 E F2. Moreover, f i F because

Fl n F = F2 n F. Therefore, there exists an element g ^ F such that 0 < g ^ f.

Since Bi is an ideal, ^ G Fi PlF = F2HF. Consider the subset G of all such elements

ofF: G={^gF:0<^< /}. Certainly, G is

band of F. Therefore, the supremum of G, if it exists, is in Fi D F. We claim that

supG = /, but / ̂  F, which provides a contradiction.

To establish that sup G = /, suppose that there exists an upper bound h of G for

which it is not true that h < f. Then /i' = / A is an upper bound of G such that

F2n F.

subset of Fl n F, which is a
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h' < f. Thus there exists an element g G F such that 0<g<f — h'<f. Therefore,

g G G, and g < h'. It follows that 2g = g + g < h' -{● {f — h') = f ̂ which imphes

that 2g G G. By induction, np G G for n = 1,2,.. ., that is, 0 < g < fn~^ for all n.

However, F is Archimedean, and this contradicts the definition of an Archimedean

vector lattice. Hence, / = sup G, and (p is injective.

Having established that <f> is bijective, we show that <p is bipositive (that (f>{Di) C

<P(D2) if and only if Di C D2). If Di C D2, then <p{Di) = DiCiF C D2HF = (p{D2).

Suppose that Di n F d D2 n F. As established in the proof that <t> is surjective,

<P~HDinF) = {DinF)-^ and <^-i(£»2nF) = (DanF)*". It foUows that (£»2nF)‘'C

(Di n Fy and that 0(Di n F) = (£»i n F)<“ C (£>2  n F)*" = 0(£>2 n F).

Therefore, 0 is an isomorphism between B{E) and B(F).
□
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4. Representation of Boolean Algebras

The fundamental representation theorem of Boolean algebras was developed by

Stone and states that every Boolean algebra is isomorphic to a field of sets (see

10]). In Theorem 4.2, the field of sets consists of all the two-valued homomorphisms

X : B ̂  {0,1}. We first give a lemma to show that such maps exist (see [5], page

188).

Lemma 4.1. If x ̂  0 is an element of a Boolean algebra B, then there exists

two-valued homomorphism (f> on B such that (f){x)  = 1.

Proof. Let x be a nonzero element of B, and let C be the ideal generated by x'.

Since C = (x') = {y e B : y < x'} and x' 7^ 1, we infer that 1 ̂  C and that C7 is a

proper ideal of B. Let Ci be a maximal ideal containing C. We claim the quotient

algebra B/Ci is isomorphic to the set {0,1}. Let i/j : B B/Ci be the natural

homomorphism that sends y to [j/j, and let 6 : BjCi {0,1} be the map defined

by 0{[0]) = 0 and 6>([lj) = 1. The composition 0  = 0 o ̂  is the desired 2-valued

homomorphism. Consider

0  lyeCi

1  :y^Ci.
4>{y) = 0{ii){y)) = 0([?/]) =

Since Ci is maximal and x' € Q, it follows that x  ^ Ci and that 0(x) = 1.
□

Boolean algebra, and let X be the set of 2-valued

homomorphisms on B. Then B is isomorphic to a subset ofV{X) via the map

Theorem 4.2. Let B be

fix) = {4,eX: 4,(x) = 1}

for all X e B.
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Proof. We first show that / is a homomorphism. If are elements of B, then

f{x y y) = {(j)^X \ (j>[x V y) = 1}

= {0€X:0(o:)V0(y) = l}

= {(/) 6 X : 4>{x) = 1 or <t>[y) = 1}

= {0 e X : (j)(x) = 1} U {<^ € X : <t>[y) = 1}

= /W V /(y).

The first equality is the definition of /. The second uses the homomorphic properties

of (p. The third holds because p can only take the values 0 and 1, while the fourth

uses the definition of union. Moreover,

/(x') = {0 G X : 0(a:') = 1}

= {0€X:0(x)' = l}

= {0 G X : 4>{x) = 0}

= {0 G X : 0(x) = 1}

= /(x)'.

To establish that / is one-to-one, we show that the kernel of / contains only

0, where the kernel of / is all elements of B that are mapped by / to the empty

set. If a; 0, then there exists a 2-valued homomorphism 0 such that 0(a;) = 1

by the previous lemma. Thus / maps every nonzero element of B onto a nonempty

and therefore the kernel of / contains only 0. Hence, if f{x) = /(y), then

fix) A /(y)' = fix A y') = 0, and x A y' = 0. Similarly, x' A y = 0, and we conclude

that X = y.

We verify that fiB) C P(X) is a field of sets, i.e. /(H) contains the empty

set and is closed under union and complements. Since there exists no two-valued

homomorphism that maps 0 to 1, it follows that /(O) = 0 G fiB). Let G fiB).

set,
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Then there exist y,z ̂  B such that f(y) = Y and f{z) = Z. It follows that

YuZ = {(f>eX: (f>{y) = 1} U {<^ G X : (l>{z) = 1}

= {06X:0(y)V0(z) = l}

= {0GX:0(yV2) = l}

= fiy V 2) e f{B)

and

Y' = {<f>eX:<l>{y)==iy

= {<l>eX:cl>{y) = 0}

= {(f>eX:<f>(yY = 0}

= {0 G X : (j>{y') = 1}

= f{y') e f{B).

□
We conclude that every Boolean algebra B is isomorphic to a field of sets.

The representation presented in the previous theorem has several variations. In-
B, one could also usestead of using the subsets of 2-valued homomorphisms on

maximal ideals or maximal filters, as in Theorem 4.3.

In addition, every Boolean algebra B is representable as a space of functions

rather than sets. For a set A", the set of all functions from X to {0,1}, denoted by

2^, is isomorphic to P(X) via the map that sends  a subset of X to its characteristic

function. Recall from our conventions that for a subset T of X, the characteristic

function of Y is defined as

1  ixGT

0  :xiY
ly(a:) =
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for x € X. If (7 : V{X) 2^' is defined by 9{Y) = ly for Y 6 V(X), then ̂  is an

isomorphism. To verify this, take Y,Z C X, and note that

1  : X eY or X e Z

0 : X ̂ Y and x ̂  Z

Moreover, if g{Y) = g(Z), then ly(x) = lz{x) for all a; € X, which impHes that

Y = Z and g is one-to-one. A Boolean algebra can be embedded into 2^ through the

composition g o / of <7 with the function / from Theorem 4.2.

= ly(a:)Vl2(a;)=^(y)Vp(Z).g{Y V Z) = ly'uz(-r) = <

Another field of sets that may be used in place of the 2-valued homomorphisms is

the collection of all closed and open (clopen) subsets of a topological space X, which

we denote by 6(X). The significant contribution of Stone was the determination of

precisely what sets may be used to establish this correspondence. If X is a zerodimen¬

sional compact HausdorflF space, then 6(X) is a Boolean algebra under the operation

of inclusion. If there exists a zerodimensional compact Hausdorff space X such that

^>(X) and a Boolean algebra B isomorphic, then we call X the Stone space of B.

The proof of the following theorem is taken fi:om [6], page 117.

are

Stone space, which is unique up toTheorem 4.3. Every Boolean algebra has

homeomorphism.

Proof. Let B be a Boolean algebra. A subset A of  B is called a. filter if

(1) A contains 1 but not 0 and

(2) X Ay e Aii and only if x e A and y € A.

Define S' to be the set of all maximal filters, that is, every filter that is not contained

properly in another filter of B.

Suppose A e S and x is an element of B that is not contained in A. Then, the set

~ {y ̂  B : yy x' e A} contains 1 because 1 V x' =  1 € A. Moreover, A' satisfies
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property (2) of filters because

y,z e A' yy x' e A md z\/ x' £ A ^{z\/x')€ A

<=> (y A 2) V x' G i4

^yAzeA\

but A' contains x and hence properly contains A. By the maximality of i4, it is true

that 0 G yl' so that A' is not a filter. Thus 0 V x' = .x' G A.

Conversely, if ̂  G 5 and x G i4, then x Ax' = 0 ̂ i4. Therefore, if A is a maximal

filter, then x e A if and only if x' ̂  >4. For x  G B, define a subset Sx of S by

Sx — \^A G S X ̂

From the second property of filters, we have

(4.1) *S*iAy — n iSjy

Since x G >4 if and only if x' ̂  ̂4, it follows that

(4.2) S\Sx = 5xs

and therefore that

(4.3) ^xVy — ̂x U 5,y

Certainly,

(4.4) 5o = 0, Si = S.

e B} is & base for a topology on S. ByFrom 4.1 and 4.4, it follows that {.Sx

4.2, every Sx is clopen, and therefore S is zerodimensional. If Ai and A2 are distinct

: X

elements of 5, then there exists an element x G Ai\A2, which implies that Ai G Sx

and A2 G Sx' but Sx H Sx> = 0. Therefore, is a Hausdorff space.

To prove that S is compact, we show that if Bi C  B for which S = \J{Sx : x G Bj},

then there exists a finite set B2 C Bi such that  S= LK'^® ● ^ ̂  ̂2}- We prove the
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contrapositive. Let Bi c B he such that S ̂  \J{Sx  ' ^ ̂  ̂2} for all finite subsets

B2 of Bi. Define

I — {z e B : z > (sup ̂2)^ for some finite B2 C Bi}.

It follows that 16/ and that / satisfies the second property of filters. By 4.3 and the

assumption that every B2 is finite, SsrxpB2 = LK'^’x x £ B2} ̂  S, which establishes

that sup ̂ 2 1 and (sup B2)' ̂  0. Therefore, 0 ̂ B2 for all B2, and / is a filter. I is

contained in a maximal filter r e S. U x £ Bu then x < supBi and x' > (supBi)'.

It follows that x' 6 / C /' and /' ̂  Hence, S ̂  :  x £ BJ, and S is

compact.

Having shown that B is a zerodimensional compact Hausdorff space, we prove that

is a Boolean homomorphismb{S) is isomorphic to B. By 4.1 and 4.2, the map

from B to b{S). To establish bijectivity, first let U £ b{S). Since U is open, there

X  ̂

exists a Bi C B such that U = [j{Sx : x £ Bi}, and we may assume that B\ is finite

because S is compact. Therefore, U{*5'x : x £ Bi}  = SsupBi = U, and the map is

surjective.

Take x,y £ B such that x ̂  y. Suppose without loss of generality that y > x.

Let J be the filter defined by J = {z £ B : zV y  > x}. Certainly, J is a filter because

1 V 2/ = 1 > X while X < 2/ = 0 V y. Moreover,

zi, Z2 £ J ZiV y > X and Z2^ y > X

^ (zi V 2/) A (Z2 V 2/) > a: A X

(ziAz2)yy>x

^ Z\ A Z2 £ J-

Then J is contained in a maximal filter /, and it follows that y' £ J' and x £

Therefore, J' G H Sy> = S;^\Sy, which implies that ^ Sy. Thus the map is

injective.
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Hence, 5 is a Stone space of B. Next we show that any other Stone space of B is

homeomorphic to S.

Let T be a Stone space of B, and let x

b(T). There exists a map (j): S —^T such that

Tx be a Boolean isomorphism of B onto

(p{s) e Tx if and only if s € Sx {s ̂  S,x e B).

Indeed, <j) is a. homeomorphism of S onto T.

□

Definition 4.4. If the supremum (infimum) of an arbitrary collection of a many

elements of a Boolean algebra B exists, then B is said to be a-complete.

If the supremum (infimum) of any collection of elements of B exists, then we say B

is complete.

Recall the Boolean algebra B{E) of Theorem 3.15. Consider the arbitrary in-

B and a subset F of this intersection that has atersection p) D of bands of JB

supremum. Certainly, F is contained in every band F, and we infer that supF e D

for each D and therefore that sup F e[]D. Hence, f| F G B, and B is complete.

Definition 4.5. An ideal I of an a-complete Boolean algebra is an a-ideal if the

supremum of any collection of at most a elements in / is in /.

B2 is said to be an a-homomorphismDefinition 4.6. A homomorphism 0 : Bi

if V (l>{x^) = 4>{x) for a collection of at most  a elements x^^ G B\ with V^7 ~ X,

assuming all such suprema exist.

The following theorem connects the Boolean algebra b{X) with the Boolean alge

bra of bands B(F) for an Archimedean vector lattice E.

Theorem 4.7. For an Archimedean vector lattice E, B{E) is Boolean isomorphic

to b{X), where X is an extremally disconnected compact Hausdorff space.

Proof. The existence of a unique space X was proven in Theorem 4.3. Given

that the algebra B{E) has a Stone space, we will show the space to be extremally
31



disconnected. Since B(E) is a complete Boolean algebra and b{X) is isomorphic to

it follows that b{X) is also complete. Therefore the arbitrary union of clopen

subsets of X is clopen. Let f/ be a regular open set in X. Then U can be written as

the union of clopen subsets of the zerodimensional space X, and therefore U is clopen.

Hence, all regular open subsets of X are clopen, and X is extremally disconnected. □

The natural question to ask following Stone’s representation theorem is, “Is every

cr-completc Boolean algebra isomorphic to a <7-complete field of sets? The answer

introduce several newturns out to be negative. To provide a counterexample, we

terms.

Definition 4.8. A Boolean algebra B is said to be a-distributive  if the sets I

and J have cardinality at most a and

A V j “ V A
iei jeJ <{>eJ^ »€/

where denotes the set of maps from / into J and each G B, given that all the

infima and suprema exist.

Every (7-complete field of sets is cr-distributive. This statement holds because

the set-theoretical union (intersection) of elements coincides with the Boolean

supremum (infimum) of whenever the union (intersection) of all belongs to the

field of sets (see [9], page 68).

A Borel set of the real numbers is any set that can be formed from open subsets

union, countable intersection, and comple

mentation. By definition, the field of Borel sets forms a a-complete algebra. Let B

be the field of all Borel sets of the real numbers, and let / be the ideal consisting of

all subsets of B that are at most countable. / is an ideal because any subset of an

at most countable set is indeed at most countable. Moreover, / is a (7-ideal since the

countable union of at most countable sets is at most countable.

We claim the Boolean algebra B/I is (7-complete but not isomorphic to a a-

complete field of sets. First we show that B/I is (7-complete because both B and /

of M by using the operations of countable
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are cr-complete. Note that if x,y G B, then

- y e I ̂  X Ay e I ̂  [x Ay] = [0]<^[x]A [y]' = [0] ̂  [x] < [y.X

Let {xn} be a collection of at most countably many elements of B, and let x =

sup{x„}. For all n, we have x,

< [x]. Take xq e B such that [x,

and that x - xq = sup{x„ - Xq} G / since / is a cr-ideal. Thus [x] < [xq], and we

infer that [x] is the supremum of the collection {[xj}. More generally, if {x^} is a

countable c*ollcction of elements in a ̂-complete Boolean algebra and quotients are

taken by a a-ideal, then

A (sup{x„})' = 0 G /, and therefore

< [xo] for all n. It follows that x„ - xq G /

X — Xji

X.

(4.5) sup[x„J = [supx„.

Hence, B/I is cr-complete.

The quotient algebra B/I is not o--distributive (see [9], page 61). Let be the

set of all numbers of the form
00

CLj + 1E
where = -1 or 1 for j ̂  n, and a„ = i (i = ±l,n = 1,2,...)- The sets

belong to B because they are unions of finite numbers of closed subintervals of the

closed unit interval U. Define Ani = The following statement estabhshes a

counterexample to the a-distributivity of B/I:

j=i

(4.6) D -^n.l) = [U] ̂  [0] = An,<t>{n)n,-l

where $ is the set of maps from the natural numbers to the set {—1,1}.

It follows from (4.5) and the equality D Bn,<l>in) ~ ̂
oo
n=l

oo

An,<i>{n) — — OJ-nn=l

Since the action of taking arbitrary unions does not affect 0 , the right-hand side of

(4.6) holds.
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We conclude that B// is a a-complete Boolean algebra that is not ̂ -distributive

and therefore not isomorphic to a a-complete field of sets.

Since not every <j-complete Boolean algebra can be represented as a (r-complete

field of sets, we turn to quotients to create a representation. The following funda

mental theorem independently discovered by Loomis and Sikorski in 1947 answers

the question of representability for a-complete Boolean algebras (see [7]).

Theorem 4.9. (Loomis-Sikorski Theorem) Every a-complete Boolean algebra is

representable as a a-complete field of sets modulo a a-ided.

For all higher cardinals, the existence of Boolean algebras which cannot be rep

resented in such a way has been established. In [3], Chang sets out necessary and

sufficient conditions for Boolean algebras to be a-representable.  In [9], Sikorski ex

pands on this to form an extensive list of necessary and suflScient conditions for

Boolean algebras to be a-representable.

Definition 4.10. A Boolean algebra is a-representable if it is isomorphic to an

a-complete field of sets modulo an a-ideal.
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5. Representation of Vector Lattices

An important theorem in the representation of vector lattices, discovered by

Maeda and Ogasawara, states that any Archimedean vector lattice can be repre

sented as an order dense subset of a vector lattice of functions with values in the

extended real numbers.

Let X be an extremally disconnected space. C°°(X) denotes the set of all contin-

S, such that is meagre, that is, where the function

takes finite values almost everywhere. If /, ̂ G C°°(A’), then the subset of X on which

f or g takes finite values is also meagre. Outside of this meagre subset, f-\-g and fg

are well-defined, continuous functions. Under pointwise partial ordering, C°°{X) is a

vector lattice. Indeed, C(X) c C°°{X).

uous functions / : X

Theorem 5.1. (Maeda-Ogasawara) If X is the Stone space of B[E), then there

exists a Riesz isomorphism from E to an order dense subspace ofC°°{X).

Let (xy) be a net in a vector lattice E. If Xyi > Xy2 whenever 7I > j2, then

say (xy) is increasing, or We write Xy^x if {xy) is increasing and the supremum

of {xy) is equal to x ̂  E

we

Definition 5.2. Let G be an ideal of a vector lattice E. Then G is an a-ideal

if for any collection of at most a elements in G whose supremum exists in E, the

supremum exists in G.

An ideal is a band if it is an a-ideal for every cardinal a.

Definition 5.3. A vector lattice is called a-complete if all of its nonempty subsets

are bounded above (below) have a supremum (infimum).
of cardinality at most o: that
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Definition 5.4. Let E and F be vector lattices. A homomorphism <j>: E F

is called an a-homomorphism if

f,U ̂  4>Uy)U{f)

for a net where the directed set F contains at most a elements.

We present a lemma before the proof of the following theorem (see [11], page 129).

Lemma 5.5. Given the following statements, (1)=^(2)=>(3).

(1) If {fn} is an increasing sequence in G'^ that uniformly converges to some f, then

fee.

(2) If f,g e E'^ and {nf - g)'^ e G for all n, then f eG.

(3) E/G is Archimedean

Proof. (1)=4>(2) Take /, p G E'^ such that {nf —  G G for all n, and assume

that (1) holds. Since

5ri<l/-(/-" *5)1=" ‘s-0</-(/-n-V = ir-(/-
-1n

we infer that the increasing sequence hn = {f - converges uniformly to /.

Moreover, hn E G for all n by assumption. It follows from (1) that / G G.

(2)=>(3) Assume (2) holds and take f,g G E'^ such that n[/j < for all n. Then

and {nf - gy G G. By (2), / G G so that0] = W] - [^1)'^ = [i'^f - for all n,

0] = [/]● Therefore, E/G is Archimedean. □

In fact, the converses are true as well, but the proof is not necessary for the

following theorem.

Theorem 5.6. Let E be an Archimedean vector lattice and I a a-ideal in E.

Then, E/I is Archimedean.

Proof. Suppose / is a a-ideal in an Archimedean vector lattice E, and take an

increasing sequence {/„} in I^ that converges uniformly to some / (i.e. g e E'^ such

that there exists a sequence i 0 for which \f — fn\ ^ ^n9 for all n). Since E is
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Archimedean, tng i 0, and therefore 0 < /„ | /● Furthermore, / 6 / because / is a

cr-ideal. By the previous lemma, E/1 is Archimedean.

Since every a-ideal is necessarily a (7-ideal, it follows immediately that quotients by

a-idcals are Archimedean vector lattices. The following theorem states that the natu

ral homomorphism, which takes / to [/] for all /  G F7, is actually an a-homomorphism

when the ideal used to take quotients is an ct-ideal.

□

Theorem 5.7. Let E he a vector lattice, and let I be an a-ideal in E. If <j>: E —>

E/I is defined as (j>{f) = [/] for f £ E, then (j) is an a-homomorphism.

Proof. To show that (/> is an a-homomorphism, we prove that

A T / ̂  m T M

for a net of cardinality at most a. Take a net (fi) such that fi £E and sup(/y) = /.

Since is a homomorphism, f > fy implies that (f){f) > Hfi), and therefore the

net {<t>{fy)) is bounded above by (/){f). Next, we show that 0(p) > <^(/) for any upper

bound (t>{g) of {(!>{fy))- Equivalently, we may show that 0 is the least upper bound of

the difference {(p{f) — <l>(fy))^

Suppose (/){g) < </>(/)-(^(/-y) for all 7. Then <t>{g-f+fy) < 0, and =

0. It follows that <t>{{g — f + fy)^) = 0 because (j) is a. homomorphism. Therefore,

{g — f + fy)^ is in the kernel of 0, which is the a-ideal /. The net ((^ - / + A)'*’)

increases with supremum equal to g'^. Therefore, g'^ £ I, which implies that 0 =

4>{g'^) = <P{gV and that 0(p) < 0. It follows that 0 is the infimum of (<^(/) - <^(A))

and that (/>{fy) T </>(/)● Hence, (j) is an a-homomorphism.

We now arrive at a crucial definition of this thesis.

□

Definition 5.8. A vector lattice is a-representable if it is isomorphic to a function

lattice modulo an a-ideal.

As an immediate consequence of this definition, C{X) is a-representable for every

X and every cardinal a.
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6. a-Representability of E via B{E)

The following definitions generalize the common notions of nowhere dense sets

and sets of the first category (see [9], page 85).

Definition 6.1. A set is a-closed if it is the intersection of at most a clopen sets.

A set is a-nowhere dense if it is a subset of a nowhere dense a-closed set. A set is of

the a-category if it is the union of at most a sets that are a-nowhere dense.

The following lemma of Sikorski (see [9], page 120) plays a subtle but significant role

in Theorem 6.4.

Lemma 6.2. A Boolean algebra is a-representable if and only if, in its Stone space,

no nonempty open set is of the a-category.

’at all points except on a set of a-category.By “of-almost everywhere' we mean

Corollary 6.3. Let X be the Stone space of an a~representable Boolean algebra,

and let f,g e C°°{X). If f = g a-almost everywhere, then f = g on X.

Proof. We claim that {x G A : f[x) ̂  g{x)} = 0. Since f,g ̂  C^[X), the

1. By the definition of continuity, the

set {xe X : fix) ̂  g{x)} = {(/ - g)-'^{y) ; y 6 ®\{0}} is open in X because I\{0}

is open in R. Therefore {x e A : f(x) ̂  g[x)} is an open set of a-category. By

Lemma 6.2 {x e X \ f{x) ̂  ̂(x)} = 0, and f{x) = g{x) for all xeX.

difference f - g is a continuous function X

□
We now present the primary theorem of this thesis.

Theorem 6.4. IfEis an Archimedean vector lattice such that B(E) is a-representable

then E is a-representable
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Proof. Let L be the order dense subset of C'^[X) that is isomorphic to E by

Theorem 5.1. Let £ be a set of real-valued functions on X defined by: / 6 £ if there

is a. g e L such that the set {x ̂  X : f{x) ̂  g{x)} is of a-category.

Step 1: £ is a vector lattice under pointwise ordering

Take f\, f2 G £, and let g\,g2 be the corresponding functions in L to which fi

and /2, respectively, are o-almost everywhere equal. At every point x for which

f\{^) = 9i{^) and /2(x) = g2{x), we have /i(a:) V J2[x) — gi{x) V g2{x). The

remaining points lie within the union of two sets of a-category, which is itself of a-

category. Thus the pointwise supremum of fi and /2 equals ̂ 1 V ̂2 except on a set

of a-category. Hence, /i V /2 G £. Similarly, /i  A /2 e £.

With this in mind, we define a mapping </● :£-> L by <l>{f) = p/, where f = gf

except on a set of a-category.

Step 2: (/) is well-defined

To show that 0 is well-defined, suppose / G £ such that </»(/) = gi and (f>{f) = ^2-

We show that = g2. By definition, f ^ gi on a. subset U C X of a-category,

and / ^ g2 on a similar set V. It is then clear that gi = f = 92 everywhere in the

complement of UUV and possibly at points in f/ U  K as well. Equivalently, the set

on which <71 ^ <72 is a subset of UUV, which as the union of two sets of a-category,

once again is of a-category. Prom Corollary 6.3 it follows that gi{x) = g2{x) for all

X G a:.

Step 3: (f) is surjective

An element g of L (Z C°°(X) only takes the values of +00 and -00 on a meagre

subset U of X. Since a nowhere dense set is a-nowhere dense, it follows that a meagre

set is of the a-category. Therefore g takes real values except on a set of a-category.

Hence, if h{x) = 0 for a; G t/ and h{x) = g{x) otherwise, then /i is a real-valued

function that equals g except on a set of a-category (i.e. = g).

Step 4: 0 is a homomorphism
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0(/i V /2) = /i V /2 Q-almost everywhere. Moreover, (p(fi) and ̂ (/2) are

almost everywhere equal to fi and /2, respectively. Therefore <t>{f\) V <^(/2) = /i V /2

everywhere except on a set of Q-category. It follows that (j>{fi V /2) = V <^(/2)

a-almost everywhere and thus everywhere on X by Corollary 6.3 because (j){fi V /2)

and 0(/i) V 0(/2) are both continuous functions on X.

Step 5: Ker{(j)) is an ideal

Since <;/> is a Riesz homomorphism, the kernel of  ^ is an ideal. Indeed, take an

element / of TV = A'er(0). Then / has the same zero set as 1/| so that |/| 6 iV. If

g\ < I/I for some g ̂  Z, then |^| = 0 whenever |/| = 0. Therefore \g\ ^ X, which

in turn implies that g e N. Since is an ideal, by Theorem 3.9 the quotient space

Sl/N is a vector lattice.

Step 6: L and Sl/N are isomorphic

Wc define a map ijj : £/A^ A by ̂ ([/]) = (f>{f)- The map ̂  is well-defined

because (f) is well-defined, for if 'ip{[f]) = = 9i and V'([/D = ̂if) ~ 92, then

Q-

gi = ̂2- We claim that xp is a, homomorphism as well because

^([/] V [t/]) = xp{[fv p]) = (j){f \zg) = (Pif) V (Pig) = ̂([/D V ip{[g])-

The surjectivity of 0 follows from that of cp. If  g e L, then g = p{!) = V'd/D for some

/] G £/7V. Moreover, suppose xp{[f]) = xp{[g]). Then (p{f) = <p{f -g) - 0.

Hence, f - g e Ker{(f)) = N, and [/] = [^^]. We conclude that the map xp is bijective

and thus an isomorphism.

Step 7: W is an a-ideal

Take a net of at most a many positive elements in  N that increase with supremum

/, i.e. ̂  T / with e N. We need to show that feN, that is, that / is equal to 0

except on a set of a category. This is equivalent to showing that {x : (p{f{x)) ̂  0} ̂

0. Let (p{f) = g, and suppose > 0] ̂  0, where the notation [g > 0] is shorthand

for {x : g{x) > 0}. There exists an x e X such that g{x) > 0, and there exists an
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open (and closed, since X is extremally disconnected) set U containing x such that

g{y) > £ for a\\ y e U and some e: > 0.

Let A be defined as the set of points on which at least one takes a positive value:

^ = U7[/7 > 0]- For each /y, the set [/^ > 0] is of a-category because 0(/y) = 0.

Hence, the union of a many such sets is also of the a-category. In addition, let the

set B be defined as all the points in X where / and ̂  are not equal, i.e. B = [f

Since 0(/) = g, it follows that B is also of the a-category. We define a map h by

e/2 ixeA^nB^nu

:x^A^nB^nU.

Consider the difference f - h. As the map h is defined, it is continuous outside of U

and Q-almost everywhere continuous in U. Thus h is continuous except on a set of

a-category. It follows that /i € £ and that the difference / - is also in £. At all

points outside of the set A^ n B^ f\ U, certainly fy < f -h = f. UxeA^OB^nU,

then f{x) = g{x) because x ̂  B and ̂ (x) > e because x€U. Moreover, fy(x) = 0

for all X G A^ H B^ Pi U and all 7. Therefore, f  — h — g — h> s — e/2 = e/2 > 0, and

A < / - /?< on n BTl f/. Furthermore, f-h<f, which contradicts the minimality

of / as the supremum of (A). We conclude that <^(/) = ̂ = 0, which implies that

f e N and that N is an a-ideal.

Hence, E is isomorphic to SI/N, which is a function lattice modulo an a-ideal. □

The Loomis-Sikorski Theorem and Theorem 6.4 together give the result of Theo

rem 3 of [1 .

h{x) =
0

Corollary 6.5. If E is an Archimedean vector lattice, then E is a-representable.

Proof. Every Boolean algebra, particularly B{E), is cr-representable (see [9],

page 123). Note that a set is of the cr-category precisely when it is meagre. It follows

from Lemma 6.2 that a Boolean algebra is a-representable if and only if no nonempty

open set in its Stone space is meagre. Moreover, Stone spaces are compact Hausdorff

spaces, and no nonempty open subset of a compact Hausdorff space is meagre (see
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4], Theorem 7.2). We conclude that B(E) is cr-representable and therefore that E is

cr-representable by Theorem 6.4. □
As another corollary, if F is an order dense subspace of an Archimedean vector

lattice E and the Boolean algebra B{E) is a-representable, it follows that B{F) is a-

representable by Theorem 3.16 and therefore that both E and F are a-representable

as vector lattices.
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7. Questions and a Conjecture

Question 1: Can Theorem 6.4 be proven constructively, that is, without the use

of the order dense siibspace of C^{X) guaranteed by Maeda and Ogasawara?

Question 2: Does the converse of Theorem 6.4 hold? Is it true that if a vector

lattice is a-representable, then the Boolean algebra generated by its bands is a-

representable?

Conjecture 7.1. The natural embedding Z/N ̂  M^/iV (where Z,Nj and X

are as in Theorem 6.4) is an a-homomorphism.

If this conjecture holds for a equal to the cardinality of the natural numbers, then

we obtain Theorem 3.2 of [2 .
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8. Index of terms

The following table outlines how items are denoted throughout this thesis.

● Sets - X,Y,Z

● Topologiced spaces - X

● Subsets of topological spaces - U, V, W, Y, Z

● Points of a topological space - x,y,z

● Real numbers - a, 6, c

● Boolean algebras - A, B,C

● Elements of a Boolean algebra - .t, y, z

● Vector lattices - E,F,G,...

● Elements of a vector lattice -

● Maps - 7T,'0,/, (7,/i

● Cardinal numbers - a

Hausdorff space - 3

Homomorphism -

Boolean algebra - 11

vector lattice - 17

Archimedean - 16 Complemented lattice - 5

Complete -

Boolean algebra - 31

vector lattice - 35

Continuous - 3

Directed set - 2

Disjoint complement - 19

Distributive - 6

Equivalence class - 11

Field of sets - 7

B{E) - 21

b{x) - 28

Band - 16

71 - 16Bijective - 2

Boolean algebra - 6

Borel set - 32

Ideal -

Boolean algebra -10

vector lattice - 16

Increasing net - 35

Infimum - 5

Injective - 2

Interior - 3

C{X) - 15

C°°(X) - 35

Closed set - 2

Closure - 3 Filter - 28

Complement - 5 Function lattice - 16
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Isomorphism -

Boolean algebra - 11

vector lattice - 17

Ordered vector space - 13 a-closed - 38

a-complete -Partial ordering - 5

Partially ordered set - 5

Positive cone - 14

Principal ideal - 10

Quotient algebra - 11

Quotient space - 17

Regular open - 3

Riesz subspace - 16

Stone space - 28

Sum of sublattices- 18

Supremum - 5

Surjective - 2

Topology - 2

Upper bound - 5

Vector lattice - 13

o-category - 38

Boolean algebra - 31

Lattice - 5 vector lattice - 35

a-distributive - 32

a-homomorphism -

Boolean algebra - 31

vector lattice - 35

Loomis-Sikorski - 34

Lower bound - 5

Maeda-Ogasawara - 35

Meiximal ideal - 10

Meagre - 3

Natural homomorphism -

Boolean algebra - 12

vector lattice - 37

a-ideal -

Boolean algebra - 31

vector lattice - 35

Q!-nowhere dense - 38

Neighborhood - 3

Net - 2

a-representable -

Boolean algebra - 34

vector lattice - 37Nowhere dense - 3

Open set - 2

Order dense - 16
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