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ABSTRACT

Number theorists have made great progress in understanding the distribution

of the prime numbers by studying properties of the Riemann zeta-function. A cel-

ebrated and classical result of Selberg is that the real and imaginary parts of the

logarithm of Riemann zeta-function are normally distributed on the critical line.

Selberg proved this using the method of moments. It is known that any model of

the logarithm of the Riemann zeta-function near the critical line requires input from

the primes and the zeros of the zeta function. We refine Selberg’s calculation for the

variance of the real part of the logarithm of the Riemann zeta-function (the second

moment) assuming the Riemann Hypothesis (RH) and carefully studying the pair

correlation of the zeros. This uses ideas of Montgomery and Goldston and tools from

Fourier analysis. Then we consider the distribution of real and imaginary parts of

the logarithm of the Riemann zeta-function in short intervals, proving an asymp-

totic for the mean-square of the differences of shifted values uniformly in bounded

intervals. Our results generalize previous work of Fujii and establish a conjecture of

Berry for the number variance of the zeros, assuming RH, and a conjecture for the

pair correlation of zeta zeros in long ranges.
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1 INTRODUCTION

In this chapter, I introduce some of the results that I have proved in the theory

of the Riemann zeta-function.

1.1 Riemann zeta-function

In keeping with standard notation, we will denote a complex number as s = σ+it with

the real part of s denoted as Re(s) = σ and the imaginary part of s as Im(s) = t. The

prevailing methodology in analytic number theory is to extract statistical information

concerning a sequence {an} using analytic tools such as a power series or a Dirichlet

series. Perhaps the most famous of all Dirichlet series is the Riemann zeta-function,

which is defined as

ζ(s) =
∞∑
n=1

1

ns
,

for σ > 1. By the Fundamental Theorem of Arithmetic, we also write ζ(s) as the

Euler product

ζ(s) =
∏
p

(1− p−s)−1,

for σ > 1. Here and throughout this thesis, we use p to denote a prime number. In

his only paper on number theory in 1859, Bernhard Riemann [27] made the pivotal

connection between the study of the distribution of the prime numbers and the study

of ζ(s). He proved that ζ(s) is analytic on C \ {1} with a simple pole at s = 1, and

that it satisfies a functional equation, written as

1



π−
s
2 Γ( s

2
)ζ(s) = π−

(1−s)
2 Γ(1−s

2
)ζ(1− s).

From the functional equation, Riemann found that the zeros of ζ(s) for σ < 0 were

simple and coincided with the poles of Γ
(
s
2

)
, which are located at s = −2,−4,−6, . . . .

These are called the trivial zeros of ζ(s) because it is easy to determine their location

and multiplicity. He conjectured that ζ(s) has infinitely many zeros in the strip of

the complex plane where 0 ≤ σ ≤ 1, now called the critical strip [8, pp. 59]. Such ze-

ros are now known as the non-trivial zeros of ζ(s). The commonly used notation for

such zeros is ρ = β+ iγ. In regard to these zeros, Riemann postulated the following:

Riemann Hypothesis. All zeros of ζ(s) in the critical strip are located on the line

σ = 1
2
.

Still unsolved, the Riemann Hypothesis (RH) is commonly regarded as one

of the most significant open problems in pure mathematics. Riemann [27] was also

interested in counting the number of non-trivial zeros of ζ(s) with 0 < γ ≤ T , now

denoted N(T ). We define N(T ) formally as

N(T ) = #{ρ = β + iγ : 0 ≤ β ≤ 1, 0 < γ ≤ T}.

The asymptotic expression that Riemann conjectured for the size of N(T ) was later

proved by von Mangoldt [8]: if T ≥ 2 is not the ordinate of a zero, then

N(T ) =
T

2π
log

T

2π
− T

2π
+

7

8
+ S(T ) +O(T−1), (1.1)

where

S(T ) =
1

π
arg ζ

(
1
2

+ iT
)

=
1

π
Im log ζ(1

2
+ iT ). (1.2)

2



Here, the argument is calculated by continuous variation along the line segments

joining 2, 2 + iT , and 1
2

+ iT starting with the value 0. This result illustrates

the deep connection between the distribution of the zeros of the zeta function and

analytic properties of log ζ(s). It can be shown that S(T )� log T (see [16, pp.14]).

Consequently, for T ≥ 2, we have

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ). (1.3)

1.2 Selberg’s central limit theorem

We now turn our attention to the study of the distribution of log ζ(1
2

+ it). Since

this is a complex logarithm, we can write it as

log ζ(1
2

+ it) = Re log ζ(1
2

+ it) + i Im log ζ(1
2

+ it)

= log |ζ(1
2

+ it)|+ i arg ζ(1
2

+ it)

= log |ζ(1
2

+ it)|+ iπS(t),

where S(t) is defined in (1.2). We know detailed information about the vertical

distribution of the zeros of ζ(s) since S(T )� log T . In 1924, Littlewood [18] proved

that
T∫

0

S(t) dt� log T and S(T )� log T

log log T
,

assuming RH. The order of magnitude of these estimates have never been improved,

but the inequalities have been sharpened [4]. In later work [19], assuming RH,

Littlewood showed that
T∫

0

|S(t)| dt� T log log T.

In a remarkable set of papers, Selberg was able to asymptotically estimate all even

moments of S(t) first assuming RH [28] and then later without any conditions [29].

3



Theorem (Selberg). Assume RH. If k ∈ N and T ≥ 3, then

T∫
0

S(t)2k dt =
(2k)!

k!(2π)2k
T (log log T )k

[
1 +O

(
1

log log T

)]
. (1.4)

Unconditionally Selberg proved the same main term but a slightly weaker

error term. Though he does not explicitly state it, on RH his method gives

∫ T

0

S(t)2k+1 dt� T (log log T )k

for the odd moments of S(t). In other words, Selberg proved the moments of S(t)

are Gaussian. In this way, since Gaussian distributions are determined by their

moments, Selberg [30] deduces a central limit theorem for S(t):

1

T
meas

{
T ≤ t≤ 2T :

πS(t)√
1
2

log log T
∈ [a, b]

}
=

1√
π

b∫
a

e−x
2/2 dx+O

(
T log log log T√

log log T

)
.

This tells us πS(t) is normally distributed for t ∈ [T, 2T ] with mean 0 and variance

1
2

log log T , when T is large.

Selberg also considered the moments of Re log ζ(1
2

+ it) = log |ζ(1
2

+ it)|. His

work was never published, but the details were worked out by Tsang [34] who proved

the following result using Selberg’s methods:

Theorem (Selberg/Tsang). Assume RH. If k ∈ N and T ≥ 3, then

T∫
0

log2k |ζ(1
2

+ it)| dt =
(2k)!

k! 22k
T (log log T )k

[
1 +O

(
1

log log T

)]
. (1.5)
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Similarly, for the odd moments, the Selberg/Tsang method gives

∫ T

0

(
log |ζ(1

2
+ it)|

)2k+1
dt� T (log log T )k.

A corresponding central limit theorem for log |ζ(1
2

+ it)| follows from the work of

Selberg [30] and Tsang:

1

T
meas

{
T ≤ t≤ 2T :

log |ζ(1
2

+ it)|√
1
2

log log T
∈ [a, b]

}
=

1√
π

b∫
a

e−x
2/2 dx+O

(
T (log log log T )2

√
log log T

)
.

As with the normal distribution for πS(t), this means that log |ζ(1
2

+ it)| is normally

distributed for t ∈ [T, 2T ] with mean 0 and variance 1
2

log log T , when T is large.

1.3 The variance in Selberg’s central limit theorem

Any model of log ζ(s) near the critical line relies on information from the primes

and the zeros of ζ(s). Selberg arrives at the main term of his formula in (1.4) using

information from the primes. The information about the zeros is cleverly contained

in his error term. Recall that the variance of a distribution is given by its second

moment. On RH, when k = 1 in (1.4), we see that Selberg’s result gives

T∫
0

S(t)2 dt =
T

2π2
log log T +O(T ),

as T → ∞ for the variance of S(t). Goldston [12] gave a refined estimate for the

variance of S(t) in Selberg’s Central Limit Theorem utilizing both the primes and the

zeros of ζ(s) in his representation formula for log ζ(s). He does so through methods

relying, in part, on Montgomery’s work [22] on the pair correlation of the zeros

of ζ(s). In particular, Goldston uses the following function, which was originally

5



introduced by Montgomery in his work on the pair correlation of zeros of ζ(s):

F (α) = F (α, T ) =

(
T

2π
log T

)−1 ∑
0<γ,γ′≤T

T iα(γ−γ′)w(γ − γ′), (1.6)

for real α ≥ 0 and T ≥ 2 with w(u) = 4
4+u2

. Note that w(0) = 1, w ≥ 0, and w

decays to zero rapidly. The weight function w(u) localizes the sum to pairs of zeros

that are close to one another. We discuss this function in greater detail in Chapter

3. Using (1.6), Goldston obtains the following result:

Theorem (Goldston, 1987). Assume RH and let F (α) be defined by (1.6). Then, as

T →∞,
T∫

0

|S(t)|2 dt =
T

2π2
log log T +

aT

π2
+ o(T ),

where the constant a is given by

a =
1

2

γ0 +
∞∑
m=2

∑
p

(
1

m2
− 1

m

)
1

pm
+

∞∫
1

F (α)

α2
dα

 (1.7)

and γ0 is Euler’s constant and the sum over p runs over the primes.

The term with F (α) captures the information from the zeros using Mont-

gomery’s pair correlation method. In this way, we see that Goldston’s result contains

information from both the primes and the zeros in the definition of the constant a.

Analogously, the case k = 1 of the Selberg/Tsang result in (1.5) gives

T∫
0

log2 |ζ(1
2

+ it)| dt =
T

2
log log T +O (T ) .

Our first theorem is an analogue of Goldston’s more precise result for the second

moment of the real part of log ζ(1
2

+ it).

Theorem 1.3.1. Assume RH and let F (α) be defined by (1.6). Then, as T →∞,

6



T∫
0

log2 |ζ(1
2

+ it)| dt =
T

2
log log T + aT + o(T ), (1.8)

where the constant a is defined in (1.7).

It is important to note that the constant a can be estimated using the strong

form of Montgomery’s pair correlation conjecture [22, pg.183]:

Conjecture (Montgomery). Assume RH. Then for any fixed M,

F (α) = 1 + o(1)

uniformly for 1 ≤ α ≤M .

Assuming this conjecture, the constant a in Theorem 1.3.1 satisfies

a =
1

2

(
γ0 +

∞∑
m=2

∑
p

(
1

m2
− 1

m

)
1

pm
+ 1

)
≈ 0.7005 . . . .

Assuming RH, Goldston [12, Thm. 2] made progress towards Montgomery’s conjec-

ture by showing that

2

3
− ε <

∞∫
1

F (α)

α2
dα < 2

for all ε > 0 and for T sufficiently large. The values of 2
3

and 2 can be improved

slightly using the recent work of [3]. However, the cost of this slight improvement is

an exorbitant amount of calculations.

Though the statement of our first main result is very similar to Goldston’s

theorem, the proofs are considerably different. From the formula for N(t) in (1.1),

we see that the function S(t) is bounded near the zeros of ζ(1
2

+ it) with a jump

discontinuity equal to the multiplicity of the zero if ζ(1
2

+ it) = 0. On the other

hand, log |ζ(1
2

+ it)| is not bounded near the zeros of ζ(1
2

+ it), and can be arbitrarily

large in the negative direction. These logarithmic singularities do not substantially

7



change the end result, but they do cause considerable difficulty within the proof

and lead our proof to differ from Goldson’s in a number of ways. Another major

difference between our work and Goldston’s is that our proof relies on a delicate

cancellation of main terms, which we accomplish through the introduction of the

function g(x) defined in Chapter 2. Though Goldston’s proof does not rely on an

analogous cancellation of main terms, remarkably the constants in the second-order

terms of the two results end up having the same shape!

1.4 Distribution of log |ζ(1
2

+ it)| in short intervals

Following the work of Selberg, Fujii [10, 11] considered the 2kth moments of the

difference S
(
t+ 2πδ

log T

)
− S(t), with 0 < δ � log T . For T sufficiently large, he

showed that

Theorem (Fujii, 1981). Let 0 < δ � log T and k ∈ N. Then as T →∞

T∫
0

[
S
(
t+ 2πδ

log T

)
− S(t)

]2k

dt

=
(2k)!

2π2kk!
T (2 log(2 + 2πδ))k +O

(
T (log(2 + 2πδ))k−

1
2

)
.

(1.9)

Fujii’s method also gives an upper bound for odd moments [10, pg. 140], which also

leads to a Gaussian distribution. These unconditional results only gives an asymp-

totic formula when δ = δ(T ) → ∞ as a function of T tending to infinity with

δ(T ) = O(log T ). If δ � 1, then the main term is the same size as the error term,

and this result does not give an asymptotic formula as both terms on the right-hand

side of (1.9) are of size T . In this range of δ, information from the zeros is necessary

to understand the main term. However, Selberg and Fujii are employing only infor-

mation from the primes to produce their main terms, and information from the zeros

8



is included in their error terms. In order for the main term to come only from the

primes, we need θ = 2πδ
log T

to be big enough so that pit and pi(t+θ) act like independent

random variables as t varies. This happens only if δ = δ(T )→∞.

In order to prove a main term in (1.9) when δ � 1, Fujii [9] applies Goldston’s

methods [12] to his own work, and, assuming RH, he demonstrates the following:

Theorem (Fujii, 1990). Assume RH. For 0 < δ = o(log T ), as T →∞, we have

π2

∫ T

0

[
S

(
t+

2πδ

log T

)
− S(t)

]2

dt = T

{∫ 1

0

1− cos(2πδα)

α
dα

+

∞∫
1

F (α)[1− cos(2πδα)]

α2
dα

}
+ o(T ).

(1.10)

Notice that this uses information from the zeros, in the form of F (α), to give an

asymptotic formula in the range δ � 1. Also note that Fujii is assuming δ = o(log T )

in (1.10). Our second result refines Fujii’s work by proving an asymptotic formula

for any δ with 0 < δ � log T , showing that new main terms arise for larger values of

δ. To achieve this, we must overcome significant technical challenges as more careful

consideration of the error terms is needed. Our result relies on finer information

from both the primes and the zeros of ζ(s). We state our results in terms of the von

Mangoldt function defined as

Λ(n) =


log p, n = pk, k ≥ 1,

0, otherwise,

(1.11)

and a variation of Montgomery’s function F (α), which was introduced by Chan [5]

in his study of the pair correlation of zeta zeros in longer ranges:

9



Fδ(α) = Fδ(α, T ) :=
2π

T log T

∑
0<γ, γ′≤T

T iα(γ−γ
′− 2πδ

log T )w

(
γ − γ′ − 2πδ

log T

)
. (1.12)

This is a renormalization of Chan’s original definition. With these definitions, we

prove the following theorem.

Theorem 1.4.1. Assume RH. Let 0 < δ � log T . For y ≥ 1, define

E(y) =
∑
m≤y

Λ(m)2 − y log y + y. (1.13)

Then, as T →∞,

π2

T∫
0

[
S

(
t+

2πδ

log T

)
− S(t)

]2

dt

= T


1∫

0

1− cos(2πδα)

α
dα +

1

2

∞∫
1

2F (α)− Fδ(α)− F−δ(α)

α2
dα


+ T c

( 2πδ

log T

)
+ o(T ),

and
T∫

0

[
log

∣∣∣∣ζ (1

2
+ it+ i

2πδ

log T

)∣∣∣∣− log

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣]2

dt

= T


1∫

0

1− cos(2πδα)

α
dα +

1

2

∞∫
1

2F (α)− Fδ(α)− F−δ(α)

α2
dα


+ T c

( 2πδ

log T

)
+ o(T );

where

c(v) :=

∞∫
1

E(y)

y2 log3 y

[
−v log y sin (v log y) + sin2

(
v log y

2

)
(log y + 2)

]
dy−v

2

2
. (1.14)

10



From the definition of E(y), we see E(y) = −y log y+y for 1 ≤ y < 2. Also by

the prime number theorem, we know E(y) = O(y/ log2 y) as y →∞ unconditionally.

A stronger estimate for E(y) can be proved assuming RH. These facts, together with

the inequality | sinx| ≤ |x|, imply that c(v) is well-defined, c(v) � v2 for small v,

and c(v)� 1 large v.

In comparison to Fujii’s work in (1.10), it is important to note that there is

new input from the zeros contained in the function Fδ, and new input from the primes

contained in the functions E(y) and c(v). Such input is not present within Fujii’s

work due to his restrictions on δ. In particular, when δ = o(log T ) as in (1.10), the

term T c
(

2πδ
log T

)
is absorbed into the error term and Fδ written in terms of F . When

δ � log T , these represent new main terms. Furthermore when δ = o(log T ), we will

show Fδ(α) reduces to the analogous term in (1.10) involving F (α). This reduction,

while founded on simple principles, is quite subtle and requires another technical but

straightforward modification of Montgomery’s theorem for F (α) to control some of

the error terms (see Section 3.3). When δ = O(log T ), the first variance in Theorem

1.4.1 should match Fujii’s work in (1.9). To see this, we note that the second and

third terms on the right-hand side of our result are absorbed into the error bound

since the functions c, F (α), and Fδ(α) are bounded on average. Then it can be shown

that the interval involving cos(2πδα) matches the main term in (1.9).

We will handle the proofs of Theorems 1.3.1 and 1.4.1 simultaneously by

proving a variety of preliminary results for the sums over primes (Chapter 6) and the

sums over the zeros of ζ(s) (Chapter 7). These results involve methods from Fourier

analysis, Montgomery’s work on the pair correlation of zeta zeros, and classical prime

number sum estimates. We give an overview of these concepts in Chapters 2, 3, and

4. As we noted for Theorem 1.3.1, the proofs of the imaginary and real parts of

log ζ(1/2 + it) in short intervals are analogous in many ways, but the proof for the

real part is significantly more difficult. For this reason, we give the details only for
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the latter. It is important to note that, although we present the main steps of the

proofs of Theorem 1.3.1 and Theorem 1.4.1 in parallel, the proof of Theorem 1.3.1

is independent of the proof of Theorem 1.4.1. Additionally, we will use Theorem

1.3.1 to control some of the error terms in some steps for Theorem 1.4.1 (see Lemma

6.2.2). The proofs of Theorems 1.3.1 and 1.4.1 will be submitted in paper that is

joint work with Micah B. Milinovich and Oscar E. Quesada-Herrera.

1.5 A conjecture of Berry

The Hilbert-Pólya conjecture states that the imaginary parts of the zeros of ζ(s)

are the eigenvalues of some self-adjoint operator, and this would imply RH. In 1973,

with his pair correlation approach, Montgomery [22] conjectured that the zeros of

ζ(s) are distributed as the eigenvalues of a random matrix from the Gaussian unitary

ensemble (GUE). Numerical evidence by Odlyzko [26] suggests that this holds for

short-range statistics between zeros, such as the distribution of the gap between

consecutive zeros γn+1 − γn. However, Odlyzko’s evidence shows that the GUE

model fails for long-range statistics, such as the correlation between zeros that are

very far apart. In this case, these long-range statistics are better described in terms

of primes, instead of GUE statistics.

Berry (see [1]) proposed a conjectural model for the zeros of ζ(s), where they

are the eigenvalues of a quantum Hamiltonian operator. His model is expected to

conform to the behavior of both short-range and long-range statistics, as described

above. In 1988, Berry used his model to conjecture an asymptotic formula for

π2

∫ T

0

[
S

(
t+

2πδ

log T

)
− S(t)

]2

dt. (1.15)

In the universal regime of his model, when δ = o(log T ), his conjectured asymptotic

formula for (1.15) matches exactly the variance of the GUE of random matrices.

12



The non-universal regime of his model, when δ � log T , is no longer described by

the predictions of GUE, and incorporates additional input from the primes. See

[1, Equations (19) and (21)].

Conjecture 1 (Berry, 1988). Let 0 < δ � log T . Then, as T →∞, we have:

(a): If δ = o(log T ), then

π2

∫ T

0

[
S
(
t+

2πδ

log T

)
− S(t)

]2

dt

= T
[
log(2πδ)− Ci(2πδ)− 2πδSi(2πδ) + π2δ − cos(2πδ) + 1 + γ0

]
+ o(T ).

(b): If δ � log T , then

π2

∫ T

0

[
S
(
t+

2πδ

log T

)
− S(t)

]2

dt

= T

[∑
n≤T

Λ2(n)

n log2 n

(
1− cos

(
2πδ log n

log T

))
+ 1

]
+ o(T ).

Here γ0 is Euler’s constant,

Si(x) :=

∫ x

0

sinu

u
du, and Ci(x) := −

∫ ∞
x

cosu

u
du. (1.16)

In 1990, Fujii [9] proved an asymptotic formula for (1.15), assuming RH, in

the universal regime where δ = o(log T ). In particular, assuming RH and the Strong

Pair Correlation Conjecture, he proves Berry’s conjecture in the universal regime

(part (a) above). However, Fujii’s proof relies on the fact that δ
log T
→ 0 as T → ∞

in numerous places, and it is not obvious that his proof can be modified to establish

part (b). Our proof of part (b) involves a more delicate analysis of both primes and

zeta zeros not present in Fujii’s original work.

We show that our formula in Theorem 1.4.1 reduces to Fujii’s in the universal

regime, and, assuming RH and a strong version of the Pair Correlation Conjecture
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due to Chan, our formula implies Berry’s conjecture, in both the universal and the

non-universal regimes. Although Berry never conjectures the range of δ for which

part (b) of Conjecture 1 holds, we verify his conjecture holds in the range δ � log T .

Conceivably part (b) continues to hold for δ in a much longer range. We require the

following generalization of Montgomery’s Pair Correlation Conjecture due to Chan

[5, Conjecture 1.1]:

Conjecture 2 (Chan). For |α| ≥ 1 and δ = o(log
4
3 T ), we have

Fδ(α) = e−2πiαδw

(
2πδ

log T

)
(1 + o(1)),

uniformly for α in compact intervals.

Assuming Chan’s conjecture, we use Theorem 1.4.1 to prove a new case of

Berry’s conjecture in Chapter 7.

Theorem 1.5.1. Assume RH and Conjecture 2. Then, Conjecture 1 holds.
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2 FOURIER ANALYSIS

2.1 Basic properties

Within our results we handle concepts from Fourier analysis (e.g. [21,31]). We briefly

review some standard facts. For j ∈ L1, we define the Fourier transform of j to be

ĵ(ξ) :=

∞∫
−∞

j(x)e−2πiξx dx

for all ξ ∈ R. In effect the Fourier transform of a real-valued function j is the

continuous analog of a Fourier series. If it turns out that ĵ ∈ L1, then the original

function can be recovered from its Fourier transform using the Fourier inversion

formula,

j(x) =

∞∫
−∞

ĵ(ξ)e2πixξ d ξ

for all x ∈ R. We call the two functions j(x) and ĵ(ξ) a Fourier pair. Now if j, k ∈ L2,

the convolution j ∗ k is defined by

(j ∗ k)(x) =

∞∫
−∞

j(x− u)k(u) du (2.1)

for all x ∈ R. Recall that within Fourier transforms the convolution j ∗ k behaves

like a piecewise product. That is, for all ξ ∈ R,

ĵ ∗ k(ξ) = ĵ(ξ)k̂(ξ). (2.2)
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2.2 Functions arising in our work

We now give a brief list, with proofs of relevant properties, of the particular functions

and Fourier transforms required in our proofs of Theorem 1.3.1 and Theorem 1.4.1.

The function f(v) serves as the test function in the sums over primes, and the

function h(v) serves as the test function in the sums over zeros. The function g(v)

is used within our proofs in order to elucidate cancellation between terms involving

h(v), ĥ(u), and f(v). First, we define f : [0, 2)→∞ such that

f(v) := v

∞∫
0

sinh(u(1− v))

coshu
du. (2.3)

Figure 2.1: Graph of f(v) for v ∈ [0, 1] on the left, and graph of f ′(v) for v ∈ [0, 1] on the right.

The function f(v) is a smooth, decreasing function on [0, 1]. It straightforward to

show that f(0) = 1, f(1) = 0, and f(v) and f ′(v) are uniformly bounded for all

v ∈ [0, 1] (see Figure 2.1). This implies f 2(v) is uniformly bounded for v ∈ [0, 1].

Next define g : (−2, 2)→ R by

g(x) :=

∞∫
0

e−y cosh(xy)

cosh(y)
dy. (2.4)

Observe, by the Dominated Convergence Theorem, that g ∈ C∞(−2, 2). By the
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Figure 2.2: Graph of g(x) for x ∈ [−1, 1].

definition of g, we see that g is even, g(±1) = 1, and 0 ≤ g(x) ≤ 1 for all x ∈ [−1, 1]

(see Figure 2.2). This implies |g(x)| � 1 for all x ∈ [0, 1]. Also by [15, Eq. 3.552-3]

we have g(0) = log 2. We now investigate the relationship between g(x) and f(x).

Lemma 2.2.1. For v ∈ (−2, 2), we have g(0+) = −f ′(0+) and

g(v) =
1− f(v)

v
.

Proof. Observe that for v > 0, we know

1

v
=

∞∫
0

e−vu du.

Then

1− f(v)

v
=

∞∫
0

e−vu du− f(v)

v

=

∞∫
0

(
e−vu − sinh(u(1− v))

coshu

)
du

=

∞∫
0

(
e−u (evu + e−vu)

eu + e−u

)
du

=

∞∫
0

(
e−u cosh(vu)

coshu

)
du = g(v),

as claimed. The calculation of g(0+) follows from the definition of the derivative.
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Now we define h : {R}\0→ R by

h(v) := cos v

∞∫
0

u

u2 + v2

du

coshu
. (2.5)

Note that h is even and h(v) is unbounded in a neighborhood of v = 0. However, as

the next lemma shows, h ∈ L1(R) and the Fourier transform of h(v) can be written

in terms of g(v).

Lemma 2.2.2. Let h(v) be defined as in (2.5). Then h ∈ L1(R) and

ĥ(a) = π


g(2πa), 0 ≤ 2πa ≤ 1,

1

2πa
, 2πa > 1.

Proof. We will first show that h ∈ L1(R). By the definition of h, observe that

∞∫
−∞

|h(v)| d v ≤ 2

∞∫
0

1

coshu

∞∫
0

u

u2 + v2
d v du = π

∞∫
0

du

coshu
= π2,

which implies h ∈ L1(R) as claimed. Next we calculate the Fourier transform of h(v)

using the well known Fourier pair

ϕ(x) = e−2π|x| and ϕ̂(y) =
1

π

1

1 + y2
. (2.6)

Let a ∈ R. Since h is even, we may assume a ≥ 0. Thus, using the variable change

w = v
u

and (2.6), it follows that
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ĥ(a) =

∞∫
−∞

h(v)e(−av) d v

=

∞∫
0

u

coshu

∞∫
−∞

cos v

u2 + v2
e−2πiav d v du

=
1

2

∞∫
0

1

coshu

∞∫
−∞

(eu( 1
2π
−a)2πiw + eu(− 1

2π
−a)2πiw)

1 + w2
dw du

=
π

2

∞∫
0

1

coshu
(e−u|1−2πa| + e−u|1+2πa|) du

=


π
∞∫
0

e−u

coshu
cosh(2πau) du, 0 ≤ 2πa ≤ 1,

π
∞∫
0

e−2πau

coshu
cosh(u) du, 2πa > 1,

=


π g(2πa), 0 ≤ 2πa ≤ 1,

1

2a
, 2πa > 1,

as seen in Figure 2.3. Hence, the proof is complete.

Utilizing (2.2) and Lemma 2.2.2, we define k : R→ R as

k(u) =
ĥ ∗ h(u)

π2
=
ĥ2(u)

π2
=


g2(2πu), |2πu| ≤ 1,

1

4π2u2
, |2πu| > 1.

(2.7)

By construction, we note that k(u) is nonnegative and even. Also by (2.4) we see

k(u) is increasing for u ≤ 1
2π

, decreasing for u > 1
2π

, and

k(0) = g2(0) = log2 2 (2.8)

(see Figure 2.3). Moreover, the order of magnitude of k̂(y) is straightforward to

bound.
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Figure 2.3: Graph of ĥ(a) for a ∈ [0, 1] on the left, and graph of k(u) for u ∈ [0, 1] on the right.

Lemma 2.2.3. If k(v) is defined as in (2.7), then

k̂(y)� min

(
1,

1

y2

)
.

Proof. Note since k is nonnegative and even, we have by the triangle inequality that

|k̂(y)| ≤ k̂(0). This implies

|k̂(y)| ≤ k̂(0) = 2

∞∫
0

k(u) du ≤ 2

1
2π∫

0

k(u) du+
1

2

∞∫
1

2π

1

u2
du ≤ 2π.

Also, by definition of Fourier transform, since k(u) is nonnegative and k′(u) is uni-

formly bounded, we have

|k̂(y)| =

∣∣∣∣∣∣ k(u) sin(2πuy)

πy

∣∣∣∣∞
0

− 1

πy

∞∫
0

k′(u) sin(2πuy) du

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

πy

∞∫
0

k′(u) sin(2πuy) du

∣∣∣∣∣∣
� 1

y

 |k′ ( 1
2π

+ 0
)
− k′

(
1

2π
− 0
)
|

y
+

1

y

∞∫
0

|k′′(u)| du


� 1

y2
.

Hence, k̂(y)� min
(

1, 1
y2

)
, which completes the proof.
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3 PAIR CORRELATION OF ZETA ZEROS

3.1 Montgomery’s work on pair correlation of zeta zeros

In 1973, Montgomery [22] conjectured a result for the pair correlation function of

the zeros of ζ(s). That is, he investigated the distribution function of the differences

of ordinates, γ − γ′, between non-trivial zeros of ζ(s). To do this, he introduced the

function

F (α) =

(
T

2π
log T

)−1 ∑
0<γ,γ′≤T

T iα(γ−γ′)w(γ − γ′),

as defined in (1.6), with w(u) = 4
4+u2

. The function w has the affect of focusing the

sum defining F on pairs of nearby zeros. Some of his conclusions on the function

F (α) are contained in the following theorem.

Theorem 3.1.1 (Montgomery). For α ≥ 0 and T ≥ 2, let F (α) be defined as in

(1.6). Then F (α) is real, even, and nonnegative. Moreover, uniformly for fixed

α ∈ [0, 1], we have

F (α) = α + o(1) + T−2α log T (1 + o(1)),

as T →∞.

Here, the error term is of size O
(√

log log T
log T

)
. Montgomery [22] initially proved

this result for α ∈ (0, 1) and it was later refined to the above form in Goldston and

Montgomery’s work [13]. The fact that F (α) ≥ 0 for all α was proved by Mueller

[25].
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Montgomery’s primary focus was the sums over differences γ− γ′ of the form

∑
0<γ,γ′≤T

r̂

(
(γ − γ′) log T

2π

)
w(γ − γ′).

It follows from (1.3) that the average spacing between successive zeros with γ ∈ (0, T ]

is

(T − 0)

N(T )
∼ T

T log T
2π

=
2π

log T

as T → ∞. We see that Montgomery was interested in studying the “normalized”

spacings of zeros, since he divided by the size of the average gap between zeros inside

the function r̂. These are exactly the types of sums that arise in the proof of our

main theorems.

In our work, we use Montgomery’s methods and estimate such sums over zeros

using information about F (α) from Theorem 3.1.1. In our calculations, we will write

our function r̂(α) in terms of the convolution of F (α) and r(α) to yield

∑
0≤γ,γ′≤T

r̂

(
(γ − γ′) log T

2π

)
w(γ − γ′) =

∞∫
−∞

r(α)

( ∑
0≤γ,γ′≤T

T iα(γ−γ′)w(γ − γ′)

)
dα

=
T log T

2π

∞∫
−∞

r(α)F (α)dα

=
T log T

2π
(F ∗ r)(0). (3.1)

Although Montgomery confined his focus to functions r̂ with the condition

that supp(r) ⊆ [−1, 1], we consider r̂ with unbounded support. The utility of (3.1)

comes from the fact that we can find asymptotics for the distribution function over

the differences γ − γ′ as long as the function has a “well-behaved” kernel. Then for

even r ∈ L1 such that r̂ ∈ L1, we will use Montgomery’s results for F (α) and show

that
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∑
0<γ,γ′≤T

r̂

(
(γ − γ′) log T

2π

)
w(γ − γ′)

=
T log T

2π

r(0) + 2

∫ 1

0

α r(α)dα + 2

∞∫
1

r(α)F (α)dα + o(1)

 .

For the specific choice of r(u) = k(u) given in (2.7), the second integral on the

right-hand side appears in the constant a in Theorem 1.3.1.

3.2 A variation of Montgomery’s theorem

In 2004, Chan [5] generalized Montgomery’s function F (α) by constructing the func-

tion Fδ(α)

Fδ(α) =
2π

T log T

∑
0<γ, γ′≤T

T iα(γ−γ
′− 2πδ

log T )w

(
γ − γ′ − 2πδ

log T

)
,

as defined in (1.12), with w(u) = 4
4+u2

. He turned his attention to the study of Fδ

in order to better describe the distribution of the gaps between the zeros of ζ(s)

in longer ranges. The properties of the function Fδ are contained in the following

theorem.

Theorem 3.2.1 (Chan). For α ≥ 0 and T ≥ 2, let F (α) be defined as in (1.12).

Then

Fδ(α) = Fδ(−α) = F−δ(α). (3.2)

Moreover, uniformly for fixed α ∈ [0, 1], we have

Fδ(α) =

(
T−2α log T + αw

(
2πδ

log T

)
e−2πiαδ

)
(1 + o(1)),

as T →∞.
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Notice that the error term above is of size
√

log log T
log T

. Chan [5, Theorem 1.1]

originally showed this result for the real part of Fδ and for |α| < 1, and this can be

extended to |α| ≤ 1 using the argument of Goldston and Montgomery [13].

3.3 Pair correlation in longer ranges

In this section, we show how Theorem 1.4.1 simplifies to Fujii’s results in (1.10)

when δ = o(log T ). To achieve an extension of Fujii’s work for a larger range of δ,

we used Chan’s function Fδ, as defined in (1.12), in our calculations of the sums

over zeta zeros. However, in order to show that our work equates to that of Fujii

for δ = o(log T ), it suffices to show that the term involving Fδ(α) reduces to the

corresponding term in (1.10) involving F (α) in the following lemma. To accomplish

this, we apply Montgomery’s work on the function F (α) to an analogous function,

which we define below.

Lemma 3.3.1. Let 0 < δ � log T . Then as T →∞,

1

2

∞∫
1

2F (α)− Fδ(α)− F−δ(α)

α2
dα =

∞∫
1

F (α) [1− cos(2πδα)]

α2
dα +O

(
δ

log T

)
.

Note that the error term is only smaller than the main term if δ = o(log T ).

In order to prove this lemma, we will use Montgomery’s methods [22] to prove results

analagous to those involving F (α) for the function F̃σ0(α), which we define as

F̃σ0(α) :=
2π

T log T

∑
0<γ, γ′≤T

T iα(γ−γ′)wσ0(γ − γ′), (3.3)

for 1
2
< σ0 <

3
2

with wσ0(u) :=
4σ2

0

4σ2
0+u2

. We recover Montgomery’s function F (α) by

taking σ0 = 1. Note that F̃σ0(α) is even. Moreover, since

ŵσ0(y) = 2πσ0e
−4πσ0|y|, (3.4)
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we have the identity

F̃σ0(α) =
4π2σ0

T log T

∫ ∞
−∞

e−4πσ0|y|

∣∣∣∣∣ ∑
0<γ≤T

T iαγe2πyγ

∣∣∣∣∣
2

dy.

In particular, F̃σ0(α) ≥ 0. Following Montgomery, we will prove the following asymp-

totic formula for F̃σ0(α):

Remark 1. For any small ε > 0, we have

F̃σ0(α) = σ0T
−2|α|σ0 log T (1 + o(1)) + |α|+ o(1),

uniformly for 0 ≤ |α| ≤ 1− ε, as T →∞.

Proof. We essentially follow Montgomery’s argument. In Montgomery’s explicit for-

mula [22, pg. 185], we take σ = 1
2

+ σ0 such that 1
2
< σ0 <

3
2
. Thus, for x ≥ 1, we

have

2σ0

∑
γ

xiγ

σ2
0 + (t− γ)2

=− x−σ0
∑
n≤x

Λ(n)nσ0−1/2

nit
− xσ0

∑
n>x

Λ(n)

n1/2+σ0+it

+ x−σ0+it(log τ +O(1)) +O(x1/2τ−1), (3.5)

where τ = |t|+2, and the implied constants depend only on σ0 (which we henceforth

assume to be fixed, e.g. we may take σ0 = 1√
2
). We can abbreviate (3.5) by writing

L(x, t) = R(x, t). Now we consider
T∫
0

|L(x, t)|2 dt and
T∫
0

|R(x, t)|2 dt. For the left-

hand side of (3.5), we have

T∫
0

|L(x, t)|2 dt =

T∫
0

∣∣∣∣∣2σ0

∑
γ

xiγ

σ2
0 + (t− γ)2

∣∣∣∣∣
2

dt

= 4σ2
0

∑
γ,γ′

xi(γ−γ
′)

T∫
0

dt

(σ2
0 + (t− γ)2) (σ2

0 + (t− γ′)2)
.
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Next we need to the truncate the sum over zeros and then extend the integral

to the entire real-axis. An argument of Montgomery [22, pg. 187] can be used mutatis

mutandis to show that

T∫
0

|L(x, t)|2 dt = 4σ2
0

∑
0<γ,γ′≤T

xi(γ−γ
′)

∞∫
−∞

dt

(σ2
0 + (t− γ)2) (σ2

0 + (t− γ′)2)

+ O(log3 T ). (3.6)

This integral can be evaluated using the calculus of residues, giving

∞∫
−∞

dt

(σ2
0 + (t− γ)2) (σ2

0 + (t− γ′)2)
=

2π

σ0

· 1

(γ − γ′)2 + 4σ2
0

=
2π

4σ3
0

wσ0(γ − γ′).

Hence for x = Tα, we have

T∫
0

|L(x, t)|2 dt =
2π

σ0

∑
0<γ, γ′≤T

xi(γ−γ
′)wσ0(γ − γ′) +O(log3 T )

=
1

σ0

F̃σ0(α)T log T +O(log3 T ). (3.7)

Now we evaluate the right-hand side of (3.5). For x ≥ 1, we have

T∫
0

|R(x, t)|2 dt =

T∫
0

∣∣∣∣∣−x−σ0∑
n≤x

Λ(n)nσ0−1/2

nit
− xσ0

∑
n>x

Λ(n)

n1/2+σ0+it

+x−σ0+it(log τ +O(1)) +O

(
x1/2

τ

)∣∣∣∣2 dt. (3.8)

For the mean-square of the third term on the right-hand side above, we have

T∫
0

∣∣x−σ0+it(log τ +O(1))
∣∣2 dt = x−2σ0

T∫
0

log2 τ |xit|2 dt+O
(
Tx−

√
2
)

= Tx−2σ0
(
log2 T +O(log T )

)
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for all x ≥ 1, T ≥ 2. Using Montgomery and Vaughan’s Mean Value Theorem in

Lemma 6.1.1, we compute the mean square of the Dirichlet series. That is, using

T∫
0

∣∣∣∣∣∑
n

ann
−it

∣∣∣∣∣
2

dt =
∑
n

|an|2(T +O(n)),

we have

T∫
0

∣∣∣∣∣−x−σ0∑
n≤x

Λ(n)nσ0−1/2

nit
− xσ0

∑
n>x

Λ(n)

n1/2+σ0+it

∣∣∣∣∣
2

dt

= x−2σ0
∑
n≤x

Λ(n)2

n1−2σ0
(T +O(n)) + x2σ0

∑
n>x

Λ(n)2

n1+2σ0
(T +O(n)).

(3.9)

By Lemma 4.1.9, we have

∑
n≤x

Λ(n)2

n1−2σ0
=

x2σ0(2σ0 log x− 1) + 1

4σ2
0

+O
(
x2σ0−1/2 log3 x

)
.

Using similar logic to that found in Lemma 4.1.9, the second sum on the right-hand

side of (3.9) yields

∑
n>x

Λ(n)2

n1+2σ0
=
x−2σ0(2σ0 log x+ 1)

4σ2
0

+O
(
x2σ0−1/2 log3 x

)
.

Therefore

T

(
x−2σ0

∑
n≤x

Λ(n)2

n1−2σ0
+ x2σ0

∑
n>x

Λ(n)2

n1+2σ0

)
= T

(
4σ0(log x+1)

4σ2
0

+O(1)
)

=
T log x

σ0

+O(T ).
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It can be shown using a similar argument that

x−2σ0
∑
n≤x

Λ(n)2

n−2σ0
+ x2σ0

∑
n>x

Λ(n)2

n2σ0
� x log x.

Consequently for x = Tα we have

T∫
0

|R(Tα, t)|2 dt =
T log x

σ0

+ Tx−2σ0 log2 T

+O
(
Tx−2σ0 log T

)
+O(T ) +O(x log x)

=
αT

σ0

log T + T 1−2ασ0 log2 T

+O
(
T 1−2ασ0 log T

)
+O(T ) +O(T log T )

= T log T

(
T−2ασ0 log T (1 + o(1)) +

α

σ0

+ o(1)

)
.

Combining the above result with (3.7) completes the proof.

Using Remark 3.3.1 and the fact that F̃σ0(α) ≥ 0, an argument of Goldston

[12, Lemma A] shows that ∫ β

1

F̃σ0(α) dα� β. (3.10)

Finally, we can use this to recover Fujii’s result from our estimates.

Proof of Lemma 3.3.1. We know the identity

2F (α)− Fδ(α)− F−δ(α)

=
8π2

T log T

∞∫
−∞

e−4π|u|
[
1− cos

(
2πδα + (2π)2

log T
u
)] ∣∣∣∣∣ ∑

0<γ≤T

T iαγe2πiuγ

∣∣∣∣∣
2

du.

28



By the mean value theorem, cos
(

2πδα + (2π)2

log T
u
)

= cos(2πδα) +O
( δ |u|

log T

)
. Using the

identity for F (α), we obtain

2F (α)− Fδ(α)− F−δ(α) = F (α) [1− cos(2πδα)]

+O

(
δ

log T

∞∫
−∞

e−4π|u||u|

∣∣∣∣∣ ∑
0<γ≤T

T iαγe2πiuγ

∣∣∣∣∣
2

du

)
.

Using the estimate |u| � e4π|u|ε and (3.4), we find

2F (α)− Fδ(α)− F−δ(α) = F (α) [1− cos(2πδα)] +O
(

δ
log T

F̃σ0(α)
)
,

where σ0 = 1− ε (we may take any 0 < ε < 1
2
). Now, (3.10) implies that

∫ ∞
1

F̃σ0(α)

α2
dα� 1.

Hence, the proof is complete.
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4 PRIME NUMBER SUMS

4.1 Classical results

Let π(x) denote the number of primes p less than or equal to x. That is,

π(x) =
∑
p≤x

1. (4.1)

The classical Chebyshev prime counting functions, θ(x) and ψ(x), are defined by

θ(x) =
∑
p≤x

log p and ψ(x) =
∑
n≤x

Λ(n), (4.2)

where Λ(n) is defined in (1.11). The Prime Number Theorem (PNT), a central result

in number theory, can be written as any of the following three equivalent statements

as x→∞:

π(x) ∼ x

log x
, θ(x) ∼ x, and ψ(x) ∼ x.

The PNT was first conjectured independently by Legendre and Gauss in the late

1700’s and proved independently by de la Vallée Poussin and Hadamard in 1896.

For an overview of these topics, see [8, Ch. 7]. Almost all of the prime number sum

estimates needed in this thesis follow from the prime number theorem, but some of

the results in this chapter follow from weaker results of Chebyshev and Mertens. We

have made an effort to indicate when the PNT is necessary for our results.

Important partial progress towards a proof of the PNT was made by Cheby-

shev and Mertens. For instance, Chebyshev proved the following estimates:
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Theorem. (Chebyshev) For x ≥ 2, we have

π(x) � x

log x
, θ(x) � x, and ψ(x) � x.

Other useful bounds for prime number sums were supplied by Mertens. Some

of Mertens’ prime number sum estimates, commonly referred to as Mertens’ Theo-

rems, are given below.

Theorem. (Mertens) For x ≥ 2, we have

(a)
∑
n≤x

Λ(n)

n
= log x+O(1),

(b)
∑
p≤x

log p

p
= log x+O(1),

(c)
∑
p≤x

1

p
= log log x+ b+O

(
1

log x

)
,

where γ0 is Euler’s constant and b = γ0 −
∞∑
k=2

∑
p

1

kpk
.

Note that the constant b in Mertens’ Theorem appears in the constant in

Theorem 1.3.1.

4.1.1 Sums in our results

Using the classical results above, we now introduce the prime number sum estimates

that occur in our work. The proofs are included for completeness.

Lemma 4.1.1. For x ≥ 2, we have

∑
n≤x

Λ2(n)

n
=

log2 x

2
+O(1).

Proof. Recall the von Mangoldt function Λ(n) is defined as in (1.11). Also, by the

PNT with error term, we know θ(x) =
∑
p≤x

log p = x + O( x
log3 x

). Splitting the sum

into primes and primes powers yields
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∑
n≤x

Λ2(n)

n
=

∑
p≤x

log2 p

p
+
∞∑
m=2

∑
pm≤x

m2 log2 p

pm
.

The second sum on the right-hand side is uniformly bounded for x ≥ 2. For the first

sum on the right-hand side, summing by parts gives

∑
p≤x

log2(p)

p
=

x∫
2−

log u

u
d(θ(u))

= θ(u)
log u

u

∣∣∣∣∣
x

2−

−
x∫

2

θ(u)(1− log u)

u2
du

= log x+O(1)−
x∫

2

(1− log u)

u
du+O

 x∫
2

1− log u

u log3 u
du


=

log2 x

2
+O(1).

This proves the lemma.

Lemma 4.1.2. For x ≥ 2, we have

(a)
∑

2≤n≤x

Λ(n)

log2 n
� x

log2 x
,

(b)
∑

2≤n≤x

Λ2(n)

log2 n
� x

log x
.

Proof. To prove part (a), we use partial summation, integration by parts, and Cheby-

shev estimates for ψ(x) to find that

32



∑
2≤n≤x

Λ(n)

log2 n
=

x∫
2−

dψ(u)

log2 u

� u

log2 u

∣∣∣∣x
2−

+ 2

x∫
2

1

log3 u
du

� x

log2 x
.

We deduce part (b) from part (a). Since Λ(n) ≤ log n for all n ∈ N, we have

∑
2≤n≤x

Λ2(n)

log2 n
≤ log x

∑
2≤n≤x

Λ(n)

log2 n
� x

log x
.

This completes the proof of the lemma.

Lemma 4.1.3. For x ≥ 2, we have

∑
2≤n≤x

Λ2(n)

n log2 n
= log log x+ γ0 +

∞∑
m=2

∑
p

(
1

m2
− 1

m

)
1

pm
+O

(
1

log x

)
.

Proof. By splitting the sum into the sums over primes and sums over primes powers,

we have

∑
2≤n≤x

Λ2(n)

n log2 n
=

∑
p≤x

Λ2(p)

p log2 p
+
∞∑
m=2

∑
pm≤x

1

m2pm
.

Estimating the tail of the second sum on the right-hand side gives

∞∑
m=2

∑
pm>x

1

m2pm
≤
∑
p≤
√
x

1

p2

∞∑
m=2

1

m2
�
∑
p≤
√
x

1

p2
≤
∑
n≤
√
x

1

n2
� 1√

x
.
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Thus by part (c) of Mertens’ Theorem, we have

∑
2≤n≤x

Λ2(n)

n log2 n
=

∑
p≤x

1

p
+
∞∑
m=2

∑
pm

1

m2pm
+O

( 1√
x

)
= log log x+ γ0 −

∞∑
m=2

∑
p

1

mpm
+
∞∑
m=2

∑
pm

1

m2pm
+O

(
1

log x

)

= log log x+ γ0 +
∞∑
m=2

∑
p

(
1

m2
− 1

m

)
1

pm
+O

(
1

log x

)
.

This proves the lemma.

Lemma 4.1.4. For x ≥ 2, we have

( ∑
2≤n≤x

Λ(n)

n1/2 log n

)2

� x

log2 x
.

Proof. Using partial summation, integration by parts, and Chebyshev estimates for

ψ(x) gives( ∑
2≤n≤x

Λ(n)

n1/2 log n

)2

=

 ψ(u)√
u log u

∣∣∣∣x
2−

+

x∫
2

ψ(u)

u3/2 log2 u
du

2

�

 √u
log u

∣∣∣∣x
2−

+

x∫
2

1
√
u log2 u

du

2

� x

log2 x
,

as claimed.

Lemma 4.1.5. For x ≥ 2, we have

∑
2≤n≤x

Λ(n)

n log n
� log log x.
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Proof. Using a similar argument to that in the proof of Lemma 4.1.5, it follows that

∑
2≤n≤x

Λ(n)

n log n
�

x∫
2−

dψ(u)

u log u
� log log x,

which completes the proof.

Lemma 4.1.6. For x ≥ 2, we have

∑
2≤n≤x

Λ(n) log log 3n

log n
� x log log 3x

log x
.

Proof. By using partial summation, integration by parts, and Chebyshev estimates

for ψ(x), we have

∑
2≤n≤x

Λ(n) log log 3n

log n
≤ log log 3x

x∫
2−

dψ(u)

log u

� log log 3x

 u

log u

∣∣∣∣∣
x

2−

+

x∫
2−

1

log2 u
du


� x log log 3x

log x
,

as claimed.

Lemma 4.1.7. For n,m ≥ 2, we have

∑
m

1≤|m−n|≤n/2

Λ(m)∣∣log m
n

∣∣ � n log n log log 3n.

Proof. We follow an argument of Gonek [14, Lemma 1]. First, we observe that

∑
m

1≤|m−n|≤n/2

Λ(m)∣∣log m
n

∣∣ =
∑

n/2≤m≤n

Λ(m)∣∣log m
n

∣∣ +
∑

n≤m≤3n/2

Λ(m)∣∣log m
n

∣∣ . (4.3)
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Then by [14, Lemma 1], for n ≥ 2 we have

∑
k≤n/2

Λ(N − k)

k
� log n log log 3n,

and ∑
k≤n/2

Λ(N + k)

k
� log n log log 3n.

The proof of such bounds relies on the Brun-Titchmarch inequality [24, Theorem

3.9]. Observe for the first sum in (4.3), because log
(
1− k

n

)
� k

n
for small k

n
, the

substitution m = N − k gives

∑
n/2≤m≤n

Λ(m)∣∣log m
n

∣∣ =
∑

n/2≤n−k≤n

Λ(n− k)

| log n−k
n
|

� n
∑
k≤n/2

Λ(n− k)

k

� n log n log log 3n

for n ≥ 2. Similarly, for the second sum in (4.3), the substitution m = N + k yields

∑
n≤m≤3n/2

Λ(m)∣∣log m
n

∣∣ =
∑

n≤n+k≤3n/2

Λ(n+ k)

| log n+k
n
|

� n
∑
k≤n/2

Λ(n+ k)

k

� n log n log log 3n,

for n ≥ 2. Therefore,

∑
m

1≤|m−n|≤n/2

Λ(m)∣∣log m
n

∣∣ � n log n log log 3n,

which completes the proof.
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Lemma 4.1.8. Assuming RH, we have

∑
n≤x

Λ2(n) = x log x− x+O(x1/2 log3 x).

Proof. First we observe that

∑
n≤x

Λ2(n) =
∑
n≤x

Λ(n) log n+O
(
x1/2 log x

)
,

since, by Chebyshev estimates,

∑
n≤x

Λ2(n)−
∑
n≤x

Λ(n) log n�
∑
p≤
√
x

log2 p� π
(√

x
)

log2 x� x1/2 log x.

Then, using integration by parts, we have

∑
n≤x

Λ(n)2 =
∑
n≤x

Λ(n) log n+O
(
x1/2 log x

)
=

x∫
2−

log u dψ(u) +O
(
x1/2 log x

)
= x log x− x+O

(
x1/2 log3 x

)
,

since, on RH, ψ(x) = x+O
(
x1/2 log2 x

)
.

Lemma 4.1.9. For σ0 ∈ R such that 1
2
< σ0 <

3
2

and x ≥ 1, it follows that

x−2σ0
∑
n≤x

Λ2(n)

n1−2σ0
=
x2σ0(2σ0 log x− 1) + 1

4σ2
0

+O
(
x2σ0−1/2 log3 x

)
.
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Proof. Let
∑
n≤x

Λ(n)2 = P (x). By Lemma 4.1.8 and by integration by parts, we have

∑
n≤x

Λ(n)2

n1−2σ0
= P (u)u2σ0−1

∣∣∣∣∣
x

2−

+ (1− 2σ0)

x∫
2

P (u)

u2−2σ0
du

=
(
u2σ0 log u− u2σ0

) ∣∣∣∣∣
x

2

+ (1− 2σ0)

x∫
2

(
u2σ0−1 log u− u2σ0−1

)
du

+O
(
x2σ0−1/2 log3 x

)
=

x2σ0(2σ0 log x− 1) + 1

4σ2
0

+O
(
x2σ0−1/2 log3 x

)
.

Thus, the proof is complete.

Lemma 4.1.10. For x ≥ 2, we have

∑
m>3x/2

Λ(m)

m
1+

1
log x logm

� 1

log x
.

Proof. Using partial summation and Chebyshev estimates for ψ(x) gives

∑
m>3x/2

Λ(m)

m
1+

1
log x logm

=

∞∫
3x
2

dψ(u)

u
1+

1
log x log u

=
ψ(u)

u
1+

1
log x log u

∣∣∣∣∣∣
∞

3x
2

+

∞∫
3x
2

ψ(u)(1 + 1
log x

)

u
2+

1
log x log u

du

� 1

log u

∣∣∣∣∞3x
2

+
1

log x

∞∫
3x
2

1

u
1+

1
log x

du� 1

log x
,

as claimed.
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5 A REPRESENTATION FORMULA FOR log |ζ(1/2 + it)|

5.1 Preliminaries

In order to prove Theorems 1.3.1 and 1.4.1, following the ideas and notation devel-

oped by Goldston [12], we need to obtain a representation formula for log |ζ(1/2+it)|.

This formula is written in terms of a Dirichlet polynomial supported over prime pow-

ers and a sum over the zeros of ζ(s). The proof is based on Montgomery’s explicit

formula [22, Lemma] and, in the case of log |ζ(1/2 + it)|, the formula requires the

use of two of the auxiliary functions introduced in Section 2.2.

Proposition 5.1.1. Assuming RH, for x ≥ 4, t ≥ 1, t 6= γ, we have

log |ζ(1
2

+ it)| =
∑
n≤x

Λ(n)

log n

cos(t log n)

n1/2
f

(
log n

log x

)
−
∑
γ

h[(t− γ) log x]

+
log 2 log t

2π

2 log x
+O

(
x1/2

t log2 x

)
.

We use Proposition 5.1.1 to obtain expressions for the quantities we want

to compute in Theorems 1.3.1 and 1.4.1. Before we consider the proofs of these

theorems, we adopt some notation for these expressions. Throughout our work, we

let T ≥ 4, and we let δ = δ(T ) be a function of T such that 0 < δ � log T . For

t ≥ 1, denote

A(t) :=
∑
n≤x

Λ(n) cos(t log n)

n1/2 log n
f

(
log n

log x

)
and B(t) :=

∑
γ

h[(t− γ) log x], (5.1)
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so that A(t) contains the information from the primes and B(t) contains the infor-

mation from the zeros in Proposition 5.1.1. Additionally, we denote

G1 :=

∫ T

1

|A(t)|2 dt, G2 :=

∫ T

1

∣∣∣A(t+ 2πδ
log T

)
− A(t)

∣∣∣2 dt,

H1 := 2

∫ T

1

A(t) log |ζ(1
2

+ it)| dt,

H2 := 2

∫ T

1

[
A
(
t+ 2πδ

log T

)
− A(t)

] [
log
∣∣∣ζ (1

2
+ it+ it 2πδ

log T

)∣∣∣− log
∣∣ζ(1

2
+ it)

∣∣] dt,

R1 :=

∫ T

1

|B(t)|2 dt, R2 :=

∫ T

1

∣∣∣B (t+ 2πδ
log T

)
−B(t)

∣∣∣2 dt.

(5.2)

In the next step, we use Proposition 5.1.1 to write the objects in Theorems 1.3.1 and

1.4.1 in terms of the above expressions Gi, Hi, and Ri.

Proposition 5.1.2. Assume RH, let 0 < δ � log T , and let 4 ≤ x ≤ T . Then, as

T →∞, we have:

(a)

T∫
1

log2 |ζ(1
2

+ it)| dt

= R1 +H1 −G1 +
log2 2T log2 T

4 log2 x
+O

(
T

log x

)
+O

(√
xR1

log x

)

and

(b)

∫ T

1

[
log
∣∣∣ζ (1

2
+ it+ i 2πδ

log T

)∣∣∣− log
∣∣ζ(1

2
+ it)

∣∣]2

dt

= R2 +H2 −G2 +O

(
x

log4 x

)
+O

(√
xR2

log2 x

)
.

The remainder of this chapter is devoted to proving Propositions 5.1.1 and

5.1.2. In the following chapters, we will consider the contributions from the primes,

Gi and Hi, and the contributions from the zeta zeros, Ri, separately. We will then

estimate these quantities to conclude Theorems 1.3.1 and 1.4.1.
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5.2 Proof of Proposition 5.1.1

Proof. Assuming RH, we begin with an explicit formula Montgomery [22, pg.185]

used to detail the association between the primes and the zeros of ζ(s). For ρ = 1
2
+iγ,

x ≥ 1, and s = σ + it such that 1 < σ < 2, s 6= 1, s 6= ρ, and s 6= −2n, we have

(2σ − 1)
∑
γ

xi(γ−t)

(σ − 1
2
)2 + (t− γ)2

= xσ−
1
2
ζ ′

ζ
(σ + it)− x

1
2
−σ ζ

′

ζ
(1− σ + it)

+
∑
n≤x

Λ(n)

nit

xσ−1
2

nσ
− x

1
2
−σ

n1−σ

+ x
1
2
−it
(

1− 2σ

(σ − it)(1− σ − it)

)

+
∞∑
n=1

x−
1
2
−itx−2n(2σ − 1)

(2n+ 1− σ + it)(2n+ σ + it)
.

(5.3)

This formula stems from an aggregation of the logarithmic derivative of the functional

equation [17] of ζ(s) when s = σ+ it and s = 1−σ+ it, as appropriate. We now turn

our attention to the relationship between Re ζ(1− σ + it) and Re ζ(σ + it). We use

the fact that the functional equation for ζ(s) can be written as ζ(s) = χ(s)ζ(1− s),

where χ(s) = π
s−

1
2 Γ((1−s)/2)
Γ(s/2)

. Taking the real part of the logarithmic derivative of the

aformentioned expression of ζ(s) gives

Re
ζ ′

ζ
(s) = Re

χ′

χ
(s)− Re

ζ ′

ζ
(1− s),

and by the reflection principle, Re ζ′

ζ
(1− s) = Re ζ′

ζ
(1− s). Therefore

Re
ζ ′

ζ
(1− σ + it) = −Re

ζ ′

ζ
(σ + it) + Re

χ′

χ
(s).
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Using Stirling’s formula for the logarithmic derivative of Γ(s), we know

χ′

χ
(s) = − log

(
|t|
2π

)
+O

(
σ2

t

)
for t ≥ 1. Thus, for t ≥ 1,

Re
ζ ′

ζ
(1− σ + it) = −Re

ζ ′

ζ
(σ + it)− log

(
t

2π

)
+O

(
σ2

t

)
. (5.4)

Then taking real parts of (5.3), using (5.4), and rearranging gives

(xσ−
1
2 +x

1
2
−σ) Re

ζ ′

ζ
(σ + it)

=
∑
γ

cos((t− γ) log x)
2(σ − 1

2
)

(σ − 1
2
)2 + (t− γ)2

−
∑
n≤x

Λ(n) cos(t log n)

xσ−1
2

nσ
− x

1
2
−σ

n1−σ


− x

1
2 Re

(
x−it(1− 2σ)

(σ − it)(1− σ − it)

)
− x

1
2
−σ log

(
t

2π

)

− Rex−
1
2
−it

∞∑
n=1

x−2n(2σ − 1)

(2n+ 1− σ + it)(2n+ σ + it)
+O

x1
2
−σσ2

t

 .

(5.5)

Observe that because the third sum on the right-hand side of (5.5) remains the same

whether σ or 1− σ is used, we assume σ ≥ 1
2

and deduce that

∣∣∣∣∣x−1
2
−it

∞∑
n=1

x−2n(2σ − 1)

(2n+ 1− σ + it)(2n+ σ + it)

∣∣∣∣∣� ∣∣x−5/2(σ − 1
2
)
∣∣ ∞∑
n=1

1

(2n+ 1− σ + it)2

�
x−5/2(σ − 1

2
)

t
,

for t ≥ 1. Thus, for t 6= γ, we know log |ζ(1
2

+ it)| = −
∞∫

1/2

Re ζ′

ζ
(σ + it)dσ. Then we

divide by (xσ−
1
2 + x

1
2
−σ) = 2 cosh

(
(σ − 1

2
) log x

)
and integrate (5.5) from 1

2
to ∞ to
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find

log|ζ(1
2

+ it)|

=
∑
n≤x

Λ(n) cos(t log n)

∞∫
1/2

(
xσ−

1
2

nσ
− x

1
2
−σ

n1−σ

)
dσ

2 cosh
(
(σ − 1

2
) log x

)
+ x1/2 Re

[
x−it

∞∫
1/2

(1
2
− σ)

(σ − it)(1− σ − it)
dσ

cosh
(
(σ − 1

2
) log x

)]

−
∑
γ

cos((t− γ) log x)

∞∫
1/2

(σ − 1
2
)

(σ − 1
2
)2 + (t− γ)2

dσ

cosh
(
(σ − 1

2
) log x

)
+

log t
2π

2

∞∫
1/2

x
1
2
−σ

cosh
(
(σ − 1

2
) log x

)dσ +O

(
x−5/2

t

∞∫
1/2

|σ − 1
2
|

cosh
(
(σ − 1

2
) log x

)dσ)

+O

(
1

t3/2

∞∫
1/2

x
1
2
−σtσ

cosh
(
(σ − 1

2
) log x

)dσ),

(5.6)

for x ≥ 4, t ≥ 1, and t 6= γ. By using the substitution, u = (σ − 1
2
) log x, the first

error term on the right-hand side of (5.6) is

x−5/2

t

∞∫
1/2

σ − 1
2

cosh
(
(σ − 1

2
) log x

)dσ =
x−5/2

t

∞∫
0

u/ log x

coshu

du

log x
� 1

t log2 x
.

Utilizing the same substitution value for the second error term on the right-hand

side of (5.6) gives

1

t

∞∫
1/2

x
1
2
−σσ2

cosh
(
(σ − 1

2
) log x

)dσ � 1

t log3 x

∞∫
0

e−uu2

coshu
du� 1

t log3 x
.
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Again, by the same substitution, the integral in the first main term on the right-hand

side of (5.6) yields

∞∫
1/2

(
xσ−

1
2

nσ
− x

1
2
−σ

n1−σ

)
dσ

2 cosh
(
(σ − 1

2
) log x

) =
1

n1/2 log x

∞∫
0

( eu

nu/ log x
− e−u

n−u/ log x

) du

2 coshu

=
1

n1/2 log x

∞∫
0

sinh
(
u
(

1− logn
log x

))
coshu

du

=
1

n1/2 log n
f

(
log n

log x

)
.

The function f is the test function contained in the sum over primes (see

Section 2.2), and it is the first of three auxiliary functions that will arise in our work.

For the second main term on the right-hand side of (5.6), we have

x1/2 Re

x−it ∞∫
1/2

(1
2
− σ)

(σ − it)(1− σ − it)
dσ

cosh
(
(σ − 1

2
) log x

)


= −x1/2 Re

 ∞∫
0

x−it

(((1
2
− it) log x)2 − u2)

u

coshu
du


� x1/2 Re

 ∞∫
0

u

| coshu|
1

t log2 x
du


� x1/2

t log2 x
.

Similarly, for the third main term on the right-hand side of (5.6), we have

−
∑
γ

cos((t− γ) log x)

∞∫
1
2

(σ − 1
2
)

(σ − 1
2
)2 + (t− γ)2

dσ

cosh
(
(σ − 1

2
) log x

)
=−

∑
γ

cos((t− γ) log x)

∞∫
0

u

(u2 + (t− γ)2 log2 x)

du

coshu

=−
∑
γ

h[(t− γ) log x],
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where h is the weight function in the sum over the zeros of ζ(s) (see Section 2.2).

Finally, the fourth main term on the right-hand side of (5.6) reduces to

log t
2π

2

∞∫
1/2

x
1
2
−σ

cosh
(
(σ − 1

2
) log x

)dσ =
log t

2π

log x

∞∫
0

1

e2u + 1
du =

log 2 log t
2π

2 log x
.

Combining all the terms of (5.6) completes the proof.

5.3 Proof of Proposition 5.1.2

Proof. Let 0 < δ � log T and 4 ≤ x ≤ T . By rearranging the terms in Proposition

5.1.1 and using the notation in (5.1), as T →∞, we have

−B(t) +O

(
x1/2

t log2 x

)
= log |ζ(1

2
+ it)| − A(t)−

log 2 log t
2π

2 log x
. (5.7)

Note that the representation formula in Proposition 5.1.1 requires t ≥ 1, and the

error terms are unbounded if t → 0. Thus, integrating the above expression from 1

to T yields

R1 +O

 T∫
1

x1/2

t log2 x
B(t) dt

+O

 T∫
1

x

t2 log4 x
dt


=

T∫
1

log2 |ζ(1
2

+ it)| dt−H1 +G1 +

T∫
1

log2 2 log2 t
2π

4 log2 x
dt

+O

 1

log x

T∫
1

A(t) log t dt

− log 2

2 log x

T∫
1

log |ζ(1
2

+ it)| log t
2π

dt.

(5.8)

Using Cauchy-Schwarz, the first error term on the left-hand side of (5.8) gives

T∫
1

x1/2

t log2 x
B(t) dt�

 T∫
1

∣∣∣∣ x1/2

t log2 x

∣∣∣∣2 dt ·R1

1/2

�
√
xR1

log2 x
.
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The second error term on the left-hand side of (5.8) reduces to

T∫
1

x

t2 log4 x
dt� x

log4 x

(
1

T
− 1

)
� x

log4 x
.

On the right-hand side of (5.8), the fourth main term is

T∫
1

log2 2

4

log2 t
2π

log2 x
dt =

log2 2

4 log2 x

T∫
1

log2 t
2π

dt = T log2 T
log2 2

4 log2 x
+O

(
T

log x

)
.

For the first error term on the right-hand side of (5.8), since f(v) is uniformly

bounded for all v ∈ [0, 1], | cos v| ≤ 1 for all v ∈ R, and
∫ T

1
nit log t dt � log T , by

Lemma 4.1.4 we observe that

T∫
1

A(t)
log t

log x
dt� log T

log x

∑
n≤x

Λ(n)

n1/2 log n
�
√
x

log x
.

Lastly, we consider the fifth main term on the right-hand side of (5.8). By [20, Lemma

2.2], we know
∫ T

1
log |ζ(1

2
+ it)| dt� log T

(log log T )2
. Then, integrating by parts

− log 2

2 log x

T∫
1

log |ζ(1
2

+ it)| log t
2π

dt

= − log 2

2 log x

[
log t

2π

t∫
1

log |ζ(1
2

+ iu)| du
∣∣∣∣T
1

−
T∫

1

1

t

t∫
1

log |ζ(1
2

+ iu)| du dt

]

� 1

log x

 log2 t

(log log t)2

∣∣∣∣T
1

−
T∫

1

log t

t(log log t)2
dt


� log T

(log log T )2
.
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By combining and rearranging all the estimates for the terms of (5.8), we have

T∫
1

log2 |ζ(1
2

+ it)| dt = H1 +R1 −G1 −
log2(2)T log2 T

4 log2 x

+O

(
T

log x

)
+O

(√
xR1

log2 x

)
,

which completes part (a).

For part (b), we shift the variable t by a factor of 2πδ
log T

in (5.7) to yield

log
∣∣∣ζ (1

2
+ it+ i 2πδ

log T

)∣∣∣ = A
(
t+ 2πδ

log T

)
−B

(
t+ 2πδ

log T

)
+

log 2 log
(

t
2π

+ δ
log T

)
2 log x

+O

 x1/2(
t+ 2πδ

log T

)
log2 x

 ,

(5.9)

at T →∞. We want to consider the mean-square of the difference of log |ζ(1
2

+ it)|

and log
∣∣∣ζ (1

2
+ it+ i 2πδ

log T

)∣∣∣. Thus taking the difference between (5.7) and (5.9) and

rearranging terms yields

log
∣∣ζ(1

2
+ it+ i 2πδ

log T

)∣∣−log |ζ(1
2

+ it)|

=
[
A
(
t+ 2πδ

log T

)
− A(t)

]
−
[
B
(
t+ 2πδ

log T

)
−B(t)

]
+

log 2
[

log
(

t
2π

+ δ
log T

)
− log t

2π

]
2 log x

+O

(
x1/2(

t+ 2πδ
log T

)
log2 x

)
+O

(
x1/2

t log2 x

)
,

(5.10)
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Observe that for t > 1 and x ≥ 4, by the power series expansion of log(1 + z) for

small z, the third term on the right-hand side of (5.10) reduces to

log 2
[
log
(

t
2π

+ δ
log T

)
− log t

2π

]
2 log x

� 1

log x

[
log
(

t
2π

+ δ
log T

)
− log t

2π

]
=

1

log x
log
(

1 + 2πδ
t log T

)
� δ

t log2 x
� log T

t log2 x
,

since δ � log T . Similarly, because t > 1 our two error terms on the right-hand side

of (5.10) give

x1/2(
t+ 2πδ

log T

)
log2 x

+
x1/2

t log2 x
,� x1/2

t log2 x
.

Thus our difference in (5.10) simplifies to

log
∣∣ζ(1

2
+ it+ i 2πδ

log T

)∣∣−log |ζ(1
2

+ it)|

=
[
A
(
t+ 2πδ

log T

)
− A(t)

]
−
[
B
(
t+ 2πδ

log T

)
−B(t)

]
+O

(
x1/2

t log2 x

)
.

Squaring both sides of the above equation yields
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log
∣∣ζ(1

2
+ it+ i 2πδ

log T

)∣∣− log |ζ(1
2

+ it)|

=
[
A
(
t+ 2πδ

log T

)
− A(t)

]2
+
[
B
(
t+ 2πδ

log T

)
−B(t)

]2
− 2
[
A
(
t+ 2πδ

log T

)
− A(t)

][
B
(
t+ 2πδ

log T

)
−B(t)

]
+O

(
x

t2 log4 x

)
+O

([
A
(
t+ 2πδ

log T

)
− A(t)

] x1/2

t log2 x

)
+O

([
B
(
t+ 2πδ

log T

)
−B(t)

] x1/2

t log2 x

)
= −

[
A
(
t+ 2πδ

log T

)
− A(t)

]2
+
[
B
(
t+ 2πδ

log T

)
−B(t)

]2
+ 2
[
A
(
t+ 2πδ

log T

)
− A(t)

][
log
∣∣ζ(1

2
+ it+ i 2πδ

log T

)∣∣− log |ζ(1
2

+ it)|
]

+O

(
x

t2 log4 x

)
+O

([
A
(
t+ 2πδ

log T

)
− A(t)

] x1/2

t log2 x

)
+O

([
B
(
t+ 2πδ

log T

)
−B(t)

] x1/2

t log2 x

)
.

As in part (a), we must integrate the above expression from 1 to T . This gives

∫ T

1

[
log
∣∣ζ(1

2
+ it+ i 2πδ

log T

)∣∣− log |ζ(1
2

+ it)|
]2

dt

= −
T∫

1

[
A
(
t+ 2πδ

log T

)
− A(t)

]2
dt+

T∫
1

[
B
(
t+ 2πδ

log T

)
−B(t)

]2
dt

+ 2

T∫
1

[
A
(
t+ 2πδ

log T

)
− A(t)

][
log
∣∣ζ(1

2
+ it+ i 2πδ

log T

)∣∣− log |ζ(1
2

+ it)|
]

dt

+O

( T∫
1

x

t2 log4 x
dt

)
+O

( T∫
1

[
A
(
t+ 2πδ

log T

)
− A(t)

] x1/2

t log2 x
dt

)

+O

( T∫
1

[
B
(
t+ 2πδ

log T

)
−B(t)

] x1/2

t log2 x
dt

)

(5.11)

When we integrate, certain cross terms will arise that can be included within the

error bounds. We first consider the cross term containing A(t), the sum over the

primes. Since f(v) is uniformly bounded for all v ∈ [0, 1] and | cos v| ≤ 1 for all
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v ∈ R, by Lemma 4.1.4 observe that

T∫
1

[
A
(
t+ 2πδ

log T

)
− A(t)

] x1/2

t log2 x
dt�

T∫
1

x1/2

t log2 x

∑
n≤x

Λ(n)

n1/2 log n
dt� x

log2 x
. (5.12)

Next we consider the error term containing B(t), the sum over the zeros of ζ(s).

Using Cauchy-Schwarz, we find that

T∫
1

[
B
(
t+ 2πδ

log T

)
−B(t)

] x1/2

t log2 x
dt�

 T∫
1

∣∣∣∣ x1/2

t log2 x

∣∣∣∣2 dt ·R2

1/2

�
√
R2

log2 x
.

Inputting the estimates for the cross terms in (5.11) gives

∫ T

1

[
log
∣∣ζ(1

2
+ it+ i 2πδ

log T

)∣∣− log |ζ(1
2

+ it)|
]2

dt = R2 +H2 −G2

+O

(
x

log2 x

)
+O

(√
xR2

log2 x

)
.

Consequently, the proof is complete.
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6 CONTRIBUTION FROM THE PRIMES

In this chapter, we estimate the expression Hi−Gi for i = 1, 2, where Gi and Hi are

defined in (5.2). We need to obtain intermediate expressions for Gi and Hi separately.

In order to obtain and estimate these expressions, we state two lemmas and combine

these results with some of our estimates for the sums over primes in Chapter 4.

6.1 Preliminary estimates for Gi and Hi

The first lemma is Montgomery & Vaughan’s well-known mean-value estimate for

Dirichlet polynomials.

Lemma 6.1.1 (Montgomery & Vaughan). If an is a sequence of complex numbers

such that the sum
∑
n≤x

n|an|2 converges, then for all n ∈ N,

T∫
0

∣∣∣∣∣∑
n≤x

ann
it

∣∣∣∣∣
2

=
∑
n≤x

|an|2
(
T +O(n)

)
.

The proof of this result is found in [23, Cor. 3]. The second lemma will be used

for the expressions H1 and H2. We use some estimates of Goldston and Titchmarsh,

together with some trigonometric identities, to obtain expressions for the real and

imaginary parts of integrals of log ζ(1
2

+ it) times trigonometric functions. Some of

these results appear explicitly in [12] (part (b)) and implicitly in [9] (part (d)). We

collect them all in the following lemma, for the reader’s convenience.
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Lemma 6.1.2. Assume RH, let T ≥ 2, let h ∈ R, and let n ≥ 2 be an integer.

Denote

E = E(n, T ) := n1/2 log log 3n+
n1/2 log T

log n
.

Then, the following estimates hold:

(a)

∫ T

1

log |ζ(1
2

+ it)| cos(t log n) dt =
T

2

Λ(n)

n1/2 log n
+O(E)

(b)

∫ T

1

πS(t) sin(t log n) dt = −T
2

Λ(n)

n1/2 log n
+O(E)

(c)

∫ T

1

log |ζ(1
2

+ it)| [cos((t+ h) log n) + cos((t− h) log n)− 2 cos(t log n)] dt

= −T Λ(n)[1− cos(h log n)]

n1/2 log n
+O(E)

(d)

∫ T

1

πS(t) [sin((t+ h) log n) + sin((t− h) log n)− 2 sin(t log n)] dt

= T
Λ(n)[1− cos(h log n)]

n1/2 log n
+O(E)

Proof. For part (a), we use a variation of Goldston’s modification [12, p. 167] to an

argument of Titchmarsh [33] combined with Lemmas 4.1.5 and 4.1.7. We begin with∫
C

log ζ(s)nsds, where C is the rectangular path intersecting the coordinates

{(1
2
, 0), (1 + 1

logn
, 0), (1 + 1

logn
, iT ), (1

2
, iT )}

with semi-circular indentations to avoid the singularities of log ζ(s). Using Cauchy’s

Theorem and allowing the radius of the indentations to tend to zero yields
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i

T∫
0

log ζ
(

1
2

+ it
)
n1/2+it dt

=

1+
1

logn∫
1/2

log |ζ(σ)|nσdσ + i

T∫
0

log ζ
(
1 + 1

logn
+ it

)
n

1+
1

logn
+it

dt

−

1+
1

logn∫
1/2

log ζ(σ + iT )nσ+iTdσ

= I1 + iI2 − I3.

Recall the Laurent series for ζ(s) about s = 1 is ζ(s) = 1
s−1

+O(1). This implies

ζ(σ + it) =
1

σ − 1 + it
+O(1),

for |σ − 1| ≤ 1. Hence, |ζ(σ + it)| � 1
σ−1

in this range. Therefore

I1 � n
1+

1
logn

1+
1

logn∫
1/2

| log |σ − 1||dσ � n.

Furthermore, we know from [32] that

log ζ(s) =
∑
|t−γ|≤1

log(s− ρ) +O(log |τ |),

for |τ | = |t| + 2 and −1 ≤ σ ≤ 2, where we choose the branch of the logarithm so

that | Im log(s− ρ)| < π with ρ = 1
2

+ iγ. Then by RH, since there are O(log T )
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terms in the sum, we have

log |ζ(σ + iT )| � log T log

(
1

σ − 1
2

)
,

with 1
2
< σ ≤ 5/4 and T ≥ 2. Therefore,

I3�

1+
1

logn∫
1
2

| log ζ(σ + iT )|nσ+iTdσ � n
1+

1
logn log T

1+
1

logn∫
1
2

log

(
1

σ−1
2

)
nσdσ � n log T

log n
.

Finally, by the Dirichlet series of log ζ(s) =
∞∑
m=2

Λ(m)
logm

m−s, we have

I2 = i
∞∑
m=2

Λ(m)n
1+

1
logn

m
1+

1
logn logm

T∫
0

( n
m

)it
dt =

iTΛ(n)

log n
+O

 ∞∑
m=2
m 6=n

nΛ(m)

m
1+

1
logn logm

1∣∣log m
n

∣∣
.

By Lemmas 4.1.5 and 4.1.7, the error term on the right-hand side of (6.1) for n ≥ 2

reduces to

∞∑
m=2
m 6=n

nΛ(m)

m
1+

1
logn logm

1

| log m
n
|

� n
∑
m<n/2

Λ(m)

m logm
+

1

log n

∑
n/2≤m≤n

Λ(m)

| log m
n
|

(
2

n

) 1
logn

+
1

log n

∑
n≤m≤3n/2

Λ(m)

| log m
n
|

(
2

3n

) 1
logn

+ n
∑

m>3n/2

Λ(m)

m
1+

1
logn logm

� n
∑
m<n/2

Λ(m)

m logm
+

1

log n

∑
m

1≤|m−n|≤n/2

Λ(m)

| log m
n
|

+ n
∑

m>3n/2

Λ(m)

m
1+

1
logn logm

.

� n log log 3n.
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Therefore, we have

I2 = iT
Λ(n)

log n
+O (n log log 3n) .

Combining the results for I1, I2, and I3 yields

T∫
0

log ζ(1
2

+ it)n1/2+it dt = T
Λ(n)

log n
+O (n log log 3n) +O

(
n

log T

log n

)
. (6.1)

Similarly, considering
∫
C

log(ζ(s))n−sds gives

T∫
0

log ζ(1
2

+ it)n−1/2−it dt = O
(
n−1/2 log T

)
. (6.2)

Consequently, by combining (6.1) and (6.2) and taking real parts, we have

T∫
0

log |ζ(1
2

+ it)| cos(t log n) dt

=
1

2

(
Re

( T∫
0

log ζ(1
2

+ it)nit dt

)
+ Re

( T∫
0

log ζ(1
2

+ it)n−it dt

))

= Re

(
1

2n1/2

T∫
0

log ζ(1
2

+ it)n
1
2

+it dt+
n1/2

2

T∫
0

log ζ(1
2

+ it)n−
1
2
−it dt

)

=
T

2

Λ(n)

n1/2 log n
+O(E),

which proves part (a). Part (b) is [12, Equation (6.3)]. Parts (c) and (d) follow from

parts (a) and (b), respectively, after considering the trigonometic identities

cos((t+ h) log n)+cos((t− h) log n)−2 cos(t log n) = −2 cos(t log n)[1−cos(h log n)],
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and

sin((t+ h) log n) + sin((t− h) log n)− 2 sin(t log n) = −2 sin(t log n)[1− cos(h log n)].

Hence the proof is complete.

6.2 Expressions for Gi and Hi

Using the lemmas in Section 6.1, we are now ready to obtain our intermediate ex-

pressions for Gi and Hi. We begin with the following lemma.

Lemma 6.2.1 (Gi). Let 0 < δ � log T , and let 4 ≤ x ≤ T . Let G1 and G2 be

defined in (5.2). Then,

(a) G1 =
T

2

∑
n≤x

Λ(n)2

n log2 n
f 2

(
log n

log x

)
+O

(
x

log x

)
(b) G2 = T

∑
n≤x

Λ(n)2

n log2 n
f 2

(
log n

log x

)[
1− cos

(
2πδ log n

log T

)]
+O

(
x

log2 x

)
.

Proof. Let 0 < δ � log T , and 4 ≤ x ≤ T . For part (a), recall cos(t log n) = Re(n−it).

Then by Lemma 6.1.1 and the identity (Re z)2 = 1
2
|z|2 + 1

2
Re(z2), we have

G1 =

T∫
1

∣∣∣∣∣∑
n≤x

Λ(n)

log n

cos(t log n)

n1/2
f

(
log n

log x

)∣∣∣∣∣
2

dt

=
T

2

∑
n≤x

Λ2(n)

n log2 n
f 2

(
log n

log x

)
+O

(∑
n≤x

Λ2(n)

log2 n
f 2

(
log n

log x

))

+
1

2
Re

T∫
1

(∑
n≤x

Λ(n)

n1/2+it log n
f

(
log n

log x

))2

dt. (6.3)
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For the second term on the right-hand side of (6.3), since f 2(v) is uniformly bounded

for v ∈ [0, 1], Lemma 4.1.2 part (b) implies that

O

(∑
n≤x

Λ2(n)

log2 n
f 2

(
log n

log x

))
= O

(
x

log x

)
.

We estimate the third term on the right-hand side of (6.3) by interchanging the sums

and the integral, integrating term-by-term, observing f(v) is unformly bounded on

v ∈ [0, 1], and then by applying Lemma 4.1.4:

1

2
Re

T∫
1

(∑
n≤x

Λ(n)

n1/2+it log n
f

(
log n

log x

))2

dt

=
1

2

∑
n≤x

∑
m≤x

Λ(n)Λ(m)f
(

logn
log x

)
f
(

logm
log x

)
(nm)1/2 log n logm

Re

 T∫
1

(nm)−2it dt


=

1

2

∑
n≤x

∑
m≤x

Λ(n)Λ(m)f
(

logn
log x

)
f
(

logm
log x

)
(nm)1/2 log n logm

Re

(
e−2iT log(nm)

−2i log(nm)

)

= O

((∑
n≤x

Λ(n)

n1/2 log n

)2)
=

x

log2 x
,

since log(mn) ≥ log 2� 1 since m and n run over prime powers. Therefore,

G1 =
T

2

∑
m≤x

Λ(m)2

m log2m
f 2

(
logm

log x

)
+O

(
x

log x

)
,
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which completes part (a). Now we turn our attention to G2. Observe that

G2 =

T∫
1

[
A
(
t+ 2πδ

log T

)
− A(t)

]2

dt

=

T∫
1

∑
n≤x

Λ(n)Λ(m)f
(

logn
log x

)
f
(

logm
log x

)
n1/2m1/2 log n logm

(
cos
(

(t+ 2πδ
log T

) log n
)

cos
(

(t+ 2πδ
log T

) logm
)

−2 cos
(

(t+ 2πδ
log T

) log n
)

cos(t logm) + cos(t log n) cos(t logm)
)

=
∑
n≤x

Λ2(n)f 2
(

logn
log x

)
n log2 n

T∫
1

(
cos2((t+ 2πδ

log T
) log n)−2 cos

(
(t+ 2πδ

log T
) log n

)
cos(t log n)

+ cos2(t log n)
)

dt+O

(∑∑
n,m≤x
n6=m

Λ(n)Λ(m)

n1/2m1/2 log n logm

)
.

Using various trigonometric identities, observe that

cos2((t+ 2πδ
log T

) log n)− 2 cos
(

(t+ 2πδ
log T

) log n
)

cos(t log n) + cos2(t log n)

= 1 +
cos
(

2(t+ 2πδ
log T

) log n
)

+ cos(2t log n)

2
− cos

(
2πδ log n

log T

)
− cos

(
(2t+ 2πδ

log T
) log n

)
=

[
1− cos

(
2πδ log n

log T

)] [
1− cos

(
(2t+ 2πδ

log T
) log n

)]
.

Furthermore, because

T∫
1

[
1− cos

(
2πδ log n

log T

)]
cos
(

(2t+ 2πδ
log T

) log n
)

dt� 1,
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our estimate for G2 reduces to

G2 = T
∑
n≤x

Λ2(n)

n log2 n
f 2

(
log n

log x

)[
1− cos

(
2πδ log n

log T

)]

+O

(∑
n≤x

Λ2(n)

n log2 n
f 2

(
log n

log x

))
+O

∑∑
n,m≤x
n6=m

Λ(n)Λ(m)

n1/2m1/2 log n logm

 .

(6.4)

For the first error term on the right-hand side of (6.4), we have by Lemma 4.1.3 that

∑
n≤x

Λ2(n)

n log2 n
f 2

(
log n

log x

)
� log log x.

Similarly, by Lemma 4.1.4, the second error term on the right-hand side of (6.4)

yields

∑∑
n,m≤x
n6=m

Λ(n)Λ(m)

n1/2m1/2 log n logm
�

(∑
n≤x

Λ(n)

n1/2 log n

)2

� x

log2 x
.

Hence

G2 = T
∑
n≤x

Λ2(n)

n log2 n
f 2

(
log n

log x

)(
1− cos

(
2πδ logn

log T

))
+O

(
x

log2 x

)
,

as claimed for part (b).

Next, we obtain expressions for Hi using Lemma 6.1.2. As mentioned in the Intro-

duction, in the next lemma we will use Theorem 1.3.1 to control some of the error

terms in part (b), which is the part relevant to Theorem 1.4.1.
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Lemma 6.2.2 (Hi). Assuming RH, let 0 < δ � log T , and let 4 ≤ x ≤ T . Let H1

and H2 be defined in (5.2). Then,

(a) H1 = T
∑
n≤x

Λ(n)2

n log2 n
f

(
log n

log x

)
+O

(
x log log x log T

log2 x

)
(b) H2 = 2T

∑
n≤x

Λ(n)2

n log2 n
f

(
log n

log x

)[
1− cos

(
2πδ log n

log T

)]
+O

(
x log log x log T

log2 x

)

Proof. Assuming RH, let 0 < δ � log T , and let 4 ≤ x ≤ T . Then by the definition

of H1 in (5.2), observe that

H1 = 2

T∫
1

log |ζ(1
2

+ it)|
∑
n≤x

Λ(n)

log n

cos(t log n)

n1/2
f

(
log n

log x

)
dt

= 2
∑
n≤x

Λ(n)

n1/2 log n
f

(
log n

log x

) T∫
1

log |ζ(1
2

+ it)| cos(t log n) dt.

Using part (a) of Lemma 6.1.2, we know

H1 = T
∑
n≤x

Λ2(n)

n log2 n
f

(
log n

log x

)

+ O

(∑
n≤x

Λ(n) log log 3n

log n
f

(
log n

log x

))
+O

(∑
n≤x

Λ(n) log T

log2 n

)
. (6.5)

For the first error term on the right-hand side of (6.5), since f(v) is uniformly

bounded for v ∈ (0, 1], by Lemma 4.1.6 we have

∑
n≤x

Λ(n) log log 3n

log n
f

(
log n

log x

)
� x log log 3x

log x
� x log log x log T

log2 x
.

Similarly, by part (a) of Lemma 4.1.2, the second error term of (6.5) is

∑
n≤x

Λ(n) log T

log2 n
� x log T

log2 x
.
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Combining the estimates of the error terms for (6.5) yields

H1 = T
∑
n≤x

Λ2(n)

n log2 n
f

(
log n

log x

)
+O

(
x log log x log T

log2 x

)
,

which completes part (a) of the proof. For part (b), we first let L(t) := log
∣∣ζ(1

2
+ it)

∣∣ .
Then we rearrange the terms of H2, which is defined in (5.2), and use a change of

variables to find that

H2 = 2

∫ T

1

[
A(t+ 2πδ

log T
)− A(t)

][
L(1 + 2πδ

log T
)− L(t)

]
dt

= −2

T∫
1

L(t)
[
A(t+ 2πδ

log T
) + A(t− 2πδ

log T
)− 2A(t)

]
dt

+O

(1+
2πδ

log T∫
1

|L(t)|
∣∣A(t)−A(t− 2πδ

log T
)
∣∣dt)+O

(T+
2πδ

log T∫
T

|L(t)|
∣∣A(t)−A(t− 2πδ

log T
)
∣∣dt).

(6.6)

Notice the first error term in the previous expression is O(1) since δ � log T .

Now, observe by Lemma 4.1.4 that A(t) is bounded pointwise by
√
x

log x
for all x ≥ 2.

Thus, using Theorem 1.3.1 to bound the integral involving |L(t)|, by the Cauchy-

Schwarz inequality, the second error term on the right-hand side of (6.6) gives

T+
2πδ

log T∫
T

|L(t)| |A(t)− A(t− 2πδ
log T

)| dt�
√
x

log3/2 x


T+

2πδ
log T∫
T

|L(t)|2 dt


1/2

�
√
xT

log2 x
� T

log x
,

since 4 ≤ x ≤ T and δ � log T. Using part (c) of Lemma 6.1.2, H2 simplifies to
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H2 = −2
∑
n≤x

Λ(n)f
(

logn
log x

)
n1/2 log n

T∫
0

L(t)
[
cos
(

(t+ 2πδ
log T

) log n
)

+ cos
(

(t− 2πδ
log T

) log n
)
− 2 cos(t log n)

]
dt+O

(
T

log x

)

= 2T
∑
n≤x

Λ2(n)f
(

logn
log x

)
n log2 n

[
1− cos

(
2πδ

log T
log n

)]
+O

(∑
n≤x

Λ(n) log log 3n

log n

)
+O

(∑
n≤x

Λ(n) log T

log2 n

)
+O

(
T

log x

)
.

(6.7)

For the first error term on the right-hand side of (6.7), by Lemma 4.1.6, we know

∑
n≤x

Λ(n) log log 3n

log n
� x log log 3x

log x
� x log log x log T

log2 x
.

Again by part (a) of Lemma 4.1.2, the second error term on the right-hand side of

(6.7) yields ∑
n≤x

Λ(n) log T

log2 n
� x log T

log2 x
.

Consequently, since 4 < x ≤ T

H2 = 2T
∑
n≤x

Λ2(n)f
(

logn
log x

)
n log2 n

[
1− cos

(
2πδ logn

log T

)]
+O

(
x log log x log T

log2 x

)
,

as claimed.

6.3 Estimating Hi −Gi

We now estimate Gi + Hi asymptotically. We will obtain some cancellation in the

sums due to the function g, which is defined in (2.4). In this section, we will deviate
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from the strategies of the previous work of Goldston and Fujii to obtain more precise

input from the primes, which is necessary for Theorem 1.4.1.

Lemma 6.3.1 (Asymptotic estimate of Hi − Gi). Assume RH, let T ≥ 4, and let

0 < δ � log T. Fix 0 < β ≤ 1 such that x = T β. Define the function c(v) as in

(1.14). Then, as T →∞,

(a) H1 −G1 =
T

2

{
log log T + γ0 +

∞∑
m=2

∑
p≥2

1

pm

(
1

m2
− 1

m

)
+ log β −

∫ 1

0

αg(α)2dα

}

+O

(
T log log T

log T

)
(b) H2 −G2 = T

{∫ 2πδβ

0

1− cosu

u
du+ c

(
2πδ

log T

)
−
∫ 1

0

α[1− cos(2πδβα)]g2(α)dα

}
+ o(T ).

Proof. Let T > 3, and 0 < δ � log T. Fix 0 < β ≤ 1 such that x = T β. First, we

consider the difference of H1 − G1. Recall the function g(v) defined in (2.4), which

also appears in the sums over the zeros of ζ(s). Note by Lemma 2.2.1, we have

vg(v) = 1− f(v). This implies that

v2g2(v) = f 2(v)− 2f(v) + 1. (6.8)

Then writing the difference of Lemma (6.2.2) part (a) and Lemma (6.2.1) part (a)

using (6.8) gives

H1 −G1 = −T
2

∑
n≤x

Λ2(n)

n log2 n

(
f 2

(
log n

log x

)
− 2f

(
log n

log x

)
− 1 + 1

)
+O

(
x log log x log T

log2 x

)
=
T

2

∑
n≤x

Λ2(n)

n log2 n
− T

2 log2 x

∑
n≤x

Λ2(n)

n
g2

(
log n

log x

)
+O

(
T log log T

log T

)
= S1 + S2 +O

(
T log log T

log T

)
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as T →∞. For S1, by Lemma 4.1.3 we know

S1 =
T

2

(
log log x+ γ0 +

∞∑
m=2

∑
p

(
1

m2
− 1

m

)
1

pm
+O

(
1

log x

))

=
T

2

(
log log T + log β + γ0 +

∞∑
m=2

∑
p

(
1

m2
− 1

m

)
1

pm

)

+O

(
T

log T

)
.

Next, for S2, recall that g(v) is uniformly bounded for v ∈ [0, 1]. Also, by

using Lemma 4.1.1 and partial summation, we simplify S2 so that

S2 = −T
2

1∫
0

α g2 (α) dα +O

(
T

log2 T

)
.

Notice that we can extended the range of integration in the above integral to 0 using

the fact that g(v) is bounded. By combining our estimates for S1 and S2, we conclude

that

H1 −G1 =
T

2

{
log log T + γ0 +

∞∑
m=2

∑
p≥2

(
1

m2
− 1

m

)
1

pm
+ log β −

∫ 1

0

αg2(α)dα

}

+O

(
T log log T

log T

)
.

Hence the proof of part (a) is complete.

Similarly for part (b), we use (6.8) in the representation of H2 − G2, which

results in
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H2 −G2 = −T
∑
n≤x

Λ2(n)

n log2 n

[
1− cos

(
2πδ logn

log T

)](
f 2
( log n

log x

)
− 2f

( log n

log x

)
+ 1
)

+ T
∑
n≤x

Λ2(n)

n log2 n

[
1− cos

(
2πδ logn

log T

)]
+ o(T )

= −T
∑
n≤x

Λ2(n)

n log2 n

[
1− cos

(
2πδ logn

log T

)] log2 n

log2 x
g2
( log n

log x

)
+ T

∑
n≤x

Λ2(n)

n log2 n

[
1− cos

(
2πδ logn

log T

)]
+ o(T ),

(6.9)

as T → ∞. For the first term on the right-hand side of (6.9), by Lemma 4.1.1,

summation by parts, and integration by parts we obtain

−T
log2 x

∑
n≤x

Λ2(n)g2
(

logn
log x

)[
1−cos

(
2πδ logn

log T

)]
n

= −T
1∫

0

α [1−cos(2πδβα)] g2(α)dα

+O

(
T

log x

)
.

(6.10)

To estimate the second term on the right-hand side of (6.9), we use Lemma 4.1.8,

which states that

M(y) :=
∑
n≤y

Λ2(n) = y log y − y + E(y),

where E(y) is defined in (1.13) with E(y) = O
(√

y log3 y
)

assuming RH. We will

use summation by parts with the measure dM(y). For this, we let 1 < ` < 2 be a

parameter. We anticipate that we will eventually take `→ 1+. Also, denote

r := r(T ) =
2πδ

log T
and U(y) :=

1− cos(r log y)

y log2 y
.
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Then, the sum in the second term on the right-hand side of (6.9) is

∑
n≤x

Λ(n)2

n log2 n
[1− cos(r log n)] =

x∫
`−

U(y)dM(y) = U(y)M(y)

∣∣∣∣∣
x

`−

−
x∫
`

M(y)U ′(y)dy,

where

U ′(y) =
r log y sin(r log y)− (1− cos(r log y))(log y + 2)

y2 log3 y
.

Integrating term by term with the change of variables u = r log y, we find that

T
∑
n≤x

Λ(n)2

n log2 n
[1− cos(r log n)]

= T

{ r log x∫
r log `

1− cosu

u
du− r

r log x∫
r log `

sinu

u
du+ r

∞∫
r log `

1− cosu

u2
du

+ r2

∞∫
r log `

sinu

u2
du− 2r2

∞∫
h log `

1− cosu

u3
du

+

∞∫
`

E(y)

y2 log3 y
[−r log y sin(r log y) + (1− cos(r log y))(log y + 2)]dy

}

+ o(T ),

(6.11)

where we use that E(y)� y as y →∞ to extend the last integral above to infinity, up

to an error term. Now we estimate the sum of four of the integrals on the right-hand

side of (6.11), which we define below. Let

A := −r
r log x∫
r log `

sinu

u
du+r

∞∫
r log `

1− cosu

u2
du+r2

∞∫
r log `

sinu

u2
du−2r2

∞∫
r log `

1− cosu

u3
du. (6.12)

We choose to express these integrals only in terms of the sine integral and cosine

integrals, which are defined as in (1.16). Note that Si(∞) = π
2

and Ci(∞) = 0.
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Additionally, we have the estimate

Si(x) =
π

2
+O

(
1

x

)
, (6.13)

uniformly for any x > 0. We can verify the following antiderivatives:∫
1− cosu

u
du = log(u)− Ci(u),∫

1− cosu

u2
du = Si(u)− 1

u
+

cosu

u
,∫

sin(u)

u2
du = Ci(u)− sin(u)

u
,∫

1− cosu

u3
du =

Ci(u)

2
− 1

2u2
+

cosu

2u2
− sin(u)

2u
.

By inserting these calculations into (6.12), we obtain the following:

A =
rπ

2
− rSi(r log x) + (1− cos(r log `))

(
log `− 1

log2 `

)
.

By (6.13), note that rπ
2
− rSi(r log x) = O( 1

log x
), uniformly in r. This implies

A = (1− cos(r log `))

(
log `− 1

log2 `

)
+O

(
1

log x

)
.

Inserting this estimate for A into (6.11) gives

T
∑
n≤x

Λ(n)2

n log2 n
[1− cos(r log n)]

= T

{∫ r log x

r log `

1− cosu

u
du+ (1− cos(r log `))

(
log `− 1

log2 `

)

+

∫ ∞
`

E(y)

y2 log3 y
[−r log y sin(r log y) + (1− cos(r log y))(log y + 2)]dy

}

+O

(
T

log x

)
.

(6.14)
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Now, we let `→ 1+. Note that

lim
`→1

(1− cos(r log `)) log `−1
log2 `

= −r
2

2
.

Additionally, since E(y) = y − y log y for all 1 ≤ y < 2 we know that in this range

E(y)

y2 log3 y
[−r log y sin(r log y) + (1− cos(r log y))(log y + 2)] =

r2

2
+O(r2(y − 1)).

This shows that the second integral is absolutely convergent on (1,∞). Therefore,

recalling that r = 2πδ
log T

and x = T β, we may let ` → 1+ in (6.14) to find that the

second term on the right-hand side of (6.9) is

T
∑
n≤x

Λ(n)2
[
1−cos

(
2πδ logn

log T

)]
n log2 n

=T


2πδβ∫
0

1−cosu

u
du+c

( 2πδ

log T

)+O
( T

log T

)
, (6.15)

where c(v) is defined as in (1.14). By combining (6.15) and (6.10), we complete the

proof of Lemma 6.3.1.
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7 CONTRIBUTION FROM THE ZEROS

In this chapter, we estimate expressions Ri, as defined in (5.2). In order to recover

and estimate these expressions, we first need to handle one of the differences between

our work and the work of Goldston [12]. As mentioned previously in Section 2.2,

the function h(v) is unbounded near v = 0. This implies that |h[(t − γ) log x]| is

large whenever an ordinate γ of a zero of ζ(s) is close to t. Due to this fact, the

arguments of Montgomery and Goldston do not apply directly in this case. However,

we have already shown in Lemma 2.2.2 that h ∈ L1, in particular that the singularity

is integrable at the origin. Using this fact, we give two lemmas that allow us to

estimate this sum for a sequence of T tending to infinity. We show that in every

interval of length 1, there is a choice of T for which we can estimate Ri.

Lemma 7.0.1. Assume RH. For 4 ≤ x ≤ T , γ 6= t, and τ = |t|+ 2, we have

∑
γ

|h[(t− γ) log x]| =
∑

|t−γ|≤ 1
log x

|h[(t− γ) log x]|+O(log τ). (7.1)

Lemma 7.0.2. Assuming RH, for 4 ≤ x ≤ T , and t ∈ [0, T ] we have

∑
γ

γ /∈[0,T ]

|h[(t− γ) log x]| =
∑
γ∈I

|h[(t− γ) log x]|+O
([

1
T−t+1

+ 1
T+1

]
log T

)
, (7.2)

where I = {γ : T < γ ≤ T + 1
log x
}.

The proofs of Lemmas 7.0.1 and 7.0.2 are technical, but are similar to the

corresponding estimates in Goldston [12, Eq. 3.4, Eq 3.6]. This is a modification of
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an argument originally due to Montgomery [22, pg. 187]. In Goldston’s work, there

are only the big-O terms on the right-hand sides of the above lemmas, and we do not

need to consider separately the zeros near t. This is because in Goldston’s case, for

S(t), the analogue of his function h in his sums is bounded. We follow Goldston’s

argument until he uses the assumption that his function is bounded. For this reason,

we keep the unbounded terms on the right-hand side without estimating them. These

correspond to the terms where t is near an ordinate γ of a zero of ζ(s).

Proof of Lemma 7.0.1. Consider the series of the function |h[(t − γ) log x]| over the

ordinates, γ, such that 0 < γ ≤ T and γ 6= t. Observe, by the definition of h(v)

in (2.5), that if |v| > 1 then |h(v)| � 1
v2

. Note that if |v| ≤ 1, then |t − γ| ≤ 1
log x

,

and so only a finite number of zeros give us difficulty. Splitting the series under such

conditions gives∑
γ

|h[(t− γ) log x]| =
∑

|t−γ|≤ 1
log x

|h[(t− γ) log x]|+
∑

|t−γ|> 1
log x

|h[(t− γ) log x]|. (7.3)

Notice for the second sum on the right-hand side of (7.3), we can bound the function

h such that |h[(t−γ) log x]| � 1
((t−γ) log x)2

on the interval |t−γ| > 1
log x

. Furthermore,

using results from Titchmarsh [32], Montgomery [22, pg. 187] proved that

∑
γ

1

1 + (t− γ)2
� log τ.

Therefore,

∑
|t−γ|> 1

log x

|h[(t− γ) log x]| � 1

log2 x

∑
|t−γ|> 1

log x

1

(t− γ)2
� 1

log2 x

∑
|t−γ|> 1

log x

log2 x

1 + (t− γ)2
� log τ.

Plugging this estimate back into (7.3) completes the proof.
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Proof of Lemma 7.0.2. Assume RH, let ε > 0 with ε = 1
log x

, and take 4 ≤ x ≤ T .

We consider cases on t ∈ [0, T ] for the sum

S :=
∑
γ

γ /∈[0,T ]

|h[(t− γ) log x]|.

First, suppose that ε ≤ t ≤ T − ε. By definition of h(v) in (2.5), recall for all |v| > 1,

we have that |h(v)| � 1
v2

. Then γ /∈ [0, T ] implies that |t− γ| > 1
log x

. Consequently,

|h[(t− γ) log x]| � 1

(t− γ)2 log2 x
.

Again, by the fact that there are O(log t) zeros in any given interval [t, t + 1], for

ε ≤ t ≤ T − ε, the sum S reduces to

S � 1

log2 x

∞∑
k=T

∑
γ∈[k,k+1]

1

(t− γ)2

� 1

log2 x

log T

(t− T )2
+

1

log2 x

∞∑
k=T+1

log k

(t− k)2

� 1

log2 x

∞∫
T+1

log u

(u− t)2
du

� 1

log2 x

[
+

log(T + 1)

t
+

log(T + 1)

T − t+ 1
− log((T + 1)− t)

t

]
�

[
1

T + 1− t
+

1

t+ 1

]
log T.
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Next, suppose that 0 ≤ t < ε. Since there are no zeros of ζ(s) near 0, we

know that |t− γ| > 1
log x

. Thus, using similar logic to that in the first case, we have

S � 1

log2 x

∞∑
k=T

∑
γ∈[k,k+1]

1

(−γ)2

� 1

log2 x

log T

T 2
+

1

log2 x

∞∑
k=T+1

log(k)

k2

� 1

log2 x

∞∫
T+1

log u

u2
du

� 1

log2 x

[
1

T + 1
+

log(T + 1)

T + 1

]
�

[
1 +

1

T + 1

]
log T,

which is the approximation we expect if t is close to 0. Finally, suppose T−ε < t ≤ T .

Recall that ε = 1
log x

, and |h(v)| is unbounded at v = 0. This means that |h(t−γ) log x|

is large whenever

t− 1

log x
≤ γ ≤ t+

1

log x
.

Since T − ε < t ≤ T , this means that |h(t− γ) log x| is large for γ such that

T − ε− 1

log x
= T − 2

log x
< t− 1

log x
≤ γ ≤ t+

1

log x
≤ T +

1

log x
.

However, because γ /∈ [0, T ], it must be the case that T < γ ≤ T + 1
log x

. Let

I = {γ : T < γ ≤ T + 1
log x
}. Consequently

S =
∑
γ∈I

|h[(t− γ) log x]|+
∑
γ

γ>T+
1

log x

|h[(t− γ) log x]| (7.4)
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whenever T − ε < t ≤ T . Using similar logic to that in the first case, for the second

sum on the right-hand side of (7.4), we have

∑
γ

γ>T+
1

log x

|h[(t− γ) log x]| � 1

log2 x

∞∑
k=T+1

log(k)

(T − k)2

� 1

log2 x

∞∫
T+1

log u

(u− T )2
du

�
[

log(T + 1)

T
+ log(T + 1)

]
1

log2 x

�
[

1

T + 1
+ 1

]
log T,

for T − ε < t ≤ T . Therefore, for all t ∈ [0, T ], we have

S =
∑
γ∈I

|h[(t− γ) log x]|+O

([
1

T − t+ 1
+

1

T + 1

]
log T

)
, (7.5)

which completes the proof.

7.1 Unbounded discontinuities

In this section, our goal is to express Ri as a sum over pairs of zeros of ζ(s) and

then apply Montgomery’s pair correlation method to estimate Ri. The arguments of

Montgomery and Goldston consist of localizing the sum in question to zeros within

the interval [0, T ], and then extending the integral in the definition of Ri in (5.2)

to infinity, up to small errors. However, due to the unbounded discontinuity of

our weight function h at the origin, we modify the aformentioned arguments using

Lemmas 7.0.1 and 7.0.2. We then introduce a sequence of Tn’s for which the following

results will hold. The idea of using such a sequence is classical (for instance, see

[8, Ch.17]). Since N(T + 1)−N(T )� log T , by the pigeonhole principle, for every
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n ∈ N we can find a sequence {Tn} satisfying

n ≤ T < n+ 1 and |γ − Tn| �
1

log n
. (7.6)

In this way, we obtain similar results to Goldston on a sequence of points tending to

infinity, despite the unbounded discontinuty of our function h.

Lemma 7.1.1. Let T ∈ {Tn}, where Tn satisfies (7.6). Define k as in (2.7) and Ri

as in (5.2). For 4 ≤ x ≤ T and 0 < δ � log T , we have

(a) R1 =
π2

log x

∑
0<γ, γ′≤T

k̂[(γ − γ′) log x] +O(
√
T log2 T ),

(b) R2 =
2π2

log x

∑
0<γ,γ′≤T

{
k̂[(γ − γ′) log x]− k̂

[(
γ − γ′ − 2πδ

log T

)
log x

]}
+O(

√
T log2 T ).

The proofs of parts (a) and (b) are very similar. Part (b) is proved using a

comparable argument to that used in part (a). Consequently, we only prove part (a).

Proof. Let T ∈ Tn, 4 ≤ x ≤ T , and 0 < δ � log T . We use logic similar to an

argument in Montgomery’s work [22, pg.187]. Recall the definition of R1 from (5.2).

We use Lemmas 7.0.1 and 7.0.2 to restrict the interval of zeros considered in the

definition of R1 to γ, γ′ ∈ [0, T ]. Then by expanding the integral, we rewrite R1 as
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R1 =
∑

0<γ,γ′≤T

T∫
1

h[(t− γ) log x] h[(t− γ′) log x] dt

+O

( T∫
1

∑
γ∈I

|h[(t− γ) log x]|
∑

|t−γ′|≤ 1
log x

|h[(t− γ′) log x]| dt
)

+O

( T∫
1

∑
γ∈I

|h[(t− γ) log x]| log t dt

)
+O

(
log T

T∫
1

[
1

T−t+1
+ 1

T+1

]
log t dt

)

+O

(
log T

T∫
1

[
1

T−t+1
+ 1

T+1

] ∑
|t−γ′|≤ 1

log x

|h[(t− γ′) log x]| dt
)
, (7.7)

where I = {γ : T < γ ≤ T+ 1
log x
}. Integrating the third error term on the right-hand

side of (7.7) gives,

log T

T∫
1

[
1

T−t+1
+ 1

T+1

]
log t dt� log T

T∫
1

log t

t
dt� log3 T.

Since h ∈ L1, we use multiple places throughout this proof that

∫
J

|h[(t− γ′) log x]|dx =
1

log x

∫
J ′

|h(u)|du� 1

log x

∫
R

|h(u)|du� 1

log x
,

where J is any subset of R and J ′ is the subset obtained after the variable change.

Using the facts that h ∈ L1 and |I| < 1, the second error term on the right-hand

side of (7.7) reduces to

T∫
1

∑
γ∈I

|h[(t− γ) log x]| log t dt � log T
∑
γ∈I

∞∫
−∞

|h[(t− γ) log x]| dt

� log T

log x

∑
γ∈I

1

� log2 T

log x
,
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since there are O(log T ) zeros with γ ∈ I. Similarly, the fourth error term on the

right-hand side of (7.7) yields

log T

T∫
1

[ 1

T − t+ 1
+

1

T + 1

]∑
|t−γ′|≤ 1

log x

|h[(t− γ′) log x]| dt

=

T∫
1

log T

T − t+ 1

∑
|t−γ′|≤ 1

log x

|h[(t− γ′) log x]| dt+

T∫
1

log T

T + 1

∑
|t−γ′|≤ 1

log x

|h[(t− γ′) log x]| dt

= S1 + S2.

Since h ∈ L1, after a variable change, we estimate S2 as follows:

S2 �
log T

T log x

∑
0≤γ′≤ 1

log x
+T

∞∫
−∞

|h(u)|du� log T

T log x

∑
0≤γ′≤ 1

log x
+T

1� log2 T

log x
.

By far, one of the most delicate calculations in the proof is the estimation of S1. We

introduce a parameter H to split the range of integration for S1, as follows:

S1 = log T

T−H∫
1

1

T − t+ 1

∑
|t−γ′|≤ 1

log x

|h[(t− γ′) log x]| dt

+ log T

T∫
T−H

1

T − t+ 1

∑
|t−γ′|≤ 1

log x

|h[(t− γ′) log x]| dt

� log T

H + 1

∑
0≤γ′≤T−H+

1
log x

T−H∫
1

|h[(t− γ′) log x]| dt

+ log T
∑

T−H− 1
log x

≤γ′≤T+
1

log x

T∫
T−H

|h[(t− γ′) log x]| dt

� log T

H + 1

∑
0≤γ′≤T−H+

1
log x

1 + log T
∑

T−H− 1
log x

≤γ′≤T+
1

log x

1

�

(
T + 1

log x

)
log2

(
T + 1

log x

)
H + 1

+
(
H + 1

log x

)
log2

(
T + 1

log x

)
.
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To balance these two error terms, we choose H =
√
T . Therefore,

S1 �
√
T log2

(
T + 1

log x

)
�
√
T log2 T.

By combining the estimates for S1 and S2, the third error term on the right-hand

side of (7.7) yields

log T

T∫
1

[
1

T−t+1
+ 1

T+1

] ∑
|t−γ′|≤ 1

log x

|h[(t− γ′) log x]| dt�
√
T log2 T. (7.8)

For the first error term of (7.7), we again split the range of integration and find that

T∫
1

∑
γ∈I

|h[(t− γ) log x]|
∑

|t−γ′|≤ 1
log x

|h[(t− γ′) log x]| dt

=

T−1∫
1

∑
γ∈I

|h[(t− γ) log x]|
∑

|t−γ′|≤ 1
log x

|h[(t− γ′) log x]| dt

+

T∫
T−1

∑
γ∈I

|h[(t− γ) log x]|
∑

|t−γ′|≤ 1
log x

|h[(t− γ′) log x]| dt

= Σ1 + Σ2,

say. For γ ∈ I and t ∈ [1, T − 1], we know |h[(t − γ) log x]| � 1
(t−γ)2 log2 x

. Since

h ∈ L1, by an argument similar to the proof of Lemma 7.0.2, a variable change, and

the bound from (7.8), we see that

Σ1 �
T−1∫
1

∑
γ∈I

1

(t− γ)2 log2 x

∑
|t−γ′|≤ 1

log x

|h[(t− γ′) log x]| dt

�
T−1∫
1

[
1

T − t+ 1
+

1

T + 1

]
log T

∑
|t−γ′|≤ 1

log x

|h[(t− γ′) log x]| dt

�
√
T log2 T,
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Because T ∈ {Tn}, we know that |γ − T | � 1
log T

. Thus for t ∈ I, we have that

T − 1 ≤ t ≤ T and T < γ ≤ T + 1
log x

implies |t− γ| � 1
log T

. Since |I| < 1 and β > 0

is fixed, we know

∑
γ∈I

|h[(t− γ) log x]| �
∑
γ∈I

∣∣∣h( log x
log T

)∣∣∣� |h (β)|
∑
γ∈I

1� log T.

Hence, because γ′ is contained in an interval of size less than 1, it follows that

Σ2 =

T∫
T−1

∑
γ∈I

|h[(t− γ) log x]|
∑

|t−γ′|≤ 1
log x

|h[(t− γ′) log x]| dt

� log T

T∫
T−1

∑
|t−γ′|≤ 1

log x

|h[(t− γ′) log x]| dt

� log T

log x

∑
T−1+

1
log x

≤γ′≤T+
1

log x

∞∫
−∞

|h(u)|du

� log2 T

log x

for all T ∈ {Tn}. Hence combining our estimates for Σ1 and Σ2 gives

T∫
1

∑
γ∈I

|h[(t− γ) log x]|
∑

|t−γ′|≤ 1
log x

|h[(t− γ′) log x]| dt = Σ1 + Σ2 �
√
T log2 T.

Therefore, R1 is confined to γ, γ′ ∈ [0, T ] with an added error of O(
√
T log2 T ).

Similarly, we extend the range of integration to (−∞,∞) with the same error. Thus,

R1 =
∑

0<γ,γ′≤T

∞∫
−∞

h[(t− γ) log x] h[(t− γ′) log x] dt+O(
√
T log2 T ).
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We now use the properties of h(v) discussed in Chapter 2 to simplify our

expression for R1. Using (2.1), the fact that h ∈ L1 and even, and the substitution

u = (t− γ′) log x with a = (γ − γ′) log x gives

R1 =
∑

0<γ,γ′≤T

∞∫
−∞

h((t− γ′) log x− (γ − γ′) log x) h[(t− γ′) log x] dt

+O(
√
T log2 T )

=
1

log x

∑
0<γ,γ′≤T

∞∫
−∞

h(a− u) h(u) du+O(
√
T log2 T )

=
1

log x

∑
0<γ,γ′≤T

h ∗ h(a) +O(
√
T log2 T ).

Note that convolution here is well-defined since ĥ ∈ L2, and therefore h ∈ L2 by

Plancherel’s theorem. Furthermore, using Lemma 2.2.2, we know h ∈ L1 implies

ĥ ∗ h = ĥ2 and ĥ ∈ L2 implies k(ξ) = 1
π2 ĥ(ξ)2 ∈ L1(R). Hence k also has a well-

defined Fourier transform. Thus, by Lemma 2.2.2, (2.2), (2.7), and properties of

Fourier Transform, we have

R1 =
1

log x

∑
0<γ,γ′≤T̂

(ĥ2)(a) +O(
√
T log2 T )

=
π2

log x

∑
0<γ,γ′≤T

k̂[(γ − γ′) log x] +O(
√
T log2 T ),

as claimed.

7.2 A modified pair correlation approach

The next step is to introduce the weight function w(u), from (1.6), by writing each

Ri in Lemma 7.1.1 in terms of Montgomery’s function F (α). Often, the weight w(u)

can be added or dropped from sums over pairs of zeros up to a small error, and this

can be done for R1 as in Goldston’s work. However, for R2, when the shift δ � log T
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is large, the error term is no longer negligible. Therefore, in the following lemma,

we are naturally led to incorporate the weight in a different way, and then use the

function Fδ(α) introduced by Chan instead of Montgomery’s F (α) for R2.

Lemma 7.2.1. Assume RH and define k as in (2.7). Fix 0 < β ≤ 1, and choose

x = T β. For T ≥ 4, 0 < δ � log T , and T ∈ {Tn}, where Tn satisfies (7.6), we have

(a) R1 =
T

(2β)2

∞∫
−∞

k
( α

2πβ

)
F (α)dα +O

(
T

log T

)
;

(b) R2 =
T

2β2

∞∫
−∞

k
( α

2πβ

)
[F (α)− Fδ(α)] dα +O

(
T

log T

)
.

Proof. The proofs of the expressions in parts (a) and (b) are proved using similar

methods, but the proof of part (b) is more involved. For this reason, we only work

out part (b). Let T ∈ {Tn}, fix 0 < β ≤ 1, and choose x = T β for T ≥ 4. Also,

recall that k is the function defined in (2.7). Then by Lemma 2.2.3, we have that

k̂(y)� min(1, 1
y2

). From this estimate we introduce the weight function w(u), defined

in (1.6), into the sum over zeros∑
0<γ,γ′≤T

k̂[(γ − γ′) log x]

using the following argument. First, we consider the difference

D1 :=
∑

0<γ,γ′≤T̂

k ((γ − γ) log x)−
∑

0<γ,γ′≤T̂

k ((γ − γ) log x)w(γ − γ′).

Using (1.3) and the fact that there are O(log t) zeros in any given interval [t, t+ 1],

using an argument of Goldston [12, pg. 161], we notice that

D1 =
∑

0<γ,γ′≤T̂

k ((γ−γ) log x) (1−w(γ−γ′))� 1

log2 x

∑
0<γ′≤T

∑
γ

1

4+(γ−γ′)2
� T.
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Thus, by (3.1) and definition of Fourier transform, we have

∑
0<γ,γ′≤T

k̂ ((γ − γ) log x) =
∑

0<γ,γ′≤T

k̂ ((γ − γ) log x)w(γ − γ′) +O(T )

=

∞∫
−∞

k(u)
∑

0<γ,γ′≤T

T−2πβiu(γ−γ′)w(γ − γ′)du+O(T )

=
T log T

(2π)2β

∞∫
−∞

k
( α

2πβ

)
F (α)dα +O(T ). (7.9)

Next we shift the weight function w(u) by a factor of 2πδ
log T

for 0 < δ � log T . We

then introduce the shifted weight w(u) into the sum

∑
0<γ,γ′≤T

k̂

[(
γ − γ′ − 2πδ

log T

)
log x

]
,

and we consider the difference

D2 := k̂
[(
γ − γ′ − 2πδ

log T

)
log x

]
− k̂
[(
γ − γ′ − 2πδ

log T

)
log x

]
w
(
γ − γ′ − 2πδ

log T

)
.

By (1.3), since there are O(log t) zeros in any given interval [t, t + 1], and since

2πδ
log T
� 1 we have

D2 =
∑

0<γ,γ′≤T

k̂
[(
γ − γ′ − 2πδ

log T

)
log x

](
1− w

(
γ − γ′ − 2πδ

log T

))
� 1

log2 x

∑
0<γ′≤T

∑
γ

1

4 + (γ − γ′ − 2πδ
log T

)2

� 1

log2 x

∑
0<γ′≤T

∑
γ

1

4 + (γ − γ′)2

� T.
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Recall by (1.12) that

Fδ(α) = Fδ(α, T ) =
2π

T log T

∑
0<γ, γ′≤T

T iα(γ−γ
′− 2πδ

log T )w
(
γ − γ′ − 2πδ

log T

)
.

Thus, by (3.1) and definition of Fourier transform, we have

∑
0<γ,γ′≤T

k̂
[(
γ − γ′ − 2πδ

log T

)
log x

]
=

∑
0<γ,γ′≤T

k̂
((
γ − γ′ − 2πδ

log T

)
log x

)
w
(
γ − γ′ − 2πδ

log T

)
+O(T )

=

∞∫
−∞

k(u)
∑

0<γ,γ′≤T

T
−2πβiu(γ−γ′− 2πδ

log T
)
w(γ − γ′ − 2πδ

log T
)du+O(T )

=
T log T

(2π)2β

∞∫
−∞

k
( α

2πβ

)
Fδ(α)dα +O(T ).

(7.10)

By Lemma 7.1.1 part (b), we combine (7.9) and (7.10) to yield

R2 =
2π2

log x

∑
0<γ,γ′≤T

{
k̂[(γ − γ′) log x]− k̂

[(
γ − γ′ − 2πδ

log T

)
log x

]}
+O(

√
T log2 T )

=
2π2

β log T

T log T

(2π)2β

∞∫
−∞

k
( α

2πβ

)
[F (α)− Fδ(α)] dα +O (T )

+O(
√
T log2 T )

=
T

2β2

∞∫
−∞

k
( α

2πβ

)
[F (α)− Fδ(α)] dα +O

( T

log T

)
,

which completes the proof of part (b). The proof of part (a) follows analogously.

7.3 Estimating Ri

Using Lemma 7.2.1 and the properties of F (α) and Fδ(α) from Chapter 3, we again

choose x = T β and proceed to estimate Ri.
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Lemma 7.3.1 (Asymptotic estimate of Ri). Assume RH, fix 0 < β ≤ 1, and let g

be defined in (2.4). For T ≥ 4, x = T β, 0 < δ � log T , and T ∈ {Tn}, where Tn

satisfies (7.6), we have

(a) R1 =
T

2


1∫

0

v g2 (v) dv − log β +
log2 2

2β2
+

∞∫
1

F (α)

α2
dα

+ o(T ).

(b) R2 = T


1∫

0

v g2 (v)

[
1− w

(
2πδ

log T

)
cos(2πδvβ)

]
dv − log β

− w

(
2πδ

log T

) 2πδ∫
2πδβ

cosu

u
du+

1

2

∞∫
1

2F (α)− Fδ(α)− F−δ(α)

α2
dα

+ o(T ),

where the term of o(T ) is of size O
(
T
√

log log T√
log T

)
.

Proof. Let T ∈ {Tn}, fix 0 < β ≤ 1, and choose x = T β for T ≥ 4. Recall k(u) is a

piecewise function, as defined in (2.7), so we consider have to consider two separate

ranges for u. Since F (α) and k(u) are both even and nonnegative functions, by

Theorem 3.1.1, we find that

∞∫
−∞

k
( α

2πβ

)
F (α)dα = 2

β∫
0

k
( α

2πβ

) [
α + o(1) + T−2α log T (1 + o(1))

]
dα

+ 2

1∫
β

(
β

α

)2 [
α + o(1) + T−2α log T (1 + o(1))

]
dα

+ 2

∞∫
1

(
β

α

)2

F (α)dα. (7.11)

For the second integral on the right-hand side in (7.11), because β is fixed

2

1∫
β

(
β

α

)2 [
α + o(1) + T−2α log T (1 + o(1))

]
dα = −2β2 log β + o(1). (7.12)
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Similarly, the first integral on the right-hand side of (7.11) is

2

β∫
0

k
( α

2πβ

) [
α + o(1) + T−2α log T (1 + o(1))

]
dα

= 2 log T

 k
(

α
2πβ

)
−2 log TT 2α

∣∣∣∣∣∣
β

0

+

β∫
0

1

4πβ log T
k′
(

α

2πβ

)
T−2αdα


+2

β∫
0

α k
( α

2πβ

)
dα + o(1), (7.13)

since 0 < β ≤ 1, k is uniformly bounded, and the length of the interval is finite. Using

the fact that k(0) = log2 2 from (2.8), straightforward but technical manipulations

show that the first term on the right-hand side of (7.13) is

2 log T

 −k
(

α
2πβ

)
2T 2α log T

∣∣∣∣∣∣
β

0

+

β∫
0

T−2α

4πβ log T
k′
(

α

2πβ

)
dα

 = log2 2 + o(1).

Finally, the second term on the right-hand side of (7.13) yields

2

β∫
0

α k
( α

2πβ

)
dα = 2

β∫
0

α g2

(
α

β

)
dα = 2β2

1∫
0

v g2 (v) dv.

By combining the above terms, the first integral on the right-hand side of (7.11) is

2

β∫
0

k
( α

2πβ

)[
α + o(1) +

log T

T 2α
(1 + o(1))

]
dα = 2β2

1∫
0

vg2(v)dv+ log2 2 + o(1). (7.14)

Inputting the estimates (7.12) and (7.14) into (7.11) yields

∞∫
−∞

k
( α

2πβ

)
F (α)dα = 2β2

1∫
0

vg2(v)dv−2β2 log β+log2 2+2β2

∞∫
1

F (α)

α2
dα+o(1). (7.15)
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Finally inputing (7.15) into the respentation for R1 in Lemma 7.2.1 concludes the

proof of part (a). For part (b) we recall from Lemma 7.2.1 that

R2 =
T

2β2


∞∫

−∞

k
( α

2πβ

)
F (α)dα−

∞∫
−∞

k
( α

2πβ

)
Fδ(α)dα

+O

(
T

log T

)
.

Splitting the second integral on the right-hand side using Theorem 3.2.1 for Fδ yields

− T

2β2

∫ ∞
−∞

k
( α

2πβ

)
Fδ(α)dα = − T

2β2

∫ ∞
0

k
( α

2πβ

)
[Fδ(α) + F−δ(α)]dα. (7.16)

Next, we divide the integral over the intervals (0, β), (β, 1), and (1, ∞), and apply

(3.2.1). Since T
iα

2πδ
log T + T

−iα 2πδ
log T = 2 cos(2παδ) and k(0) = log2 2, we obtain:

− T

2β2

∫ β

0

k
( α

2πβ

)
[Fδ(α) + F−δ(α)]dα

= −T log2 2

2β2
− w

(
2πδ

log T

)∫ 1

0

vg(v)2 cos(2πδvβ)dv + o(T ),

and

− T

2β2

∫ 1

β

k
( α

2πβ

)
[Fδ(α) + F−δ(α)]dα = −w

(
2πδ

log T

)∫ 2πδ

2πβδ

cosu

u
du+ o(T ).

By combining the above integrals, we have that

− T

2β2

∫ ∞
−∞

k
( α

2πβ

)
Fδ(α)dα

= −T
{

log2 2

2β2
+ w

(
2πδ

log T

)∫ 1

0

vg(v)2 cos(2πδvβ)dv

+w

(
2πδ

log T

)∫ 2πδ

2πβδ

cosu

u
du+

1

2

∫ ∞
1

Fδ(α) + F−δ(α)

α2
dα

}
+ o(T ).

(7.17)
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From the proof of part (a), we know that

T

2β2

∞∫
−∞

k
( α

2πβ

)
F (α) dα

= T

 1∫
0

v g2 (v) dv − log β +
log2 2

2β2
+

∞∫
1

F (α)

α2
dα

+ o(T ).

(7.18)

By adding (7.17) and (7.18) together, our asymptotic formula for R2 reduces to

R2 =T

 1∫
0

v g2 (v)

(
1− w

(
2πδ

log T

)
cos(2πδvβ)

)
dv − log β

− w

(
2πδ

log T

) 2πδ∫
2πβδ

cosu

u
du+

1

2

∞∫
1

2F (α)− Fδ(α)− F−δ(α)

α2
dα

+ o(T ),

which completes the proof.

7.4 Proofs of Theorems 1.3.1, 1.4.1, and 1.5.1

Finally, in this section we explain how the two main results of this thesis follow from

the results in Chapters 5, 6, and 7. For T ∈ {Tn}, the proof of Theorem 1.3.1 follows

from inputting part (a) of Lemmas 6.3.1 and 7.3.1 into the representation formula

for | log ζ(1/2 + it)|, which we proved in part (a) of Proposition 5.1.2. Some of the

integrals in these results are over the interval [1, T ], but these can easily be extended

to [0, T ] since
1∫

0

log2 |ζ(1
2

+ it)| dt� 1.

In particular, Theorem 1.3.1 holds for all T ∈ {Tn} such that T ≥ 4. We now extend

this result to hold for all T ≥ 4.
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Assume Tn ≤ T ≤ Tn+1. Because the integrand in Theorem 1.3.1 is positive,

we know that

Tn∫
0

log2
∣∣ζ (1

2
+ it

)∣∣ dt ≤
T∫

0

log2
∣∣ζ (1

2
+ it

)∣∣ dt ≤
Tn+1∫
0

log2
∣∣ζ (1

2
+ it

)∣∣ dt

Moreover, because both Tn and Tn+1 are at most 1 away from T and Theorem 1.3.1

holds for Tn and Tn+1, we know that

Tn∫
0

log2
∣∣ζ (1

2
+ it

)∣∣ dt =
Tn
2

log log Tn + aTn =
T

2
log log T + aT + o(T ),

and

Tn+1∫
0

log2
∣∣ζ (1

2
+ it

)∣∣ dt =
Tn+1

2
log log Tn+1 + aTn+1 =

T

2
log log T + aT + o(T ).

Therefore, it follows that

T∫
0

log2
∣∣ζ (1

2
+ it

)∣∣ dt =
T

2
log log T + aT + o(T ),

which completes the proof of Theorem 1.3.1 for all T ≥ 4.

For the proof of Theorem 1.4.1, when we input part (b) of Lemmas 6.3.1 and

7.3.1 into part (b) of Proposition 5.1.2, we get

∫ T

1

[
log

∣∣∣∣ζ (1

2
+ it+ i

2πδ

log T

)∣∣∣∣− log

∣∣∣∣ζ(
1

2
+ it)

∣∣∣∣]2

dt

= T

{∫ 2πδβ

0

1− cosu

u
du− w

(
2πδ

log T

)∫ 2πδ

2πδβ

cosu

u
du− log β

+

1∫
0

v g2 (v) cos(2πδvβ)

(
1− w

(
2πδ

log T

))
dv

+ c

(
2πδ

log T

)
+

1

2

∞∫
1

2F (α)− Fδ(α)− F−δ(α)

α2
dα

+ o(T ).

(7.19)
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Because our results hold independently of our choice of β, there should be no β

dependence in our final result. We then combine the first three terms on the right-

hand side of (7.19) to yield

∫ 2πδβ

0

1− cosu

u
du− w

(
2πδ

log T

)∫ 2πδ

2πδβ

cosu

u
du− log β

=

2πδβ∫
0

1− cosu

u
du+ w

(
2πδ

log T

) 2πδ∫
2πδβ

1− cosu

u
du− w

(
2πδ

log T

) 2πδ∫
2πδβ

1

u
du− log β

=

2πδ∫
0

1− cosu

u
du+

(
w

(
2πδ

log T

)
− 1

) 2πδ∫
2πδβ

1− cosu

u
du+

(
w

(
2πδ

log T

)
− 1

)
log β

=

2πδ∫
0

1− cosu

u
du−

(
w

(
2πδ

log T

)
− 1

) 2πδ∫
2πδβ

cosu

u
du

=

1∫
0

1− cos(2πδα)

α
dα +O

(
δ

log2 T

)
.

Next we consider the integral involving g2(v) on the right-hand side of (7.19). Let

`(v) = vg2(v). Then using integration by parts, we see that

1∫
0

v g2 (v) cos(2πδvβ)

(
1− w

(
2πδ

log T

))
dv

=

(
1− w

(
2πδ

log T

))` (v)
sin(2πδvβ)

2πδβ

∣∣∣∣1
0

−
1∫

0

`′(v) sin(2πδvβ)

2πδβ
dv


� δ

log2 T
.
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Combining these simplifed expressions together gives

∫ T

1

[
log

∣∣∣∣ζ (1

2
+ it+ i

2πδ

log T

)∣∣∣∣− log

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣]2

dt

= T


∫ 1

0

1− cos(2πδα)

α
dα +

1

2

∞∫
1

2F (α)− Fδ(α)− F−δ(α)

α2
dα


+ T c

(
2πδ

log T

)
+ o(T );

We then extend the range of integration to [0,T] since

∫ 1

0

[
log

∣∣∣∣ζ (1

2
+ it+ i

2πδ

log T

)∣∣∣∣− log

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣]2

dt� 1.

This completes the proof of Theorem 1.4.1 for T ∈ {Tn}. Since the integrand is

nonnegative, this result can be extended to all T ≥ 4 using the same argument as

above.

With the proofs of Theorems 1.3.1 and 1.4.1 completed, we are ready to prove

the new case of Berry’s conjecture in Theorem 1.5.1.

Proof of Theorem 1.5.1. Let δ � log T . We want to show that

π2

T∫
0

[
S

(
t+

2πδ

log T

)
− S(t)

]2

dt = T

[∑
n≤T

Λ2(n)

n log2 n

(
1− cos

(2πδ log n

log T

))
+ 1

]
+ o(T ).

First, note that by taking x = T and β = 1 in (6.15) and using a change of variables

in the integral, we have that

T
∑
n≤T

Λ(n)2

n log2 n

[
1− cos

(
2πδ log n

log T

)]
= T

{∫ 1

0

1− cos 2πδu

u
du+ c

(
2πδ

log T

)}
+O

(
T

log T

)
,
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where c(v) is defined in (1.14). Therefore, to prove part (b) of Conjecture 1, by

Theorem 1.4.1, it is enough to show that

1

2

∞∫
1

2F (α)− Fδ(α)− F−δ(α)

α2
dα = 1 + o(1).

By Conjecture 2, we have

1

2

∞∫
1

2F (α)− Fδ(α)− F−δ(α)

α2
dα =

∞∫
1

1− cos (2πδα)w
(

2πδ
log T

)
α2

dα + o(1).

We see this by noting that Conjecture 2 applies uniformly in compact sets. We then

integrate from 1 to M , and let M →∞. First note that

∞∫
1

1

α2
dα = 1.

Now, integrating by parts with the substitution u = 1
α2w

(
2πδ

log T

)
and dv = cos(2πδα),

we find that

∞∫
1

cos (2πδα)w
(

2πδ
log T

)
α2

dα =
w
(

2πδ
log T

)
α2

sin(2πδα)

2πδ

∣∣∣∣∣
∞

1

+

∞∫
1

2 sin(2παδ)

2πδ α2
w

(
2πδ

log T

)
dα

= O

(
1

δ

)
= O

(
1

log T

)
,

as claimed. Therefore, Berry’s conjecture holds.
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