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ABSTRACT

Non-contact manipulation techniques or tweezers devices are invaluable for applications in

physics, chemistry, biology, and engineering. Acoustic tweezers using either standing waves or

focused beams have been investigated for more than a few decades with advantages of label-free

operation, noninvasiveness, and biocompatibility when compared with the optical, magnetic, and

electrical counterparts. Here, a new type of acoustic tweezers (i.e. acoustic tractors) is studied

using acoustic Bessel and vortex beams that are able to pull objects against the beam’s propagation

over centimeter ranges. Stable acoustic tractors require transversely stable trapping in addition

to axially negative pulling. Hence, the transverse forces acting on a spherical particle centered

on the axis of axisymmetric and vortex Bessel beams were first investigated by using both the

Gorkov potential and the partial wave expansion with the trapping behaviors more flexible than

trapping by standing waves and focused beams used in conventional acoustic tweezers. Then,

the physical parameters desired for simultaneous trapping and pulling of particles of different

sizes were examined. The results reveal the possibility of achieving a simultaneous pulling and

trapping of a small particle using Bessel beams. In addition, the Born approximation method

was used to analyze the transverse trapping force for spherical particles and particles of different

shapes and orientations. Compared with the full solution from the partial wave expansion, the

Born approximation can simplify the computation and can also provide insight into the transverse

radiation force. In addition, a mathematical framework based on phase shifts adapted from quantum

scattering theory was used to analyze the axial radiation force. This phase shift approach can allow

one to engineer object and beam parameters to design experimentally achievable axially pulling

forces. Furthermore, the effects of realistic factors such as gravity, buoyancy, and the acoustic

streaming were also evaluated. The work here is useful for the further study of acoustic radiation

force and will lead to an experimental demonstration of stable acoustic tractor beams.
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Furthermore, the refraction of acoustic Bessel and vortex beams in an inhomogeneous

medium was studied because in the practical situations and applications, media are commonly in-

homogeneous with spatially varying parameters, for example, in ocean environments or biomedical

materials. Hence, it is of fundamental and practical interests to study the effects caused by the

medium inhomogeneity on the propagation of acoustic beams. Here, an acoustic vortex Bessel

beam with topological charge of 𝑙 = −1 propagating in a linearly stratified medium was simulated.

A series of unstable and dynamic behaviors of acoustic vortices as the beam propagates in the

inhomogeneous media were observed. These behaviors include bending, stretching, distorting and

untwisting of the vortex beam, migration of singular points, and reversal of energy flux and angular

momentum. Then the acoustic orbital Hall effect caused by the interactions between acoustic vor-

tex beams and medium inhomogeneity were studied. The transverse shifts caused by the acoustic

Hall effect were numerically observed, analyzed, and compared with theoretical predictions. A

special example of the acoustic Hall effect occurring on the sharp boundary between two media,

i.e., acoustic Imbert-Fedorov effect, was also investigated. Possible experimental observations of

the acoustic Hall effect were suggested in a water tank using salinity gradient, through an interface

between two media, and in air with the aid of a gradient metasurface. This work provides a basis

for the fundamental study of acoustic vortices in inhomogeneous media or complex media.
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LIST OF ABBREVIATIONS AND SYMBOLS

Al aluminum

OAM orbital angular momentum
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IOAM intrinsic orbital angular momentum
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PMMA Poly(methyl methacrylate)

F radiation force

𝐽𝑙 𝑙-order Bessel function
←→
𝑇 momentum-flux tensor

Y dimensionless radiation force

𝑎 radius of spherical objects
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𝑐𝐿 longitudinal sound propagation speed
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𝜇 transverse wave number magnitude or dynamic viscosity of fluid
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𝛼𝑛 real part of scattering coefficient 𝑐𝑛
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𝜃 scattered angle or incident angle

𝜆 wavelength or mass density ratio

𝜌 density

𝜔 angular frequency
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𝛿 thickness of boundary layer

𝛿𝑟 transverse shift of orbital Hall effect

𝜈 kinematic viscosity of fluid

𝜂 dynamic viscosity of fluid

𝜂𝑛 complex phase shift

𝛿𝑛 real part of the complex phase shift 𝜂𝑛
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4.3 Rayleigh approximation. Scattering pattern | 𝑓 |2 [Eq. (4.4)] with parameters of (a)

(𝛿0/𝛿1, 𝛽) = (−1, 54.7◦), where backward scattering is stronger than forward scat-

tering, and (b) (𝛿0/𝛿1, 𝛽) = (1, 54.7◦), where forward scattering is stronger instead.

Insets: illustrations of the coupling between a monopole and a dipole. (c) Scaled

radiation force 𝑌𝑧 [Eq. (4.5)] in the parameter space of (𝛿0/𝛿1, 𝛽). Black dashed line

indicates the boundary (𝛿0/𝛿1 = 1 ±
√︁

1 − 3 cos2 𝛽) where radiation force is zero. (d)

Diagram for pulling a Rayleigh particle in the parameter space of ( 𝑓2, 𝑓1), with the
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CHAPTER 1

BACKGROUND

This dissertation studies the acoustic radiation force generated by acoustic Bessel and vortex

beams, and also studies the propagation of these beams in inhomogeneous media. Before discussing

the details, this chapter briefly introduces the related background.

1.1 Major milestones about acoustic radiation forces

The first portion of the dissertation focuses on the acoustic radiation force. Radiation force

and radiation pressure are fundamental phenomena in both electromagnetic waves and acoustic

waves. The radiation forces are caused by momentum transfer from the waves to matter due to

the scattering or reflection from the objects or from spatial variations and the absorption from

objects.1 Compared with the optical and other counterparts, acoustic manipulation methods have

the advantages of label-free operation, noninvasiveness, and biocompatibility. In this regard,

acoustic-based particle manipulation methods can present an excellent alternative for a wide range

of applications in many fields such as physics, chemistry, biology, and engineering.

Major milestones in the history of radiation forces are shown in Fig. 1.1. The first experiment

related to acoustic radiation force was the acoustic streaming observation by Faraday in 18317 after

the finding of pressure of light by Kepler in 1619.8 In 1874, August Kundt demonstrated the

acoustic radiation force on particles inside a cylindrical tube for acoustic standing waves,9 where

lycopodium powder was trapped at the pressure nodes of the acoustic field (Fig. 1.2). In 1902,
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Figure 1.1: Major milestones in the history of radiation force.

the concept and theory of acoustic radiation force and pressure were scientifically defined by Lord

Rayleigh (Fig. 1.3).10 The acoustic radiation force effect on an interface between two media was

investigated by Hertz and Mende 11 in 1939 where they found the direction of radiation force can

be both outward and toward the sound source depending on the medium properties (Fig. 1.4). Then

acoustic radiation forces were further explored by Gorkov in 196212 (Fig. 1.5) for one dimensional

standing waves, where the acoustic trapping of a small particle in the Rayleigh regime (object

size is much smaller than the wavelength) was considered using the concept of force potential.

Based on the Gorkov potential, relatively light and soft particles (like droplets) are trapped to the

pressure maximum (node) in the Rayleigh regime, yet relatively dense and stiff particles (like elastic

objects) would be trapped to pressure minimum (anti-node). Later in 1991, Junru Wu first showed

that latex particles and frog eggs could be manipulated by acoustic tweezers using two collimated

focused ultrasonic transducers (Fig. 1.6).2 In regards to the pulling force, Marston first predicted an

acoustic negative pulling force using a non-diffracting Bessel beam in 2006.13 The negative force

was interpreted later in terms of the conservation of momentum and the asymmetry of scattering by

Zhang and Marston in 2011 and 2012.14,15 Later in 2012, Xu et al. 16 found that a particle in a liquid

can be pulled backward with two crossed acoustic plane waves. In 2013, Courtney et al. 3 used a

circular ultrasound array of 16 elements to generate standing Bessel waves to trap and manipulate

particles (Fig 1.7), and in 2014, Démoré et al. 17 utilized a speaker array to generate sound fields in
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Figure 1.2: (a) August Kundt, German physicist, 1839-1894. (b) Styrofoam chips are trapped to
the pressure nodes of acoustic standing waves in a cylindrical tube. Figure from Sarvazyan et al.1

a specific direction to pull a large triangle particle in an experiment. Later in 2015 and 2016, Marzo

et al. 4 and Melde et al. 5 realized flexible particle manipulations using speaker arrays (Fig 1.8) and

acoustic histograms (Fig 1.9). In 2018, Zhang derived the expressions of acoustic radiation force

on an arbitrary-size and arbitrarily-located sphere, which provides the theoretical foundation for

both trapping and pulling,18 and later in 2019, Fan and Zhang systematically analyzed the trapping

behavior of an object located at the beam axis and suggested the possibility of achieving acoustic

tractor beams.19

1.2 Theory of acoustic radiation forces

When an object of volume 𝑉 is placed in an acoustic field, there exists an acoustic radiation

force acting on it. This force originates from the momentum transfer from the field to the object

due to the scattering, reflection and absorption. The acoustic radiation force acts throughout the

volume, but owing to the overall momentum conservation, the problem can be reduced to forces

acting on the surface 𝑆 of the object. Following the classical treatment, the time-averaged acoustic

radiation force F can be expressed in terms of momentum-flux tensor
←→
𝑇 over the surface of the
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Figure 1.3: John William Strutt, also known as Lord Rayleigh, British scientist, 1842-1919. Figure
from Sarvazyan et al.1

Figure 1.4: (a) Gustav Ludwig Hertz, German physicist, 1887-1975. Acoustic radiation force on
an interface of two media with the properties of media shown in (b) and (c). Figure from Sarvazyan
et al.1
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Figure 1.5: Lev Petrovich Gor’kov, Russian-American physicist, 1929-2016. Figure from Ameri-
can Institute of Physics.

Figure 1.6: A particle is trapped by two focused ultrasound beams. Figure from Wu.2
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Figure 1.7: Particle manipulation by acoustic cylindrical standing waves generated by a circular
speaker array of 16 elements. Figure from Courtney et al. 3

Figure 1.8: Particle manipulation including moving and rotating particles using acoustic transducer
arrays. Figure from Marzo et al. 4
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Figure 1.9: Particle manipulation using acoustic histograms. Particles can be trapped into pre-
designed pattern. Figure from Melde et al. 5

object. The momentum-flux tensor
←→
𝑇 can be written as,1

←→
𝑇 =

[
1

2𝜌0𝑐
2
0
𝑝2 − 𝜌0

2
𝑣2
]
I + 𝜌0vv, (1.1)

where I is unit diagonal tensor, 𝑝 and 𝑣 are the total acoustic pressure and particle velocity.

Therefore, the total acoustic radiation force can be represented by

F = −
∮
𝑆

⟨←→𝑇 ⟩ · n𝑑𝑠, (1.2)

where n is the vector of outward normal to the closed surface 𝑆 surrounding the volume 𝑉 . It is

worth noting that the acoustic radiation force in an ideal fluid can be determined by integration of

time-averaged momentum-flux tensor ⟨←→𝑇 ⟩ over an arbitrary closed surface enclosing the objects

with complex shapes, internal structures, or spatially dependent properties since the force only

depends on the total acoustic pressure and particle velocity around the objects caused by scattering.

Acoustic radiation forces on small objects within acoustic fields that possess strong spatial

gradients of the energy density can be obtained from the negative gradient of the Gorkov potential
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𝑈,12 i.e.,

Frad = −∇𝑈. (1.3)

The Gorkov potential follows from Eq. (1.2) by expressing the total fields as a summation of the

incident field and the scattering field, and then keeping the leading order of the scattering field at

the small object limitation that is dominated by the monopolar and dipolar terms.

Together with some mathematical operations, the Gorkov potential12 was obtained as

𝑈 = (𝜋𝑎3/3) [ 𝑓1𝑝2/(𝜌0𝑐
2
0) − (3/2) 𝑓2𝜌0v2], (1.4)

where 𝑎 is the radius of the object, 𝜌0 and 𝑐0 are the mass density and the sound speed of the

background medium, and 𝑓1 and 𝑓2 are the monopole and dipole factors,

𝑓1 = 1 − 𝐾0/𝐾𝑠, 𝑓2 = 2(𝜌𝑠 − 𝜌0)/(2𝜌𝑠 + 𝜌0), (1.5)

depending on the mass density (𝜌) and bulk modulus (𝐾) of the object (indicated by the subscript

𝑠) and the surrounding medium (indicated by the subscript 0).19

1.3 Born approximation

For non-spherical objects or when the materials inside the objects are not uniform, the Born

approximation method can be used to analyze the trapping force. The Born approximation method

also allows for spatial variations of the density and compressibility within the particle, which is

another significant advantage.

The Born approximation20 was first proposed by Max Born in the early days of quantum

theory development. It is a perturbation method dealing with the scattering problem on an external

body. The Born approximation takes the incident field in place of the total field as the driving field

at each point in the scatterer, and it is accurate when the scattered field is small compared to the

incident field on the scatterer.
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Although the Born approximation was originally introduced to solve quantum scattering

problems, it can be adapted to acoustics for the analysis of scattering on weakly scattering ob-

jects.21–23 Under the Born approximation, the acoustic scattered field from the whole object can be

considered as a summation of the individual scattered field from each infinitesimal volume element

within the object. The prerequisite for the Born approximation in acoustics is the same as that in

quantum mechanics, i.e., the scattered field is much smaller than the incident field. This conclusion

is met when the density and compressibility of the particle are not substantially different from those

of the surrounding media. This condition is admissible for a variety of biological media and other

soft materials.24,25 One advantage of the Born approximation method is that the scattering problem

can be approximately solved by considering only the monopole and dipole terms even when the

size of the particle is beyond the Rayleigh regime (characteristic length is much smaller than the

wavelength), in contrast to the usual method where high-order terms would be needed.

Based on the Born approximation method, the radiation force acting on particles can be also

obtained by integrating over the force acting on each infinitesimal volume element within the object,

where only the monopole and dipole contributions to the force need to be considered. The Born

approximation method can only be used for forces due to the gradient of sound fields like standing

waves where the trapping force is proportional to the volume of the particle when the particle is

small [i.e., 𝑓 ∝ (𝑘𝑎)3 with 𝑘 being the wavenumber and 𝑎 being the radius of the object].12 In

contrast, the pulling force is associated with traveling sound waves, where the force is proportional

to the square of the volume for small particles [i.e., 𝑓 ∝ (𝑘𝑎)6],13 prohibiting the integration over

a volume of finite size. The former type of force is usually called the gradient force, which can

be expressed in terms of the gradients of the local potential and the kinetic energy densities in

the sound field.12 The latter force is usually called the scattering force since it is associated with

scattering from the object in progressive waves.

Analysis of the Born approximation for one-dimensional plane standing waves26 or pro-

gressive spherical waves27 has been presented. Using the Born approximation, some integral

expressions were obtained for the acoustic radiation force acting on a soft compressible object of
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arbitrary shape and orientation with respect to the incident plane standing wave. The integral ex-

pressions for one-dimensional standing waves were reduced to 1D integrals for some cases, which

can simplify numerical calculations and even enables analytical integration for certain geometries.

The available range of parameters, for which the Born approximation method for 1D standing waves

is accurate, was also indicated.

The focus here is on acoustic Bessel and vortex waves. Compared with one dimensional

standing waves, three dimensional waves might be more flexible for the particle manipulations

since there are more variables to control for three-dimensional waves.

1.4 Phase shift from scattering

The acoustic radiation force acting on objects has been derived from either the integration

of the Langevin-Westervelt stress or the calculation of momentum transfer associated with the

scattering.13–15,18,19,28–49 The force is commonly expressed in terms of the partial wave expansion

containing coefficients of the scattered field that depend on the properties of the particle and the

surround medium. For a plane wave 𝑝 = 𝑝0 exp (𝑖𝑘𝑧 − 𝑖𝜔𝑡), the partial wave expansion of the total

field on a spherical particle is42

𝑝 = 𝑝0

∞∑︁
𝑛=0
(2𝑛 + 1)𝑖𝑛

[
𝑗𝑛 (𝑘𝑟)︸ ︷︷ ︸
incident

+ 𝑐𝑛ℎ(1)𝑛 (𝑘𝑟)︸      ︷︷      ︸
scattered

]
𝑃𝑛 (cos 𝜃), (1.6)

in which 𝜃 is the scattering angle, 𝑃𝑛 is the Legendre polynomial, and 𝑗𝑛 and ℎ(1)𝑛 are the spherical

Bessel and Hankel functions of the first kind, respectively. Here a exp(−𝑖𝜔𝑡) time dependence

is suppressed. The partial wave scattering coefficients 𝑐𝑛, determined from the continuity of

displacement and stress at the surface of the object, have been well studied for incident plane

wave on an isotropic sphere. The corresponding dimensionless axial radiation force 𝑌𝑧 is usually

expressed using real parts𝛼𝑛 and imaginary parts 𝛽𝑛 of the partial wave coefficients 𝑐𝑛 (𝑐𝑛 = 𝛼𝑛+𝑖𝛽𝑛)
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in a well-known form,42

𝑌𝑧 = −
4
(𝑘𝑎)2

∞∑︁
𝑛=0
(𝑛 + 1)

[
𝛼𝑛 + 𝛼𝑛+1 + 2(𝛼𝑛𝛼𝑛+1 + 𝛽𝑛𝛽𝑛+1)

]
, (1.7)

where the force is normalized by 𝐹0 = 𝜋𝑎2𝐼0/𝑐0 with 𝐼0 = 𝑝2
0/(2𝜌0𝑐0) being acoustic intensity. 𝑎

is the radius of the spherical object, and 𝜌0, 𝑐0 are the density and sound speed of the background

medium, respectively.

Recently, Zhang and Marston imported the complex phase shifts into acoustics from quan-

tum scattering theory to greatly simplify the analytical expressions for the radiation force.42,43 The

complex phase shifts 𝜂𝑛 are related to the partial wave coefficients 𝑐𝑛 through the partial wave

scattering function 𝑠𝑛,

𝑐𝑛 =
𝑠𝑛 − 1

2
with 𝑠𝑛 = 𝑒𝑖2𝜂𝑛 and 𝜂𝑛 = 𝛿𝑛 + 𝑖𝛾𝑛. (1.8)

With the aid of the scattering function 𝑠𝑛, the total field in Eq. (1.6) can be rewritten in terms of

ingoing and outgoing spherical waves

𝑝 = 𝑝0

∞∑︁
𝑛=0

(2𝑛 + 1)
2

𝑖𝑛

[
ℎ
(2)
𝑛 (𝑘𝑟)︸   ︷︷   ︸
ingoing

+ 𝑠𝑛ℎ(1)𝑛 (𝑘𝑟)︸      ︷︷      ︸
outgoing

]
𝑃𝑛 (cos 𝜃), (1.9)

where ℎ(2)𝑛 (𝑘𝑟) is the Hankel function of the second kind and 𝑗𝑛 (𝑘𝑟) = [ℎ(1)𝑛 (𝑘𝑟) + ℎ(2)𝑛 (𝑘𝑟)]/2 is

used during the calculation. It is now clear that the scattering function 𝑠𝑛 represents the reflection

coefficient of ingoing spherical waves being reflected by the object. As a result, |𝑠𝑛 | ≤ 1, where all

|𝑠𝑛 | = 1 only when there is no dissipation in both the particle and the boundary layer surrounding

the particle.50 Imaginary parts of the phase shifts 𝛾𝑛 (𝛾𝑛 ≥ 0) represent the dissipation.

With the aid of the phase shifts in Eq. (1.8), the radiation force expression for incident plane

wave in Eq. (1.7) is greatly simplified. It assumes a very simple form when the dissipation is not
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taken into account (i.e., 𝛾𝑛 = 0), where Eq. (1.7) becomes42

𝑌𝑧 =
4
(𝑘𝑎)2

∞∑︁
𝑛=0
(𝑛 + 1) sin2(𝛿𝑛 − 𝛿𝑛+1). (1.10)

One advantage of importing phase shifts into radiation forces appears immediately: one can directly

tell from Eq. (1.10) that the radiation force for incident plane wave on ordinary objects can never

be negative unless the targets are active (|𝑠𝑛 | > 1 or 𝛾𝑛 < 0; see examples in Ref.51–54). It

is worth noting that although the individual series of the ingoing or outgoing wave is divergent

[Eq. (1.9)],50,55,56 the sum of the ingoing and outgoing waves are convergent [Eq. (1.6)], and the

expression of the radiation force involving the difference of adjacent phase shifts [Eq. (1.10)] is

also convergent.

The phase shift method is not restricted to the incident plane wave, instead it can be applied

to an arbitrary field.14 Consider the arbitrary field scattering from an isotropic sphere with the total

field expressed as50

𝑝 = 𝑝0

∞∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛

𝑎𝑛𝑚𝑖
𝑛

[
𝑗𝑛 (𝑘𝑟) + 𝑐𝑛ℎ(1)𝑛 (𝑘𝑟)

]
𝑌𝑛𝑚 (𝜃, 𝜙), (1.11)

where the beam shape coefficients 𝑎𝑛𝑚 vary for different incident sound beams and the spherical

harmonics are

𝑌𝑛𝑚 (𝜃, 𝜙) =

√︄
(2𝑛 + 1)

4𝜋
(𝑛 − 𝑚)!
(𝑛 + 𝑚)!𝑃

𝑚
𝑛 (cos 𝜃)𝑒𝑖𝑚𝜙. (1.12)

Note that the scattering coefficients for an arbitrary incident field on spherical objects are identical

to the case of incident plane waves.

Using the scattering function 𝑠𝑛 to express the total field as a sum of ingoing and outgoing

spherical waves, the three-dimensional radiation force for arbitrary fields was recently obtained by

Zhang50 in a simple form as:

Y =
1

4𝜋(𝑘𝑎)2
∞∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛

Re[(1 − 𝑠𝑛𝑠∗𝑛+1)b𝑛𝑚], (1.13)
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where the vector b𝑛𝑚 is a function of adjacent beam shape coefficient 𝑎𝑛𝑚,

𝑏𝑥𝑛𝑚 = −(𝑎𝑛𝑚𝑎∗𝑛+1,𝑚+1 − 𝑎𝑛,−𝑚𝑎
∗
𝑛+1,−𝑚−1)ℎ

𝑚,−𝑚−1
𝑛

𝑏
𝑦
𝑛𝑚 = 𝑖(𝑎𝑛𝑚𝑎∗𝑛+1,𝑚+1 + 𝑎𝑛,−𝑚𝑎

∗
𝑛+1,−𝑚−1)ℎ

𝑚,−𝑚−1
𝑛

𝑏𝑧𝑛𝑚 = (2𝑎𝑛𝑚𝑎∗𝑛+1,𝑚)ℎ
𝑚,𝑚
𝑛 (1.14)

with

ℎ𝑚,𝑚
′

𝑛 =

√︄
(𝑛 + 𝑚 + 1) (𝑛 − 𝑚′ + 1)
(2𝑛 + 1) (2𝑛 + 3) . (1.15)

In terms of complex phase shifts for 𝑠𝑛 given in Eq. (1.8), the radiation force is expressed

as a summation of functions of adjacent complex phase shifts involving the difference of the real

parts (𝛿𝑛 − 𝛿𝑛+1) and the sum of the imaginary parts (𝛾𝑛 + 𝛾𝑛+1), i.e.,

1 − 𝑠𝑛𝑠∗𝑛+1 = 1 − 𝑒−2(𝛾𝑛+𝛾𝑛+1)𝑒𝑖2(𝛿𝑛−𝛿𝑛+1) . (1.16)

With the aid of phase shifts, the expression of acoustic radiation force is simplified into a

compact and physically meaningful form, which is beneficial to the analysis and design of acoustic

radiation force. The import of the phase shifts actually provides an efficient way to engineer desired

radiation forces.42,43 The desired force is fulfilled by a specific set of phase shifts from scattering,

and the problem of obtaining the desired force is then simplified to finding the desired phase shifts.

Next, the set of phase shifts is used to engineer the object and beam parameters efficiently and even

analytically since the problem has been reduced to a well-studied scattering problem.

1.5 Acoustic streaming and particle motion

When considering practical situations, the effect caused by the acoustic streaming may need

to be included. Acoustic streaming is a net mean flow generated by a nonlinear acoustic wave with

a finite amplitude in a viscid fluid. It depends on the geometry of the acoustic system, boundary

conditions, and the properties of the incident waves. Based on the generation mechanisms, acoustic
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streaming can be classified into several groups: (i) the "boundary layer driven streaming", where the

flow is induced by the shear viscosity close to a boundary. Specifically, the mean fluid motion outside

the boundary layer is usually referred as the "outer streaming" or "Rayleigh streaming",57 and the

mean fluid motion inside the boundary layer is referred as "inner streaming" and first analyzed by

Schlichting;58 (ii) the "bulk dissipation driven streaming", where the net flow is generated by the

high amplitude acoustic source (usually in high frequency range), and the dissipation within the

fluid. This kind of streaming was first analyzed by Eckart;59 (iii) "jet driven streaming", which

is associated with the periodic suction and ejection of a viscous fluid through an orifice and the

behaviors of the viscid fluid are quite different during the different phases;60 and (iv) "traveling

wave streaming", which is related to travelling waves.60 These different types of streaming can and

usually do occur simultaneously in practice.

The motion of a particle (with the mass of 𝑚) suspended under the acoustic radiation force

Frad, gravity FG, buoyancy FB, and the Stokes drag force FD can be described as follows based on

the Newton’s law:

𝑚
𝑑u
𝑑𝑡

= Frad + FG + FB + FD, (1.17)

where u is the velocity of the particle, which can be solved based on the equation above.

1.6 Acoustic Bessel and vortex beams

An acoustic Bessel beam/wave is a special wave whose amplitude can be described by a

Bessel function of the first kind. The pressure field Re[𝑝(r, 𝑡)] (Re denotes real part) of the Bessel

beam can be expressed in the cylindrical coordinates,

𝑝 = 𝑝0𝐽𝑙 (𝜇𝜌) exp(𝑖𝜅𝑧 + 𝑖𝑙𝜙 − 𝑖𝜔𝑡), (1.18)

where 𝑝0 is a real-valued amplitude, 𝐽𝑙 is Bessel function with topological charge of 𝑙, r(𝜌, 𝜙, 𝑧) is

the field point in cylindrical coordinates, and the transverse wavenumber 𝜇 and axial wavenumber

𝜅 are related to the total wavenumber 𝑘 =
√︁
𝜇2 + 𝜅2 = 𝜔/𝑐0 (𝑐0 is sound speed in the surrounding
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media) through a paraxiality parameter 𝛽 with 𝜇 = 𝑘 sin 𝛽, and 𝜅 = 𝑘 cos 𝛽.

Acoustic Bessel waves are non-diffractive. When the topological charge 𝑙 = 0, the Bessel

beam is an ordinary axisymmetric beam with a central pressure maximum, however, when 𝑙 ≠ 0,

the Bessel beams are vortex beams with a central pressure null. An ideal Bessel beam does not exist

in the real world since it is unbounded and would require an infinite amount of energy. However,

approximated Bessel waves can be created, so they exhibit little or no diffraction over a limited

range, which is roughly equal to the half length of the source divided by the tangent angle of 𝛽.

1.7 Vortex beams in inhomogeneous media

The second portion of the dissertation focuses on the behaviors of acoustic vortex beams in

inhomogeneous media. With a spiral phase exp(𝑖𝑚𝜙) proportional to the azimuth angle 𝜙, acoustic

vortex beams carry orbital angular momentum (OAM).18,61–65 The orbital angular momentum,

proportional to the integer 𝑚, is produced by the circulation of the phase. The integer 𝑚 is the

topological charge of the vortex and the field has a null at the core. Acoustic waves generated by

phased spiral sources or physically spiral sources66 can be used in many applications, especially in

particle manipulations,4,5,18,62,63,67–78 underwater navigation,79 and communications.80,81 There is

also interest in using vortex beams for ultrasonic alignment,61 imaging,82 and therapy.83

The propagation of optical vortices through an inhomogeneous medium was considered

in the scalar approximation by Aksenov et al. 84 where a theoretical approach was proposed to

address the problem of singular fields in the context of improving optical systems in the turbulent

atmosphere. However, prior studies on acoustic vortices were limited to homogeneous media, with

an exception that simulated paraxial propagation of nonlinear vortices in weakly heterogeneous

media.65 When considering practical situations or applications, the media commonly has spatially

varying parameters. For example, in deep ocean environments, the sound speed is a function

of depth, resulting from the temperature and salinity stratification, and pressure variation.85,86 In

biomedical ultrasound, the sound speed has a large variation crossing tissues.87–89 Hence, it is of

fundamental and practical interests to study the propagation of wave vortices and transport of OAM
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in heterogeneous media.

1.8 Hall effect

The Hall effect, sometimes called the ordinary Hall effect, was first discovered by American

physicist Edwin H. Hall in 187990 while he was working on his doctoral degree at Johns Hopkins

University in Baltimore, Maryland. The effect states that when an electric current flows through an

conductor placed in an external magnetic field, a voltage difference across the conductor (so called

the Hall voltage) transverse to the electric current and to the magnetic field is produced. The Hall

effect is due to the accumulation of moving electric charge carriers (electrons or holes) on one side

of the material since these moving charge carriers experience a Lorentz force when an external

magnetic field perpendicular to the electric current is present. Then equal and opposite charges

develop on the other side. The separation of charges establishes an electric field that opposes the

migration of further charges as long as the charges are flowing.

After about one century, a German Physicist, Klaus von Klitzing, made the first discovery

of the quantum Hall effect91 (or integer quantum Hall effect) , which is a quantum-mechanical

version of the Hall effect, and it was observed in two-dimensional electron systems subjected to low

temperatures and strong magnetic fields. For this finding, von Klitzing was awarded the 1985 Nobel

Prize in Physics. Later, the fractional quantum Hall effect was experimentally discovered in 1982

by Tsui et al. 92 in experiments performed on gallium arsenide heterostructures developed by Arthur

Gossard. In the quantum Hall effect, the Hall resistance, which is the voltage across the transverse

direction of a conductor divided by the longitudinal current, is quantized as ℎ/𝜈𝑒2, where 𝑒 is the

elementary charge, ℎ is Planck’s constant, and 𝜈 could be an integer or a certain fraction. The

quantum Hall effect has also been found in graphene at temperatures as high as room temperature.93

The quantum Hall effect also provides an extremely precise independent determination of the fine

structure constant, a quantity of fundamental importance in quantum electrodynamics.

The optical Hall effect, which comes from the interactions between different types of

angular momentum, has been studied for a long time. Specifically, the spin-orbit interaction (the
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coupling between spin angular momentum and extrinsic orbital angular momentum) leads to a

mutual influence on the polarization and the trajectory of the beam center.94–97 This spin-orbit

coupling causes two effects: (i) a trajectory-dependent polarization variation characterized by

the Berry phase, providing a parallel transport of the polarization vector along the ray; (ii) the

spin Hall effect, which leads to the transverse shifts (so called Imbert-Fedorov shift98) in the

reflection/refraction on a sharp boundary99–103 or splitting of rays for different polarization in a

smoothly inhomogeneous medium.101,104–107 The Imbert-Fedorov effect can be considered as a

special case of the spin Hall effect. The optical spin Hall effect is the photonic analogue of the

electronic spin Hall effect, where the polarization of an incident light wave corresponds to the

electron spin and the refractive index gradient of the material plays a role of an applied electric

field.108 These effects can be understood by the spin-orbit interaction and the conversion of the

normal component of total angular momentum.95,101–104

Apart from the spin Hall effect caused by the interaction between the polarization and

extrinsic orbital features, similar topological phenomena caused by the interaction between intrinsic

and extrinsic orbital angular momentum, i.e. orbital Berry phase and the orbital Hall effect were

also found.94,109–115 Large values of intrinsic orbital angular momentum compared to the spin

polarization can dramatically enhance and rearrange the topological phenomena. Similarly, the

’orbital’ Imbert-Fedorov effect can be considered as a special case of the orbital Hall effect regarding

either the singular point94 or the gravity center of the vortex beam116–118.

The topological phenomena and effects in optics mentioned above have been found and

studied for a long time, however, the study of topological acoustics is only a few years old,119–137 and

the Berry geometric phase effect in acoustics was not reported until recently by Wang et al. 138 and

Ma et al. 133 where the Berry phase associated with the helical transport of sound was described and

measured via a twisted pipe in the air. The reflection of an obliquely incident acoustic vortex beam

on the water-air interface was also studied recently by Zou et al. 139 numerically and experimentally.

Nevertheless, the Hall effect associated with acoustic vortex beams has not been explored.
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1.9 Organization of the dissertation

The dissertation is organized as follows. Chapter 2 systematically analyzes the trapping

behaviors of small spherical objects located at the Bessel and vortex beam axis, and also suggests

the possibility of achieving acoustic tractor beams. Chapter 3 studies the trapping behaviors on

arbitrary objects with the aid of the Born approximation, especially for large objects. Chapter 4

analyzes the acoustic pulling force with the aid of the phase shifts. Chapter 5 discusses the forces

caused by other effects, such as gravity, buoyancy and acoustic streaming. Chapter 6 studies the

refraction of acoustic vortex beams in inhomogeneous media, and reports some unusual behaviors

as the vortex beam propagates. Chapter 7 describes the acoustic orbital Hall effect for vortex

beams during propagation in a continuously stratified medium. Chapter 8 analyzes a special case

of the acoustic orbital Hall effect which occurs on the sharp boundary between two media, i.e., the

acoustic Imbert-Fedorov effect, and also suggests the possible experiments for the observation of

the acoustic orbital Hall effect. Chapter 9 makes a summary and conclusion about this dissertation.
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CHAPTER 2

TRAPPING OF SMALL SPHERICAL OBJECTS

In this chapter, the trapping of spherical objects by acoustic Bessel and vortex beams is

systematically examined, where the transverse trapping by acoustic Bessel beams can have some

unusual and unique behaviors, different from trapping by standing waves and focused beams.

A particle centered on the central core of both axisymmetric beams (central pressure

maximum) and vortex beams (central pressure minimum) is considered [Fig. 2.1], and they can

be described by arbitrary-order Bessel beams propagating along a 𝑧 axis with the pressure field

Re[𝑝(r, 𝑡)] (Re denotes real part) given by,

𝑝(r, 𝑡) = 𝑝0𝐽𝑙 (𝜇𝜌) exp(𝑖𝜅𝑧 + 𝑖𝑙𝜙 − 𝑖𝜔𝑡), (2.1)

where 𝑝0 is a real-valued amplitude, 𝐽𝑙 is Bessel function with topological charge of 𝑙, r(𝜌, 𝜙, 𝑧) is

the field point in cylindrical coordinates, and the transverse wavenumber 𝜇 and axial wavenumber

𝜅 are related to the total wavenumber 𝑘 =
√︁
𝜇2 + 𝜅2 = 𝜔/𝑐0 (𝑐0 is sound speed in the surrounding

media) through a paraxial parameter 𝛽 with 𝜇 = 𝑘 sin 𝛽, and 𝜅 = 𝑘 cos 𝛽.

2.1 Trapping of a rigid sphere

The transverse force 𝐹𝜌 = 𝜋𝑎2(𝐼0/𝑐0)𝑌𝜌 exerted on a spherical particle of radius 𝑎 (with

𝐼0 = 𝑝2
0/(2𝜌0𝑐0) being acoustic intensity and 𝜌0 being the density of surrounding media), where

the dimensionless transverse force 𝑌𝜌 as a function of the transverse location 𝑅 of the sphere off
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Figure 2.1: Transverse trapping of a rigid sphere of radius 𝑎 (𝑘𝑎 = 0.05 with 𝑘 being wavenumber)
using (a) axisymmetric beams and (b) vortex beams. The results of the traveling beams (paraxial
parameter 𝛽 = 15◦; red dashed lines) are different from the results of standing waves (𝛽 = 90◦;
black solid lines), where paraxial parameter 𝛽 is related to the axial wavenumber 𝜅 and transverse
wavenumber 𝜇 by 𝜇/𝜅 = tan 𝛽. The fields are given by Eq. (2.1) with the topological charge 𝑙 = 0
and 1, respectively.
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the beam axis can be obtained from partial wave expansion; see Eq. (16) from Zhang,18

𝑌𝜌 (𝑅) =
∞∑︁

𝑚=−∞
𝐾+𝑚𝐵𝑚, (2.2)

𝐾+𝑚 = 𝐽𝑙−𝑚 (𝜇𝑅)𝐽𝑙−𝑚−1(𝜇𝑅) − 𝐽𝑙+𝑚 (𝜇𝑅)𝐽𝑙+𝑚+1(𝜇𝑅),

𝐵𝑚 =
1
(𝑘𝑎)2

∞∑︁
𝑛=|𝑚 |

(𝑛 − 𝑚)!
(𝑛 + 𝑚)!𝑃

𝑚
𝑛 (𝑏)𝑃𝑚+1𝑛+1 (𝑏)Im(𝑠

★
𝑛 𝑠𝑛+1),

where 𝑏 = cos 𝛽, Im represents for imaginary part, and the scattering functions 𝑠𝑛 42 are determined

by boundary conditions on the particle surface (see Appendix; |𝑠𝑛 | = 1 in the ideal case of no

absorption). Note 𝐾+𝑚 = 0 when 𝜇𝑅 = 0. The transverse force as a function of the object location

𝑅 for a dense and rigid particle (𝑘𝑎 = 0.05 and 𝛽 = 15◦) is shown in Fig. 2.1. The results indicate

that the rigid particle is trapped to the axis of axisymmetric beam (pressure maximum) and repelled

away from the core of the vortex beam (pressure minimum), in contrast to the trapping behaviors

by standing waves (relatively dense and stiff particles are trapped to pressure minimum by standing

waves).

The contrasting behaviors can be understood by examining the contribution of the velocity

component along the propagation direction to the force potential. In the Rayleigh regime, the

transverse force is given by 𝐹𝜌 = −𝜕𝑈/𝜕𝜌 where the gradient is along the transverse direction only,

but the force potential𝑈 12 depends on velocity in all three directions,

𝑈 = (𝜋𝑎3/3) [ 𝑓1 |𝑝 |2/(𝜌0𝑐
2
0) − (3/2) 𝑓2𝜌0 |v|2], (2.3)

in which the monopole and dipole factors,

𝑓1 = 1 − 1/𝜅, 𝑓2 = 2(𝜆 − 1)/(1 + 2𝜆), (2.4)

depend on the mass density ratio and bulk modulus ratio of the particle to the surrounding media,

𝜆 = 𝜌/𝜌0, 𝜅 = 𝐾/𝐾0. (2.5)
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Figure 2.2: Contribution of pressure (top panels) and three components of velocity (center panels)
to the potential (bottom panels) for (a) axisymmetric and (b) vortex beams. The reversal of the
potential is due to the presence of axial velocity 𝑣𝑧 (dashed lines); see Eq. (2.3). Arbitrary unit and
normalization are used here.
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For the axisymmetric beam [Fig. 2.2(a)], it is true that the transverse velocity has a central minimum

coinciding with the pressure maximum, like planar standing waves, leading to a maximum of the

Gor’kov potential for a relatively stiff and dense particle. However, the axial velocity component

instead has a central maximum coinciding with the pressure maximum. As a result, it is possible

to have a minimum potential for a stiff and dense ( 𝑓1,2 > 0) or even for the extreme case of a rigid

particle ( 𝑓1 = 1), as long as the particle is dense enough (large 𝑓2). The minimum potential for a

rigid particle of heavy mass ( 𝑓1,2 = 1) centered on the axisymmetric beam is shown in Fig. 2.2(a).

Similarly, for the vortex beam [Fig. 2.2(b)], the transverse and azimuthal velocity has a central

maximum coinciding with the pressure minimum, like planar standing waves, leading to trapping

of a relatively dense and stiff particle by the minimum of Gor’kov potential. However, the axial

velocity component instead has a central minimum coinciding with the pressure minimum. As

a result, a stiff and dense particle is repelled from the pressure null of vortex beams due to the

maximum potential as shown in Fig. 2.2(b).

Given the projection of wave vectors associated with the paraxial parameter 𝛽, the transverse

velocity is proportional to sin 𝛽 while the axial velocity is proportional to cos 𝛽:

𝑣𝜌 ∝ sin 𝛽, 𝑣𝑧 ∝ cos 𝛽. (2.6)

As such, reducing the paraxial parameter 𝛽 reduces the transverse velocity and enhances the axial

velocity. Consequently, the trapping is reversed when the 𝛽 is reduced to be smaller than a critical

value. The reversal occurs only when the density contrast is large enough [see Eq. (2.3)].

2.2 Variation of trapping with beam and material parameters

The above predictions of variation of the trapping with beam and material parameters are

shown in Fig. 2.3 by the transverse gradient of the transverse force:

𝑆𝑙𝑜𝑝𝑒 = 𝑑𝑌𝜌 (𝑅)/𝑑 (𝜇𝑅). (2.7)
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Figure 2.3: When varying the paraxial parameter 𝛽, the trapping is (a)-(b) preserved for small
contrast of density or (c)-(d) reversed for large contrast of density, as denoted by sign of 𝑆𝑙𝑜𝑝𝑒 [see
Eq. (2.7)] . The inner-to-outer radius ratio of the shell in (c) is 0.96; see material parameters in
Table 8.1.

The results are for 𝑆𝑙𝑜𝑝𝑒 as a function of paraxial parameter 𝛽 calculated from Eq. (2.2) with

𝑘𝑎 = 0.05 for four different contrasts of density and bulk modulus. At the non-propagating limit

𝛽 = 90◦, the results are in agreement with trapping by plane standing waves or trapping by Bessel-

function fields: the light or soft particles are trapped at the pressure anti-node (local maximum) of

axisymmetric waves [(a) and (c)], while dense and stiff particles are trapped at pressure node (local

minimum) of vortex waves [(b) and (d)]. When reducing the 𝛽 to change to a traveling beam, the

results show exactly that the trapping is preserved when the density contrast is relatively small [(a)

and (b)] and reversed when the density contrast is relatively large [(c) and (d)]. Meanwhile, the

transition difference of 𝛽 between 𝑙 = 0 and 𝑙 = 1 leads to the simultaneous repelling [see (c)] or

trapping [ see (d)] by both axisymmetric and vortex beams at 𝛽 values between the two transitions,

while it is generally true that the particles trapped by one beam are repulsed by the other.

The transverse force can be characterized in terms of a beam-parameter-dependent acoustic
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Materials Mass density Longitude wave Transverse wave
𝜌 [kg/m3] speed 𝑐𝐿 [m/s] speed 𝑐𝑇 [m/s]

Air 1.21 343
Hexane 656 1078
Water 1000 1500

PMMA 1190 2690 1340
aluminum 2700 (311) 6420 3040

Table 2.1: Acoustic properties of materials in Fig. 2.3. The density 311 kg/m3 is effective density
of the aluminum shell calculated with the inner-to-outer radius ratio 𝑏/𝑎 = 0.96.

contrast factor Φ𝑙 and the dimensionless transverse location 𝜇𝑅 explicitly,

𝑌𝜌 = 2𝑘𝑎 sin 𝛽Φ𝑙 × 𝜇𝑅 +𝑂 ((𝜇𝑅)2), (2.8)

where sin 𝛽 accounts for momentum projection to the transverse direction. For 𝑙 = 0 and 1 beams,

one obtains,

Φ𝑙 = ±2−𝑙
[
1
3
𝑓1 +

(
3 + 𝑙

4
sin2 𝛽 − 1

2

)
𝑓2

]
, (2.9)

which follows from: (a) the Gor’kov potential Eq. (2.3) where the velocity is v = ∇𝑝/(𝑖𝜔𝜌0)

with the pressure 𝑝 given by Eq. (4.1), or (b) the partial wave expansion Eq. (2.2) where only the

monopole and dipole terms are kept and the partial wave coefficients for small 𝑘𝑎 approximation

are used:43

𝑠0 = 1 − 𝑖(2/3) (𝑘𝑎)3 𝑓1 − (2/9) (𝑘𝑎)6 𝑓 2
1 , (2.10a)

𝑠1 = 1 + 𝑖(1/3) (𝑘𝑎)3 𝑓2 − (1/18) (𝑘𝑎)6 𝑓 2
2 . (2.10b)

The small 𝜇𝑅 approximation was applied, 𝐽𝑚 (𝜇𝑅) ≈ (𝜇𝑅/2)𝑚/𝑚! (with 𝑚 being an non-negative

integer and 𝐽𝑚 (𝑥) = (−1)𝑚𝐽|𝑚 | (𝑥) for a negative integer 𝑚). In Eq. (2.2), 𝐾𝑚 (𝜇𝑅) is then a

series in 𝜇𝑅, where the contribution to the first order term is only from 𝑚 = ±𝑙 and 𝑚 = −1 ± 𝑙,

which illustrates the coupling of the adjacent order resulting from the transverse projection of
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momentum.50 The sign difference in Eq. (2.9) shows the complement stability between 𝑙 = 0 beam

(plus sign) and 𝑙 = 1 beam (minus sign).

Equation (2.9) shows the dependence of the acoustic contrast factor on the beam parameters

(𝛽 and 𝑙) and material parameters (𝜆 and 𝜅). Multiple parameter dependence in the stability

diagram is displayed in Fig. 2.4, where the 𝛽 value for the transition Φ𝑙 (𝛽) = 0, denoted by 𝛽𝑙 , is

illustrated by the colormap. The two transition limits of 𝛽𝑙 = 0◦ (at 𝑓1/ 𝑓2 = 3/2) and 𝛽𝑙 = 90◦

(at 𝑓1/ 𝑓2 = −3(1 + 𝑙)/4) divide the stability diagram into four regimes for four types of trapping

[Table 2.2]. When varying the paraxial parameter 𝛽 over the whole 90◦ range, the trapping is

preserved or reversed for materials for which the density contrast is relatively small (I and II) or

large (III and IV). Note that, in regime IV (or III), there always exists 𝛽1 ≤ 𝛽 ≤ 𝛽0 for the particle

to be trapped at (or be repulsed away from) both the central pressure maximum of axisymmetric

beams and minimum of vortex beams, while particles in regimes I and II are always trapped by one

beam and repulsed by the other [Table 2.2].

The four cases calculated in Fig. 2.3 respectively fall into the four regimes in Fig. 2.4 with

the contrast factors given by Eq. (2.4) with the bulk modulus being 𝐾0 = 𝜌0𝑐
2
0 for background

medium, 𝐾 = 𝜌𝑐2 for a droplet, and 𝐾 = 𝜌[𝑐2
𝐿
− (4/3)𝑐2

𝑇
] for an elastic sphere with 𝑐𝐿 and 𝑐𝑇

being the longitudinal and transverse wave velocities of the material, respectively. For a hollow

elastic shell with an inner-to-outer radius ratio 𝑏/𝑎, the density 𝜌 and bulk modulus 𝐾 should be

replaced by effective mass density and effective bulk modulus:

𝜌eff = [1 − (𝑏/𝑎)3]𝜌, 𝐾eff =
[1 − (𝑏/𝑎)3]𝐾

1 + (𝑏/𝑎)3 [0.75(𝑐𝐿/𝑐𝑇 )2 − 1]
, (2.11)

which follow from 𝑠𝑛 in the Appendix and agree with the expressions in Zhou et al. 140 and

Leão-Neto et al. 141 for more complex situations.

Importantly, dense and stiff particles (regimes IV in Fig. 2.4) can now be trapped by the

axisymmetric beam with a small paraxial parameter 𝛽, in contrast to vortex beams which require

a large paraxial parameter. This result suggests a new way to realize trapping of a dense and stiff
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Figure 2.4: Stability diagram for (a) 𝑙 = 0 and (b) 𝑙 = 1 beams, illustrating transition of trapping
at a critical paraxial parameter 𝛽𝑙 (colorbar) in the parameter space of density ratio 𝜆 and bulk
modulus ratio 𝜅 [see Eq. (2.5)]. See Table 2.2 about the stability features of the four regimes I-IV
divided by the two boundaries, 𝑓1/ 𝑓2 = 3/2 (increasing curve) and 𝑓1/ 𝑓2 = −3(1+ 𝑙)/4 (descending
curve), following from Eq. (2.9). For comparison, the dashed line in (a) illustrates boundary of
transition for plane standing wave trapping, 𝑓1/ 𝑓2 = −3/2, overlapped with the 𝛽 = 90◦ standing
wave boundary in (b).

I II III IV
Axisymmetric stable unstable stable stable
beam (𝑙 = 0) for all 𝛽 for all 𝛽 for 𝛽 > 𝛽𝑙 for 𝛽 < 𝛽𝑙
Vortex beam unstable stable stable stable

(𝑙 = 1) for all 𝛽 for all 𝛽 for 𝛽 < 𝛽𝑙 for 𝛽 > 𝛽𝑙

Table 2.2: Stability transition for the four regimes in Fig. 2.4.
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Figure 2.5: Diagrams for (a) pulling and (b) simultaneous trapping and pulling of a Rayleigh
particle in the parameter space of (𝜆, 𝜅), with the colorbar illustrating the minimum paraxial
parameter required for the axisymmetric 𝑙 = 0 Bessel beam. The values of 𝑓1/ 𝑓2 on the boundaries
are determined by Eqs. (2.9) and (2.12).

particle in a simple scheme by using a small 𝛽 axisymmetric beam, instead by the relatively complex

scheme by vortex beams. For a rigid sphere in the dense limit, the trapping is for 𝛽 < 28◦ using

axisymmetric beam and for 𝛽 > 24◦ using 𝑙 = 1 vortex beams [ 𝑓1 = 1 and 𝑓2 = 1 in Eq. (2.4)].

2.3 Stable tractor beams

A stability diagram is used to seek the stable trapping in situations where the object is

simultaneously pulled towards the beam source (namely, a stable tractor beam13–15,37). By using

the axisymmetric Bessel beam, the stability diagram Fig. 2.5 shows that the simultaneous trapping

and pulling of a Rayleigh particle is favored for relatively stiff and light particles in Regime III or

relatively soft and dense particles in Regimes I and IV, where the trapping can be achieved by using

a large paraxial parameter 𝛽 that is also favoured by momentum projection to pull particles.14

Consider the 𝑙 = 0 beam, coupling between the scattered monopole and dipole field leads

to the axial radiation force 𝐹𝑧 = 𝜋𝑎2(𝐼0/𝑐0)𝑌𝑧 with,

𝑌𝑧 =
1
9
(𝑘𝑎)4 𝑓 2

2 cos 𝛽[(1 + 2 𝑓1/ 𝑓2)2 + 2𝑃2(cos 𝛽)], (2.12)
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Figure 2.6: Contour plots of dimensionless radial negative force in the parameter space of (𝑘𝑎, 𝛽)
where particles are simultaneously trapped and pulled. The results are for 𝑙 = 1 (upper panels) and
𝑙 = 0 (bottom panels). Only the aluminum shell is stably pulled by axisymmetric beam in Rayleigh
regime because the aluminum shell lies in the stable pulling region in Fig. 2.5 [(𝜆, 𝜅)=(0.31, 1.44)].

Figure 2.7: Minimum 𝛽 for simultaneous pulling and trapping of an empty aluminum shell centered
on the axis of axisymmetric Bessel beams in the parameter space (𝑘𝑎, 𝑎) when the loss correction
is included. At the small 𝑘𝑎 and 𝑎 values, 𝛽 approaches to 90◦ (white region).
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which is Eq. (15) in Marston 13 and the Legendre function 𝑃2(cos 𝛽) = (3 cos2 𝛽 − 1)/2. Given the

material parameters, the force is negative when 𝛽 is larger than a critical angle given by 𝑌𝑧 (𝛽) = 0.

The minimum 𝛽 value is about 55◦ for particles with material contrast 𝑓1/ 𝑓2 = −1/2. Larger

𝛽 fulfills a larger region of negative force in the parameter space of mass density ratio and bulk

modulus ratio. The negative force exists for materials contrast in the regime bounded by 𝑓1/ 𝑓2 = −1

and 𝑓1/ 𝑓2 = 0 [Fig. 2.5(a)].

Regions for simultaneous trapping and pulling a small particle is obtained by combining

Eqs. (2.9) and (2.12) or combining Figs. 2.4(a) and 2.5(a) per sa. The results are shown in Fig. 2.5(b)

with the color-plots illustrating the minimum parameter 𝛽 required. The minimum 𝛽 is determined

by the critical values for pulling in Fig. 2.5(a) and for trapping in Fig. 2.4(a). In the region 𝜆 > 1,

for 𝑓1/ 𝑓2 > −3/4, the 𝛽 also needs to be less than the critical angle for stable trapping in Regime

IV of Fig. 2.4(a). The boundary 𝑓1/ 𝑓2 = −0.23 in Fig. 2.5(b) corresponds to the situation when the

minimum 𝛽 angle for pulling equals to the maximum 𝛽 angle for trapping. Hence, the beam and

material parameters for the simultaneous pulling and trapping of a Rayleigh particle is identified.

For other material parameters outside that shown in Fig. 2.5(b), one would have to use a 𝑘𝑎

outside the Rayleigh regime to achieve the simultaneous trapping and pulling; see Fig. 2.6. The

results are calculated from the dimensionless forces𝑌𝜌 and𝑌𝑧 from Eq. (16) in Zhang 18 (with 𝑅 = 0

therein; see also Zhang 142). In the Rayleigh regime [Fig. 2.6], only the aluminum shell in water

is stably pulled by the axisymmetric beam because the parameters lie in the stable pulling region

in Fig. 2.5(b) with the effective mass density ratio 𝜆eff = 0.31 and the effective bulk modulus ratio

𝜅eff = 1.44 [see Eq. (2.11)]. For this case, the minimum 𝛽 required for the trapping is about 65◦

and required for pulling is about 56◦.

In the practical situation though, one would need to include the correction by thermoviscous

absorption. The absorption degrades the negative force,14,43 and consequently increases the mini-

mum 𝛽 required, as illustrated in Fig. 2.7 for the simultaneous pulling and trapping of the aluminum

shell in water in the parameter space 𝑘𝑎 and 𝑎. The correction to the axial force is dominated by

the term,14 𝑌 abs
𝑧 = 𝑄abs cos 𝛽, where cos 𝛽 accounts for projection of momentum to the propagation
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axis and 𝑄abs is the absorption efficiency. For the range of 𝑘𝑎 examined herein, it is satisfactory to

approximate the force experienced by the elastic shell by retaining only the monopole and dipole

terms.143 The range of the ratio of the boundary thickness to the sphere radius, 𝛿/𝑎, in Fig. 2.7 is

from 0.0002 to 0.05, where the ratio,

𝛿/𝑎 =
√︁

2𝜈/𝜔/𝑎 = (2𝜈/𝑐𝑎)1/2/(𝑘𝑎)1/2, (2.13)

is a function of 𝑎 and 𝑘𝑎 43 (𝜈 denotes the kinematic viscosity of the surrounding fluid). Following

from the 𝛿/𝑎 ≪ 1 approximation, the absorption efficiency14,51 is,

𝑄abs ≈ 12(𝑘𝑎)1/2(2𝜈/𝑐𝑎)1/2 [(𝜆 − 1)/(1 + 2𝜆)]2 cos2 𝛽, (2.14)

which accounts for the viscous power dissipation near the small solid sphere; the loss contribution

to the monopole term is neglected (which is satisfactory unless 𝑄abs in Eq. (2.14) is significantly

reduced when 𝛽 is near 90◦). With these approximations, Fig. 2.7 demonstrates the existence

of a stable tractor beam (i.e., simultaneous pulling and trapping) for a small particle when loss

correction is included. These angles are relatively large, making "long-range" difficult.

The results in the standing-wave limit (𝛽 = 90◦) are applicable to trapping by two orthogonal

standing waves,144 where the field near the nodes and anti-nodes are approximated by the 𝑙 = 0 and

𝑙 = 1 Bessel-function fields.63 The trapping criteria are

𝑓1/ 𝑓2 > −3/2 for trapping at pressure nodes; (2.15)

𝑓1/ 𝑓2 < −3/4 for trapping at pressure anti-nodes.

Particles whose parameters are in the regime between these two transitions are trapped by both the

nodes and anti-nodes.

On the other hand, trapping conditions for a Rayleigh particle can be simplified by using

higher-order beams. For instance, the trapping by 𝑙 = 2 beam has an acoustic contrast factor
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[Eq. (2.9)]:

Φ2(𝛽) = 1/8 sin2 𝛽 𝑓2, (2.16)

which depends on the mass density ratio but not the bulk modulus radio, where dense (light)

particles are repulsed (attracted) and there is no reversal of the trapping when varying the paraxial

parameter 𝛽 in this case. Further, the non-conservative radiation force along the axis direction

exerted by the 𝑙 = 2 beam on the Rayleigh particle is negligible, which in turn gives more flexibility

in manipulating the axial force for particles beyond the Rayleigh regime.
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CHAPTER 3

BORN APPROXIMATION METHOD FOR TRAPPING FORCE

In the previous chapter, the transverse trapping force has been analyzed based on the Gorkov

potential and the partial wave expansion with a focus on small spherical objects within the Rayleigh

regime (𝑘𝑎 << 1 with 𝑘 being the wavenumber and 𝑎 being the characteristic length of the particle).

However, for large objects beyond the Rayleigh regime, there is a lack of analytical solutions for the

analysis and prediction of the transverse radiation force. The radiation forces are usually computed

using the partial-wave expansion method or the finite element method,145 which are not efficient

and the underlying physics of the radiation force is not intuitive and straight-forward. In this chapter,

a relatively simple method, i.e., the Born approximation method, will be introduced, examined, and

utilized for the analysis of acoustic transverse trapping force generated by acoustic Bessel fields

with a focus on large spherical objects and objects of different shapes.

Systematic analysis of acoustic trapping forces generated by acoustic Bessel fields on small

spherical objects has been studied in the Chapter 2. In the current chapter, the focus is to examine the

capability of the Born approximation method for the analysis of gradient trapping forces, and then

use it to analyze the trapping force exerted by acoustic Bessel fields on large spherical objects and

objects of different shapes and orientations. In this chapter, it is proved that for multidimensional

fields, for example, acoustic Bessel fields here, the Born approximation method can provide a

good approximation in the direction where the gradient force dominates. The Born approximation

method can simplify the analysis of the trapping force, and can also provide insight into the trapping

behaviors.

Recall that the pressure field Re[𝑝(r, 𝑡)] (Re denotes real part) of the incident Bessel Beam

is given by

𝑝 = 𝑝0𝐽𝑙 (𝜇𝜌) exp(𝑖𝜅𝑧 + 𝑖𝑙𝜙 − 𝑖𝜔𝑡), (3.1)
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Figure 3.1: Illustration of the Born approximation method. The total radiation force 𝐹 can be
obtained by taking an integration (or a summation numerically) of the force over the total volume𝑉
occupied by the object. Numerical grids are divided evenly in all three directions in the Cartesian
coordinates.

where 𝑝0 is a real-valued amplitude, 𝐽𝑙 is Bessel function with topological charge of 𝑙, r(𝜌, 𝜙, 𝑧) is

the field point in cylindrical coordinates, and the transverse wavenumber 𝜇 and axial wavenumber

𝜅 are related to the total wavenumber 𝑘 =
√︁
𝜇2 + 𝜅2 = 𝜔/𝑐0 (𝑐0 is sound speed in the surrounding

media) through a paraxiality parameter 𝛽 with 𝜇 = 𝑘 sin 𝛽, and 𝜅 = 𝑘 cos 𝛽.

When the topological charge 𝑙 = 0, the Bessel beam is an ordinary axisymmetric beam

with a central pressure maximum, however, when 𝑙 ≠ 0, the Bessel beams are vortex beams with a

central pressure null. One advantage of Bessel beams is that the axial and transverse components

are explicitly separable. In particular, acoustic Bessel beams have a traveling wave component in

the axial direction, yet have a standing wave component in the transverse direction. Hence, the

Born approximation method should be applicable to the calculation of the transverse radiation force

[Fig. 3.1].

3.1 Acoustic trapping force based on the Gorkov potential

When objects are small, the transverse radiation force 𝐹𝜌 can be obtained from the negative

gradient of the Gorkov potential along the transverse direction in the cylindrical coordinates, i.e.,

𝐹𝜌 = −∇𝜌𝑈 (3.2)
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with the Gorkov potential being

𝑈 = (𝜋𝑎3/3) [ 𝑓1𝑝2/(𝜌0𝑐
2
0) − (3/2) 𝑓2𝜌0v2], (3.3)

where the potential 𝑈 is proportional to the volume of the sphere (i.e., 𝑉 = 4𝜋𝑎3/3 and 𝑎 is the

radius of the object). 𝜌0 is the mass density of the background medium, and 𝑓1 and 𝑓2 are the

monopole and dipole factors,

𝑓1 = 1 − 𝐾0/𝐾𝑠, 𝑓2 = 2(𝜌𝑠 − 𝜌0)/(2𝜌𝑠 + 𝜌0), (3.4)

depending on the mass density (𝜌) and bulk modulus (𝐾) of the object (indicated by the subscript

𝑠) and the surrounding medium (indicated by the subscript 0).19

Combining Eqs. (3.1)-(3.3), the transverse radiation force 𝐹𝜌 acting on a small particle at

the transverse location 𝑅 is

𝐹𝜌 =
4𝜋𝑎3

3
𝑓 , (3.5)

with the force density 𝑓 being,

𝑓 =
𝑝2

0𝜇

4𝜌0𝑐
2
0

{
𝐽𝑙 (𝐽𝑙+1− 𝐽𝑙−1) 𝑓1−

[
𝐽𝑙 (𝐽𝑙+1− 𝐽𝑙−1)𝑃2(cos 𝛽) + (𝐽𝑙+1𝐽𝑙+2− 𝐽𝑙−1𝐽𝑙−2)

sin2 𝛽

2

] 3
2
𝑓2

}
, (3.6)

where 𝐽𝑙 ≡ 𝐽𝑙 (𝜇𝑅) is defined for convenience and simplicity.

When the particle is near the beam axis, Eq. (3.5) can be further simplified as:

𝐹Gorkov
𝜌 =

𝑝2
0𝜇

2𝜌0𝑐
2
0
· 𝑉 · 𝜇𝑅 · Φ𝑙 (𝛽) (3.7)
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with the acoustic contrast factors Φ𝑙 (𝛽),

Φ𝑙 (𝛽) =


[ 𝑓1 − 3

4 (3 cos2 𝛽 − 1) 𝑓2]/3 𝑙 = 0

−[ 𝑓1 + (3 sin2 𝛽 − 3
2 ) 𝑓2]/6 𝑙 = 1

𝑓2 sin2 𝛽(𝜇𝑅)2(𝑙−2)/[(𝑙 − 1)!(𝑙 − 2)!22𝑙−5] 𝑙 ≥ 2.

(3.8)

Recall that the acoustic contrast factors for 𝑙 = 0, 1, 2 was previously given in Fan and Zhang.19 In

addition, the trapping forces for 𝑙 ≥ 2 have identical dependence on the dipole factor 𝑓2, but the

trapping force actually decreases as the order of vortex beams increases.

It is also useful and significant to discuss a special case of cylindrical standing waves,

i.e., 𝛽 = 90◦, since the standing waves are easier to use for particle manipulations in practical

applications. In this case, the acoustic contrast factors Φ𝑙 for a cylindrical standing waves are

simplified as,

Φ𝑙 =


( 𝑓1 + 3

4 𝑓2)/3 or (Δ𝐾 + 1
2Δ𝜌)/3 𝑙 = 0

−( 𝑓1 + 3
2 𝑓2)/6 or − (Δ𝐾 + Δ𝜌)/6 𝑙 = 1

𝑓2(𝜇𝑅)2(𝑙−2)/[(𝑙 − 1)!(𝑙 − 2)!22𝑙−5] or 2
3Δ𝜌 (𝜇𝑅)

2(𝑙−2)/[(𝑙 − 1)!(𝑙 − 2)!22𝑙−5] 𝑙 ≥ 2,
(3.9)

where the expressions in terms of the mass density contrast Δ𝜌 = (𝜌𝑠 − 𝜌0)/𝜌0 and bulk modulus

contrast Δ𝐾 = (𝐾𝑠 − 𝐾0)/𝐾0 are more intuitive for the justification of trapping behaviours. As

discussed in the previous chapter, this acoustic contrast factor Φ𝑙 can be directly used for the

predictions of the trapping behaviors for small objects near the beam center [Fig. 3.2]. For the

negative contrast factors, the particle will be trapped due to the restoring force, and the particle will

be repelled from the axis if the contrast factor is positive.

3.2 Acoustic trapping force based on the partial wave expansion method

For small objects, one can use the Gorkov potential to compute the acoustic trapping force,

and use the acoustic contrast factors to predict the trapping behaviors. However, for large objects,
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the Gorkov potential loses its capability for the predictions of the radiation force. In this case, the

partial wave expansion method50 is usually used for the calculation of acoustic trapping forces,

𝑌𝜌 (𝑅) = 𝐹𝜌 (𝑅)/𝐹0 =

∞∑︁
𝑚=−∞

𝐾+𝑚𝐵𝑚, (3.10)

𝐾+𝑚 = 𝐽𝑙−𝑚 (𝜇𝑅)𝐽𝑙−𝑚−1(𝜇𝑅) − 𝐽𝑙+𝑚 (𝜇𝑅)𝐽𝑙+𝑚+1(𝜇𝑅),

𝐵𝑚 =
1
(𝑘𝑎)2

∞∑︁
𝑛=|𝑚 |

(𝑛 − 𝑚)!
(𝑛 + 𝑚)!𝑃

𝑚
𝑛 (cos 𝛽)𝑃𝑚+1𝑛+1 (cos 𝛽)Im(𝑠★𝑛 𝑠𝑛+1),

where 𝐹0 = 𝜋𝑎2𝑝2
0/(2𝜌0𝑐

2
0), Im represents for imaginary part, 𝑃𝑚𝑛 are the associated Legendre

polynomials, and the scattering functions 𝑠𝑛 42 are determined by boundary conditions on the

particle surface (see Appendix).

The partial wave expansion method is powerful, yet it is relatively time-consuming, and the

physics behind the trapping force is not clear enough. That is why the Born approximation method

is introduced here for the analysis of the acoustic trapping force, especially for large objects.

3.3 Acoustic trapping force based on the Born approximation method

The trapping force from the Born approximation method takes an integration of the in-

finitesimal force over the total volume occupied by the objects. Based on Eq. (3.5), the infinitesimal

force 𝑑𝐹𝜌 acting on a volume element 𝑑𝑉 can be obtained by replacing the volume 4𝜋𝑎3/3 by 𝑑𝑉

and corresponding 𝐹𝜌 by 𝑑𝐹𝜌:

𝑑𝐹𝜌 = 𝑓 𝑑𝑉. (3.11)

Mathematically, the reason why the Born approximation is restricted to standing waves in the

transverse direction is that the gradient force 𝑑𝐹𝜌 is proportional to 𝑑𝑉 , however, the scattering

force 𝑑𝐹𝑧 for a traveling wave along the axial direction is proportional to (𝑑𝑉)2, prohibiting the

integration over a volume of finite size.26

Consequently, the net transverse acoustic radiation force on an object of arbitrary-shape

can be then calculated by taking the integration of the force over the total volume occupied by the
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Figure 3.2: Acoustic contrast factors for cylindrical standing waves. Each straight line (black:
𝑙 = 0; red: 𝑙 = 1; and blue: 𝑙 ≥ 2) divides the parameter space into two regions, and the region for
trapping is marked by the corresponding arrow. Δ𝜌 = (𝜌𝑠 − 𝜌0)/𝜌0 and Δ𝐾 = (𝐾𝑠 − 𝐾0)/𝐾0 are
the mass density contrast and the bulk modulus contrast, respectively.

object (𝑉),

𝐹
Arbitrary object
𝜌 =

∫
𝑉

𝑑𝐹𝜌 . (3.12)

Since the Born approximation method in Eq. (3.12) only requires the integration over the object

volume, it will simplify the computation compared with some previous methods, for example, the

partial wave expansion method, where the scattering coefficients up to a certain order need to be

considered.

The Born approximation is an approximation approach, and it is valid only under certain

conditions. Hence, it is essential to first examine the validity and accuracy of the Born approximation

method for the analysis of acoustic trapping forces. The results from the Born approximation will be

compared with the exact solution for spherical objects from the partial wave expansion in Eq. (3.10)

as well as the Gorkov potential in Eq. (3.5).

One important issue for the numerical calculation is the relationship of the mesh grid and

the convergence. Here, the numerical grids are divided evenly in all three directions in Cartesian
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coordinates with the spacing of 𝑎/40 for spheres and 𝑎/80 for the cylinders. A convergence test

has been conducted, where the maximum error is ∼ 0.3% when the spacing length is halved or

doubled for the former case, and for the latter case, the error is ∼ 3% when the mesh grid size is

doubled and ∼ 2% as the grid size is halved.

3.4 Trapping by Cylindrical Standing Waves

Let us first examine the Born approximation for objects with relatively large material

contrasts. Here, the transverse radiation forces generated by the ordinary standing Bessel field

on an aluminum sphere in water are calculated as an example (Fig. 3.3). For this case, the Born

approximation method (red circles) fails to predict the radiation force (black solid lines: exact

solution) after the first peak of the force. This is understandable because the Born approximation

method assumes the amplitude of the scattered acoustic field is considerably small compared with

incident acoustic field, which is true when the acoustic properties of the objects are similar to those

of the surrounding medium. However, for the case of an aluminum sphere in water, the amplitude

of the scattered field is already comparable with the incident field, which will definitely cause some

errors. Negative radiation force can trap particles to the beam axis, yet positive force will repel

the particles away. Hence, although large errors occur for the Born approximation method when

the material contrast is large, the Born approximation method can still make correct predictions on

the trapping behaviors (trapping or repelling) up to a relatively large 𝑘𝑎 even beyond the Rayleigh

regime (𝑘𝑎 << 1). The Gorkov potential, on the other hand, can only make predictions within the

Rayleigh regime (blue stars), where the force is proportional to (𝑘𝑎)3.

Hence, in order to make sure the Born approximation method is accurate, the material

contrast of the objects cannot be large. To examine the performance and accuracy of the Born

approximation on objects of small material contrast, the radiation forces on spherical objects with

mass density contrast Δ𝜌 = 5% and bulk modulus contrasts Δ𝐾 = 15% are computed for the zero

order, the first order and the second order standing Bessel fields [Fig. 3.4]. The parameters chosen

here are the same as that in Jerome et al. 26 since in the case of common soft biological materials
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Figure 3.3: Examination of the Born approximation on spheres with large material contrast. Di-
mensionless trapping force𝑌𝜌 = 𝐹𝜌/(𝜋𝑎2𝑝2

0/2𝜌0𝑐
2
0) generated by the ordinary cylindrical standing

waves on an aluminum sphere in water are examined with Δ𝜌 = 170% and Δ𝐾 = 3367%. The
spheres are located at 𝜇𝑅 = 0.1. Black solid line: exact solution in Eq. (3.10); red circles: Born
approximation method in Eq. (3.12); and blue stars: Gorkov potential in Eq. (3.5).

with water taken as the surrounding fluid, the bulk modulus contrast is typically two or three times

that of the mass density contrast, which is usually around 5%.27 For this case, the results from the

Born approximation method (red circles) and the partial wave expansion method (black solid lines)

agree quite well with each other (middle panels). The errors take the absolute value of the difference

between the Born approximation and the exact solution. To further examine the performance and

accuracy of the Born approximation method, the results obtained here using two-dimensional

cylindrical standing waves (Fig. 3.4) are compared with the results using one-dimensional standing

waves (Fig.1 in Jerome et al. 26). The accuracy of the Born approximation in 2D standing waves

are slightly better than that in 1D standing waves when comparing the two results.

From the results in Fig. 3.4, one finds that small objects (small 𝑘𝑎) can be trapped to the

field center (pressure node) by the first-order vortex field (negative force), yet these objects will be

repelled away from the center for the zero order and the second order Bessel fields, even though

for the second-order vortex field, there is a pressure node at the field center. These results are

predicted and understood in our prior paper19 by the Gorkov potential and the acoustic contrast

factors in Eq. (3.12). As the particle becomes larger, the Gorkov potential loses its prediction

capability, for example, the Gorkov potential mistakenly predicts that the particle is repelled from
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the center of the ordinary cylindrical standing wave no matter the size of the object [see the middle

panel in Fig. 3.4(a)]. However, the Born approximation can instead make correct predictions on the

radiation force for even large particles far beyond the Rayleigh regime. Here, the trapping regions

are ∼ 2.8 < 𝑘𝑎 <∼ 4 for the zero order Bessel field; 𝑘𝑎 <∼ 2.2 for the first order Bessel field; and

∼ 1.2 < 𝑘𝑎 <∼ 3.5 for the second order Bessel field.

In order to understand the underlying physics of the Born approximation on the predictions

of the radiation force especially for large objects, the Gorkov potential and its negative gradient are

computed with respect to the transverse location (see the bottom panels in Fig. 3.4). Comparing the

radiation forces in the middle panels with the negative gradient of the Gorkov potential (red dashed

lines) in the bottom panels, one finds that these two quantities follow almost the same pattern. It

is understandable because based on the Born approximation, the net total force comes from the

accumulation of the individual forces from all the volume elements, and each individual force

(could be positive or negative) is computed from the Gorkov potential. Note that if the particle

is located exactly at the center, the net transverse radiation force is equal to zero since the force

acing on a half of the object is cancelled with the other half of the object due to the geometrical

symmetry. Here, the force is computed at 𝜇𝑅 = 0.1, slightly away from the center, hence, in this

case, the force acting on most of the object can still cancel, and the dominant contribution to the

net force only comes from a thin outer layer of the object, where the geometry is asymmetric with

respect to the field center. Hence, this thin outer layer can still be considered as a small object, and

the force acting on the outer layer, i.e., the net force acting on the whole object, will be directly

related to the gradient of the Gorkov potential, i.e.,

F(large 𝑘𝑎) ∼ −∇𝑈 (𝑟 = 𝑎). (3.13)

If all the volume elements suffer from positive forces, then the total force is no doubt positive, and

if the negative radiation force is desired, then at least some portion of the object must be subject to

a negative force. The finding here provides an efficient way to predict or at least give a sense of the
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Figure 3.4: Examination of the Born approximation on spheres with small material contrast for
(a) zero-order (b) first-order and (c) second-order cylindrical standing waves. Top panels: pres-
sure profiles and corresponding cylindrical standing Bessel fields; Middle panels: dimensionless
trapping force 𝑌𝜌 on spheres with Δ𝜌 = 5% and Δ𝐾 = 15%; The spheres are located at 𝜇𝑅 = 0.1
corresponding to the points in the top panels. Black solid lines: exact solution in Eq. (3.10); red
circles: Born approximation method in Eq. (3.12); and blue stars: Gorkov potential in Eq. (3.5).
Pink dots: the errors are the absolute values of the force differences between the Born approxi-
mation and the exact solution. Bottom panels: Gorkov potential and the negative gradient of the
potential.

radiation force and trapping behaviors based on the Gorkov potential, and the Gorkov potential is

useful for small objects and even for large objects far beyond the Rayleigh regime.

The Born approximation method can also be utilized to analyze the trapping behaviors of

objects with different shapes and orientations. Here, the gradient radiation force generated by

ordinary standing Bessel fields on cylindrical objects with different height-to-diameter ratios (i.e.,

ℎ : 𝐷 = 3 : 16 and ℎ : 𝐷 = 1 : 1) are examined and compared with the exact solution of spheres

with the same volumes. The cylinder tends to be a disk when the height-to-diameter ratio ℎ/𝐷 is

small, and it becomes close to a sphere as the ratio is close to 1. Figure 3.5(a) shows the computed

dimensionless trapping force 𝑌𝜌 for the first cylinder (ℎ : 𝐷 = 3 : 16). When the object is small

(𝑘𝑎 <∼ 0.6), the radiation force is independent of the object shape and orientations, and the force

is linearly proportional to the object volume as predicted by the Born approximation [Eq. (3.12)]

and the Gorkov potential as well [Eq. (3.5)]. As the object goes beyond the linear regime, the
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Figure 3.5: Examination of the Born approximation on objects of different shapes and orientations
for zero-order standing waves. Dimensionless trapping forces 𝑌𝜌 on the cylinders (Δ𝜌 = 5% and
Δ𝐾 = 15%) located at 𝜇𝑅 = 0.1 are computed from the Born approximation method (red circles:
𝜃 = 0◦; blue crosses: 𝜃 = 90◦), and the results are compared with a sphere of same volume from
the exact solution (black solid line). The aspect ratios of the cylinders are (a) ℎ : 𝐷 = 3 : 16 and
(b) ℎ : 𝐷 = 1 : 1. Black solid lines: exact solution in Eq. (3.10); red circles and blue crosses: Born
approximation method in Eq. (3.12).

effect caused by the shape and orientation cannot be ignored, and the radiation force for objects of

different shapes and orientations diverge. However, for the cylinder with aspect ratio ℎ : 𝐷 = 1 : 1

[Fig. 3.5(b)], the effect cause by the shape and orientation are weak compared with the case in (a),

and the forces for different shapes and orientations start to diverge at a much larger 𝑘𝑎 (𝑘𝑎 ∼ 3).

The reason is that for this case, the cylinder is close to a sphere, and thus the effect due to different

geometry shapes and orientations can be ignored within a quite large range of 𝑘𝑎 under a certain

value. The results here, on the other hand, also prove that the Born approximation method is valid

and reliable.

3.5 Trapping by Traveling Waves

When considering the trapping by traveling waves instead of standing waves (the paraxiality

parameter 𝛽 is changed from 90◦ to be less than 90◦), there appears an additional traveling com-

ponent which will affect the transverse trapping behaviors.19 In order to examine the error when

changing the paraxiality parameter 𝛽 from 90◦ to near 0◦, the radiation forces acting on a spherical

object with the material contrast of Δ𝜌 = 5%, and Δ𝐾 = 15% are calculated for the zero-order,

first-order and second-order Bessel fields [Fig. 3.6]. The results from the Born approximation
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Figure 3.6: Examination of errors when varying the paraxiality parameter 𝛽 for zero-order (black),
first-order (red) and second-order (blue) Bessel fields. Errors can be obtained by comparing the
normalized radiation force from the Born approximation (dotted lines) with the exact solution (solid
lines). The parameters of the example here are Δ𝜌 = 5% and Δ𝐾 = 15%. The maximum error is
two order smaller than the exact solution.

[dotted lines, Eq. (3.12)] agree quite well with the exact solution [solid lines, Eq. (3.10)], with the

maximum error two orders smaller than the exact solution. In addition, one finds that the magnitude

of the radiation force decreases as 𝛽 is reduced from 90◦ to 0. This is understandable because

the standing wave component is proportional to sin 𝛽, hence, the magnitude of the radiation force

reaches a maximum at 𝛽 = 90◦ when the field is a pure standing field, and the force goes to 0 at

𝛽 = 0 when the field has no standing wave component.

To further examine the effects caused by the paraxiality parameter 𝛽, the radiation force

generated by traveling Bessel beams of the first three orders are calculated [Fig. 3.7]. When the

particle is small, the trapping behavior is exactly same as the prediction from the Gorkov potential

and the parameter-dependent contrast factor [Eq. (3.8)]. Note that for small objects, the Gorkov

potential can be directly computed based on the object center. However, for large objects beyond

the small 𝑘𝑎 range, direct use of the Gorkov potential based on object center will cause errors as

discussed above. For this case, we can take the characteristic length of the object (for example

the radius of a sphere) in place of the object center to predict the trapping behaviours using the
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Figure 3.7: Examination the effect caused by the paraxiality parameter 𝛽 for (a) zero-order (b)
first-order and (c) second-order Bessel fields. Top panels: negative gradient of the Gorkov potential.
Middle panels: dimensionless trapping force 𝑌𝜌 (𝜇𝑅 = 0.1) on a sphere with Δ𝜌 = 5%, Δ𝐾 = 15%
computed from the Born approximation method. Insets: traveling Bessel fields acting on a spherical
object. Bottom panels: same as middle panels but for a cylinder with ℎ : 𝐷 = 3 : 16 [same as that
in Fig. 3.5(a)]; 𝑎 is the radius of the sphere or the cylinder and 𝐷 = 2𝑎.
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Gorkov potential. Similar to the standing waves, the method proposed here can be also used for

traveling beams, for example, see the top and middle panels in Fig. 3.7. From the results, the

transverse radiation forces computed from the Born approximation (middle panels) have similar

patterns compared with the negative gradient of the Gorkov potential (top panels) but with a slight

shift as the particle becomes larger. The slight shift is understandable because the asymmetric

part of the object, which contributes to the net radiation force, is not concentrated. Hence, it can

be anticipated that the shift (or the error) will decrease when the asymmetric part becomes more

concentrated for objects of other geometries. For example, see the bottom panels in Fig. 3.7 for a

cylinder with the aspect ratio ℎ : 𝐷 = 3 : 16. As predicted, the patterns of the negative gradient of

the Gorkov potential are almost the same as the transverse radiation force for this cylinder because

for this case the outer layer of the cylinder is more concentrated than that of a sphere. Note that

𝜇𝑎 = 𝑘𝑎 sin 𝛽 is used here to indicate the object size, hence, the truly available range 𝑘𝑎 = 𝜇𝑎/sin 𝛽

for trapping actually increases as the paraxiality parameter 𝛽 decreases. Specifically, 𝜇𝑎 = 𝑘𝑎 for

cylindrical standing waves (𝛽 = 90◦). Since the Born approximation method performs better for

small material contrast, the results from the Born approximation method will be more accurate

when the material contrast is smaller than the situation considered here.

3.6 Remarks

In this Chapter, the Born approximation method was extended from one-dimensional stand-

ing fields to multidimensional fields, in particular, 2D standing Bessel fields and 3D traveling Bessel

beams. The method was applied to analyze the transverse trapping force generated by acoustic

ordinary Bessel beams and vortex beams, which provide a standing wave component along the

transverse direction perpendicular to the propagating direction. The results from Born approxi-

mation method were compared with the exact solution from the partial wave expansion method to

check the validity and accuracy of the Born approximation. For common soft biological materials

with water taken as the surrounding fluid, it is relatively safe to use Born approximation method

to make prediction for the objects whose characteristic length is smaller than a wavelength. In
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addition, the effects caused by the beam parameter 𝛽, the object shape and orientation have also

been investigated.

When the material contrast is not large, one can also use the Gorkov potential to predict the

trapping behaviors or at least get a sense of feeling about the trapping behaviors for large objects.

Note that, the characteristic length of the object (e.g. the radius of a spherical object) is instead

used in the Gorkov potential to replace the location for the calculation. For example, the acoustic

trapping force for a large spherical object can be estimated,

F(large 𝑘𝑎) ∼ −∇𝑈 (𝑟 = 𝑎). (3.14)

This finding here extends the application scope of the Gorkov potential to large objects far beyond

the small 𝑘𝑎 range, which is also helpful for the analysis of acoustic trapping forces by plane waves.

Although only the Bessel fields are discussed in this chapter, the Born approximation method

can be extended to an arbitrary incident field once the two required conditions are satisfied: (i)

the mass density and compressibility of the particles and the background medium are similar; and

(ii) the incident waves are standing waves or have a standing wave component. Then the gradient

radiation force from an arbitrary field can be computed by integrating over the object volume

with the infinitesimal force obtained by combining the gradient of the Gorkov potential and the

specific incident wave field. The approximation methods discussed here will simplify the design

of acoustic tweezers in the future and will have applications in biology and engineering, where

object manipulation is required. While not considered here, the Born approximation allows for

spatial variations of material parameters within the object, and could also be used for the analysis

of acoustic radiation torque.26
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CHAPTER 4

PHASE SHIFT APPROACH FOR PULLING FORCE

Inspired by the pioneering idea from Marston and Zhang,42,43 a systematic approach based

on phase shifts from scattering is developed to engineer a desired acoustic pulling force exerted

by acoustic Bessel beams. The desired phase shifts, contributing to the desired radiation force,

are herein fulfilled by adjusting the inner-to-outer radius ratio of a spherical shell. The example

presented here is relatively simple yet reveals the powerful advantages of the phase shift approach.

The phase shift approach developed here can be easily applied to any sound fields.

4.1 Phase shift for Acoustic Pulling Forces

The example of the present chapter is on axisymmetric fields in the form of zeroth-order

Bessel function 𝐽0(·), which is a solution of wave equation in acoustics (i.e. acoustic pressure)

𝑝 = 𝑝0𝐽0(𝜇𝜌) exp(𝑖𝜅𝑧 − 𝑖𝜔𝑡), (4.1)

where 𝜌, 𝑧 are radial and axial cylindrical coordinates, and transverse wavenumber 𝜇 = 𝑘 sin 𝛽

and axial wavenumber 𝜅 = 𝑘 cos 𝛽 are related to total wavenumber 𝑘 = 𝜔/𝑐0 through a paraxiality

parameter 𝛽 [see Fig. 4.1].

The far-field scattered pressure at radius 𝑟 is conveniently expressed using a dimensionless

complex form function 𝑓 , i.e., 𝑝𝑠 = 𝑝0(𝑎/2𝑟)𝑒𝑖𝑘𝑟 𝑓 . With the aid of phase shifts, the dimensionless

complex form function 𝑓 is expressed as,42

𝑓 (cos 𝜃) = (𝑖/𝑘𝑎)
∞∑︁
𝑛=0
(2𝑛 + 1) (1 − 𝑒𝑖2𝛿𝑛)𝑃𝑛 (cos 𝛽)𝑃𝑛 (cos 𝜃), (4.2)
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Figure 4.1: Illustration of incident Bessel beam scattered by an engineered object. 𝛽 is the paraxial
parameter and 𝜃 is the scattering angle. Phase shift approach: the desired phase shifts, which
contribute to the desired radiation force, are adjusted by engineering parameters of objects and
beams.

which characterizes the dependence of the scattering on the phase shifts. These phase shifts,

determined from boundary conditions, rely on the object dimension 𝑘𝑎 and acoustic properties of

the objects and the surrounding medium (or rely on the energy of incident particles and the potential

energy of the scattering objects in quantum146). The range of phase shifts is 𝛿𝑛 ∈ [−𝜋/2, 𝜋/2], and

𝛿𝑛 = 0 at 𝑘𝑎 = 0 due to the absence of scattering. Eq. (4.2) together with Eq. (4.3) will be used to

show the connection between the scattering and the radiation force.

When the energy dissipation is negligible (nondissipative scattering), the dimensionless

axial radiation force is simply written as a summation of functions of adjacent partial wave phase

shifts 𝛿𝑛, which play significant roles in the scattering by affecting the coupling of different

multipoles from multipole expansion42

𝑌𝑧 =
4
(𝑘𝑎)2

∞∑︁
𝑛=0
(𝑛 + 1) sin2(𝛿𝑛 − 𝛿𝑛+1)︸             ︷︷             ︸

non-negative

𝑃𝑛 (cos 𝛽)𝑃𝑛+1(cos 𝛽)︸                      ︷︷                      ︸
may be positive or negative

. (4.3)

This formula was also recovered in the matter-wave tractor beams in Gorlach et al. 146 Here, the
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phase shifts 𝛿𝑛 are real-valued and associated with scattering functions 𝑠𝑛 by 𝑠𝑛 = exp(𝑖2𝛿𝑛)

(𝛾𝑛 = 0); see Appendix in Fan and Zhang 19 for the expressions of 𝑠𝑛 for different objects.

Based on the phase-shift formula in Eq. (4.3), an approach can now be established to

analyze and engineer the acoustic radiation force, specifically the acoustic pulling force. Since

the term involving the phase shifts, sin2(𝛿𝑛 − 𝛿𝑛+1), can never be negative, the pulling force must

originate from negative Legendre polynomials, which are functions of the paraxial parameter 𝛽 [see

Fig. 4.2(a)]. Generally speaking, negative pulling forces are a result of a relatively large paraxial

parameter 𝛽, for example, in the literature, 𝛽 ≈ 45◦,13,14,35 𝛽 ≈ 54◦,46 𝛽 ≈ 56◦,147 𝛽 > 65◦,37 yet

a small 𝛽 is actually desired in practical realization.

The objective here is to find a set of phase shifts that can allow the optimization of the angle

𝛽 for a pulling force. It is desired to eliminate the first term which is never negative as the product

𝑃0𝑃1 is never negative. The elimination is satisfied by 𝛿0 = 𝛿1. When only the terms 𝛿0 and 𝛿1 in

Eq. (4.3) survive, the minimum angle for pulling force is 𝛽 ≈ 54.7◦ [black solid line in Fig. 4.2(a)],

which happens when the monopole and dipole are in phase (i.e. 𝛿0 = 𝛿1) and the angle obtained

here agree with the previous predictions.14,19,43 The minimum angle can be further reduced as more

multipoles are in phase, for example, 𝛽 ≈ 39◦ corresponding to the first three multipoles in phase

(i.e. 𝛿0 = 𝛿1 = 𝛿2, red dashed line) or 𝛽 ≈ 31◦ corresponding to the first four multipoles in phase

(i.e. 𝛿0 = 𝛿1 = 𝛿2 = 𝛿3, blue dashed-dot line).

When the particle is larger and larger (characterized by 𝑘𝑎with 𝑎 being the radius), there can

be more and more multipoles in phase to enhance forward scattering [see Inset in Fig. 4.2(a)] and

in turn provide objects stronger backward momentum or pulling force. In principle, the angle 𝛽 can

be reduced to a value that is experimentally realizable or even smaller as long as a sufficiently large

number of phase shifts are the same [Fig. 4.2(b)]. Then the problem is how to design engineered

objects with the right set of parameters to achieve the constraint of in-phase scattering, although

finding an object to satisfy many phase shifts in phase is not straight-forward. It is also worth

noting that the maximum values of negative force occur somewhere between the two solutions of

𝑃𝑛 (cos 𝛽) = 0. Once the 𝛽 or rough range of 𝛽 is determined, an estimation about the object
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Figure 4.2: (a) Production of adjacent Legendre polynomials 𝑃𝑛𝑃𝑛+1 as a function of paraxial
parameter 𝛽 [see Eq. (4.3)]. Minimum 𝛽 for negative production (𝑃𝑛𝑃𝑛+1) are marked corresponding
to each term. Inset: Normalized scattering pattern | 𝑓 |2; see Eq. (4.2). The first production
𝑃0𝑃1 = cos 𝛽 cannot be negative; see gray dotted line. Black solid line: monopole and dipole in-
phase scattering at 54.7◦; Red dashed line: monopole, dipole, and quadrupole in-phase scattering at
39◦; Blue dashed-dot line: monopole, dipole, quadrupole and octupole in-phase scattering at 31◦.
More multipoles in phase enhance forward scattering and in turn provide objects stronger backward
momentum. These minimum angles correspond to the minimum solutions of 𝛽 for 𝑃𝑛 (cos 𝛽) = 0
in (b), where minimum 𝛽 decreases as the order of Legendre polynomials 𝑛 increases, and the curve
is a fit with 𝛽 = 138.4◦/(𝑛 + 0.54).
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dimension 𝑘𝑎 can be also obtained since 𝛽 is related to the order 𝑛 [𝛽 = 138.4◦/(𝑛 + 0.54)], whose

truncation is somewhat in excess of 𝑘𝑎.13

4.2 Rayleigh approximation

Let us start by considering a small particle (𝑘𝑎 ≪ 1) where the contributions only come

from monopole and dipolar fields involving the phase shifts of 𝛿0 and 𝛿1 (𝛿0,1 ≪ 1). The expression

of the complex function 𝑓 in Eq. (4.2) is simplified,

𝑓 (cos 𝜃) ∝ 𝛿0︸︷︷︸
monopole

+ 3𝛿1 cos 𝛽 cos 𝜃︸            ︷︷            ︸
dipole

. (4.4)

When 𝛿0/𝛿1 < 0, backward scattering is stronger than forward scattering and the radiation force is

always positive. However, when 𝛿0/𝛿1 > 0, the forward scattering is stronger instead, and in this

case, the radiation force is possibly negative, depending on cos 𝛽. Two typical scattering patterns

| 𝑓 |2 with parameters of (𝛿0/𝛿1, 𝛽) = (∓1, 54.7◦) are illustrated in Figs. 4.3(a) and (b).

In this case, the expression of the acoustic radiation force in Eq. (4.3) is simplified as

𝑌𝑧 ∝ 𝑡2 − 2𝑡 + 3 cos2 𝛽. (4.5)

with the force determined by the phase shift ratio 𝑡 = 𝛿0/𝛿1.The range of phase shifts ratio 𝛿0/𝛿1

for negative pulling force is in between 1±
√︁

1 − 3 cos2 𝛽 [see Eq. (4.5) and Fig. 4.3(c)]. When the

monopole and dipole are in phase (i.e. 𝑡 = 𝛿0/𝛿1 = 1), the minimum 𝛽 ≈ 54.7◦ is achieved. The

maximum range of phase shift ratio is 0 < 𝛿0/𝛿1 < 2 when 𝛽 approaches to 90◦. These results in

terms of phase shifts do not rely on specific objects.

The goal is to find objects and beams parameters to fulfill the required phase shifts. In

Rayleigh regime, only the first two terms of phase shifts need to be considered, i.e.,

𝛿0 = −(1/3) (𝑘𝑎)3 𝑓1, 𝛿1 = (1/6) (𝑘𝑎)3 𝑓2, (4.6)
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Figure 4.3: Rayleigh approximation. Scattering pattern | 𝑓 |2 [Eq. (4.4)] with parameters of (a)
(𝛿0/𝛿1, 𝛽) = (−1, 54.7◦), where backward scattering is stronger than forward scattering, and (b)
(𝛿0/𝛿1, 𝛽) = (1, 54.7◦), where forward scattering is stronger instead. Insets: illustrations of the
coupling between a monopole and a dipole. (c) Scaled radiation force𝑌𝑧 [Eq. (4.5)] in the parameter
space of (𝛿0/𝛿1, 𝛽). Black dashed line indicates the boundary (𝛿0/𝛿1 = 1 ±

√︁
1 − 3 cos2 𝛽) where

radiation force is zero. (d) Diagram for pulling a Rayleigh particle in the parameter space of ( 𝑓2, 𝑓1),
with the colorbar illustrating the minimum angle required for axial pulling force. Minimum angle
(𝛽 ≈ 54.7◦) occurs on the white dashed line, which corresponds to the monopole and dipole in phase
(𝛿0 = 𝛿1). Several examples are marked by crosses with the factors ( 𝑓2, 𝑓1) being: (i) (0.44, 0.94)
for a silica sphere in water, giving 𝛿0/𝛿1 = −4.3; (ii) (0.11, 0.61) for a PMMA sphere in water,
giving 𝛿0/𝛿1 = −11.1; (iii) (1, 1) for a rigid sphere, giving 𝛿0/𝛿1 = −2; (iv) (−0.85, 0.23) for an
aluminum shell in water (𝑏/𝑎 = 0.96), giving 𝛿0/𝛿1 = 0.54. Red solid line indicates the dynamic
behaviours for PMMA shell when varying the inner-to-outer radius ratio from 0 to 0.99. Three
intersection points with 𝛿0/𝛿1 = 0, 1, 2 correspond to 𝑏/𝑎 = 0.703, 0.684, 0.669, respectively. The
results are obtained by combining the expression of acoustic radiation force in Eq. (4.5) and the
expression of phase shifts in Rayleigh regime in Eq. (4.6). Inset: illustration of a shell-like particle.
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Materials Mass density Longitude wave Transverse wave
𝜌 [kg/m3] speed 𝑐𝐿 [m/s] speed 𝑐𝑇 [m/s]

Air 1.21 343
Hexane 656 1078
Water 1000 1500

PMMA 1190 2690 1340
Silica 2201 5928 3761

Al 2700 6420 3040

Table 4.1: Acoustic properties of materials. The effective density of an Aluminum (Al) shell of
𝑏/𝑎 = 0.96 is 311 kg/m3 calculated from Eq. (4.9).

depending on the monopole and dipole factors,12

𝑓1 = 1 − 1/𝜅 and 𝑓2 = 2(𝜆 − 1)/(1 + 2𝜆), (4.7)

with 𝜆 = 𝜌/𝜌0, 𝜅 = 𝐾/𝐾0 being the mass density ratio and bulk modulus ratio of the particle

to the surrounding media. 𝐾0 = 𝜌0𝑐
2
0 for background medium, 𝐾 = 𝜌𝑐2 for a droplet, and

𝐾 = 𝜌[𝑐2
𝐿
− (4/3)𝑐2

𝑇
] for an elastic sphere with 𝑐𝐿 and 𝑐𝑇 being the longitudinal and transverse

wave velocities of the material, respectively. In general, most ordinary particles, such as droplets

or elastic spheres, have a phase-shift ratio beyond the allowable range (0 < 𝛿0/𝛿1 < 2) and cannot

be pulled in Rayleigh regime, for example, 𝛿0/𝛿1 = −4.3 for a silica sphere in water, 𝛿0/𝛿1 = −11.1

for a PMMA (a type of plastic) sphere in water, and 𝛿0/𝛿1 = −2 for a rigid sphere [see Fig. 4.3(d)].

The acoustic properties of materials used in this chapter are found in Table 4.1.

Although for most ordinary particles, the phase shift ratios 𝛿0/𝛿1 are outside the allowable

range for acoustic pulling force, one can engineer proper objects with proper parameters to achieve

the desired phase-shift ratio. Let us use a shell-like object, as an example. The phase shifts are a

function of the size of the object (𝑘𝑎) and the inner-to-outer radius ratio (𝑏/𝑎) once the materials

of the object and background medium are determined. There are totally two variables to control

(i.e. 𝑘𝑎 and 𝑏/𝑎). However, in this Rayleigh regime (𝑘𝑎 << 1), the phase shift ratio 𝛿0/𝛿1 in the
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leading order is actually independent of 𝑘𝑎,

𝛿0/𝛿1 = −2 𝑓1/ 𝑓2, (4.8)

where the monopole and dipole factors depend on 𝑏/𝑎. Specifically, for a hollow elastic shell, the

density 𝜌 and bulk modulus 𝐾 contained in 𝑓1,2 in Eq. (4.7) should be replaced by effective mass

density and effective bulk modulus:140,141

𝜌eff = [1 − (𝑏/𝑎)3]𝜌, 𝐾eff =
[1 − (𝑏/𝑎)3]𝐾

1 + (𝑏/𝑎)3 [0.75(𝑐𝐿/𝑐𝑇 )2 − 1]
. (4.9)

Consequently, the only constraint on phase shift ratio 𝛿0/𝛿1 can then be effectively controlled by

the single parameter 𝑏/𝑎. In Fig. 4.4(a), the 𝑏/𝑎 values corresponding to the phase shift ratio

0 < 𝛿0/𝛿1 < 2 are found for two different objects: a PMMA shell in water and a silica shell in

water.

The advantage of the phase shift approach appears immediately in that one can directly

obtain the minimum paraxial parameter 𝛽 and then the corresponding object parameters efficiently

in an analytical way. However, for conventional methods, one has to numerically search the whole

beam and object parameter space to find the minimum angle and corresponding object parameters.

For example, in Fig. 4.4(b), the dimensionless radiation force is calculated in the whole parameter

space of (𝑏/𝑎, 𝛽) based on the Eq. (4.3), and finally the minimum angle can be found after scanning

the whole parameter space, which is quite time consuming and also less accurate compared with

the phase shift approach since the resolution chosen for the numerical computations in conventional

methods also affect the final results.

4.3 Beyond Rayleigh approximation

When the particles are beyond dipole regime, the situation is complicated since more phase

shifts are involved. Furthermore, the phase-shift ratios including 𝛿0/𝛿1 also depend on 𝑘𝑎, or more

specifically are a function of (𝑘𝑎, 𝑏/𝑎) for a given spherical shell. Nevertheless, the approach here

55



Figure 4.4: Engineered shell-like particles in Rayleigh regime (𝑘𝑎 << 1). (a) Phase shift ratio
𝛿0/𝛿1 is controlled by adjusting the inner-to-outer radius ratio 𝑏/𝑎 of a shell-like particle. Maximum
range of phase shift ratio for pulling force is 0 < 𝛿0/𝛿1 < 2, and 𝛿0/𝛿1 = 1 corresponds to the
minimum paraxial parameter 𝛽 ≈ 54.7◦ with corresponding 𝑏/𝑎 values marked. Inset: illustration
of a shell-like object. (b) Dimensionless pulling force for two objects in the parameter space of
(𝑏/𝑎, 𝛽). Black pluses mark the locations where the minimum angle 𝛽 ≈ 54.7◦ occurs using the
phase shift method.

is to first fulfill the condition of the first two multipoles (monopole and dipole) to be in phase. Since

there is only one constraint (𝛿0 = 𝛿1) to follow yet there are two variables (𝑘𝑎 and 𝑏/𝑎) to control,

it results in an infinite set of solutions corresponding to a line in (𝑘𝑎, 𝑏/𝑎) space [Fig. 4.5(a)]. That

is, different 𝑏/𝑎 values are found for different 𝑘𝑎 values to at least satisfy 𝛿0 = 𝛿1. The first four

phase shifts for these (𝑘𝑎, 𝑏/𝑎) values are further shown in Fig. 4.5(b), where 𝛿0 = 𝛿1 and the

divergence of the phase shifts at certain 𝑘𝑎 is due to resonances of the shell.6 Figures. 4.5(a) and

(b) are obtained using the exact expressions of phase shifts for shells (see Appendix in Fan and

Zhang;19 alternatively, expansion of phase shifts to higher order44,45,148,149 may be useful).

Now, in the quadrupole approximation, there are exactly two variables (𝑘𝑎 and 𝑏/𝑎) and

two constraints (𝛿0 = 𝛿1 = 𝛿2), which means one set of (𝑘𝑎, 𝑏/𝑎) solution could be found,

corresponding to one single point on the lines in Fig. 4.5(a). Following from the first three phase

shifts in Fig. 4.5(b), the desired in-phase scattering occur at

𝑏/𝑎 = 0.636 and 𝑘𝑎 = 1.77, (4.10)

where the phases are

𝛿0 = 𝛿1 = 𝛿2 = −0.1, (4.11)
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Figure 4.5: Beyond the Rayleigh approximation for PMMA shell in water. (a) 𝑏/𝑎 as a function of
𝑘𝑎 by satisfying 𝛿0 = 𝛿1. (b) The jumps of 𝑏/𝑎 result from resonances of phase shifts;6 𝛿0 = 𝛿1 = 𝛿2
occurs at 𝑘𝑎 = 1.77. (c) Minimum achievable angle as a function of 𝑘𝑎. Minimum angle about
31◦ occurs at 𝑘𝑎 = 1.88. (d) Negative dimensionless axial radiation force at 𝑘𝑎 = 1.88.

and the minimal angle should be 𝛽 = 39◦ as analyzed in prior section.

To validate the parameters of (𝑘𝑎, 𝑏/𝑎) engineered here, the minimum angle 𝛽 for a pulling

force is calculated from Eq. (4.3) and shown in Fig. 4.5(c), showing that 𝛽 does reduce to 39◦ at

the engineered (𝑘𝑎, 𝑏/𝑎) value. Here in Fig. 4.5(c), for some large 𝑘𝑎 beyond the Rayleigh regime

even up to 𝑘𝑎 = 1, the minimum angle still does not change much which is because the higher

order terms are not excited yet due to the suppression of the quadrupole for 𝑃2(cos 𝛽) = 0 when

𝛽 = 54.7◦.

As 𝑘𝑎 goes beyond the quadrupole approximation, there are three constraints (𝛿0 = 𝛿1 =

𝛿2 = 𝛿3) which normally cannot be satisfied by only engineering two controllable variables

(𝑘𝑎, 𝑏/𝑎) for spherical shells. That is, in principle, it is impossible to find exact solution for

𝛿0 = 𝛿1 = 𝛿2 = 𝛿3 to have a minimal 𝛽 = 31◦ under such circumstance, so more complicated

objects would be expected. However, one can seek parameters of the spherical shell to make the

phase shifts as close to be in phase as possible. Fig. 4.5(b) shows that the four phase shifts are
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Figure 4.6: Beyond Rayleigh approximation for a silica shell in water. (a) 𝑏/𝑎 as a function of 𝑘𝑎
by satisfying the condition 𝛿0 = 𝛿1. (b) The first four phase shifts. (c) Minimum angle as a function
of 𝑘𝑎. Minimum angle about 31◦ occurs at 𝑘𝑎 = 2.04. (d) Negative dimensionless axial radiation
force at 𝑘𝑎 = 2.04.

actually relatively close for 𝑘𝑎 between 1.5 and 2. To be exact, at

𝑏/𝑎 = 0.630 and 𝑘𝑎 = 1.88, (4.12)

where the first four phase shifts are relatively close as

𝛿0 = 𝛿1 = −0.12, 𝛿2 = −0.11 and 𝛿3 = −0.14, (4.13)

the minimum angle of 30.9◦ is achieved [Fig. 4.5(c)].

Again if one would like to find the desired object and beam parameters using this conven-

tional method of direct computation, one has to compute the forces in the whole space of three

parameters of 𝑘𝑎, 𝛽, and 𝑏/𝑎. A three dimensional numerical search would be considerably time

consuming. The dimensionless radiation force at 𝑘𝑎 = 1.88 computed directly from Eq.(4.3)

is shown in the parameter space of (𝑏/𝑎, 𝛽) [Fig. 4.5(d)], confirming the parameters engineered
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herein.

Figure 4.6 further shows the corresponding results for a silica shell in water. A minimum

angle 31.2◦ is found within the octupole regime at

𝑏/𝑎 = 0.941 and 𝑘𝑎 = 2.04. (4.14)

where the first four phase shifts are relatively close

𝛿0 = 𝛿1 = −0.47, 𝛿2 = −0.56 and 𝛿3 = −0.59. (4.15)

It is worthy to note that, even for a spherical shell with two free geometric parameters, the in-phase

scattering in the octupole regime is closely achieved. The angle around 30◦ is so far the minimum

angle that has been found by using specific objects.

4.4 Conclusion

In this chapter, a systematic approach based on phase shifts from scattering was established

to engineer the desired radiation force. The phase shift method can be used to analyze and design

acoustic radiation force for arbitrary sound fields, simply by re-expressing the radiation force in

terms of the phase shifts (or complex phase shifts depending on whether the dissipation is taken

into account). With the aid of the phase shifts, the analytical expressions for acoustic radiation

forces studied previously can be greatly simplified into a compact and physically meaningful form.

As an example, an acoustic Bessel tractor beam on a spherical shell was designed with a paraxial

parameter 𝛽 about 30.9◦, which is fulfilled by engineering the phase shifts up to the first four terms

from multipole expansion. Although the shell-like objects used here only provide two variables to

control (𝑏/𝑎 and 𝑘𝑎), yet they exhibit the advantages and performance of the phase shift method.

For higher order terms of phase shifts, objects with more controllable variables will be needed such

as objects of multiple layers or structured objects, which can provide extra degrees of freedom for

modulation to make sure the constraints of phase shifts could be satisfied. More complex objects
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would provide more flexibility, which will guide the realization of a even smaller angle or a much

larger force. The phase shift method can also be extended for non-spherical objects or for the

analysis of acoustic radiation torques.
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CHAPTER 5

FORCES CAUSED BY OTHER EFFECTS

In the first part of this dissertation, the stable acoustic tractors that enable transversely

stable trapping and axially negative pulling have been investigated. In practical situations and

applications, in addition to the acoustic radiation force, the effects caused by gravity, buoyancy

and streaming also need to be considered. The gravity and buoyancy for a spherical object totally

immersed in a fluid can be obtained by 𝐹G = 𝜌𝑉𝑔 and 𝐹B = 𝜌0𝑉𝑔, respectively. Since the Bessel

beams used here are travelling waves, they can manipulate particles far away from the walls or even

in free space. In such case, the time-averaged Stokes drag force 𝐹D on a spherical object of radius

𝑎 caused by the acoustic streaming and the motion of the object can be expressed as,

𝐹D = 6𝜋𝜂𝑎 |𝑣2 − 𝑢 |, (5.1)

where 𝜂 is the dynamic viscosity (𝜂 = 0.00089 Pa · s for water at about 25◦𝐶), 𝑢 is the velocity of

the moving object, and 𝑣2 is the second-order streaming velocity of the fluid. |𝑣2 − 𝑢 | characterizes

the magnitude of the relative motion between the acoustic streaming and the object (𝑢 and 𝑣2 are

in opposite directions). The effect caused by acoustic streaming will be discussed as follows.

5.1 Theory of acoustic streaming

Acoustic streaming can be analyzed from the basic equations including the continuity

equation and Naiver-Stokes equation of the fluid mechanics:150

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝑣) = 0 (5.2)
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𝜌

(
𝜕𝑣

𝜕𝑡
+ 𝑣 · ∇𝑣

)
= −∇𝑃 + 𝜇∇2𝑣 + (𝜂 + 1

3
𝜇)∇(∇ · 𝑣) (5.3)

where 𝑣 is the flow velocity vector, 𝑃 is the pressure of a fluid, 𝜂 and 𝜇 are the shear and the bulk

viscosities of the fluid, respectively. Assuming the wave propagation is adiabatic process, one has

𝑃(𝜌) = 𝑃0 + 𝑐2
0𝜌
′ + 𝑐0(

𝜕𝑐

𝜕𝜌
)𝑠𝜌′2 + ... (5.4)

where 𝑃0 is the atmospheric equilibrium pressure, 𝜌′ the density fluctuation caused by the acoustic

wave, 𝑐0 and 𝑐 are the acoustic velocities for the linear and nonlinear waves of the liquid, respectively,

and 𝑠 represents the entropy of the fluid. Start with

𝑣 = 𝜖𝑣1 + 𝜖2𝑣2 + ..., 𝜌′ = 𝜌 − 𝜌0 = 𝜖 𝜌1 + 𝜖2𝜌2 + ..., (5.5)

where 𝜖 is a small quantity of the first order, 𝑣1, 𝑣2, 𝜌1, 𝜌2 are the first order and second order of

the fluid particle velocities and density fluctuations, respectively. Substituting Eqs. (5.4) and (5.5)

into Eqs. (5.2) and (5.3), one obtains the first-order equations:

𝜕𝜌1

𝜕𝑡
+ 𝜌0∇ · 𝑣1 = 0 (5.6)

𝜌0
𝜕𝑣1

𝜕𝑡
= −𝑐2

0∇𝜌1 + (𝜂 +
4
3
𝜇)∇(∇ · 𝑣1) − 𝜇∇ × ∇ × 𝑣1, (5.7)

and the second-order equations:

𝜕𝜌2

𝜕𝑡
+ 𝜌0∇ · 𝑣2 + ∇ · (𝜌1𝑣1) = 0 (5.8)

𝜌0
𝜕𝑣2

𝜕𝑡
+ 𝜌1

𝜕𝑣1

𝜕𝑡
+ 𝜌0(𝑣1 · ∇)𝑣1 = −𝑐2

0∇𝜌2− 𝑐0(
𝜕𝑐

𝜕𝜌
)𝑠∇𝜌2

1 + (𝜂 +
4
3
𝜇)∇(∇ · 𝑣2) − 𝜇∇×∇× 𝑣2. (5.9)
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With the aid of the first-order equations [Eqs. (5.6) and (5.7)], the second-order equations [Eqs. (5.8)

and (5.9)] can be simplified as:

𝜕 (𝜌2 −Ω/𝑐2
0)

𝜕𝑡
+ 𝜌0∇ · 𝑣2 =

1
𝜌0𝑐

2
0

(
𝜂 + 4

3
𝜇

)
𝑣1 · ∇

(
𝜕𝜌1

𝜕𝑡

)
(5.10)

𝜌0
𝜕𝑣2

𝜕𝑡
+ 𝑐2

0∇(𝜌2 −Ω/𝑐2
0) = −𝑐0(

𝜕𝑐

𝜕𝜌
)𝑠∇𝜌2

1 −
1
𝜌0

(
𝜂 + 4

3
𝜇

)
𝜌1∇(∇ · 𝑣1)

+
(
𝜂 + 4

3
𝜇

)
∇(∇ · 𝑣2) − 𝜇∇ × ∇ × 𝑣2 − ∇(𝜌0𝑣

2
1) (5.11)

where Ω =
𝑐2

0𝜌
2
1

2𝜌0
+ 𝜌0

2 𝑣
2
1 is the energy per unit volume of the linearized acoustic wave. Performing

the operations of ∇· and ∇× on both side of Eq. (5.11), one obtain:

𝜕2𝐷2

𝜕2𝑡
− 𝑐2

0∇ · (∇𝐷2) −
1
𝜌0

(
𝜂 + 4

3
𝜇

)
∇2(𝜕𝐷2/𝜕𝑡) = −

1
𝜌2

0

(
𝜂 + 4

3
𝜇

)
∇2 [𝑣1 · ∇(𝜕𝜌1/𝜕𝑡)]

− 1
𝜌2

0

(
𝜂 + 4

3
𝜇

)
∇ · 𝜕 (𝜌1∇𝐷2)

𝜕𝑡
− 1
𝜌0

𝜕

𝜕𝑡
∇2 [𝑐0(

𝜕𝑐

𝜕𝜌
)𝑠𝜌2

1 + 𝜌0𝑣
2
1], (5.12)

and
𝜕𝑅2

𝜕𝑡
− 𝜇

𝜌0
∇2𝑅2 =

1
𝜌3

0

(
𝜂 + 4

3
𝜇

) (
∇𝜌1 × ∇

𝜕𝜌1

𝜕𝑡

)
, (5.13)

where 𝐷2 = ∇ · 𝑣2 and 𝑅2 = ∇× 𝑣2. Note that the identity ∇×∇×𝑅2 = ∇(∇ · 𝑅2) −∇2𝑅2 = −∇2𝑅2

has been used.

Supposing that the first-order acoustic wave has the form of

𝜌1(𝑟, 𝑓 ) =
1
𝑐2

0
[𝑃1(𝑟) cos(𝜔𝑡) + 𝑃2(𝑟) sin(𝜔𝑡)], (5.14)

where 𝑃1(𝑟) and 𝑃2(𝑟) are spatial functions. Thus, one obtain that:

∇𝜌1 =
1
𝑐2

0
[∇𝑃1(𝑟) cos(𝜔𝑡) + ∇𝑃2(𝑟) sin(𝜔𝑡)] (5.15)
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∇𝜕𝜌1

𝜕𝑡
=
𝜔

𝑐2
0
[−∇𝑃1(𝑟) sin(𝜔𝑡) + ∇𝑃2(𝑟) cos(𝜔𝑡)] (5.16)

and ∇𝜌1 × ∇(𝜕𝜌1/𝜕𝑡) = (𝜔/𝑐4
0)∇𝑃1(𝑟) × ∇𝑃2(𝑟) becomes time-independent. Hence, the steady-

state equation for 𝑅2 becomes:

∇2𝑅2 = − 𝜔

𝜌2
0𝑐

4
0

(
𝜂

𝜇
+ 4

3

)
∇𝑃1(𝑟) × ∇𝑃2(𝑟). (5.17)

Now, considering one example of Eckart’s streaming in a finite rigid cylindrical tube of

radius 𝜌 = 𝑎. Assume the tube is terminated with a perfect absorber to avoid the reflection at the

end of the tube. An acoustic wave transmitter located at the mouth of the tube emanates an acoustic

wave propagating along the axial direction of the tube (z-direction). The tube is completely sealed,

and no energy exchange takes place with the interior of the tube and the outside of it. Let the

first-order traveling wave expressed as

𝑝1(𝑟, 𝑓 ) = 𝑐2
0𝜌1 = 𝑃(𝜌) sin(𝜅𝑧 − 𝜔𝑡) (5.18)

where 𝑃(𝜌) is a spatial function and 𝜅 is the axial wavenumber. One obtain

∇2𝑅2 = − 𝜔

𝜌2
0𝑐

4
0

(
𝜂

𝜇
+ 4

3

)
∇𝑃1(𝑟) × ∇𝑃2(𝑟) = 𝑏

𝑑𝑃2(𝜌)
𝑑𝜌

𝑒𝜙, with 𝑏 =
𝜔𝜅

2𝜌2
0𝑐

4
0

(
𝜂

𝜇
+ 4

3

)
(5.19)

Here ∇2𝑅2 has only 𝑒𝜙 component and independent of 𝜙, hence, 𝑅2 also has only a component in

𝑒𝜙 direction, i.e., 𝑅2 = 𝑓 (𝜌)𝑒𝜙, where 𝑓 (𝜌) satisfies

𝑑

𝑑𝜌

[
1
𝜌

𝑑 [𝜌 𝑓 (𝜌)]
𝑑𝜌

]
= 𝑏

𝑑𝑃2(𝜌)
𝑑𝜌

. (5.20)

Performing integration on the above equation, one obtain

𝑅2 = 𝑓 (𝑟)𝑒𝜙 =
[
𝑏

𝜌

∫ 𝜌

0
𝜌′𝑃2(𝜌′)𝑑𝜌′ + 2𝑁𝜌 + 𝑀

𝜌

]
𝑒𝜙 (5.21)
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where 𝑁 and 𝑀 are integration constants and 𝑀 should be zero to make 𝑓 (𝜌) is finite at 𝜌 = 0.

Recall that 𝑅2 = ∇ × 𝑣2 is in 𝑒𝜙 direction, 𝑣2𝜌 = 𝑣2𝜙 = 0, and 𝑣2𝑧 satisfies

−𝜕𝑣2𝑧

𝜕𝜌
(𝜌𝑒𝜙) = 𝑏

∫ 𝜌

0
𝜌′𝑃2(𝜌′)𝑑𝜌′ + 2𝑁𝜌. (5.22)

One obtain

𝑣2𝑧 (𝜌) = 𝑏𝑤(𝜌) + 2𝑁 (𝑎2 − 𝜌2) (5.23)

with

𝑤(𝜌) =
∫ 𝑎

𝜌

1
𝜌′′

[ ∫ 𝜌′′

0
𝜌′𝑃2(𝜌′)𝑑𝜌′

]
𝑑𝜌′′ (5.24)

where the nonslip boundary condition has been used, i.e., 𝑣2𝑧 (𝑎) = 0. The total mass flow at any

cross section should be zero for a steady flow,

∫ 𝑎

0
𝑣2𝑧 (𝜌)𝜌𝑑𝜌 = 0, (5.25)

which can be used to determine the constant 𝑁 .

Here, the spatial function of the pressure amplitude of the acoustic source is 𝑃(𝜌) =

𝑃0𝐽0(𝜇𝜌) as 0 < 𝜌 < 𝜌0 and 𝑃(𝜌) = 0 as 𝜌0 < 𝜌 < 𝑎, where 𝜌0 is the beam-width of the acoustic

source. One can first calculate the integration within the bracket in Eq. (5.24)

∫ 𝜌′′

0
𝜌′𝑃2(𝜌′)𝑑𝜌′=

∫ 𝜌′′

0
𝜌′𝑃2

0𝐽
2
0 (𝜇𝜌

′)𝑑𝜌′= 𝑃2
0
𝜌′′2

2
[𝐽2

0 (𝑥
′′) + 𝐽2

1 (𝑥
′′)] if 𝜌′′ < 𝜌0; (5.26)

∫ 𝜌′′

0
𝜌′𝑃2(𝜌′)𝑑𝜌′=

∫ 𝜌0

0
𝜌′𝑃2

0𝐽
2
0 (𝜇𝜌

′)𝑑𝜌′= 𝑃2
0
𝜌2

0
2
[𝐽2

0 (𝑥0) + 𝐽2
1 (𝑥0)] if 𝜌′′ > 𝜌0, (5.27)

where 𝑥′′ ≡ 𝜇𝜌′′ and 𝑥0 ≡ 𝜇𝜌0 with 𝜇 being the transverse wavenumber and 𝜇2 + 𝜅2 = 𝑘2
0 = 𝜔2/𝑐2

0.

Substituting the results into Eq. (5.24), one obtain when 𝜌 > 𝜌0,

𝑤(𝜌) = 𝑃2
0
𝜌2

0
2
[𝐽2

0 (𝑥0) + 𝐽2
1 (𝑥0)]ln(

𝑎

𝜌
), (5.28)
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when 0 < 𝜌 < 𝜌0,

𝑤(𝜌) =
𝑃2

0
2𝜇2

[
𝑡2
(
𝐽2

0 (𝑡) + 𝐽
2
1 (𝑡)

)
− 𝑡𝐽0(𝑡)𝐽1(𝑡)

] 𝑡=𝑥0=𝜇𝜌0

𝑡=𝑥≡𝜇𝜌
+ 𝑃2

0
𝜌2

0
2
[𝐽2

0 (𝑥0) + 𝐽2
1 (𝑥0)]ln(

𝑎

𝜌0
). (5.29)

Recall that 𝑣2𝑧 (𝜌) = 𝑏𝑤(𝜌) + 2𝑁 (𝑎2 − 𝜌2) and
∫ 𝑎

0 𝑣2𝑧 (𝜌)𝜌𝑑𝜌 = 0, one obtain that

𝑏

∫ 𝑎

0
𝑤(𝜌)𝜌𝑑𝜌 + 2𝑁

∫ 𝑎

0
(𝑎2 − 𝜌2)𝜌𝑑𝜌 = 0, (5.30)

and in turn obtain the expression of the integration constant

𝑁 =
𝑏𝑃2

0𝐺

6𝜇4𝑎4 (5.31)

with

𝐺 = 𝐽0(𝑥0)𝐽1(𝑥0)𝑥3
0 − 𝐽

2
0 (𝑥0)𝑥4

0 (1+ 𝑡) − 𝐽
2
1 (𝑥0) [𝑥2

0 + 𝑥
4
0 (1+ 𝑡)] and 𝑡 =

3𝑎2

2𝜌2
0
− 3

2
− 3ln( 𝑎

𝜌0
). (5.32)

Note that these identities have been used during the calculation:

∫
ln( 𝑎
𝑥
)𝑥𝑑𝑥 = 𝑥2

4

[
2ln( 𝑎

𝑥
) + 1

]
(5.33)∫

𝑥2𝐽0(𝑥)𝐽1(𝑥)𝑑𝑥 =
𝑥2

2
𝐽2

1 (𝑥) (5.34)∫
𝑥𝐽2

0 (𝑥)𝑑𝑥 =
𝑥2

2
[𝐽2

0 (𝑥) + 𝐽
2
1 (𝑥)] (5.35)∫

𝑥𝐽2
1 (𝑥)𝑑𝑥 =

𝑥

2
[𝑥𝐽2

0 (𝑥) + 𝑥𝐽
2
1 (𝑥) − 2𝐽0(𝑥)𝐽1(𝑥)] (5.36)∫

𝑥3𝐽2
0 (𝑥)𝑑𝑥 =

𝑥4

6
𝐽2

0 (𝑥) +
𝑥3

3
𝐽0(𝑥)𝐽1(𝑥) +

(
𝑥4

6
− 𝑥

2

3

)
𝐽2

1 (𝑥) (5.37)∫
𝑥3𝐽2

1 (𝑥)𝑑𝑥 =
𝑥4

6
𝐽2

0 (𝑥) −
2𝑥3

3
𝐽0(𝑥)𝐽1(𝑥) +

(
𝑥4

6
+ 2𝑥2

3

)
𝐽2

1 (𝑥). (5.38)

66



Hence, the velocity at 𝜌 = 0 can be obtained as

𝑣2𝑧 (𝜌 = 0) =
𝑏𝑃2

0
2𝜇2

[
𝑥2

0

(
𝐽2

0 (𝑥0) + 𝐽2
1 (𝑥0)

) (
1 + ln( 𝑎

𝜌0
)
)
− 𝑥0𝐽0(𝑥0)𝐽1(𝑥0) +

2𝐺
3𝜇2𝑎2

]
. (5.39)

Recall that 𝑏 is given in Eq. (5.19), 𝐺 is given in Eq. (5.32), 𝑎 is the radius of the cylindrical

container, 𝜌0 is the radius of the acoustic source or the transducer, 𝜇 is the transverse wavenumber,

and 𝑃0 is a constant, related to the incident pressure amplitude. Note that when 𝛽 = 0◦, Eq. (5.39)

is reduced to Eq. (35) in Wu 150 for the case of an incident plane wave, i.e.,

𝑣
𝛽=0◦
2𝑧 (𝜌 = 0) =

𝑏𝑃2
0𝜌

2
0

4

[
𝜌2

0
𝑎2 + 2ln( 𝑎

𝜌0
) − 1

]
. (5.40)

Now, considering a practical case of using acoustic tractor beam to pull a silica shell in

water with the inner-to-outer radius ratio of the shell being 0.93 and the total radius of shell being

0.5 mm. The diameter of the transducer is 𝜌0 = 1 in, and the central frequency is 1 MHz. The

radius of the rigid cylinder is 𝑎 = 1 m, which is about 100 times larger than the transducer diameter.

The power (𝑃 = 𝑃2
0/2𝜌0𝑐0 · 𝑆 with 𝑆 being the area of the transducer) is chosen as 25 Watt.

Substituting all these parameters into Eq. (5.39), one obtains the streaming velocity of the

fluid is 𝑣2 = 1.4 mm/s. Under such circumstance, the force applying to the silica shell including the

radiation force (𝐹𝑟𝑎𝑑), gravity (𝐹𝐺), buoyancy (𝐹𝐵), and the drag force (𝐹𝐷) has been calculated

and analyzed in Fig. 5.1(a), where the magnitude of the negative radiation force are compared to

the magnitude of the total force caused by other effects except radiation force. It is found that

within some range of the paraxial parameter, the acoustic beams can truly pull a particle towards

the source even when considering the practical effects.

5.2 Particle motion under radiation force, gravity, buoyancy and drag force

The dynamical change of the object velocity 𝑢 can be obtained from the Newton’s equation

𝐹𝑟𝑎𝑑 + 𝐹𝐺 − 𝐹𝐵 − 𝐹𝐷 (𝑢) = 𝑀 𝑑𝑢

𝑑𝑡
, (5.41)
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Figure 5.1: Particle manipulation including the effects caused by the gravity, buoyancy, and the
drag force. (a) Acoustic radiation force (black solid curve) on a silica shell as a function of paraxial
parameter 𝛽. Inset: zoom-in plot corresponding to the region marked by the grey box in (a). (b)
Dynamical change of velocity of the particle as a function of time when suffering from the radiation
force (𝐹𝑟𝑎𝑑), gravity (𝐹𝐺), buoyancy (𝐹𝐵), and the drag force (𝐹𝐷) as illustrated in the Inset in (b).
The net buoyancy 𝐹𝑁 = 𝐹𝐵 − 𝐹𝐺 .

where 𝑀 is the mass of the silica shell. The explicit expression of the object velocity is

𝑢 =
𝐴

𝐵
(1 − 𝑒−𝐵𝑡) (5.42)

where 𝐴 = (𝐹𝑟𝑎𝑑 + 𝐹𝐺 − 𝐹𝐵 − 6𝜋𝜂𝑎𝑣2)/𝑀 and 𝐵 = 6𝜋𝜂𝑎/𝑀 = 9𝜂/2𝜌𝑎2. Corresponding results

are shown in Fig. 5.1(b), where the velocity reaches the maximum value after 0.3 s. It is worth

noting that the drag force caused by the streaming here is about three orders small than the other

forces (𝐹𝐷 = 0.004𝐹𝑁 ,𝐹𝐷 = 0.0035𝐹𝑟𝑎𝑑), and the streaming does not affect the change rate of the

object velocity [see the term 𝐵 in Eq. (5.42)], instead it only affects the maximum object velocity

with the maximum velocity difference w/o streaming equal to the streaming velocity [see the term

𝐴/𝐵 in Eq. (5.42)].

5.3 Comparison of acoustic radiation forces and the streaming force

As mentioned above, the streaming force for the case considered here is much smaller

than the radiation force, which is because the object considered here is relatively large, and the

boundary layer 𝛿 is much smaller than the particle size 𝑎 and can be neglected [see Eq. (2.13);
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Figure 5.2: Acoustic radiation force and streaming force for the silica shell of different radii. Inset:
zoom-in plot for the object radius within the range of 0 to 500 𝜇m.

𝐹𝐷 ∝ (𝛿/𝑎)2 · 𝑎3]. To further investigate the streaming effect on the objects of different sizes, the

acoustic radiation force is compared with the drag force caused by the streaming for the same silica

shell with radii varying from 0 to 500 𝜇m (Fig. 5.2). The streaming force dominates when the

objects are relatively small, and the radiation force gradually dominates as the objects are getting

larger. The reason is that the radiation force41 is proportional to (𝑘𝑎)6 and the streaming force

[Eq. (5.1)] is proportional to 𝑘𝑎, leading that the streaming force is much larger than the radiation

force when 𝑘𝑎 is small. Hence, large objects are usually preferred since acoustic radiation forces

for large objects are usually much larger than the streaming force unless the radiation force is close

to 0 for some specific 𝑘𝑎.

The difference of the magnitude of the radiation force and the streaming force, i.e. |𝐹𝑧 | −

𝐹𝑑𝑟𝑎𝑔, in the parameter space of 𝑘𝑎 and 𝑎 is shown in Fig. 5.3, in which the blue color marks

the region where the streaming force dominates. Note that, the radiation force only depends on

𝑘𝑎, however, the streaming force depends on both 𝑘𝑎 and 𝑎; see Eqs. (5.1) and (5.39). Generally
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Figure 5.3: Difference of the magnitude of the radiation force and the streaming force, i.e.
|𝐹𝑧 | − 𝐹𝑑𝑟𝑎𝑔, in the parameter space of 𝑘𝑎 and 𝑎. The region where the radiation force is negative
is marked between the two vertical white lines, corresponding to the range of 1.65 < 𝑘𝑎 < 1.91.

speaking, the streaming force dominates when 𝑎 is small for a specific 𝑘𝑎, especially for a small

𝑘𝑎 (𝑘𝑎 << 1). The exact transition between the radiation force and the streaming force depends

on the working frequency, the paraxial parameter, properties of objects and background medium.
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CHAPTER 6

REFRACTION OF ACOUSTIC VORTEX BEAMS IN INHOMOGENEOUS MEDIA

The second portion of the dissertation focuses on the acoustic vortices in inhomogeneous

media. The effects caused by medium inhomogeneity on the propagation of acoustic ordinary/vortex

beams are fundamental and vital to address since the media are often inhomogeneous in practical

situations or applications. In this chapter, the refraction of acoustic vortex beams in stratified

inhomogeneous media and the interactions between acoustic vortices and medium inhomogeneity

are investigated.

6.1 Method

The propagation of ultrasonic vortex fields in a linearly stratified fluid is simulated, where

the sound speed is 𝑐 = 𝑐0 − 𝐺𝑧, such as that considered in Zhang and Swinney 86 and Schoen and

Arvanitis.89 The gradient is as large as𝐺 = 58 m/s per mm, which enhances the stratification effect

in a short propagating distance (that saves the simulation load). The typical sound speed in fluids

𝑐0 = 1500 m/s at the vortex source center is used and the variation of fluid density is neglected.

A finite plane source with a diameter of 15𝜆 is used, which is at the order of 1-inch diameter

transducer for 1 MHz ultrasound with a wavelength 𝜆 = 1.5 mm.

Figure 6.1: (a) Simulation of vortex waves bending in a stratified medium. (b) Stretching and
distorting of the phase on 𝑦-𝑧 cross sections at different propagating distances 𝑥.
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The simulated source profile has a topological charge of −1 in polar coordinates (𝜌, 𝜙),

𝜓 = 𝐽1(𝜇𝜌)𝑒−𝑖𝜙𝑒−𝑖𝜔𝑡 , where 𝐽1 is the first-order Bessel function, 𝜔 is angular frequency, and 𝜇 is

the transverse wave number (chosen to be half of the total wave number 𝑘 = 𝜔/𝑐0, i.e., 𝛽 = 30◦).

The simulation is conducted with a finite element method based on COMSOL MULTIPHYSICS

software. Radiation boundary conditions are applied to outer boundaries of the calculation domain

(a cylinder with 15𝜆 in diameter and 20𝜆 in length) to model the propagation in a free space without

reflection. The source is located at 𝑥 = 0 plane [Fig. 6.1(a)].

6.2 Numerical results

Figure 6.1(a) shows the simulated three-dimensional wave amplitude. The vortex beam

bends upwards towards +𝑧 direction as expected due to the refraction. Figure 6.1(b) displays the

phase distortions on 𝑦-𝑧 plane at different 𝑥. Overall, the vortex beam bends upwards and is stretched

in the stratified direction.1 The evolution of the wave amplitude during the propagation is then

examined [Fig. 6.2(a)]. Unexpectedly, the amplitude is asymmetric in the non-stratified 𝑦 direction

(relative to 𝑦 = 0), arising from the fact that the vortices rotate clockwise so the propagation

direction is along or against the upward refraction, depending on the positive or negative 𝑦 values,

respectively [Fig. 6.2(b)].

The trajectory of the vortex center which is identified from the singular point of the phase

distribution is displayed in Fig. 6.2(c). The singular trajectory is compared with a horizontally

emitted eigenray from a point source (black dashed line), which is an arc of a circle 𝑐0/𝐺 in

a linearly stratified medium.86 The results show that the singular trajectory does not lie on the

eigenray of the point source. For comparison, a beam from the same source but without the vortex

phases [i.e., a zero-order beam, 𝜓 = 𝐽0(𝜇𝜌)𝑒−𝑖𝜔𝑡] is simulated, where the trajectory of the central

pressure maximum [Fig. 6.2(c)] does coincide with the singular trajectory of the vortex beam,

revealing that the singular trajectory follows the path of a beam emitted by a finite-size source. The

behaviors of singular trajectory will be further studied in the future.

1See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevResearch.1.032014 for the evolu-
tion of the phase, amplitude, and transverse energy flux

72



Figure 6.2: (a) Stretching and distortion of amplitude on 𝑦-𝑧 cross sections at 𝑥 = 0 (left) and
10𝜆 (middle), and on the cross section perpendicular to the singular trajectory through the singular
point at 𝑥 = 10𝜆. (b) Illustration of the mechanism of amplitude asymmetry. Red arrows represent
the refraction direction by stratification. (c) Singular trajectory on 𝑧-𝑥 plane (gray solid line) and
its comparison with a horizontally emitted eigenray (black dashed line) and a maximum amplitude
trajectory from a zero-order Bessel beam propagating in the same media (red dotted line). (d)
Three-dimensional energy flux and vortex center. A three-dimensional streamline starting from
(0, 0, 0.25𝜆) and twisting around the vortex center (singular trajectory) is untwisted beyond a certain
distance.
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Figure 6.3: Features of transverse energy flux (arrows): (a) Reversal from clockwise to counter-
clockwise, (b) migration of an additional singular point of saddle type towards the vortex center
[zoom-in areas of panels in (a)], and (c) separation into two portions – the stratified effect where the
flux is upwards (middle panel) and a reconstructed vortex (right-hand-side panel). Color plots in
(a) show the phase distribution, in (b) show the wave amplitude, and in (c) show angular momentum
density.

The transport of energy is calculated by examining the time-averaged energy flux over a

wave period, S = 𝑐2g,62 where the time-averaged momentum density g = Im(𝜓∗∇𝜓) is calculated

from the complex scalar field 𝜓 and its gradient (Im represents the imaginary part and a prefactor is

suppressed in the normalization of𝜓). The flux is illustrated by one typical streamline in Fig. 6.2(d),

showing that the energy flux is transformed from twisted into untwisted and simply bends upwards

at a large distance. The transition results from the fact that, as the wave propagates and the vortex

spreads, the upward energy flux due to the stratification gradually dominates.

The transverse flux at different propagating distances 𝑥 is further shown in Fig. 6.3(a) by
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arrow plots. The flux is reversed on the positive 𝑦 side as the wave propagates. The direction of

energy flux corresponds to the gradient of phase of wave propagation [Fig. 6.3(a)]. Reversal of

the flux implies the opposite propagation of the vortex beam, resulting from an additional upward

energy flux by the refraction. The transition of flux direction is at locations where the upward flux

by refraction cancels with the clockwise vortex flux, leading to the emergence of another singular

point where the transverse energy flux is zero [Fig. 6.3(b)]. This singular point of transverse energy

flux is of saddle type, in contrast to the center point of the vortex beam. As the vortex beam

propagates and spreads, the saddle point migrates towards the center point of the vortex beam.

Note that at this additional singular point, the pressure [Fig. 6.3(b)] and axial velocity are not zero,

so there is still a flux along the propagating 𝑥 direction at these locations.

Even though the vortices are unstable and untwisted by the stratification as observed, an

approach is proposed to individually visualize the vortex flow and the stratified effect by separating

the transverse energy flux into two portions. The first portion is the background flux (denoted by

gB) obtained by taking the antisymmetrical (symmetrical) part of energy flux in the horizontal 𝑦

(vertical 𝑧) direction, namely,

gB
𝑦 (𝑦, 𝑧) = [g𝑦 (𝑦, 𝑧) − g𝑦 (−𝑦, 𝑧)]/2, (6.1)

gB
𝑧 (𝑦, 𝑧) = [g𝑧 (𝑦, 𝑧) + g𝑧 (−𝑦, 𝑧)]/2. (6.2)

The second portion is the vortex flux (denoted by gV) obtained by taking the symmetrical (anti-

symmetrical) part of energy flux in vertical 𝑦 (horizontal 𝑧) direction, namely,

gV
𝑦 (𝑦, 𝑧) = [g𝑦 (𝑦, 𝑧) + g𝑦 (−𝑦, 𝑧)]/2, (6.3)

gV
𝑧 (𝑦, 𝑧) = [g𝑧 (𝑦, 𝑧) − g𝑧 (−𝑦, 𝑧)]/2. (6.4)

The separation is illustrated in Fig. 6.3(c), where the transverse energy flux in the left-hand-side

panel is separated into a upward background flux in the middle panel and a reconstructed clockwise
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Figure 6.4: (a) Simulation of vortex waves bending in a stratified medium. Amplitude and phase
on 𝑦-𝑧 cross sections at (b) 𝑥 = 0 and (c) 𝑥 = 5𝜆.

vortex in the right-hand-side panel.

Lastly, the angular momentum density j = r × g is displayed in Fig. 6.3(c) by its axial

𝑥 component (color plots), calculated from the momentum density g and the relative distance

to the vortex center at the corresponding cross section. The total angular momentum density

in the left-hand-side panel is a sum of angular momentum density in the middle panel and the

reconstructed vortex in the right-hand-side panel. There is no contribution to the total angular

momentum contained in the whole cross section from the refraction in the middle panel, where the

angular momentum density is antisymmetric with respect to 𝑦 = 0). The total angular momentum

contained in the original vortex is equal to the total angular momentum of the reconstructed

vortex. The separation of the stratified part does not change the total angular momentum other than

redistributing the angular momentum density in the cross section.

In order to make sure that the effect caused by the reflection from the outer radiation

boundaries can be neglected and the results obtained previously are reliable, a vortex beam generated

from a smaller source propagating in the same media is simulated with the results shown in

Fig. 6.4. The result shows the diffraction of the vortex beam during propagation, and the amplitude

asymmetry still exists, which agrees with the previous observation.
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Figure 6.5: (a) Simulation of vortex waves bending in a stratified medium. Amplitude and phase
on 𝑦-𝑧 cross sections at (b) 𝑥 = 0 and (c) 𝑥 = 5𝜆. (d) Amplitude profile along the line of 𝑧 = 0 at
the propagating distance 𝑥 = 5𝜆.

The propagation of the vortex beam in a practical medium with reasonable parameters is

simulated in Fig. 6.5, where the diameter of the source is set as 1 inch, which is a typical diameter

of a transducer, the density and sound speed gradient long z direction are set as 0.2255 kg/m3 per

mm, and 0.377 m/s per mm, respectively and the density and sound speed at z = 0 are 1000 kg/m3

and 1600 m/s. The dimensions of the computation domain are 300 mm × 300 mm × 500 mm.

The frequency is chosen as 100 kHz. These parameters, which simulate the ocean environment,

are from Zhang and Swinney.86 The effects are much weaker in this simulation due to the small

gradient, but the amplitude asymmetry still exists as shown in Fig. 6.5(d), where the zoom-in plot

shows the amplitude asymmetry in the non-stratified 𝑦 direction.

6.3 Remarks

In this chapter, some unusual behaviors of acoustic singularities and vortices in stratified

media are reported. It is found that the stratification feature leads to the distortion and complex

behaviors of the vortices via the emergence of bending, distorting, focusing, and stretching of the

fields, or even the reversal of the energy and momentum transports, and angular momentum.

All of the observations herein suggests the complexity of applications of vortices in in-

homogenous media, for example, in the contexts of oceans and ultrasound. For the purpose of
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underwater navigation and communication, it becomes a challenge to decompose the vortices of

different topological charges in the stratified ocean. The findings of distortion of energy flux and

angular momentum of vortices by the refraction can lead to new phenomena of vortex-based parti-

cle manipulations in inhomogeneous fluids, where the spatial gradient plays a central role.151 One

scenario is the particle manipulation and transport in presence of a thermal gradient,152–154 where

the distortion of the vortex propagation by the gradient as observed here may need to be taken into

account.
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CHAPTER 7

ACOUSTIC ORBITAL HALL EFFECT

This chapter observes and characterizes the acoustic orbital angular momentum Hall effect

which is related to the coupling between intrinsic orbital angular momentum (IOAM) and extrinsic

orbital angular momentum (EOAM) (Fig. 7.1). The transverse shifts of the beam center related

to the orbital Hall effect are observed via simulation and modeling of a vortex beam propagating

in a smoothly inhomogeneous medium. The simulated results are compared with a theoretical

prediction characterizing the dependence of the shift on physical parameters (helicity, wavenumber,

and medium inhomogeneity). This work reveals the existence of the orbital Hall effect in acoustics

and introduces the study of angular momentum coupling in acoustics.

7.1 Numerical observation of helicity-dependent transverse shift

An acoustic vortex beam propagating in a linearly-stratified medium was simulated using

the commercial software COMSOL MULTIPHYSICS (Acoustic Module). The dimensions of the

computational domain are set to 𝜆0×3𝜆0×4𝜆0, where 𝜆0 is a reference wavelength. Non-reflection

boundary conditions are used to eliminate the disturbance caused by reflection. A circular plane

source (0.5𝜆0 in radius) with a profile exp[𝑖(𝜔𝑡 − 𝑙𝜙)] is located in 𝑦-𝑧 plane at 𝑥 = 0 with 𝜙 being

the azimuthal angle. Simulations for both 𝑙 = 1 [Fig. 7.2(a)] and 𝑙 = −1 beams were conducted.

The simulated sound speed profile is 𝑐 = 𝑐0(1 − 𝛼𝑧), giving a refractive index,

𝑛 =
𝑐0

𝑐
=

1
1 − 𝛼𝑧 , (7.1)

and a reference wavenumber 𝑘0 = 𝜔/𝑐0 = 2𝜋/𝜆0. The medium inhomogeneity is first set as

𝛼 = 0.2 m−1 and the reference wavelength is 𝜆0 = 1 m. The refractive index profile 𝑛 is illustrated
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Figure 7.1: Illustration of orbital angular momentum Hall effect in an acoustic vortex beam
propagating in an inhomogeneous (gradient) medium, manifesting a helicity-dependent transverse
shift in the homogeneous 𝑦 direction, accompanied by a coupling between extrinsic and intrinsic
orbital angular momenta (denoted by EOAM and IOAM) and conservation of the total angular
momentum along the gradient 𝑧 direction.

Figure 7.2: (a) Simulated phase in the 𝑦-𝑧 cross section at the initial source plane for a helicity
𝑙 = 1. (b) One example of refraction index profile used in the simulation [see Eq. (7.1)].
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Figure 7.3: (a) Simulated phase in the 𝑦-𝑧 cross section at 𝑥 = 0.5𝜆0 for the vortex beam with
topological charge of 𝑙 = 1, showing the transverse Hall shift 𝛿𝑟 in the homogeneous 𝑦 direction in
addition to the refractive deflection 𝛿𝑧 in the inhomogeneous 𝑧 direction, where the corresponding
shifts of the beam center (singular point) related to the original beam axis (𝑥 axis) are marked. (b)
Vertical bending due to the refraction (black circles) with the solid line from a quadratic fit. (c)
Same as (a) but for a beam of 𝑙 = −1, where the transverse shift is of the same magnitude as (a)
but in an opposite direction. (d) Transverse shift 𝛿𝑟 increases with the propagation distance 𝑥 for
both 𝑙 = ±1 beams determined from the simulations and corresponding linear fits. For the vertical
bending in (b), 𝑙 = ±1 follow the same line. Error bars are determined from mesh size.
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in Fig. 7.2(b). To study the dynamical change of the behaviors due to the variation of parameters,

a series of simulations were conducted by varying the speed gradient 𝛼 from 0.03 to 0.3 (fix the

reference wavenumber 𝑘0 = 2𝜋 m−1) and by varying the reference wavenumber 𝑘0 = 2𝜋/𝜆0 from

5.0 to 8.3 (fix the gradient as 𝛼 = 0.1 m−1).

To precisely determine location of the beam center during the propagation, the mesh size

near the singular core (a cylinder with radius of 0.05𝜆0) is reduced to be as small as 1/200 of the

reference wavelength. This mesh size is around an order lower than the shift of the singular point

location to be found in our simulations. The regions outside the cylinder have a regular mesh size

of 1/16 wavelength.

Figure 7.3(a) shows the phase in 𝑦-𝑧 cross section at the propagation distance, 𝑥 = 0.5𝜆0,

for the vortex beam with topological charges of 𝑙 = 1. The beam bends to the direction of sound

speed descent (+𝑧 direction) due to the refraction [Fig. 7.3(b)], which was recently simulated

in Fan et al. 155 whereas here it is found that the beam center also has a transverse shift in the

homogeneous 𝑦 direction. This transverse shift was not found in the prior simulations where the

mesh size varied from 1/10 to 1/5 wavelength and the mesh near the core was not fine enough to

identify the transverse shift.

The vortex beam with topological charge of 𝑙 = −1 propagating in the same medium is

shown in Fig. 7.3(c). It is found that the transverse shift is of the same magnitude as the case of

𝑙 = 1 but in the opposite direction, revealing a dependence on the beam’s helicity. The transverse

shifts as a function of the propagation distance are further examined for both 𝑙 = ±1 [Fig. 7.3(d)].

It is found that the transverse shift is linearly scaling with respect to the propagation distance while

the shift direction depends on the sign of the helicity 𝑙.

Variations of the transverse shift with the medium inhomogeneity 𝛼 and reference wavenum-

ber 𝑘0 are shown in Fig. 7.4(a) and (b). The results show that, given a specific distance 𝑥, the

transverse shift increases with speed gradient [Fig. 7.4(a)] and decreases with the wavenumber

[Fig. 7.4(b)]. The dependence is determined by a linear fit. In addition, it is found that the slope

𝛿𝑟/𝑥 of the fit is linearly scaling with 𝛼 and with 1/𝑘0 [Fig. 7.4(c)], namely, 𝛿𝑟/𝑥 ∝ 𝛼/𝑘0.
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Figure 7.4: Numerically simulated (circles/diamonds) versus linear fitted (solid lines) transverse
Hall shifts as a function of propagation distance when (a) varying the gradient 𝛼 (keeping 𝑘0 =

2𝜋 m−1) and (b) varying the wavenumber 𝑘0 (keeping 𝛼 = 0.1 m−1). (c) Derivative of transverse
shift with respect to the propagation distance, i.e. 𝛿𝑟/𝑥, as a function of 𝛼/𝑘0, determined from
the simulated results in (a) and (b) [denoted by red circles and blue diamonds, respectively] and in
comparison with theoretical prediction (solid line) from Eq. (7.6), i.e. 𝛿𝑟/𝑥 ∝ 𝛼/𝑘0. Error bars
in (a) and (b) come from the mesh size, and in (c) come from the 95% confidence bounds of the
linear fits.
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7.2 Modeling of orbital Hall effect in Acoustics

The helicity-dependent transverse shift observed here can be regarded as acoustic orbital

Hall effect, which is the acoustic counterpart of the orbital Hall effect in optics. This effect is

revealed by considering the equations of motion for the beam center in a smoothly inhomogeneous

medium, which have been derived in the context of optics via the variation principle on the

effective Lagrangian in the presence of Berry curvature.94,96,97,100,101,105,106,156 Similar to the

optical counterpart, the equations of wave vector k and the displacement r of acoustic vortex beam

center as propagating in a smoothly inhomogeneous medium are,

·
k = 𝑘∇ln𝑛, and

·r =
k
𝑘
− 𝑙k ×

·
k

𝑘3 , (7.2)

where dot donates the derivative with respect to 𝑠, which is the length of a curved trajectory followed

by the beam center. In the first equation, the gradient of the logarithm refractive index (∇ln𝑛),

representing the inhomogeneity of the medium, plays the role of an external force leading to the

refraction of the beam in the inhomogenous direction. The first term in the second equation in (7.2)

characterizes the ray followed by the beam center without considering the carried orbital angular

momentum.

The second term in the second equation in (7.2), proportional to the orbital angular momen-

tum 𝑙, is an addition to the vortex beam, where the cross product of k and
·
k leads to a transverse

shift that is normal to both wave vector of the beam center and medium inhomogeneity. This

phenomenon is hence regarded as the Hall effect since the shift is perpendicular to the “force”

i.e. the medium inhomogeneity, in an analogy to angular momentum Hall effect in optics.101 The

direction of the shift depends on the sign of the topological charge 𝑙 (Fig. 7.1). In this case, the

sound speed gradient leads
·
k to be in 𝑧 direction and k is predominantly along 𝑥 direction. It

follows from Eq. (7.2) that the shift is in 𝑦 direction, consistent with our numerical simulations

[Fig. 7.3(a) and (c)] and consequently validating our observation of acoustic orbital Hall effect for

the first time after decades of studies of acoustic vortex beams and orbital angular momentum.
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The dependence of the shift on the parameters is now analyzed. Specifically, a linearly

stratified media, whose refraction index as a function of depth was given in Eq. (7.1), is considered.

In this case, the first equation in (7.2) can be simplified as

·
k = 𝑘

𝛼

𝑛
ẑ = 𝑘0

𝛼

𝑛2 ẑ. (7.3)

Since the change of the wave vector is only along 𝑧 direction, the expression of wave vector k

can be assigned as k = 𝑘𝑥 x̂ + 𝑘𝑧z, where 𝑘𝑥 and 𝑘𝑧 are to be determined. Substituting k into

Eq. (7.3), one has (i) the wave number in 𝑥 direction is constant and equal to initial wave number,

i.e. 𝑘𝑥 = 𝑘0 = 𝜔/𝑐0, and (ii) the wave number in 𝑧 direction can be solved from 𝑑𝑘𝑧 = 𝑘0(𝛼/𝑛2)𝑑𝑠.

Within the range considered in this paper, 𝛿𝑛 ≪ 1 and zero order approximation is applied, i.e.

𝑑𝑠 ≈ 𝑑𝑥 and 𝑛 ≈ 1. Hence, the wave vector is

k ≈ 𝑘0 [̂x + 𝛼𝑥ẑ] . (7.4)

The transverse shift in the homogeneous 𝑦 direction by the Hall effect can be solved by a

contour integral along the ray of zero approximation,

𝛿r = −𝑙
∫
𝐶

(k × 𝑑k)/𝑘3. (7.5)

Combining Eqs. (7.3), (7.4) and (7.5), one obtains,

𝛿r =
𝑙

𝑘0
𝛼𝑥ŷ, (7.6)

which predicts that the shift is proportional to (i) the helicity 𝑙, (ii) a typical magnitude of 𝑘−1
0 , (iii)

medium inhomogeneity gradient 𝛼, and (iv) the propagation distance 𝑥. This theoretical prediction

is compared with the numerical simulations in Fig. 7.4(c), where the derivative of transverse shift

with respect to propagation distance, 𝛿𝑟/𝑥, as a function of 𝛼/𝑘0 is presented. The results confirm
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the agreement between the numerical observation and theoretical prediction from Eq. (7.6), i.e.,

𝛿𝑟/𝑥 = 𝛼/𝑘0 with the helicity 𝑙 = 1.

7.3 Orbit-orbit Interactions and Angular Momentum Conservation

The orbital angular momentum Hall shift represents the interactions between the intrinsic

and extrinsic orbital angular momentum with respect to the origin at (𝑥, 𝑦, 𝑧) = 0. The total

angular momentum as a sum of extrinsic and intrinsic orbital angular momentum (with a proper

normalization) can be expressed as:

J = r × k + 𝑙k/𝑘. (7.7)

The bending of the beam along the gradient direction by refraction immediately generates an

extrinsic orbital angular momentum in the transverse direction (first term), which is −(1/2)𝛼𝑘0𝑥
2ŷ

in our case, following from the wave vector k in Eq. (7.4) and the position vector r is solved from

the second equation in Eq. (7.2) in the zero approximation (¤r = k/𝑘) to be

r ≈ 𝑥x̂ + 1
2
𝛼𝑥2̂z, (7.8)

where the second term is the deflection in the inhomogeneous direction by refraction and is quadratic

in propagation distance 𝑥 at the leading order [see Fig. 7.3(b)].

The wave refraction generates a variation of the intrinsic orbital angular momentum along

the gradient direction [second term in Eq. (7.7)]. The variation is compensated by a variation of

the extrinsic orbital angular momentum [first term in Eq. (7.7)] contributing from the transverse

shift of the Hall effect, exhibiting the interactions of intrinsic and extrinsic angular momentum

to guarantee the conservation of the total angular momentum. In our case, the variation in the

𝑧-component of the intrinsic angular momentum is

Intrinsic OAM variation = 𝛼𝑙𝑥ẑ, (7.9)
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and the extrinsic orbital angular momentum produced by the transverse shift is

Extrinsic OAM variation = −𝛼𝑙𝑥ẑ, (7.10)

manifesting the conservation of the total angular momentum along the gradient direction and the

interactions between intrinsic and extrinsic orbital angular momentum for acoustic vortex beams

in a smoothly inhomogeneous media.

Here the ray theory determines the motion of the beam center but not the field’s intensity

distribution. The intensity profile can be distorted to be transversely asymmetric with respect to

the beam center. Such asymmetry was observed in our last simulation in Fan et al. 155 where it was

explained by a superposition of vortex rotation and vertical refraction. The asymmetry depends

on specific beams and is also affected by other factors like diffraction.117,118 The asymmetry

also perturbs the orbital angular momentum. The further exploration of the asymmetry and its

perturbation on orbital angular momentum is beyond the scope of this present analysis.

7.4 Remarks

To conclude, the orbital angular momentum Hall effect in acoustics was observed for the

first time via numerical simulations. A vortex beam carrying the orbital angular momentum

propagating in a smoothly inhomogeneous medium is considered. The transverse shifts related

to orbital angular momentum Hall effect are predicted, observed, and then characterized by a ray

formula in the inhomogeneity approximation. These results demonstrate that the orbital angular

momentum of sound can also have interesting topological properties that may find applications in

the manipulation of sound signals. This work opens up the fundamental study of acoustic Hall

effect and orbital angular momentum in an inhomogeneous medium. Note the shift is proportional

to sound speed, but the sound speed is several orders smaller than for optical waves.

The formula [Eq. (7.6)] assumes the range of refractive index variation is small. This is

the case for many stratified media, for example, the inhomogeneity of sound speed in ocean and
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atmospheric environments. To observe the transverse shift in a medium with a small gradient, the

sound would need to propagate a long distance. Take the ocean as an example, where the range

of sound speed variation is about 50 m/s over 4 km depth and the averaged sound speed is about

1,500 m/s, implying an estimated shift of about only 2 cm for a 𝑙 = 1 sound vortex beam of 1 kHz

traveling a distance (horizontal range) of 10 km. The shift increases if the frequency is lowered.

The experimental observation of the acoustic orbital angular momentum Hall effect requires

the generation of inhomogeneity of the medium, which can be created by salinity or thermal

gradient. A precise acoustic measurement to detect the slight shift of sound field would be needed.

A relatively large gradient and low frequency enhances the shift. A higher-order vortex beam could

also amplify the shift. For example, one can create a sound speed gradient about 0.377 m/s per mm

(𝛼 ≈ 0.24 m−1) in a laboratory tank by salinity.86 Low frequency underwater transducers can be

used to generate sound waves in a frequency range of 1 kHz to 10 kHz, and the corresponding range

of the transverse shifts from 60 mm to 6 mm could be measured at the distance of 1 m away from

the transducer. In addition, a transverse shift can be specifically observed in the beam transmitted

through the sharp interface of two media and with the aid of metasurfaces with a phase gradient,157

which will be discussed in the next chapters. A large phase gradient generated by metasurfaces158

amplifies the shift and also allows for the observation of the shifts in air. More complex beams and

media/structures could also be considered.
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CHAPTER 8

ACOUSTIC IMBERT-FEDOROV EFFECT

In this chapter, a special example of the acoustic orbital Hall effect, the acoustic Imbert-

Fedorov effect, which occurs on a sharp boundary between two media, is investigated. Similar to

the optical counterpart,159 theoretical expressions of the transverse shifts in acoustics are derived

based on the conservation of the tangent component of linear momentum and the conservation of the

normal component of angular momentum. The results are then validated by numerical simulations.

Possible experiments to observe the acoustic Imbert-Fedorov effect are also suggested.

8.1 Theoretical prediction

The acoustic Imbert-Fedorov effect involves the reflection and transmission of vortex beams

between two media. An incident acoustic vortex beam, carrying intrinsic orbital angular momentum

𝑙, propagates in the 𝑥-𝑧 plane with an angle 𝜃 to the 𝑧-axis, and the beam is partially reflected and

transmitted at the interface 𝑧 = 0 between two non-absorbing media (Fig. 8.1). The wavevectors of

all the three beams, which are attached to the 𝑍𝑎-axes in their local coordinate frames (𝑋𝑎, 𝑦, 𝑍𝑎)

with 𝑎 = 𝑖, 𝑟, 𝑡, lie in the same plane:

k𝑎 = 𝑘𝑎e𝑎𝑍 = 𝑘𝑎 (sin 𝜃𝑎, 0, cos 𝜃𝑎). (8.1)

Three wavenumbers follow 𝑘𝑟 = 𝑘 𝑖 ≡ 𝑘 and 𝑘 𝑡 = 𝑛𝑘 where 𝑛 is the relative refractive index of the

second medium, i.e., 𝑛 = 𝑐1/𝑐2 with 𝑐1 and 𝑐2 being the sound speeds of the first and the second

media. Based on the Snell’s law or the conservation of tangent component of linear momentum,
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the incident, reflected and refracted angles can be obtained:

𝜃𝑖 = 𝜃, 𝜃𝑟 = 𝜋 − 𝜃, 𝜃𝑡 = sin−1(𝑛−1 sin 𝜃) ≡ 𝜃′. (8.2)

Hence, the beam shift can be obtained from the conservation of the normal component of

the angular momentum, which means the changes in the 𝑧-component of the intrinsic orbital angular

momentum must be compensated by the changes of the extrinsic orbital angular momentum caused

by the transverse shifts in 𝑦-direction. As a result, the shifts for the reflected and transmitted beams

𝛿
𝑟,𝑡
𝑦 can be obtained159,160

𝛿𝑟𝑦 =
𝐿
𝑖𝑛𝑡,𝑟
𝑧 − 𝐿𝑖𝑛𝑡,𝑖𝑧

𝑘 sin 𝜃
, 𝛿𝑡𝑦 =

𝐿
𝑖𝑛𝑡,𝑡
𝑧 − 𝐿𝑖𝑛𝑡,𝑖𝑧

𝑘 sin 𝜃
, (8.3)

in which the wavenumber along 𝑥 direction, 𝑘 sin 𝜃, is used so as to obtain a change of the extrinsic

orbital angular momentum in 𝑧 direction. The intrinsic orbital angular momentum from the incident,

reflected and transmitted beams are L𝑖𝑛𝑡,𝑎 = 𝐷𝑎𝑙e𝑎
𝑍

with 𝑎 = 𝑖, 𝑟, 𝑡, and the additional factors 𝐷𝑎 160

are

𝐷𝑖 = 1, 𝐷𝑟 = −1, and 𝐷𝑡 = (cos 𝜃/cos 𝜃′ + cos 𝜃′/cos 𝜃)/2. (8.4)

Again, e𝑎
𝑍
= (sin 𝜃𝑎, 0, cos 𝜃𝑎); see Eq. (8.1).

Then the 𝑧 components of the intrinsic orbital angular momenta can be written explicitly,

𝐿𝑖𝑛𝑡,𝑖𝑧 = 𝑙 cos 𝜃𝑖 = 𝑙 cos 𝜃

𝐿𝑖𝑛𝑡,𝑟𝑧 = −𝑙 cos 𝜃𝑟 = −𝑙 cos(𝜋 − 𝜃)

𝐿𝑖𝑛𝑡,𝑡𝑧 =
𝑙

2
( cos 𝜃
cos 𝜃′

+ cos 𝜃′

cos 𝜃
) cos 𝜃𝑡 =

𝑙

2
( cos 𝜃
cos 𝜃′

+ cos 𝜃′

cos 𝜃
) cos 𝜃′. (8.5)

By substituting Eq. (8.5) into Eq. (8.3), one can obtain the transverse shifts in 𝑦-direction for both
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Figure 8.1: Illustration of acoustic reflection and transmission of a paraxial beam at the plane
interface between two media, i.e., 𝑥-𝑦 plane at 𝑧 = 0. The plane of incidence is 𝑥-𝑧 plane at 𝑦 = 0.
The beam coordinate frames (𝑋𝑎, 𝑦, 𝑍𝑎) with 𝑎 = 𝑖, 𝑟, 𝑡 are attached to the incident, reflected and
transmitted beams, respectively. Incident, reflected, and transmitted angles 𝜃𝑎 are marked, and they
follows the relations: 𝜃𝑖 = 𝜃, 𝜃𝑟 = 𝜋 − 𝜃, and 𝜃𝑡 = sin−1(𝑛−1 sin 𝜃) ≡ 𝜃′ with 𝑛 being the relative
refractive index.

reflected and transmitted beams:159

𝛿𝑟𝑦 =
(−𝑙) (− cos 𝜃) − 𝑙 cos 𝜃

𝑘 sin 𝜃
= 0, (8.6)

𝛿𝑡𝑦 =

𝑙
2 (

cos 𝜃
cos 𝜃 ′ +

cos 𝜃 ′
cos 𝜃 ) cos 𝜃′ − 𝑙 cos 𝜃
𝑘 sin 𝜃

=
𝑙

2𝑘
tan 𝜃 (1 − 𝑛−2). (8.7)

The results show that the shift of the reflected beam 𝛿𝑟𝑦 is zero, independent of the properties of

both the incident beam and the interface. However, the shift for the transmitted beam 𝛿𝑡𝑦 relies

on: (i) the intrinsic orbital angular momentum, 𝑙; (ii) the incident wavevector k, which gives the

wavenumber 𝑘 and the incident angle 𝜃; and (iii) the relative refractive index 𝑛, which characterizes

the property of the interface between two media. See relevant studies in optics.116–118,157
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8.2 Numerical observation

To observe the Imbert-Fedorov effect, an vortex beam with topological charge of 𝑙 = 1

interacting with a sharp boundary between two media is simulated [Fig. 8.2(a)], where the center

of the incident vortex beam is in 𝑥-𝑧 plane at 𝑦 = 0 with the phase profile of the source shown in

Fig. 8.2(b). The phase at the transmitted plane is shown in Fig. 8.2(c) where the acoustic Imbert-

Fedorov shift is marked between two white dashed lines, i.e., 𝛿𝑦 = 0.14 ± 0.05 mm in this case.

Here, the sound speed of the two media are 𝑐1 = 1500 m/s and 𝑐2 = 750 m/s, giving the relative

refractive index 𝑛 = 𝑐1/𝑐2 = 2. The frequency used is 𝑓 = 0.9 MHz and the incident angle is

𝜃 = 60◦. Hence, the acoustic IF shift observed here is about 0.1 wavelength, which agrees with the

prediction in Eq. (8.7).

To further investigate the dependence of the transverse IF shift on physical parameters,

simulations with different incident angles (𝜃 = 30◦ to 60◦ with an interval of 5◦) have been

conducted with the results shown in Fig. 8.3. The simulated results (red circles) follow along the

theoretical prediction (black solid line), i.e., 𝛿𝑦 ∝ tan 𝜃, with the error bar from the maximum mesh

size in the simulations.

Simulations with different incident sound frequencies ( 𝑓 = 100 kHz to 1 MHz with an

interval of 100 kHz) have also been conducted with the results shown in Fig. 8.4. The simulated

results (red circles) follow along the theoretical prediction (black solid line), i.e., 𝛿𝑦 ∝ 1/𝑘 , with

the error bar from the maximum mesh size in the simulations, i.e., ±0.03𝜆.

8.3 Suggested experiments on the interface of two media

Experimental observation of the transverse shift by acoustic orbital angular momentum Hall

effect or acoustic Imbert-Fedorov effect can be suggested based on the formula Eq. (8.7),

𝛿𝑡𝑦 =
𝑙

4𝜋
· 𝜆 · tan 𝜃 · (1 − 𝑛−2), (8.8)
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Figure 8.2: (a) Illustration of acoustic vortex beam transmitted from a sharp boundary between two
media. Red lines come from the Snell’s law with 𝜃 and 𝜃′ being the incident and refractive angle.
(b) Phase in the initial vortex source plane [black solid line in (a)]. (c) Phase in the transmitted
plane [blue dashed line in (a)] with the Imbert-Fedorov shift in 𝑦 direction marked between two
white dashed lines.

Figure 8.3: Simulated transverse I-F shifts (red circles) as a function of the incident angle with the
theoretical prediction (black line) used for comparison. Error bars come from the maximum mesh
size used in the simulation, i.e., 0.05 mm.
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Figure 8.4: Simulated transverse I-F shifts (red circles) as a function of the wavenumber 𝑘 with
the theoretical prediction (black line) used for comparison. Error bars come from the maximum
mesh size used in the simulation, i.e., ±0.03𝜆. Inset: simulated transverse shift versus 1/𝑘 for
comparison.

where one can see that the shift is proportional to the wavelength 𝜆 and the tangent of the incidence

angle tan 𝜃. Large wavelength (low-frequency) and large incidence angle would help to enhance the

shift for experimental observation. In addition, the relative refractive index 𝑛 needs to be carefully

chosen to make sure: (i) the refractive index is large enough to enhance the shift (𝛿𝑡𝑦 ∝ 1 − 𝑛−2),

and (ii) the acoustic impedance difference between two media is not too large (𝑛 is not too large),

so that enough sound energy can be transmitted through the interface.

Some examples of fluids for experimental observation are suggested as shown in Fig. 8.5,

where one layer of the medium can be chosen from Table 8.1 and the other layer of the medium is

water. From the results, the transverse shift can reach 0.8𝜆 when the incidence angle is 𝜃 = 85◦,

which means if a 100 kHz transducer is used in the experiment, the transverse shift can reach

12 mm, which is measurable. If the frequency is further reduced to 10 kHz, then the transverse

shift can be 10 times larger or 120 mm, since the shift is proportional to the wavelength.
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Figure 8.5: Suggested experiments. Transverse I-F shifts as a function of the incidence angle 𝜃 for
some suggested fluids for experiments. Corresponding acoustic properties of the fluids are shown
in Table 8.1.

Materials Mass density Sound speed Refractive Transverse shift
𝜌 [kg/m3] 𝑐 [m/s] index 𝑛 𝛿𝑡𝑦/𝜆 [𝜃 = 85◦]

C6F14 1691 505 2.97 0.806
CCl4 1587 915 1.64 0.571

CH3OH 792 1097 1.37 0.423
C2H5OH 789 1139 1.32 0.385
C6H12 779 1244 1.21 0.284
C7H8 867 1298 1.16 0.229
H2O 1000 1500 1 0

Table 8.1: Acoustic properties of fluids at atmospheric pressure and temperature T = 300 K.
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Figure 8.6: Illustration of experimental observation of orbital Hall effect with the aid of acoustic
metasurface with a phase gradient. Transverse shift 𝛿𝑟 can be observed from the transmitted field.

8.4 Suggested experiments using meta-materials

The last section discussed the acoustic Imbert-Fedorov effects on a sharp boundary between

two media, which is due to the evolution of the wavevector across the boundary. This sharp

boundary can be also constructed using acoustic metamaterials/metasurfaces with a phase gradient

since metamaterials/metasurfaces, a type of artificial structures, provide extreme flexibility in

reshaping the transmitted wavefront in a passive manner by providing additional momentum in the

transverse direction.161 With the aid of the desired phase profiles, the transmitted fields can be

tailored in an controllable manner.

Here, an experiment with the aid of acoustic meta-materials is proposed, which will guide

the observation of the acoustic Hall shift in future. The acoustic Hall effect or acoustic IF shift can be

measured when the incident vortex beam is transmitted from an acoustic meta-surface with a phase

gradient (Fig. 8.6). Specifically, the transverse shift can be determined by comparing the scanned

fields with and without the metasurface. The incident vortex beams can be generated, for example,

by four individual sources with same amplitude and linearly increasing phases (0, 𝜋/2, 𝜋, 3𝜋/2),61

or via a hydrophone array to get a better structured wavefront.

The structure used here is the resonance-based meta-surface [Fig. 8.7(a)].158,161,162 The

structure is composed of individual elements with each having a hybrid structure formed by
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coupling a straight tube with a series connection of four cavities acting as acoustic resonators [see

Fig. 8.7(b) for the cross section of one element]. The element can effectively adjust the phase of

the transmitted waves by varying the geometry parameter 𝑑/𝐷 while keeping a high transmission

efficiency larger than 80% for airborne sound [see simulated results in Fig. 8.7(c)]. Each individual

element can be treated as a point source with particular phase and amplitude, together with the

phase at the entrance of the unit being accounted. As an example, 16 elements with different 𝑑/𝐷

are selected to eventually build a metasurface with a phase gradient of 0.8𝜋 per wavelength; see

Fig. 8.7(d). The metasurface can be printed using 3D printing technology.

According to Fermat’s principle or the Generalized Snell’s Law,163 the wavefront of acoustic

beams can be reshaped by manipulating the propagation phases. In this case, the direction of

"anomalous" refraction related to the normal incident vortex beam follows

𝜃𝑡 = sin−1( 1
𝑘

𝑑𝜙

𝑑𝜏
), (8.9)

where 𝜃𝑡 is the refraction angle to the normal line, 𝑘 is the wavenumber in the transmitted domain,

and 𝑑𝜙/𝑑𝜏 represents the phase gradient, which is 0.8𝜋 per wavelength in this case, giving the

theoretical refraction angle 𝜃𝑡 = 23.6◦.

The simulated phase on the 𝑥-𝑧 cross section at 𝑦 = 0 using the proposed structure is shown

in Fig. 8.7(e), where the wavevector of the transmitted beam follows along the black arrow with an

angle 𝜃𝑡 to the normal line (dashed black line). The refraction angle simulated here agrees exactly

with the predicted value by the Generalized Snell’s Law, 23.6◦. Then the acoustic orbital Hall

effect can be observed by measuring the transverse shift of the vortex center in 𝑦 direction, which

is about 0.1𝜆 as shown between the two black dashed lines in Fig. 8.7(f).

8.5 Remarks

The experiment proposed here allows for the observation of the transverse shifts in air

via acoustic metasurfaces with a phase gradient. The resonance-based structure158 used here has
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Figure 8.7: (a) Illustration of the metasurface with the cross section of one element shown in
(b). Parameters are chosen as 𝐿 = 0.5𝜆, 𝐷 = 0.1𝜆, 𝑡 = 0.01𝜆, and 𝑤 = 0.015𝜆 with 𝜆 being
the wavelength. (c) Simulated phase shift covering the range of 2𝜋 can be effectively adjusted by
varying the parameter 𝑑/𝐷 with the transmission efficiency larger than 80% (𝑇 = |𝑝𝑡/𝑝𝑖 | with 𝑝𝑖
and 𝑝𝑡 being the incident and transmitted field). (d) Simulated phases of the 16 elements used in
the simulation, giving the phase gradient of 0.8𝜋 per wavelength. (e) Phase on the 𝑥-𝑧 cross section
at 𝑦 = 0, where the wavevector of the transmitted beam follows along the black arrow with an angle
𝜃𝑡 to the normal line (dashed black line). (f) Phase profile of the incident wave (top panel) and
the transmitted wave (bottom panel) on the 𝑦-𝑧 cross section, where the transverse shift is marked
between the two black dashed lines.
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Figure 8.8: (a) Phases on the 𝑥-𝑧 cross section at 𝑦 = 0. (b) Phase profile of the transmitted
wave on the 𝑦-𝑧 cross section. Top panels: with thermoviscous effects; bottom panels: without
thermoviscous effects.
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the advantage of a planar interface, a full 2𝜋 phase shift, a well-matched impedance, and the

subwavelength spatial resolution, which are preferred for most applications. A large phase gradient

helps to amplify the transverse shift. More complex beams, media, and structures could also be

considered. The oblique incidence and the thermoviscous effect would need to be considered for

the transition through the structure.

Normal and oblique incidence of incident waves on this structure was studied by Li et al. 161

where the transmission/reflection spectra and the refracted pressure fields were systematically

studied. It was found by Li et al. 161 that aforementioned properties of this structure are still valid

under oblique incidence within a certain range of incident angles. Specifically, fully controlled

phase shift and high transmission can be achieved for oblique incidence with an incident angle

smaller than 56◦ if the threshold of the transmission amplitude of each element is set to 0.9, and

the angle increases to 75◦ if the threshold is set as -3 dB, which means that 50% of the incident

power penetrates the element [see Fig.4 in Li et al. 161 for more details].

Thermoviscous effects on sound transmission through this resonance-based metasurface

were studied by Jiang et al. 162 where both wall friction and the thermoviscous diffusivity in the

structure were taken into account. The results reveal that the dissipation has a weak influence on

phases even when there is a large loss. Specifically, the dissipation reduces the transmission by

28% when the thermoviscous boundary layer thickness is only around 2.3% of the slit width.

Since the structure is valid within a certain range of incident angles,161 the structure could

be used to generate a phase gradient for an incident vortex wave, where a small paraxiality param-

eter is preferred. Although the thermoviscous effect has little influence on the generation of the

phase gradient,162 which is the key to observe the orbital Hall effect, a simulation including the

thermoviscous effects was also conducted; see Fig. 8.8. From the results, one can find that the

propagating direction of the transmitted waves was changed due to different transmissions from

different unit elements of the structure caused by the thermoviscous effects [see Fig. 8.8(a)], how-

ever, the transverse shift does not changed much when comparing the results w/o the thermoviscous

effects [see Fig. 8.8(b)]. In the simulations, thermoviscous acoustic module was employed in the
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metasurface region [for both the Helmholtz resonators and the straight tube; see Fig. 8.7(b)] to

consider both the viscous friction and thermal diffusivity. No slip and isothermal conditions are

used on the solid boundaries. Pressure acoustic module was used for the incident and transmitted

areas, where the losses are ignored since there is no wall friction outside the metasurface. The

working frequency is 3430 Hz. The values of 𝑑/𝐷 for the simulation are 0.269, 0.282, 0.294,

0.306, 0.319, 0.333, 0.35, 0.36, 0.383, 0.413, 0.451, 0.496, 0.547, 0.604, 0.669, 0.749 [Fig. 8.7(b)].

8.6 Conclusion

Vortex beams with a twisted wavefront possess both intrinsic and extrinsic orbital angular

momenta. In this chapter, an analogous orbital Hall effect in acoustics, i.e. acoustic Imbert-Fedorov

effect, is modelled using a vortex beam propagating through a sharp interface between two media.

Similar to optical counterparts,159 the transverse shifts related to the acoustic Imbert-Fedorov

effect are predicted and characterized by a ray formula based on the conservation of orbital angular

momentum. Possible experimental observations of the acoustic phenomenon are suggested via

either two media or with the aid of acoustic metasurfaces. The results have possible applications

in the manipulations of sound signals. This work introduces the fundamental study of the acoustic

Imbert-Fedorov effect between two media and relevant applications in future.
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CHAPTER 9

SUMMARY AND CONCLUSION

In summary, this dissertation studied the acoustic Bessel and vortex beams including the

radiation force generated by these beams as well as the propagation of vortex beams in inhomoge-

neous media. A new type of acoustic tweezers, which can not only trap particles in the transverse

direction but also pull the particles towards the source in the axial direction, has been proved to

be possible. In addition, some unusual and interesting phenomena have been found when simulat-

ing the propagation of acoustic vortex beams in inhomogeneous media such as the asymmetry of

pressure amplitude and transverse energy flux, the migration of singular points, the reversal and

separation of transverse energy flux, and the acoustic orbital Hall effect.

Specifically, for the first part of the acoustic radiation force, the acoustic trapping force

generated by acoustic Bessel waves has been analyzed based on the Gorkov potential, the partial

wave expansion method and the Born approximation method. The Gorkov potential can be used

for the analysis of acoustic radiation forces on small objects with the advantage of simplicity and

efficiency compared with the partial wave expansion method. However, for large objects, the

Gorkov potential will usually lose its prediction capability, and the full solution from the partial

wave expansion method has to be used instead. When the material contrast between objects and

background media is small, and the incident wave has a standing wave component as well, the Born

approximation method can be used to predict the trapping force on objects whose characteristic

length is smaller than a wavelength. With the aid of the Born approximation, a modified version of

the Gorkov potential could also be used for the analysis of acoustic trapping forces on large objects

with small material contrasts compared with background media. In the modified Gorkov potential,

the exact location of the objects needs to be replaced with the characteristic length of the object
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for the force prediction. In addition, the acoustic pulling force based on the phase shift approach

was also analyzed. This phase shift approach can simplify the computation, and also allows one to

engineer object and beam parameters to design desired axially pulling forces. The effects of some

realistic factors such as gravity, buoyancy, and the acoustic streaming were also studied. Generally

speaking, the force due to the acoustic streaming is dominant compared with the acoustic radiation

force for small objects, and the acoustic radiation force becomes dominant as objects become larger

unless the radiation force is close to near 0. The work here is useful for the further study of acoustic

radiation force as well as the design of acoustic tweezers.

For the second part of the propagation of vortex beams in inhomogeneous media, a series

of unstable and dynamic behaviors were numerically observed. These behaviors include bending,

stretching, distorting and untwisting of the vortex beam, migration of singular points, and reversal of

energy flux and angular momentum. Then the acoustic orbital Hall effect in a continuously stratified

medium as well as on a sharp boundary between two media was studied. Possible experimental

observations of the acoustic orbital Hall effect were suggested in a water tank using salinity gradient,

through an interface between two media, and in air with the aid of a gradient metasurface. This

work provides a basis for the fundamental study of acoustic vortices in inhomogeneous media or

complex media. It would be also interesting to study acoustic tractor beams in inhomogenous

media, for example, in a stratified medium, where the particle might be pulled towards the source

along a curved path.
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SCATTERING FUNCTIONS

The scattering functions 𝑠𝑛,42 which are determined by the boundary conditions and material

properties, can be calculated by

𝑠𝑛 = −
𝐷∗𝑛
𝐷𝑛

, (.1)

where𝐷𝑛 is a function of 𝑘𝑎 and material parameters. It has |𝑠𝑛 | ≤ 1 and when losses are negligible,

|𝑠𝑛 | = 1.

For a rigid sphere,13

𝐷𝑛 = ℎ
(1) ′
𝑛 (𝑥), (.2)

where ℎ(1)𝑛 (𝑥) is the first kind of spherical Hankel function with 𝑥 = 𝑘𝑎, and ′ represents the

derivative with respect to the argument.

For a fluid sphere,13

𝐷𝑛 = 𝜆𝑥 𝑗𝑛 (𝑥/𝜎)ℎ(1)
′

𝑛 (𝑥) − 𝑥/𝜎 𝑗 ′𝑛 (𝑥/𝜎)ℎ
(1)
𝑛 (𝑥), (.3)

where 𝑗𝑛 (𝑥) is the spherical Bessel function, and 𝜆 = 𝜌/𝜌0 and 𝜎 = 𝑐/𝑐0 are the density ratio and

the speed ratio of particle to background medium.

For a solid sphere,36 𝐷𝑛 is the determinant of the 3-by-3 matrix having the following
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elements:

𝑑11 = (𝑧2/𝜆)ℎ(1)𝑛 (𝑥)

𝑑12 = (2𝑁 − 𝑧2) 𝑗𝑛 (𝑦) − 4𝑦 𝑗
′
𝑛 (𝑦)

𝑑13 = 2𝑁 [𝑧 𝑗 ′𝑛 (𝑧) − 𝑗𝑛 (𝑧)]

𝑑21 = −𝑥ℎ(1)
′

𝑛 (𝑥)

𝑑22 = 𝑦 𝑗
′
𝑛 (𝑦)

𝑑23 = 𝑁 𝑗𝑛 (𝑧)

𝑑31 = 0

𝑑32 = 2[ 𝑗𝑛 (𝑦) − 𝑦 𝑗
′
𝑛 (𝑦)]

𝑑33 = 2𝑧 𝑗
′
𝑛 (𝑧) + [𝑧2 − 2𝑁 + 2] 𝑗𝑛 (𝑧) (.4)

where 𝑥 = 𝑘𝑎, 𝑦 = (𝑐/𝑐𝐿)𝑥, 𝑧 = (𝑐/𝑐𝑇 )𝑥, and 𝑁 = 𝑛(𝑛 + 1).

For a solid shell with outer and inner radius of 𝑎 and 𝑏,36 𝐷𝑛 is the determinant of the
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5-by-5 matrix with the elements as that for a solid sphere and the remaining elements given by:

𝑑14 = [2𝑁 − 𝑧2]𝑛𝑛 (𝑦) − 4𝑦𝑛
′
𝑛 (𝑦)

𝑑15 = 2𝑁 [𝑧𝑛 ′𝑛 (𝑧) − 𝑛𝑛 (𝑧)]

𝑑24 = 𝑦𝑛
′
𝑛 (𝑦)

𝑑25 = 𝑁𝑛𝑛 (𝑧)

𝑑34 = 2[𝑛𝑛 (𝑦) − 𝑦𝑛
′
𝑛 (𝑦)]

𝑑35 = 2𝑧𝑛
′
𝑛 (𝑧) + [𝑧2 − 2𝑁 + 2]𝑛𝑛 (𝑧)

𝑑41 = 0

𝑑42 = [2𝑁 − 𝑤2] 𝑗𝑛 (𝑢) − 4𝑢 𝑗
′
𝑛 (𝑢)

𝑑43 = 2𝑁 [𝑤 𝑗 ′𝑛 (𝑤) − 𝑗𝑛 (𝑤)]

𝑑44 = [2𝑁 − 𝑤2]𝑛𝑛 (𝑢) − 4𝑢𝑛
′
𝑛 (𝑢)

𝑑45 = 2𝑁 [𝑤𝑛 ′𝑛 (𝑤) − 𝑛𝑛 (𝑤)]

𝑑51 = 0

𝑑52 = 2[ 𝑗𝑛 (𝑢) − 𝑢 𝑗
′
𝑛 (𝑢)]

𝑑53 = 2𝑤 𝑗
′
𝑛 (𝑤) + [𝑤2 − 2𝑁 + 2] 𝑗𝑛 (𝑤)

𝑑54 = 2[𝑛𝑛 (𝑢) − 𝑢𝑛
′
𝑛 (𝑢)]

𝑑55 = 2𝑤𝑛
′
𝑛 (𝑤) + [𝑤2 − 2𝑁 + 2]𝑛𝑛 (𝑤) (.5)

where 𝑛𝑛 is the spherical Neumann function, 𝑢 = (𝑐/𝑐𝐿)𝑘𝑏 and 𝑤 = (𝑐/𝑐𝑇 )𝑘𝑏.
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