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Figure 4.4: Total Bacteria Removal for ROS, RCS, RMS, GCCS, GCMS, AGCOS, AGCCS, AGCMS, 

O, C, and M. [ROS: raw Ottawa sand., GCCS: raw concrete sand; GCMS: raw masonry sand; GCOS: 

graphene coated Ottawa sand, GCCS:  graphene coated concrete sand; GCMS:  graphene coated 

masonry sand; AGCOS: activated graphene coated Ottawa sand, AGCCS: activated graphene coated 

concrete sand; AGCMS: activated graphene coated masonry sand. 

 

 

 The removal capability was increased in both the Ottawa and masonry sand when 

coated with graphene. The removal efficient was maintained at high levels (above 90%) in the 

concrete sand after coating. The activation does not seem to add any improvement to the 

performance of the graphene coated sand.  
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4.4.2. Turbidity Stress Test 
 

The turbidity stress test was run twice with two different filtration media. The conditions 

were maintained as identical as possible between both runs. For the first run using GCOS as the 

filtration media, the initially spiked turbidity of the influent was 92 NTU. In the second run with 

ROS, the filtration media was fed with water with an initial turbidity of was 97 NTU. The 

artificial initial turbidity was created by weighting 100 g of dirt in a 1000 ml beaker, adding 

water, and dumping the suspended particles only into the reservoir. The 1000 ml beaker was 

filled up and skimmed twice, then 18 L of tap water was added to the reservoir to get a dilution 

on 1:10. This method was accurate in acquiring similar initial turbidity. The influent was kept 

undisturbed during the first 150 min of the test. During the rest of the test, the influent was 

spiked with the maximum possible value one scope of the same dirt could acquire, which was 

around 500 NTU. A metal rod was used to mix the influent water to maintain the turbidity and 

stop the effect of particle settling. The intensity of the stirring was done relative to the running 

average of the influent turbidity to maintain similar influent turbidity between both tests. It is 

also worth mentioning that the average turbidity for the influent of the GCOS was 7 NTU higher 

than the average influent turbidity of the ROS. 

 

As anticipated for both runs the removal percentage decreased with time for both runs, 

though the initial removal was less in the ROS and the decrease in efficiency was more 

noticeable over time, as shown in figure 4.5. GCOS maintained removal efficiency higher than 

40% until the 345-minute mark. Meanwhile, ROS dropped under 40% after 210 minutes. 

Additionally, GCOS kept removing the turbidity till the end of the test in values higher than 

25%. While ROS failed at minute 315, where the effluent turbidity was higher than the influent 
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turbidity. Upon further inspection of the columns, the fine particle build-up was spread 

throughout the GCOS with more built-up near the top layer. As for the ROS, the fine particle 

build-up was concentrated at the upper and lower fine meshes and the failure occurred after the 

lower fine mesh gave out and could not hold any more fine particles (figure 4.6.). The effluent 

out flowing rate was measured with every turbidity measurement to keep track of any changes 

in the flow to spot clogging, the overall change in flow rate in both runs was less than 2%. 

Therefore, no clogging was registered.       

 

 

 

  

 

 

 

 

Figure 4.5: Turbidity removal and influent turbidity during the turbidity stress 

test for GCOS. [GCOS: Graphene coated Ottawa sand]. 
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4.3.3. EC: 
 

  The EC measurement of the influent was low, meaning the lake water already had a 

low level of dissolved substances. The EC was monitored continuously for the first two weeks 

for the water quality test setup (Figure 4.7). All eleven columns had similarly high values in 

the first 24 hr of the test. This output of dissolved substances is normal in the washing stage of 

any filter. Masonry sand in all its iterations had the highest initial value except in its raw form. 

Ottawa sand had the highest value as a raw sand filter. After the seventh day, all EC values 

plateaued to lower values between 40 and 50 S/cm. 

 

Figure 4.6: Turbidity removal and influent turbidity during the turbidity stress 

test for ROS. [ROS: raw Ottawa sand]. 
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Figure 4.7: electrical conductivity for ROS, RCS, RMS, GCCS, GCMS, AGCOS, AGCCS, AGCMS, O, 

C, and M. [ROS: raw Ottawa sand., GCCS: raw concrete sand; GCMS: raw masonry sand; GCOS: 

graphene coated Ottawa sand, GCCS:  graphene coated concrete sand; GCMS:  graphene coated 

masonry sand; AGCOS: activated graphene coated Ottawa sand, AGCCS: activated graphene coated 

concrete sand; AGCMS: activated graphene coated masonry sand] 
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CHAPTER 5. CONCLUSIONS: 
 

The method of dehydrogenation of sugar-coated sand into a carbon-based material is a 

valid method of synthesizing graphene. The graphene coated sand has improved the overall 

results of the water filtration effectiveness. 

The characteristics of the material used as the nuclei effects directly the efficiency of 

the graphene coating. Particle shape has the largest effect on the coating efficiency, subangular 

particles have a coating efficiency 30% higher than rounded particles. However, the type of the 

material has a smaller effect, rock fragments tend to still be coated as well as pure silica 

particles. 

The effect of the particle shape changed the quantity of the graphene but not the quality. 

The Raman spectroscopy showed higher peak intensity for GCCS and GCMS by 30% compared 

to GCOS. The quantification was done using the EDS for the true value of carbon content by 

weight percentage which was found to be 71%, 64%, and 56% for GCCS, GCMS, and GCOS 

respectively. 

The activation of the graphene coated sand had a very small effect on the apparent 

characteristics of the material. The activation resulted in developing cracks on the surface of 

the graphene making the particles’ surface area larger. On the other hand, the loss of some of 

the graphene coating was noticed. The EDS for activated carbons results were 69%, 55%, and 

50% for AGCCS, AGCMS, and AGCOS respectively. 

The graphene coated material outperforms the raw material in turbidity removal. GCOS 

turbidity removal was 10% higher than ROS. Additionally, ROS withstood the turbidity stress 
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test for 300 min before failing, while GCOS continued 360 min with reduced efficiency but no 

signs of failing. 

Electrical conductivity test showed that graphene-coated and activated graphene-coated 

sands tend to deposit more dissolved substances during only the first 24 hr of testing compared 

to raw sand filters.  

Bacteria test showed that for sands with lower efficiency in removal of total coliforms 

and E. coli were further improved after coating with graphene. But the activation of the 

graphene coating did not further improve its effectiveness in bacteria removal and the increased 

coast cannot be justified at this point. A complete study of other parameters needs to done before 

a final dissension is made about the coating feasibility.      
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FUTURE RESEARCH: 

 
1. Further testing needs to be done on other water quality parameters of all the columns for 

longer period of time. Parameters such as: DOC removal, NOx removal, and metal removal. 

 
2. Running a cost analysis that includes both the activated and non-activated graphene sand to 

further estimate the feasibility of the activation process vs. benefits. 

 
3. Using molecular dynamic simulation to study the graphene coated material and the 

possibility of adding functional groups to enhance the removal of specific pharmaceutical 

contaminants. 

 
4. Using and testing the addition of nano-additives like nano-silver before the graphitization 

process for further improvement to the graphene coated sands. 
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Figure A.1: Raw sand preparation 

 

 
Figure A.2: Sand sugar coating and graphitization. 
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Figure A.3: Water source (lake Patsy) and water collection. 
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Figure A.4: Activation process using sulfuric acid. 

 

 
Figure A.5: the eleven-column setup. 
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