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ABSTRACT

ALLISON WALKER; An Explanation and Illustration of the Importance
of Infinite Series in Mathematics

The purpose of this work is to first, explore exactly what an infinite series

is, and second, to explain the importance of infinite series in the everyday

calculations of mathematicians, scientists, and engineers. In Investigating this

topic, I researched the development of Infinite series as well as how Taylor and

Mclaurin series are derived. I then considered many different problems

containing intractable functions. In the consideration of these problems I was

able to explore the usefulness of infinite series In solving these intractable

problems. The conclusion of this research was the realization that in order to

obtain an answer for many of these problems, infinite series have to be

employed. Infinite series are not just an alternate way to write an equation, they

are useful tools in calculations.
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INTRODUCTION

In a world of Pentium processors, electronic mail, and the information

highway, many people turn to computers for answers to some of society’s most

difficult problems. But even in the twenty-first century, there are some

mathematical calculations that the most powerful super computers are unable to

complete. This is due to the fact that there are some operations on functions,

when expressed in standard terms, that cannot be calculated by a computer.

Ironically, several hundred years ago, a scientist discovered an alternate method

of writing these functions and performing these operations that stump the

machines of the century. Unlike the original notation of the functions,

computers can calculate the operations using the alternate notation.

Centuries ago, before the Age of Technology, Sir Isaac Newton introduced

the idea of representing functions as the sums of an infinite series (Stewart 655).

Although it may seem illogical to represent a function this way, this strategy is

useful for integrating functions that are otherwise intractable, for approximating

functions by polynomials, and for solving differential equations. The primary goal

of this paper is to illustrate usefulness of infinite series in the integration of

functions used by mathematicians, scientists, and engineers in everyday

calculations.
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CHAPTER ONE
Definition of Infinite Series

Before infinite series can be defined, infinite sequences must be

explained. A sequence is thought of as a list of infinitely many numbers with a

definite order. A sequence is denoted by the expression

The first number in the sequence is referred to as , the second term is Q2 , and

is the nth term in the sequence. Because this sequence is infinite, it isa

understood that each has a successor, which is called (Stewart 598). An

Infinite series is then defined as the sum of the infinitely many terms of the

sequence, and Is denoted by

E"" ="i+a2+«3+●●● + "»+●●●
n=l

(Stewart 609).

Section One
Geometric Series:

There are two types of infinite series that this paper will consider; the

geometric series is the first series that will be explored. This series is represented

by
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I-n-l where a^O.
n=\

In a geometric series each term is obtained from the term before it; the

succeeding term is equal to the proceeding term multiplied by the common ratio

r. This fact can be seen in the expansion of the summation

I = a + ar + ar^ + ....n-lar
n=l

The constant a is the first term, and the second term is determined by

multiplying a by r which results in ar. Therefore, the terms that follow in the

series increase by the number of r that

the geometric series is represented by

is multiplied by. So the expansion oa f

s = a + ar + ar +ar^ + ...n-lar
n=l

(Stewart 610-611).

Section Two
Power Series:

The second type of infinite series is referred to as a power series. This

type of series is represented by

E = Cq + +....
n=0

In this series x is assigned as a variable and the c/s are referred to as

constants (or coefficients) of the series. Generally, a power series centered at a

point a is represented by
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ac

Zc„(.v-o) (.v-a)+c,(;c-a)’
n + ...= Cn +C0 I

n=0

(Stewart 643). The main function of power series is to provide an alternate way

to represent some of the most important functions that arise in mathematics

physics, and chemistry. Once these important functions are converted into

power series, they can be integrated where as this was not possible before

j

(Stewart 648).



Walker, 5

CHAPTER 2

Convergence

Before an infinite series can be differentiated or integrated, it is essential

to know the convergence or divergence of the series in question. Convergence

for a sequence is dependent on the existence of a limit for the sequence;

common notation for the limit of a sequence is

In general, this notation relates that the value of gets closer and closer to the

number I as n increases without bound. The limit for a sequence exists if for

every ̂  > 0 there is a corresponding integer N such that a,^-L <s or

L-s < L + s whenever n> N . If the limit for a„ exists, then the sequence

converges, if not it diverges. The idea of convergence of a sequence can be

Illustrated by plotting the terms of the sequence on a number line (see Figure

One). Any positive number can be chosen for €. These s are then put into the

inequality L-s <a,^ <L + £ with the L that corresponds to the sequence In

question. It does not matter how small an interval of [L-s,L + s) is chosen,

there will always be some integer N such that every term of the sequence from

... must lie in the interval {L-s.L + s) (Stewart 600).^N+\->^N + 2->aA^+3’-
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a a●V+l .V+2

1 4— -4—A A

0 L-s L L + s aa ^6 a. aI 35

Figure One - Illustration of the Terms of the Sequence on a Number Line.
Stewart, James. Calculus. Third Edition. Brooks/Cole Publishing Company
Albany, 1995. (page 600)

>
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To define the convergence of the series

ac

Za ● I

;i=l

must first be allowed to be the series’ nth partial sum (i.e. Is the sum of the

first n terms of the series:

/)

s„ =J^a, =a, +a, +... + an ■

;=1

If the sequence 5, ,52,53,... is convergent, which means there is some real number

5 such that

5.. = 5n

CO

then the series is convergent and
« = 1

00

Ia.. = 5.n

«=l

So, the Infinite series Is equal to 5, which Is called the sum of the series

00

za — flfj + £72 ●●● + ●●● “ ●5' «n
n=l

This means that by adding sufficiently many terms of the series we can get as

00

s^=±oo, then ^£7close as we like to 5. If lim 5„ does not exist, or if lim nn—>00 rt ->00

«=I

is said to be divergent (Stewart 610).
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Section One

Radius of Convergence:

Now that the convergence of a series of numbers has been explained, it

can be said that when considering a power series there is a set of
n=0

values of .v (an interval) for which the series is convergent. For the power series

/I=0

there are only three possibilities for convergence:

The series converges only when x = a.(i)

(ii) The series converges for all x.

There is a positive number R such that the power series converges(iii)

if x-a <R. This R is called the Radius of Convergence. In this

case the power series diverges for all x such that > 7?

(Stewart 645).

It is accepted that the Radius of Convergence for case (i) is zero and for

case (ii) it is infinity (Stewart 645). In case (ill) a test of convergence called the

Ratio Test, is usually used to find this R . The Ratio Test states that if the

an+llim
n = 1, and 0<Z,<1,->oo

a
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y* is absolutely convergent for each x such thatthen the series a„ (.v — a
«=o

.  In completing the Ratio test, solving for x gives the Radius of
1

x~ a < —
L

1
Convergence, R = — (Stewart 636).L

Section Two
Interval of Convergence:

There is also an Interval of Convergence for each power series. This

interval consists of all the values of a* for which the series converges. In case (i)

the interval is just the single point a (which Is  a collapsed interval [ci,a\ = {a}).

). The interval becomes

more complicated in case (iii); there are four possibilities for the Interval of

Convergence. Note that the inequality a:

The interval in case (ii) is the infinite interval (-oo,oo

R can be rewritten as-a <

^ ^ < X < a + R . When x is an endpoint of the Interval (that Is x — a ± R), the

series could converge at one or both endpoints or it might diverge at both

endpoints. So the four possibilities for the Interval of Convergence are:

-R,a + R){a- R,a + R) ~ R, Q + R

(A parenthesis refers to divergence at a point, and a bracket refers to

convergence). The Ratio Test will always fail when x Is an endpoint of the

Interval of Convergence, so the endpoints should be checked with another test

(Stewart 645).

a-R,a + R
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CHAPTER THREE
Term-by-Term Differentiation

Now that power series and their convergence have been explored, Term-

by-Term Differentiation and Integration can be introduced. Converting functions

into power series is not useful unless there Is a purposeful reason for doing so.

The reason in this paper is to integrate or perhaps differentiate functions that are

intractable in their original form.

Section One
Derivatives:

First, the derivative and integral of a function requires explanation. The

—f{x). Since we
d

derivative of the function f{x) can be denoted by f'{x) or
x

are using power series, the only rules of differentiation needed are:

^(c) = 0 where c is any constant (Stewart 112)1)
dx

and for each natural n

-(x") = nx
d

n-1 and2)
x

Ux-’') =
d

-n-\
(Stewart 112-13).3) -nx

x

Several other useful rules in differentiation are:
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1) Suppose c is a constant and f(x) and g'(x) exist, then

a) If F(.v) = c/(.v), then F'(.v) exists and F\x)  = cf\x)

b) If G{x) = /(.v) + g(.v), then Coexists and G\x) = f'(x)+g\x)

c) If //(.v) = /(.v)-g(.t),then //'(x)exists and H'{x) = f'(x)-g'{x)

(Stewart 114).

2) The Product Rule: If F(.v) =/(.v) x g(x) and f'{x) and g'{x) both

exist, then F'(x) = /(.v)g'(x) + f'{x)g{x) (Stewart 115).

fix)
and both f'{x) and g'(x) exist, then3) The Quotient Rule: If F(x) =

g(x)

g(x)f'(x)-/(x)g'(x)
(Stewart 116).F'(x) exists and F'(x) =

.g(x)]’

4) The Chain Rule: If f'(x) and g'(x) exist, and F(x) = /[g(x)], then

F'(x) exists and F'(x) = /'[g(x)]g'(x) (Stewart 118).

Section Two
Integrals

Now the operation of integration must be considered. For this paper’s

purposes, we will suppose that /(x)>0 over [a,b], so that the integral off over

the interval [a,b] is simply the area between the curve y=f(x) and the x-axis for

a^x<b \ denoted

f{x)dx.

For a power series we will need the rule that for n=1,2,3,...
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«+l
bn.X

«+lX -a
x''dx =

n + \n+\
—la

In this case, The Fundamental Theorem of Calculus (part 2), which is denoted as

\f(x)dx = F{b)-F(a),
if;

is used where F is any function such that f (x)=f(x). Several other useful rules to

follow in integration are:

cf (x)dx = c f{x)dx (c is a constant)1)
●f;●c;

(c is a constant)2) cdx = c(b - a)
*1

^[/(-'^) + ?(-'')]^fv= f/(.v)iZv+ fg(.v)^iv3)
●f; ●u ●D

and of course

A' dx = -
n+l«+l -a

4) for n=1,2,3,.. ●  I

;? + l

(Stewart 283-91).

Section Three
Weierstrass M-Test:

Before Term-by-Term Differentiation and Integration can be introduced a

concept called the Weierstrass M-Test will be discussed. In Math 556, a famous

00

theorem states that “if ^f„{x) converges uniformly on the interval l=(c,d) and if
n = l

c<a<b<d, then ^f„{x)dx = lf„(x)dx.
a « = 1 a
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The proof of this concept is as follows: [Note: By definition, the series

CO

converges uniformly on a set of D if and only if the sequence
n=\

n 00

with S„{z) = , converges uniformly.] Let be a series
cC

I

« = 1 A- = l n=l

which converges uniformly on [a,b]. Then, by definition, the sequence of partial

[S^ (x)}* ,. where , converges uniformly on [a,b
k

. Hence,sums
 = \

we can conclude that

s„{x))dx = lim,,^, \s„(x)cLx [because /„ ̂  / implies(A) f(lim;i-+»
\aa

CO

/ a

oc

5„(.v) is '®(B) However, lim/I—>x
«=l

V oo

^/,(x) dx, and on the Right Hand Side of (A), we have
yV«=ia

b CO

'S„(x)dx= I X!/iW dx= f[y;(x) + /2(x) + ... + /*W]fi6c
a\k=\ y a

b  b b

= \f\{x)dx+ j/2(x)tfc + ...+ \f„{x)dx

a

a 9a

n

= Z \fki^)dx .
k=\ \a

Hence, the Right Hand Side of (A) becomes

j
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fbfb ^ n b 00

(C)lim„^, S,Xx)dx = limn

n=l\ - ● a\ \a

rtb f 0000

Equating (B) and (C) gives j £/„(a:) = £ \f„(x)dx .
n=l \fla \ n = l

To use this theorem (which is vital to Teim-by-Term differentiation) we

must verify that a series converges uniformly on  a set S. To do this we generally

use the Weierstrass M-test Theorem.

I  is a sequence of functions having aw n
Weierstrass M-Test: If

common domain 0 such that:

1. for each n e N there is a M„ > 0 such that for all xe D,

f„{x) < A/„, and

OC

2. Xm < 00
1n

;i = I

00

then the series converges absolutely and uniformly on D.
n = l

n  r '|oo

Proof: Let f > 0 be given. Let s„ = , so that ^ is a sequence
k=\

of numbers. Since converges,

we can use the given £* > o to find an N e IN such that for all m>n>N

have |S„, -5„| = = .

00

Is a Cauchy sequence son=l I

we

*=i /t=i k=ik=n + \

We can see that for all m>n>N we have
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m n

i = « + l A:=n+1 k=n+\

<£,

That is, the sequence converges absolutely and uniformly on

00

D. This is the definition for to converge absolutely and uniformly
«=i

on D.

Section Four

Term-by-Term Differentiation and Integration:

Term-by Term Differentiation and Integration is the method that is used to

perform these calculations on power series. Term-by-Term Differentiation and

Integration states that a power series can be differentiated or integrated term by

individual term in the series. The theorem is mathematically defined by stating

that if a power series

cc

(Y.c„{x-af)
n=0

has a radius of convergence /? > 0, then the function / defined by

00

fix) = Co + c, (x - a) + Cj (x - +... = Z^^n (^ - ")
n

n=0

is differentiable, and therefore continuous, on the Interval (a-Rya + R) and

00

n-1

(a) /'W = C| +2c2(x-a) + 3c3(x-o)- +... = Z”c„(x-a)
«=1

i  =z|k(.-.)nor
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Thus, /'(-v) is derived from the individual derivatives of c^, c^(x-a),

c^(x-a)‘ and the terms of the series that follow.

The derivative of the constant Cq is zero. The derivative of

c, (.v-fl) = c^x-c^a

(This is because c^x's derivative is c,, by Rule 1(a) - seeIS C1

previous page. And since c, and a are both constants, the derivative

of their product - a constant - is zero). The derivative is taken term by

term until a pattern is formed, then a general summation for the

derivative is found.

«+i
(x-af(x-a)-

n + \
(b) f{x)d\ = C + Cq {x - «) + c, + .+ c22 3

00 ^cc

)" dx = ̂  |c„(a- )'dx. (True by the Weierstrass M-or - a - a
n = 0 «=0

Test)

As in the differentiation in (a), the integration in (b) is taken term by

term. First, the integral of Cq is found to be CQ(x-a), this is due to the

fact that in this case we are treating the x" to be(x-^5r)”. Next the

integral of

●  ̂ (x-af
c, {x - a)dx = c,

2
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_x j (x-of

because of Rule 1. Finally, c, (.v - af is integrated as c, —
. Now

the pattern can be found.

The radius of convergence of the power series is  R in (a) and (b), but the Interval

of Convergence is not necessarily the same. For finite sums, the derivative of a

sum of the derivatives and the integral of a sum is the sum of the

integrals. The second half of (a) and (b) asserts that the same is true for infinite

senes as long as the series are power series (Stewart 649-50).

sum Is the
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(x-af
because of Rule 1. Finally, c,(.v-a)“ is integrated as Cj . Now

3

the pattern can be found.

The radius of convergence of the power series is  R in (a) and (b), but the Interval

of Convergence is not necessarily the same. For finite sums, the derivative of a

sum is the sum of the derivatives and the integral of a sum is the sum of the

integrals. The second half of (a) and (b) asserts that the same is true for infinite

series as long as the series are power series (Stewart 649-50).
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CHAPTER FOUR
Finding the Coefficients of a Power Series

The question that is now raised is what functions have a power series

representation, and how do you find this representation? In order to answer this

must be found in terms of the given function /.question, the coefficients, c

First, suppose that / is any function that can be represented by a power series

and

f(x) = c„ + C| {x - «)+ c, (.V - a)- +... (|.r -

/(a) = Co +c^{ci-a) + c\{a-af +... = Co +(c, *0)  +(c, *0) + ... = c

Applying Term-by-Term differentiation, which allows /(.v) (because it is a power

series) to be differentiable, gives

/'(i)=c, +2c,(.v

<R). \f ;c = c, then

0-

)+3c^{x-af +... (|.v-c|<i?). Ifj: = £j,then- a

f\a) = c, +2cj{a-a) + 3c^{a-a) +... = c, +(2c2 *0) + (3c3 *0) + ... = c,.

Again applying Term-by-Term differentiation gives

/" (x) = 2Cj + 2 ■ 3cj (a: - a) + 3 ■ 4c, (x - a)^ +  < ̂  )■ If X = a, then

f"{a) = 2c, + 6c, (a - a) +12c, (o - o)' +... = 2c, + (6c, ■ 0) + (12c, ■ 0) +... = 2c^.

Applying Term-by-Term differentiation one last time gives
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) + 3 ● 4 ● 5cj (.V - a)' +... { x-a < R). If ;c =/'^a-) = 2-3c, +2-3-4c,(.v- a a,

then

f^\a) = 2- 3c, = 3! c, + 4!c, (a - a) + 5\c^ {a-a) +... = 3!c3 + (4!c, ● 0) + (5!c5 ● 0) = SICj

[Note: /?!= 1 ● ... ●(;?-1) /? , for example 3!=l-2-3. Also, by definition 0!=1.] A

pattern can now be seen in regards to the numbers for the power series.

The previous examples found that

f^\a) = c,, /^”(a) = l!c, , f'\o) = \-2c,=2\c2 '

and

/'”(«) = !-2-Scj =3!cj.

From these examples it can be determined that

r\a)^n\c„.

The coefficients in terms of / can now be found by solving for the previous

equation for c„. This gives

n\

(Stewart 653-54).

J
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CHAPTER FIVE

Taylor and Mclaurin Series

Now that the coefficients are defined in terms of /, the new formula for c„

can be substituted into the power series equation

;i=0

This substitution gives the equation

/●'(a)f'(a)
(.V - a)'' = j\a) +/(-v) = Z^ (,v-a) + 2!1!n\/i=0

and this new infinite series is referred to as the Taylor Series of the function /

If / has a power series expansion at a, then it must be of the

= 0 then gives the infinite series

centered at a.

Taylor Series form. Allowing a

, r(Q)/""(O)/M = z x" =/(0) + JC +..
2!1!n\«=o

which is referred to as a Mclaurin series (Stewart 654-55).

Section One
Determining if f(x) is Equal to its Taylor/Mclaurin Series:

Now that two additional types of Infinite series, Taylor and Maclaurin

series, have been defined, it can now be asked when is f{x) equal to the sum of

Its Taylor series (as well as its Maclaurin series)? Since the series being dealt
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with is convergent, it is known that f{x) is equal to the limit of the sequence of

partial sums. In the Taylor series, the partial sums are

f"{a)f'(a)
r„w = Z^(-v =/(<') (a* -a) + (x-a)\

2! nl1!<=o

T„ is a polynomial of degree n called the /?th degree Taylor polynomial off

centered at a. In general. /(a) is the sum of its Taylor series if

Ux)./(.v) = lim

Suppose that R„{x) is the remainder of the series, then

R„{x) = f{x)-Ux)

and this means that

f{x) = T„{x) + R„M-

If it can be proved that the

R,Xx) = 0,lim
>00

then it can also be seen that the

f{x)-R(x) = fix)-lim K{x) = fix).T„(x) - lim^1^00

In order to prove that the /?„ (x) = 0, Lagrange’s form of the remainder

term,

/<"*'* (z)
(x-ay*\Kix) =

(« + !)!

is usually used. This formula is used if / has n  + 1 derivatives in an interval I

that contains the number a, then for x in / there is a number z strictly between
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X and a such that the remainder term in the Taylor series can be expressed as

in Lagrange’s formula (Stewart 655-57).
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CHAPTER SIX
Example of Everyday Use of Infinite Series

Infinite series gained importance in the study of calculus when they were

found to aid in the integration of functions that were previously unable to be

Integrated by standard means. These intractable functions can now be

converted into an infinite series, and then each term of the series can be

integrated. Without Newton’s discovery of representing functions as sums of

infinite series, many mathematical calculations would be determined unsolvable

and simple, everyday calculations could not be performed. There are many

instances in which an infinite series is used in everyday life; the example this

paper explores is finding the normal distribution, which is simply the Bell-Curve,

of a high school class’s American College Test (ACT) scores. This normal

distribution will be beneficial in obtaining the probability that a particular student

will achieve a certain ACT score.

The class’s ACT scores are called the sample data, and each score is

in random order. Using this sample data, the sample’s

mean is found by dividing the sum of the set of sample data by the number of

data in the sample

named x^,x2,x3

X, + Xj +^3 + ... + X,
)= jLi, with representing the mean) (Ostle 35).
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Now the be determined. The sum ofSum of squares and the variance can

squares is ®qual to

SSO = - /'T' (Ostle 40),
;-l

and the ^sriance is referred to as

(the sum of squares divided by n-1) (Ostle 41).
/7-1

Finally the standard deviation can be calculated with the equation

= ̂  (Ostle 41).

normal distribution, every .v, must be converted into its

standardized value or z-score (r,). A z-score is obtained by subtracting the

mean from .v and dividing that number by the standard deviation

0--

a

Since this iIS a

-V,

a

These calculations create a sample of the standard normal random variables with

a mean of zero and a standard deviation of one (Ostle 149).

The probability density function f(z), where

1 2
/(^) = e

y/2U

creates the bell curve in Figure Two. Because this curve has y-axis

the area under the curve from negative infinity to zero is 0.5

symmetry,

( f(z)dz = 0.5).
-00
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TT T

2a-2a 0 a-a

Figure Two - Bell Curve of the Probability Density Faction.
Adapted from: Engineering Statistics: The Industrial Experience. Ostle.
Turner, Hicks, and McElrath. Wadsworth Publishing Company, Belmont,
1996 (page 147)
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The probability that z is equal to any a (a certain ACT score that is converted to

its standard normal value) is done with the calculation, if a > 0

a
1

e-dz.Pc =a) = 0.5 +

This equation requires the integration of e - - which is impossible unless infinite

series are used. In order to find the infinite series associated with e ̂  , the

function e' will first be considered (Ostle 146-49).

In this consideration, the Maclaurin series of the function e" is determined

by finding , the nth derivative of f(x), and /‘"^O). which is the nth

derivative of f at 0. for all n (see Table One). Substituting this information Into the

Mclaurin equation, the Mclaurin series for the function e" is found to be

^ .y " , A* .r A

^  ̂ n! 1! 2! 3!;i=0

-.r'

Once this series for is found, the Mclaurin series for e ̂  is derived by

v2

~ for X into the series that was previously derived. Thissubstituting —

-x'

application gives the Mclaurin series for ̂  ̂  to be f:

\2n

22 J 00

- A- +

The Radius of Convergence must be found by applying the Ratio Test.

2"«!3!2!n\ n=0n=0

I

IJ



Table One - The nth Derivative of r' and for Several n.

r\o)n /■'"'(.V)

0 1
1 1
2 1
3 1
4
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- A

r
= —->0 = Z

» + l

n\cl
im

V - >

^0. by the Ratio Test, the series converges for all x. The Radius of Convergence

IS 00 because the inequality derived through the Ratio Test is 0<1 for all x. The

Interval of Convergence is then (- x. x) (Stewart 655-56).

Before integration can take place, the Weierstrass M-Test is applied to

a,.

assure uniform convergence of the series ̂ on the inten/al I = [0, a].
T*n\».=o

2n 2rt
(-ir.v-'’ .Y a

Let g^{x) = = M„. So. Then = <
0" 2"*h! 2"*«!2” * n\ *n\

2 * /?!

Mn+l . So..  Now the limit from n to infinity must be taken of
Mn

2n-^2M r ♦ /?! 1a a'lim = 0. Therefore, by thelim*
2/1

2”"'*(/7 + l)! aM M—
2 n + \

2n00

(-1)"a
M-Test, ̂ converges uniformly on I = [Q,a]. So

r * /?!/1=0

a
2/1 // a

(-1)
CO

dx = Y, x^"dx.e ̂  dx
r * n\ J2" * n\0 /i = 00 '1=0

Now that an infinite series for e ̂  has been derived and its uniform

convergence is known, the integral of the z variable (which is z to the 2nth

power) must be taken from zero to a



¥
I
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2;?+l
2m. 1it a

)■2n + \2/7 + 1
-Jo

●.t*

This answer is then substituted into the infinite series derived for e 2 - this will

yield the probability that alpha is equal to Z:

- i ’ 11 I- dx = 0.5 +0.5 + c V2n (2« + l)2"n! ’n = 0

which is the probability that a student has an ACT score less than or equal to

alpha (Ostle 146-149).
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CONCLUSION

It almost seems improbable for a calculation that is this simple to become

this complicated. In this Age of Technology, many people take for granted things

such as infinite series - things that mathematicians of centuries ago discovered.

But, as this paper has proved, many everyday calculations would be impossible

without these discoveries; even the all-powerful computer would be left without

an answer. As humans, we want to make every problem black and white, cut

and dry. But sometimes, the straight and narrow path is not what will lead to the

answer; sometimes the road less traveled leads to what we are looking for. “Our

minds are finite, and yet even in those circumstances of finitude, we are

surrounded by possibilities that are infinite, and the purpose of human life is to

grasp as much as we can out of that infinitude.”  - ALFRED NORTH

WHITEHEAD
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