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ABSTRACT

As one of the latest advances in wireless sensor network (WSN), wireless visual sensor

network (WVSN) bears a number of distinct features compared to its predecessor, mainly

due to its directional visual coverage on the sensing field. This also renders previous solutions

proposed for WSN may not work well for WVSN. For example, k-coverage has been intro-

duced to WSNs for fault tolerance and high monitoring quality by omni-directional sensors

but becomes incapable to cope with the directional coverage of sensors in WVSNs. Moreover,

compared to scalar data in WSNs, visual data are much larger, difficult to aggregate and

usually streamed in real-time, which also brings unprecedented challenges to data routing,

load balance and traffic scheduling in the network. In this dissertation, we strive to tackle

these issues with a top-down across layer approach. At the Application layer, we take an

initial step to tackle 2-Angular-Coverage problem for WVSNs. To maximize the information

captured by 2 visual sensors, we deploy the visual sensors from different directional angles

and further extend the conventional concept of 2-coverage to ”2-angular-coverage”. With

this as building block, we develop a greedy heuristic and an enhanced Depth First Search

(DFS) algorithm to address 2-Angular-Coverage problem. At the Network layer, we note

that the widely used tree topology in WSNs may yield sub-optimal results, and propose

to optimally balance traffic load by using the full network topology, transforming it into a

generalized max-flow problem and designing an efficient solution. Finally at the Link layer,

we propose a Time Division Multiple Access (TDMA) based scheduling algorithm which is

promising to achieve contention-free visual streaming data collection. The optimization in-

formation from upper layers will also be used for cross-layer optimization to further improve

the quality of visual streaming and shorten the transmission delay.
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CHAPTER 1

INTRODUCTION

Wireless sensor networks (WSNs) have attracted significant interest from both academia

and industry on applications in security, medical, military, environment, industrial and trans-

portation fields as mentioned by Akyildiz et al. (2002); Chen. A typical architecture of a

WSN consists of distributed sensors that capture, process, transmit and receive data to col-

laboratively serve users via the base station, which usually works as a gateway and helps

coordinate the network. As one of the most recent advances of WSNs, wireless visual sensor

networks (WVSNs) further expand the capacities of such networks with cameras mounted on

sensor nodes that allow the recording and processing of images and/or videos. This unique

feature makes WVSNs different from traditional WSNs in several ways and renders the so-

lutions proposed for traditional WSNs inapplicable to solve the problems in WVSNs. For

example, Figure 1.1 shows the newly emerged shopping applications such as Amazon go and

Alibaba Tao Cafe 1, where customers may purchase products without being checked out by

a cashier or using a self-checkout station. All the operations such as product counting, user

account matching, and payment processing are achieved through visual sensors with deep

learning algorithms and data fusion technologies. The functionalities of visual sensors are

to monitor which product has been grabbed in/out of the shelf by which customer, examine

whether the monitored customer has the corresponding face record in the database, detect

if the customer is with higher probability to be a thief due to the weird actions or walking

paths, etc. In order to achieve these goals, the whole shopping area should be fully monitored

by visual sensors, and the target tracking function should also be implemented. No doubt

such complex tasks can hardly be achieved by traditional WSNs. In general, a wireless

1https://syncedreview.com/2018/01/22/amazon-go-vs-alibaba-tao-cafe-staffless-shop-showdown/
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Figure 1.1. Amazon Go as the newly emerged Grab & Go Store2

visual sensor node consists of five hardware components which are image capturing device,

processing unit, memory, radio module and power supply. Charge-coupled device webcams

(CCD) and complementary metal-oxide semiconductor imaging devices (CMOS) are two

common image capturing devices used by visual sensor nodes. CMOS imaging devices are

smaller, cheaper and consuming lower power than CCD webcams, but their image resolutions

are relatively low compared with CCD webcams. The processing unit includes two types

which are non-programmable logic unit and programmable logic unit. Non-programmable

logic unit has better performance and lower power consumption. Therefore, it is prefer-

able for high volume sensor node deployment. However, the non-programmable processing

unit cannot be altered to meet changing functionality requirements. On the other hand,

the design of programmable logic unit allows it to be altered for other functionalities. This

2This original picture is from: https://www.cnet.com/news/amazon-might-open-thousands-of-its-grab-
and-go-stores-over-the-next-three-years/
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flexibility makes programmable logic unit dominate the processing units in WVSNs. Due to

the larger size of captured visual data (image/video), the memory and storage requirements

of WVSNs are much higher than those for WSNs. The radio modules of WVSNs can be

classified into two categories as low rate wireless personal area networks (WPANS) and high

rate wireless local area networks (WLANs), respectively. IEEE 802.15.4 and Bluetooth are

the typical WPAN radio modules in WVSNs. These kind of radio modules can only pro-

vide shorter transmission range (10 to 20 m) and lower transmission rate (250 Kbps and

1 Mbps), but they have lower power consumption. On the other hand, IEEE 802.11b is a

popular example of WLAN radio module in WVSNs which can support longer transmission

range (around 100 m) and higher transmission rate (11 Mbps), but this longer transmission

range and higher data rate comes with higher cost in price and power consumption. Such

hardware configurations further lead to several major differences of WVSNs from traditional

WSNs as discussed in Yap and Yen (2014).

First, unlike traditional sensors such as temperature or light sensors that are often

considered with omni-directional sensing range, the sensing range of a visual sensor is usually

deemed as fan-shape in 2D and pyramid-shape in 3D. Moreover, most cameras on visual

sensors provide pan, tilt and zoom functionality with more monitoring flexibility. This,

however, makes visual sensors relatively more expensive than traditional sensors, and the

tasks of deploying them become even more challenging as not only the location but also other

factors such as the working direction, field of view and aspect ratio can affect the area of

coverage and thus the monitoring quality, not to mention that to improve cost-effectiveness,

it is usually preferred to only use a minimal number of visual sensors in the considered

monitoring space.

In the literature, enormous efforts have been devoted to address various issues at

different layers of WSNs. However, most of them may not well fit in the WVSNs and 3D

indoor monitoring scenario. At the application layer, extensive efforts have been devoted to

achieve k-coverage for WSNs deployed in the sensing area by considering omni-directional
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sensing range as seen in scalar sensors, where the larger k is, the better fault tolerance and

monitoring quality will be. However, in WVSNs, due to the limitation of FoV of the visual

sensor, the k-coverage solutions proposed for WSNs become incapable of solving the problem

in WVSNs. Moreover, the purpose of using k-coverage in WVSNs may be not only for fault

tolerance, but also to achieve angular coverage for the object as mentioned by Chow et al.

(2007); Yildiz et al. (2014)

From the perspective of network layer, we note that the tree network topology, which

is widely used in WSNs, may yield sub-optimal results in term of alleviating traffic routing

bottlenecks, since it eliminates the opportunities that some sensors in the network may

connect to multiple neighbors closer to the base station. Therefore, causing the existing

solutions for WSNs are insufficient to solve the problem in WVSNs.

Medium access control (MAC) is one of the critical issues in the design of WSN link

layer. As in most wireless networks, collision, which is caused by two nodes sending data at

the same time over the same transmission medium, is a great concern in WSNs. To address

this problem, a sensor network has to employ a MAC protocol to arbitrate access to the

shared medium in order to avoid data collision from different nodes and meanwhile to fairly

and efficiently share the bandwidth resources among multiple sensor nodes. According to

different sensor network application, the MAC protocols can be divided into two primary

categories which are contention-based protocols and contention-free protocols. Contention-

based MAC protocol like S-MAC mentioned by Yadav et al. (2009), which grows from IEEE

802.11, enhances the energy efficiency, while it may result in a non-deterministic per-hop

delay. On the other hand, TDMA belongs to contention-free category which does not have

a problem of retransmission caused by collision also called collision-free MAC protocol. In

TDMA based MAC protocols, time are divided into time-frames and each time-frame is

further divided into a fixed number of time-slots. Each node is allocated a time-slot in a

time-frame and is allowed to transmit only in the allocated time-slot. However, since the

visual data is much larger compared with scalar data in terms of size, and even worse for
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the sensor nodes closer to the base station required to relay the accumulated data for other

sensor nodes, single time-slot cannot handle this accumulated streaming flow for each heavy

duty sensor node.

As the differences discussed above, the existing solutions used in WSNs are generally

incapable of solving the problems in WVSNs.

For 2-coverage in WVNSs, to maximize the information that can be captured by 2

visual sensors covering a 3D location, we propose to deploy the visual sensors from different

directional angles and further extend 2-coverage to ”2-angular-coverage” to denote such

unique requirement in WVSNs. We demonstrate our simulated WVSN testing platform

which emulates a 3D space and highlights our objective to provide efficient 2-angular-coverage

in the indoor environment by minimizing the number of visual sensors required to cover the

full regions through precision angle view monitoring. We first formulate the general problem

in a continuous space and then discretize our model via a lattice based approach, which can

achieve arbitrary approximation precision by adjusting the grid granularity. In addition, we

also create a strategy to determine the degree of coverage for the WVSN, where a given

location needs to be ensured to be covered by at least 2 visual sensors that fulfill the angular

coverage requirement.

In order to increase the reliability of WVSN, the network can be powered by batteries

(e.g., during an emergency deployment or a power outage). However, the attribute of visual

sensor can quickly drain the battery power and significantly damage the network lifetime.

Therefore, the deployment of WVSNs must not only guarantee the 3D indoor area coverage

and connectivity between visual sensors and the base station, but also ensure that the traffic

loads are well balanced and collision-free multiple access among network in order to prolong

the lifetime of the entire network. At the network layer, beyond achieving the 2-angular-

coverage goal, we also take consideration of traffic load balance. We propose to optimize

the traffic load balance by working on the full network topology, transforming it into a

generalized max-flow problem and proposing an efficient solution.
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Finally, we take a cross-layer approach, providing a solution across visual sensor cov-

erage, streaming data delivery, network traffic load balance and wireless link scheduling. We

first model the wireless visual sensor deployment and scheduling as a cross layer optimization

problem. We then use a divide and conquer strategy to propose two sub-algorithms, which,

for a given network topology, can achieve optimal traffic load balance and link scheduling,

respectively. Moreover, we develop SEED, a SchEduling-aware Enhanced Depth-first search

algorithm that can yield optimal solution if given enough time. Evaluation results show that

our solution can greatly reduce the overall communication latency and achieve excellent load

balance while minimizing the total number of sensors.
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CHAPTER 2

2-ANGULAR-COVERAGE DEPLOYMENT AT APPLICATION LAYER

2.1 BACKGROUND

Extensive efforts have been devoted to achieve k-coverage for WSNs deployed in the

sensing area by considering omni-directional sensing ranges as seen in scalar temperature

sensors, where the larger k is, fault tolerance and monitoring quality is better. However,

in WVSNs, the sensing range of a visual sensor is often directional, which renders the k-

coverage solutions proposed for WSNs incapable of solving the problem in WVSNs. For

instance, when an intruder gets into the monitored area, if only the back of the intruder

has been captured by the visual sensor, it may not be useful to recognize the identity of the

intruder. However, the face of the intruder can be captured if k-angular-coverage strategy

has been used.

2.2 RELATED WORK

The k -coverage problem generally states that any point within the monitored area

must be located in the sensing range of at least k -sensors mentioned in Malek et al. (2016).

As an example, if the deployment area is defined as 4 -coverage, every point within the area

is covered by at least four sensors. This means that up to three of the four nodes sensing the

same monitored region can fail and the area will still be covered (monitored) by one of the

four nodes. Full k -coverage denotes that every point is covered by all k -sensors. However,

it is often suggested that guarantee 100% coverage in WVSNs is very difficult in a random

deployment scenario. Therefore, Liu et al. (2008) proposed a directional k -coverage metric

(DKC). DKC demonstrates the coverage quality measured in terms of a probability guaran-

tee. It utilizes a summation function to calculate the probability of coverage for a target by
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a camera considering the visual sensor’s field of view, deployed nodes and available sensors

covering the same region. We have implemented a contrasting narrative in our work, where

we consider the angular direction for deployed visual sensors within the coverage area. Sev-

eral studies have explored the issue of the coverage problem with some specifically addressing

k -coverage. We will discuss this matter further and explore the distinction in our current

work. Katsuma et al. (2009) proposed a scheduling method which addressed the k -coverage

problem to extend the network lifetime of WSNs. In their approach a simple 2D model

with an omni-directional sensing field was employed. In contrast, our model applies a pan-

tilt directional D perspective, where the visual sensor has vertical and horizontal freedom.

Similarly, Chow et al. (2007) directly studies the angle coverage problem in visual sensor

networks. In their work, the authors modeled the Minimum Cover problem and developed

a distributed algorithm to determine the minimum set of sensors using an omni-directional

sensing field. Hefeeda and Bagheri (2007) address the k -coverage problem in dense sensor

networks. The work formulated the k -coverage problem as an optimal hitting set problem.

The proposed distributed algorithm in their work ensured k -coverage of the monitored area

without requiring the location of the sensor nodes deployment. All papers highlighted above

implement simple 2D models with 360◦sensing field within a WSN, resulting in impractical

real world application settings and thus incurring inconsistencies. Another work implements

the k -coverage problem as discussed by Ammari (2011), which addresses the problem in

a three dimensional aspect but the sensing field range is modeled as an omni-directional

sphere and the authors focus on solutions for wireless sensor networks which is inapplicable

to our problem. As highlighted previously, introducing WVSNs into an environment presents

additional challenges that are not often attributed to WSNs such as coverage quality that

depends on the orientation of the visual sensor. In our work, we use the minimum number

of visual sensors to achieve k -coverage from different directional perspectives to monitor 3D

areas of interest.

8



2.3 PROBLEM FORMULATION

We consider a 3D indoor space, where some 3D areas are required to be fully covered

by visual sensors. The visual sensors can only be deployed at certain location (e.g., on the

ceiling and/or the upper half of the wall), which introduces additional challenges. After a

visual sensor is deployed, its facing direction will be adjusted to a certain direction and then

stay there during the whole monitoring period.

2.3.1 Network Continuous Model

Consider a 3D indoor space, let A denote the 3D areas that must be fully cov-

ered (i.e., continuously monitored) by the visual sensors denoted as S and L denotes the

mountable positions within the monitored area that can be used to deploy the visual sen-

sors. The location and direction of the visual sensor is defined as a tuple (L,D). We

assume for a 3D indoor space, the location L is represented as a 3D coordinate for the

visual sensor placement (x, y, z) and the direction D=(x′, y′, z′) is a point on the surface

of a unit sphere (which we call a facing direction sphere) with its radius equal to 1 and

centered at (0, 0, 0). We denote face to represent the facing direction vector from (0, 0, 0)

to (x′, y′, z′). As mentioned earlier, the interest point specifically within the 3D area in A

that we want to monitor is denoted as a. Additionally, we assume RS is the maximum

sensing range of the visual sensor. cover(L,D,RS) denotes the area that a visual sensor

can cover, a function of the location, direction and maximum sensing range of the visual

sensor. For this work, we model the visual sensors as a frustum with parameters shown

in Figure 2.1: far field, near field, field of view (FOV) and aspect ratio. We formu-

late our problem as to find a set of locations and directions of visual sensor nodes where,

S=(L1, D1), (L2, D2), ..., (Ln, Dn), subject to the following constraints:

(1) Sensor Location Constraint:

∀(L,D) ∈ S, L ∈ L;

9



Figure 2.1. Sensor Parameters

(2) Region Angular 2-Coverage Constraint:

∀a ∈ A;

∃(Li, Di), (Lj, Dj) ∈ S(i 6= j); such that,

a ∈ cover(Li, Di, RS) ∩ cover(Lj, Dj, RS) and

120◦ ≤ ](
−→
aLi,
−→
aLj) ≤ 180◦

The meaning of the second constraint is that the monitoring point a is in the covered

frustum of visual sensors deployed at both Li and Lj to allow 2-angular coverage. This

constraint will allow for fault tolerance within the network, where if one sensor fails another

sensor will be available to continue to monitor the space. Moreover, when two visual sensors

work simultaneously, the 2-angular-coverage can greatly enrich the captured visual informa-

tion if an object presents at a. Our objective is thus to minimize |S| = n, where n is the

number of visual sensors.

10



Figure 2.2. 2-Angular-Coverage

As formulated in the angular 2-coverage constraint, there must exist at least 2 visual

sensors that can monitor a given point to provide varied angular coverage. This feature

will allow for potential applications in tracking of a target (i.e., facial tracking). Consider

this scenario where the requirement is to provide some type of facial tracking in a given

monitored space. The monitored space can be defined into regions within a visual sensor

network, where the camera placement should provide different angles of the tracked target.

Though overlapped visible objects may occur with the WVSN target tracking, the image

can provide completely different scenes considering the angle. Based on this assumption we

propose to consider if the visual sensor captures the point from different viewing directions

for which the angle between their direction is at least greater than or equal to 120◦ difference

in the coverage angle. A representation of 2-angular-coverage with the visual sensor direction

constraint for a point in the monitored area is shown in Figure 2.2: vectors
−→
aL1 and

−→
aL2.
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2.3.2 Network lattice Model

A network lattice model is used to approximate the continuous space model by divid-

ing the monitored space A that must be fully covered into discrete 3D grids. We required

that all grid points in the region are at least 2-angular covered. This technique is also used

for the mountable positions in L to divide the candidate locations that a visual sensor can

be deployed in the 3D monitored space. The tuple (LC , D) is used to denote the candidate

location and direction of a visual sensor. The distance between two neighboring grid points

gA is used to denote the granularity of the grids used in A and gL denotes the granularity

of the grids used in L. In addition, we also divide the surface of the facing direction sphere

into grids (like the longitudes and latitudes divide the surface of the earth) and use gD to

denote the granularity. We assume that a wireless visual sensor can only face to a direction

where its D falls on a grid point. Figure 2.3: illustrates the facing direction circle. It is easy

to see that by adjusting the three granularity parameters, we can easily achieve the required

accuracy for approximating the continuous space model.

2.4 SOLUTION

In this section, we tackle the 2-angular-coverage problem for 3D indoor monitoring

using a greedy heuristic algorithm. We then propose an enhanced-DFS algorithm with

pruning strategies, which if given enough time, can return an optimal solution.

2.4.1 Greedy Heuristic Algorithm

The greedy algorithm works in an iterative manner to deploy visual sensors. In each

iteration, the algorithm strives to choose among the available locations in L and find the

location where the deployed visual sensor can cover a number of fresh points as seen in Figure

2.4, we update whether the points have 1-coverage, 2-angular-coverage or no coverage. This

is implemented by recalculating how many points can be covered by each remaining location

in L. Additionally, we then consider those points that are only covered by one visual sensor

12



Figure 2.3. Facing Direction Sphere
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and check if by placing a visual sensor at a location, which deployment achieves the maximum

conversion of points from 1-coverage to 2-coverage by an opposing visual sensor and via an

angle different from the previous coverage (as required by the 2-angular-coverage). The one

that can maximally cover the most points at 2-angular-coverage after recalculation will then

be chosen as the next location to deploy a visual sensor.

Algorithm 1 Greedy Heuristic Algorithm

Input: A, D, L
Output: Set of S

Initialize: List of A, D, L and final.
1: while L 6= ∅ and A 6= ∅ do
2: for all CL in L do
3: if CL within Rmax of any deployed visual sensor then
4: for all face ∈ D for L do
5: select the face with maximum 2-coverage particles
6: end for
7: record CL max into templist
8: end if
9: end for

10: choose top one from templist
11: remove CL max from L
12: update states of particles covered by CL max

13: end while
14: return final

2.4.2 Enhanced-DFS Algorithm with Pruning

In Algorithm 1, we provide out enhanced-DFS algorithm to further improve the qual-

ity of our solution. In a traditional depth first search approach, the exploration of each

branch within our solution set will need to be searched to pick a location in L and a facing

direction D. However, this is not ideal since the solution space can quickly expand with the

size of L. In this solution, a pruning technique is implemented which can exploit the search

by cutting off the removing most of the solution space that does not include high-quality

solutions. We are able to efficiently reduce the size of the candidate location LC options by

starting the search from the result of our greedy heuristic algorithm as the currently found

14



Figure 2.4. Deployment Perspective
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best solution. The search branches (depth) that already have used equal or more number of

visual sensors compared to the currently found best solution can be pruned (lines 1-4). Ad-

ditionally, the selection of the location in each iteration is chosen by using the default order

(e.g., sort all LC by decreasing order based on the maximum number of points that a visual

sensor at a deployable location can convert a point from 1-coverage to 2-angular-coverage or

from no-coverage to 1-coverage (lines 8-14)). This approach allows our algorithm to quickly

find high quality solutions and skip as many low quality solutions as possible. When a search

branch is pruned or explored fully, the search will update all the parameters and will continue

the search using its previous status (lines 18-22). The search will halt after all points in the

3D indoor space is 2-angular-covered. An optimal set of visual sensor deployment location

is then returned (line 26).

Theorem 1. The enhanced DFS algorithm with pruning can return the optimal solution to

solve the discrete version problem given enough time.

Proof. The enhanced DFS algorithm incorporates three enhancements which improve the

performance of the algorithm. The first enhanced approach that we apply is to prune some

of the branches as the graph is traversed based on a greedy heuristic. Traditionally, a

DFS algorithm searches a structure by selecting a root node and explores each branch then

backtracks. A generalization of the traditional DFS algorithm is considered to be a brute

force approach where you search each branch until an optimal solution is returned. We can

deem our solution to be a brute force approach with some of the infeasible solution space

reduced. Thus, we will prove that our pruning feature in the enhanced DFS algorithm will

not eliminate optimal solutions. We select and expand on search branches by determining the

maximum number of fresh points covered by the chosen location and direction. Given that F

is non-negative where F ≥ 0 and if current depth ≥ best, we do not need to check it further.

As a result, we can cut the branch. Specifically, since the number of FR is recalculated after

each iteration of the search, the cost function is non-decreasing as the search step traverses

the graph for a feasible solution.
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2.5 PERFORMANCE EVALUATION

The efficiency and validity of our algorithms are evaluated by extensive simulations.

We implement a simulation environment built using both Java and JavaScript, where the

core deployment algorithms are implemented by Java to conceptualize and emulate the actual

deployment and 2-coverage scenarios. In our evaluation, we implement both the greedy

heuristic and enhanced-DFS algorithms. Figure 2.5 shows how the number of visual sensors

change as the length of the 3D indoor space increase (i.e., default setting for indoor space

equals length X 60 X 100), which highlights the flexibility of the system. The enhanced-

DFS algorithm outperforms the greedy algorithm as seen in the figure, especially when the

length of the indoor space is less than 200. As the monitoring space increases the number

of visual sensors are similar. Additional testing was conducted to evaluate both algorithms.

The greedy algorithm results were analyzed and the number of required visual sensors was

reduced by 37% over the baseline solution and our enhanced-DFS algorithm can further

reduce the number of visual sensors by up to 22% over our greedy heuristic algorithm.
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Algorithm 2 Enhanced-DFS Algorithm

Input: L=∅, A=∅, D=∅
Output: Minimized set of |S| = n, ensuring 2-angular-coverage

Initialize: List of A, D, L and list
1: DFS(depth)
2: if depth ≥ best then
3: return
4: end if
5: if A == 0 then
6: update best
7: else
8: for all lC in L do
9: compute all face ∈ D for LC ;

10: select face with 2-coverage;
11: store LC selected;
12: end for
13: sort L by descending order;
14: store LC → Queue
15: while Queue 6= Ø do
16: LC ← Dequeue
17: DFS(depth+1)
18: add removed undeployed LC back to L
19: end while
20: end if
21: return list
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Figure 2.5. Varying Length of 3D Indoor Space
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CHAPTER 3

TRAFFIC LOAD BALANCE AT NETWORK LAYER

3.1 BACKGROUND

In order to prolong the lifetime of entire wireless visual sensor network, an efficient

network layer routing protocol has to be carefully designed. We note that although most of

existing works on traffic load balance in WSNs are modeled by tree topology rooted at the

base station such as works done by (Soro and Heinzelman, 2005, 2009), using the topology

may yield sub-optimal results since it eliminates the opportunities that some sensor nodes in

the network may connect to multiple neighbors closer to the base station to further balance

the traffic loads. One example is illustrated in Figure 3.1, where each sensor nodes B to F

need to report 1 unit of visual data traffic flow to the base station A. If the tree topology is

used, the bottleneck will be 4 units of traffic flows on B or C. If we carefully consider over the

entire network topology, a better solution can be obtained to further reduce the bottleneck

on node B or C to 3 units of traffic flows, which represents a 25% of reduction from using

the tree topology. Although it might be argued that multiple tree topologies can be used

alternatively so as to still have a better traffic load balance, yet the involved multiple topology

maintenance and the switch overhead can be non-trivial and easily offset the possible load

balance benefit therein. Therefore, instead of tree topology we propose to optimize the traffic

load balance by directly working on the full network topology, transforming the problem to

find the most load balanced topology into a generalized max-flow problem and proposing an

efficient algorithm to solve it.
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Figure 3.1. Example on limitation of using tree topology for traffic load balance.
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3.2 RELATED WORK

WSNs have renovated many research areas by providing reliable and scalable tech-

nologies over the past decade. As one of the most recent advances of WSNs, a fast-growing

interest is also seen in WVSNs Tavli et al. (2012). Although there have been numerous

studies to explore and address the deployment problem in WSNs Raha et al. (2012); Ak-

shay et al. (2010); Li et al. (2003), the unique feature on wireless visual sensor and the

resulting differences on sensing range, device cost, data collection pattern, etc. Render these

previously proposed solutions cannot be directly applied to solve the problem in WVSNs

Megerian et al. (2005).

To this end, Chow et al. Chow et al. (2007) proposed a simple model to provide

maximum angular coverage in WVSNs to generate a minimum set of sensors to cover all

objects of interests. In Sheramin et al. (2010), a Depth First Search algorithm was devel-

oped to address both sensing coverage and network connectivity issues. These pioneering

works mainly considered 2D deployment scenarios, which, however, may be less effective and

inaccurate when being applied to 3D indoor monitoring scenarios. In Liang et al. (2011), the

objective of the paper is to maximize the area coverage of a randomly deployed directional

sensor using a greedy algorithm. A directional sensor network is implemented in Wu and Lu

(2013) for coverage problem with consideration to rotatable angle. However, both of them

are formulated in a simple 2D model and similar greedy algorithms to solve the problems.

A novel approach to sensor deployment is provided in paper TYen (2014) where a PTZ

camera is used in a WVSN. The difference between a PTZ WVSN and a traditional WSN

has been highlighted in that there are extended FoV coverage and semi data source nodes.

The work in paper Yen (2013) is very similar to ours, where a WVSN is used for the sensor

coverage problem. Using a greedy heuristic approach FoVIC where the target is to cover the

maximum number of uncovered nodes within the area via a mathematical model. Again,

both papers TYen (2014) and Yen (2013) are modeled using a 2D approach (i.e. the latter

emphasizing a mathematical model) and use numerical analysis to evaluate their solution.
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On the other hand, Kouakou et al. Kouakou et al. (2012) tackled the problem of

indoor space target coverage by formulating a k-coverage problem in 3D space, where the

proposed heuristic algorithm can ensure k-coverage of the monitored areas with the consid-

eration of deployment costs and obstacles. To address target coverage with PTZ cameras,

Munishwar et al. Munishwar and Abu-Ghazaleh (2013) formulated the maximal clique gen-

eration problem and transformed it into the MaxFoV problem, where two polynomial time

algorithms were proposed to reduce the number of candidate FoVs (B-EFA) and find an op-

timal set of FoVs for PTZ cameras (G-EFA). The mainly limitation of the paper mentioned

above in Kouakou et al. (2012) is that they only provided a greedy heuristic algorithm to

tackle the problem which cannot solve the problem optimally, where our solutions, not only

provide the fast solution through greedy heuristic algorithm, but also supply an optimal

solution named enhanced-DFS which can optimally solve the problem. The authors in Peng

et al. (2013) proposed a greedy iteration scheduling based algorithm for coverage rate op-

timization with a 3D model. However, one assumption of their work is that the monitored

scene of the 3D directional sensor network is a 2D plane, and the location of each sensor is

on the same horizontal plane which highly limited the ability of using 3D model, where our

solution is monitoring the entire 3D space area and the location of sensor is not limited on

the same horizontal plane as they did.

3.3 PROBLEM FORMULATION

In this chapter,the problem formulation is based on previous working step. Our aim

is to use minimum number of visual sensors to fully cover all the required 3D indoor areas.

Moreover, the visual traffic loads collected at visual sensors must also be well balanced among

the network in order to alleviate the potential bottleneck and prolong the over all lifetime.

We use Rmax to denote the communication range achievable for each wireless visual

sensor. Our objective is to find the deployment plan S = {(L1, D1), (L2, D2), ...} and the

data path P(L,D) for each sensor node (L,D) ∈ S, so as to (a) minimize |S|, and (b) minimize
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the traffic load of the wireless visual sensor with maximum traffic load among all the sensor

nodes min[max1≤i≤N TLi] subject to the following constrains:

(1) Area Coverage Constraint:

∀a ∈ A,∃(L,D) ∈ S, such that a ∈ cover(L,D,RS) and A ⊆
∑

⋃
(L,D)∈S

cover(L,D,RS) ;

where cover(L,D,RS) represents the subset of particles covered by visual sensor (L,D,RS).

(2) Network Connectivity Constraint:

∀(L,D) ∈ S,∃P(L,D) = {(Lp1, Dp1), (Lp2, Dp2), ..., (Lpk, Dpk)}

such that |LLp1| ≤ Rmax, |LpkBS| ≤ Rmax

and |LpjLpj+1| ≤ Rmax for j = 1, 2, ..., k − 1. ;

where P(L,D) = {(Lp1,Dp1),(Lp2,Dp2),...,(Lpk,Dpk)} denotes the communication path from a

visual sensor node (L,D) to the base station BS. For a sensor (L′, D′), you can just use

whether (L′, D′) ∈ P(L,D) to test if this sensor is on the path from sensor (L,D) to the base

station. TL(L,D) used to denote the traffic load on wireless visual sensor (L,D). Without

loss of generality, we assume the visual data traffic rate collected from each visual sensor is

1 unit. We then have
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TL(L,D) =
∑

1≤m≤N

(L′m, D
′
m)× 1(unit)

3.4 Solutions

In this section, we first present our load balance algorithm that can achieve optimal

solution for a given network topology. We then use it as a building block to further solve

our formulated WVSN deployment problem for 3D indoor monitoring.

3.4.1 Optimal Load Balance on Given Network Topology

Common strategies to balance the traffic loads flowing in WSNs are mainly based on

tree topology, with the base station as the root. Yet, as aforementioned in Figure 1, using

tree topology may yield sub-optimal results since it eliminates the opportunities that some

sensor nodes in the network may connect to multiple neighbors closer to the base station

to further balance the traffic loads. To this end, we transform the load balance problem

into a generalized max-flow problem to optimally balance the traffic loads. In particular,

as illustrated in Figure 3.2, we add a virtual source node which directly connects with each

sensor node in the given network topology except for the base station. We call each edge

added to connect the source node and one non-base-station node a virtual edge and assign

1 unit of traffic flow as the link capacity on each virtual edge. The maximum number of

traffic flows that can be delivered from the source to the base station is thus equal to the

number of non-base-station nodes in the topology. In order to count the traffic flows through

each non-base-station node rather than counting flows on edge, each non-base-station node

is divided into two sub-nodes as entrance-node and exit-node, and then an edge is added

to connect them. Every traffic flow originally going through the non-base-station node now

must go into its entrance-node and out from its exit-node. Initially, we assign 1 unit of traffic

flow as the link capacity to each non-virtual edge. The allowed max-flow to the base station
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is then calculated based on the condition given above. For each following iteration, the link

capacity of each non-virtual edge will be increased by 1 unit until the calculated max-flow

is equivalent to the number of traffic flows needed to be delivered from the source node (i.e.,

the number of non-base-station nodes). Then the path for each non-base-station node can

be obtained from the corresponding max-flow result.

Theorem

Theorem 2. On any given network topology, Optimal Load Balance algorithm can return

the optimal solution for minimizing the bottleneck of traffic load flows.

Proof. The Optimal Load Balance algorithm is transformed from generalized Max-flow al-

gorithm showing above. The correctness of Optimal Load Balance algorithm can be proofed

by contradiction. Assume there is another optimal solution that can achieve N with k′ < k

while our solution can achieve N with k. Then it means that on the topology, with each

non-virtual edge of capacity k′, the max-flow algorithm can already return N . However,

for our algorithm to return k, it means that with k′, the max-flow algorithm cannot return

N . So that we can proof that the Optimal Load Balance algorithm can produce optimal

solution.

3.4.2 Greedy Heuristic Algorithm

With the optimal load balance algorithm as a building block, we next present the

design of our Greedy Heuristic algorithm based on our previous work in Brown et al. (2017),

where we can garner locally optimal candidate locations and use them as the start point for

our enhanced depth first search algorithm to be proposed in the next subsection. Algorithm

2 shows our Greedy Heuristic algorithm, which, in each iteration, deploys an sensor node

the candidate location that can cover the maximum number of fresh grid vertices within

the monitored space A (i.e., the grid vertices that have not been covered by any previously

deployed sensor node) while considering the traffic load bottleneck. Specifically, we use

a while loop to check if any coverable 3D regions and candidate placement locations are
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Figure 3.2. Transformed max-flow graph based on Figure 3.1. (A: base station, S: virtual-
source, arrow-edge: virtual-edge, in: entrance-node of C, and out: exit-node of node C)
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Algorithm 3 Greedy Heuristic Algorithm

Input: A, D, L
Output: Set of S

Initialize: List of A, D, L and final.
1: while L 6= ∅ and A 6= ∅ do
2: for all CL in L do
3: if CL within Rmax of any deployed visual sensor then
4: for all face ∈ D for L do
5: if CL Fc∗ >CL Fc then
6: update CL max

7: end if
8: end for
9: record CL max into templist

10: end if
11: end for
12: sort templist based on the number of Fc

13: record CL max in templist when more than one
CL max exist

14: for all CL max do
15: pick up the one with minimum traffic flow bottleneck
16: end for
17: remove CL max from L and update A
18: end while
19: return final
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available (line 1). In the for loop we evaluate each candidate location CL in L, checking to

see if it is within the communication range, Rmax (line 3). For each facing direction face ∈ D

(where D denotes the set of facing direction), we check each monitoring point which is within

the covered field by current candidate location CL. We compute all the face for the candidate

locations CL and pick the face covering the maximum number of monitoring points Fc (line

4-8), where Fc denote the points set that are already covered. After the for loop, we record

all the candidate locations into a tempList for later using and store the max Fc number

with each candidate location. Then, the tempList is sorted by descending order of the max

Fc number. After sorting the tempList, if more than one CL with the same Fc number on

the top rank, these candidate locations will be recorded and then evaluated based on our

Optimal Load Balance algorithm to calculate the traffic load bottleneck. They are then

resorted increasingly according to the traffic load bottleneck. These candidate locations will

be recorded and each one of them will be evaluated based on the Optimal Load Balance

strategy to calculate the traffic load bottleneck which is a number. Resort the top rank

candidate locations rely on the number of traffic load bottleneck by ascending order. At the

end of each iteration of the while loop, the Greedy Heuristic Algorithm then choose from

current D the candidate location where the deployed visual sensor can cover the maximum

number of vertices Fc as well as cause the minimum traffic load bottleneck (line 12-16). After

the candidate location is chosen by the Greedy Heuristic Algorithm and a visual sensor is

deployed at that location to cover maximum fresh vertices, then the candidate location CL is

recorded into final list, and these vertices are then removed from A and the chosen candidate

location is removed from L. We then start a new iteration to find next candidate location

CL that will cover the maximum number of fresh vertices in A and cause minimum traffic

load bottleneck. The final list of S = {(L1, D1), (L2, D2), ..., (Ln, Dn)} that will fully cover

the 3D monitored space is then returned (line 19).
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Algorithm 4 Enhanced-DFS Algorithm

Input: L, A, D
Output: Minimized set of |S| = n,

Initialize: List of A, D, L and best
1: DFS(depth)
2: if depth ≥ best then
3: return
4: end if
5: if A == 0 then
6: update best
7: else
8: for all CL in L do
9: compute all face ∈ D for CL

10: select face with max Fc

11: end for
12: sort tempList by descending order according Fc

13: for all rank (i.e., all CL with the same max Fc) in tempList do
14: resort each rank by ascending order
15: end for
16: store tempList → Queue
17: while Queue 6= Ø do
18: CL ← Dequeue
19: if CL within Rmax of any deployed visual sensor then
20: if lowerBound(F ) + depth ≥ best then
21: break
22: end if
23: record CL∗ and Fc∗ then remove them
24: DFS(depth+1)
25: add Fc∗ back to A
26: end if
27: end while
28: add all removed CL∗ back
29: end if
30: return best
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3.4.3 Enhanced Depth First Search Algorithm

The Greedy Heuristic algorithm deploys visual sensors one by one with local opti-

mal decisions, which may still be sub-optimal from a global point of view. To this end, we

further propose an Enhanced-DFS algorithm, which can not only further improve the qual-

ity of the solutions found by the Greedy Heuristic algorithm, but also obtain the optimal

solutions from the discrete problem if given enough time. Different from Traditional DFS

algorithms that exhaustively evaluate each searching branch, out Enhanced-DFS algorithm

use branch pruning to cut the candidate location searching branches that are guaranteed

not able to improve the currently found best solution, so that the explored solution space

can be significantly reduced. Algorithm 3 summarizes our Enhanced-DFS algorithm, where

depth denotes the number of used visual sensors to cover the space in the current search

branch, and best is initially the final list obtained from our Greedy Heuristic algorithm.

Our first enhancement is to determine its feasibility by comparing the current search branch

to out best found solution (line 2). We next check to see if there are remaining points to

be covered in A, if no we update best and go one step backward along the current search

branch; otherwise we continue (line 7-31). To further improve the solution efficiency, our

second enhancement selects the location in each iteration by sorting all of CL in descending

order based on the maximum number of fresh vertices that a visual sensor placed at the

corresponding location can cover and the produced facing direction is handled in a similar

way. In each rank of the sorted list (where all the considered visual sensors can cover the

same number of fresh vertices), if there are more than one candidate locations on that rank,

another sorted function will be called to further sort these candidate locations by ascending

order based on traffic load bottleneck number (line 8-16). This can further reduce the chances

to select infeasible solution options so as to quickly find better quality candidate location

options. A similar enhancement approach is used when selecting the facing direction of a

visual sensor. We also ensure in the algorithm, that all the candidate locations in the list

have a communication path to the base-station (line 20). The next enhancement is defined
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by the following constraint:

F

F 1
c

+ depth < best

where F denotes the remaining fresh vertices ready to be covered, F 1
c represents the number

of covered vertices by the first visual sensor of current set S, (where we choose F 1
c as de-

nominator due to that since all the candidate locations has been sorted before choosing by

descending order, the number of fresh vertices covered by the first visual sensor is the maxi-

mum compared with others, which can guarantee the best solution will not be pruned). (line

21-25) The function of this constraint is to bound the currently estimated branch that the

number of candidate locations to cover the remaining fresh vertices plus the depth must be

smaller than the currently found best solution, otherwise the branch will be pruned. An up-

date is done by removing the candidate position in L where visual sensors have already been

deployed and removing the accordingly covered vertices from A. Next, we recursively call

the enhanced DFS search to explore the remaining search branches (line 26). A minimized

set of |S| = n, where S is optimal is returned in best as shown in line 32.

3.5 PERFORMANCE EVALUATION

We conduct extensive simulations to evaluate our solution using a customized simu-

lator implemented by JavaScript, which can emulate the 3D deployment of wireless visual

sensor nodes in a virtual environment. Table 3.1 outlines the default parameter settings

that are utilized in the performance evaluation. For comparison, we implement a baseline

algorithm that randomly selects locations in L to deploy visual sensors without considering

traffic load balance. Once a location is selected, the facing direction of the visual sensor is

adjusted to greedily cover the maximum number of fresh grid vertices in A. If the visual

sensor cannot cover any fresh vertices, it will be removed and another random location will

be selected, and the candidate location must satisfy the network connectivity requirement

32



as well. This process will continue until all the grid vertices in A have been covered. For

each setting, we run the baseline algorithm for 100 times and show the average of the results

with an error bar to indicate the minimum and maximum values.

Figure 3.3 shows the number of visual sensors deployed by different approaches with

various 3D indoor space. As expected, that with the size of the 3D indoor space increasing,

more visual sensors are required to cover the indoor space. However, our greedy algorithm

produces a 62.5% reduction on the number of visual sensors compared with the baseline

algorithm. The Enhanced-DFS can further outperform Greedy algorithm by up to 17%. It

is worth nothing that although we run the simulation on a standard PC with configurations

listed as: i7 processor, 16GB RAM, 1TB SSD and set a short time limitation (1 hour) for the

enhanced DFS solution in our evaluation, it can still successfully return the optimal results

for the case with the length of 3D indoor space equal to 100 and 200. We thus conjecture

that our Enhanced-DFS solution can return optimal results for more cases if it runs on a

local or cloud server that has much more computation power and more time is allowed. In

Figure 3.4, we show the trade-off between the number of visual sensors required to cover the

entire 3D indoor space and the bottleneck of traffic load. As less number of sensor nodes

can cause fewer options of forwarding paths, which leads to larger bottleneck of traffic loads

as illustrated in Figure 3.4. Meanwhile, the greedy heuristic algorithm and enhanced-DFS

algorithm tremendersly outperform the random algorithm which is the base line by 73%.

In Figure 3.5, we further examine the performance of our optimal load balance algorithm

by comparing it with the solution that uses the best tree topology that can be found to

minimize the traffic bottleneck, where both approaches are working on the network toplogies

generated by our greedy heuristic algorithm. It is clear to see that our approach can further

reduce the bottleneck of traffic load by up to 20%, further demonstrating its optimality on

minimizing the traffic load bottleneck.
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Testing Parameters
Parameter Default Value
3D indoor space Length× 60× 100
A Same as 3D indoor space
L Top half of walls and ceiling
gA 25
gL 25
gD 15 degrees
FOV 50 degrees
Aspect Ratio 1.7778
Near Field 1
Far Field 100

Table 3.1. Simulation parameter settings

Figure 3.3. Variation of Indoor Space
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Figure 3.4. Variation of Traffic Bottleneck
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Figure 3.5. Traffic Load Variations in Different Structures
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CHAPTER 4

LINK LAYER SCHEDULING: A CROSS-LAYER DESIGN APPROACH

4.1 BACKGROUND

Wireless visual sensor networks (WVSNs) play a prominent role in a wide range of

applications such as environmental monitoring, military, industrial, medical, and security

Akyildiz et al. (2002); Huang and Tseng (2005) where a typical sensing environment is a 3D

indoor space with visual sensors attached to walls and/or ceilings to monitor activities of

targets within the sensing field. For example, the newly emerged shopping applications such

as Amazon go and Alibaba Tao Cafe 1, where customers may purchase products without

being checked out by a cashier or using a self-checkout station. All the operations such

as product counting, user account matching, and payment processing are achieved through

visual sensors with deep learning algorithms and data fusion technologies. However, all the

visual sensors are wired connected for the current version. The wireless version is needed to

address the unexpected situation such as power outage, emergent moment. Dislike traditional

sensors such as temperature or light sensors often having ominidirectional sensing range, fan-

shape and pyramid-shape are often considered for the sensing range of a visual sensor in 2D

and 3D Xu et al. (2015), respectively, which renders the deployment solutions for traditional

sensors and 2D sensing field incapable of solving the WVSN deployment problem for 3D

indoor space monitoring Deif and Gadallah (2013); Han et al. (2012); Raha et al. (2012);

Horster and Lienhart (2006); Morsly et al. (2011); Zhang et al. (2009); Newell et al. (2010);

Wang et al. (2019); Brown et al. (2017).

Moreover, as all the visual streaming data generated from each visual sensor are

1https://syncedreview.com/2018/01/22/amazon-go-vs-alibaba-tao-cafe-staffless-shop-showdown/
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required to be collected back to the base station for further processing, this also differs

from the data aggregation approaches often used in traditional wireless sensor networks

Krishnamachari et al. (2002); Fasolo et al. (2007). If the transmission path for each visual

sensor cannot be carefully handled, a sensor can be easily overloaded. Furthermore, if each

sensor is powered by battery (e.g., during a power outage or an emergency moment), the

network lifetime can be significantly shortened due to the quickly draining off of the battery

power. To this end, we note that most of existing solutions for traffic load balance in

Wireless Sensor Networks (WSNs) are modeled by tree topology rooted at the base station

such as Soro and Heinzelman (2005, 2009). However, using tree topology may eliminate

the opportunities that some sensor nodes in the network may connect to multiple sensors

closer to the base station to further balance the traffic loads, and sub-optimal results may

be yielded through such tree topology based strategies. Therefore, it is necessary to consider

the full network topology to maximize the benefit of load balance.

In addition, to make sensor nodes share the wireless media fairly and effectively,

a Link layer scheduler is usually employed at the MAC protocol level to ensure efficient

communications in the network. Yet due to the extremely large size of captured visual data

in WVSNs compared with scalar data in WSNs, the communication scheduling solutions

proposed for WSNs are often found insufficient to solve the problem in WVSNs Kacimi et al.

(2013); Lipare et al. (2019). Therefore, the deployment of WVSNs must not only guarantee

the 3D indoor area coverage and connectivity between visual sensors and the base station,

but also ensure that the scheduling of data collection and communication is organized fairly

and efficiently in order to minimize the communication overhead, shorten the total latency,

and prolong the lifetime of the entire network.

To address all these aforementioned issues, in this chapter we take a cross-layer de-

sign approach, striving to provide a holistic solution across visual sensor coverage, end-to-end

streaming data delivery, network traffic load balance and wireless link scheduling. In par-

ticular, we first model the wireless visual sensor deployment and scheduling as a cross-layer
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optimization problem. We then use a divide and conquer strategy to further study two

subproblems, i.e., for a given network topology, how to achieve optimal traffic load balance

and then optimal link scheduling, respectively. For the former subproblem, we work on the

full network topology, transforming the traffic load balance problem into a generalized max-

flow problem and propose an efficient algorithm accordingly. For the latter, we customize

the TDMA MAC protocol by developing a busy link first edge coloring algorithm that can

well afford heterogeneous loads among different links to further optimize the link schedul-

ing. With these building blocks, we further develop SEED, a SchEduling-aware Enhanced

Depth-first search algorithm that can effectively prune sub-optimal searching space and yield

optimal solution for the original cross-layer optimization problem if given enough time.

We have conducted extensive simulations to carefully examine our proposed solution.

The results show that our solution can greatly reduce the overall communication latency

up to 39% compare to standard TDMA solution, and achieve excellent load balance by

reducing up to 20% of load on the bottleneck compared to the strategy with tree topology

while minimizing the number of deployed visual sensors up to 64% compared to the baseline

algorithm.

The remainder of the chapter is organized as follows. In Section II, we present the

related works. Section III provides our problem formulation. In Section IV, we first discuss

our two sub-solutions for full network topology based load balance as well as cross-layer link

scheduling, respectively, and then use them as building blocks to further develop SEED, a

SchEduling-aware Enhanced Depth-first search algorithm that is capable to yield optimal

solution. Evaluation results are presented and discussed in Section V.

4.2 RELATED WORK

WSNs have renovated many research areas by providing reliable and scalable tech-

nologies over the past decade. As one of the most recent advances of WSNs, a fast-growing

interest is also seen in WVSNs Tavli et al. (2012). Although there have been numerous
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studies to explore and address the deployment problem in WSNs Raha et al. (2012); Akshay

et al. (2010); Li et al. (2003), the unique features of wireless visual sensors and the resulting

differences on sensing range, device cost, data collection pattern, etc. render these previously

proposed solutions cannot be directly applied to solve the problem in WVSNs Megerian et al.

(2005).

To this end, a Depth First Search algorithm was developed to address both sensing

coverage and network connectivity issues in Sheramin et al. (2010). Chow et al. Chow

et al. (2007) proposed a simple model to provide maximum angular coverage in WVSNs by

generating a minimum set of sensors to cover all objects of interests. In paper TYen (2014),

the authors proposed a novel approach to sensor deployment problem, where a PTZ camera

is used in a WVSN. The similar work to ours is proposed in paper Yen (2013), where a

WVSN is used for sensor coverage problem. A greedy heuristic approach FoVIC has been

proposed where the objective is to cover the maximum number of uncovered nodes within

the area via a mathematical model. However, these pioneering works mainly considered 2D

deployment scenarios, which become less effective and inaccurate to solve the problems in

3D indoor monitoring.

On the other hand, the authors in Kacimi et al. (2013) proposed a heuristic algorithm

which combines load balancing with transmission power control to address the traffic load

balancing problem in WSNs. In Lipare et al. (2019), the Grey Wolf Optimization approach

for energy-efficient clustering and routing has been applied to tackle the load balancing

problem in WSNs. However, these aforementioned works are mainly focused on WSNs.

TDMA MAC protocol has been employed by Gandham et al. (2008) to address the problem

of link scheduling. Two phases were consisted in their link scheduling algorithm. The

authors attempt to assign a transmission direction along each edge, so that the hidden

terminal problem can be avoided. Moreover, reversing the direction of transmission along

every edge leads to another feasible direction of transmission has been demonstrated by

their work. Pantazis et al. (2009) proposed a TDMA scheduling scheme for energy efficiency
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which achieves high levels of power conservation while reduces the end-to-end transmission

delay. They claim that only one sleep interval for the end-to-end transmission from the

sensors to the appropriate gateway need to be sacrificed as delay when using their WakeUp

intervals solution. A multi-objective TDMA scheduling problem for many-to-one wireless

sensor networks was presented by Mao et al. (2007), which is used to save this part of

energy and further improve the time performance. An effective optimization framework has

been proposed which combine genetic algorithm and particle swarm optimization algorithm

together to enhance the searching ability. They demonstrated that the proposed hybrid

algorithm outperform these two algorithms on total time or total energy for data collection.

However, the aforementioned existing solutions are all dedicated for WSNs, that all deal with

scalar data instead of visual streaming data (i.e., the larger size of visual data). Therefore,

the solutions for WSNs are incapable for solving the problem in WVSNs. Based on our

knowledge, this is the first work addressing scheduling problem in WVSNs.

4.3 PROBLEM STATEMENT

We consider a 3D indoor space, where some 3D areas are required to be fully covered

by visual sensors. Only certain locations can be used to deploy the visual sensors such as

ceiling and/or the upper half of the wall. After a visual sensor is deployed, its facing direction

will be adjusted to a certain direction and then stay there during the whole monitoring

period. Our first objective is to use minimum number of visual sensors to fully cover all the

required 3D indoor space. Beyond this basic requirement, there are other issues that may

also need to be considered, e.g., the 3D indoor space may not be covered by WiFi, or the

WVSN is required to communicate out of the WiFi band to minimize the interference with

the normal WiFi traffic. Therefore, the deployment must ensure that the entire network is

fully connected by its own wireless communication to the base station. Another issue is that

since the deployment of the WVSNs may not be considered during the building design and

construction phase, which means that the continue power supply may not be available to
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the visual sensors, the deployment then needs to consider the network lifetime if the visual

sensors can only be powered by batteries. Furthermore, the traffic load on each visual sensor

and the number of time-slots used to transmit visual data back to the base station must also

be minimized and well scheduled in order to shorten the transmission delay and prolong the

overall lifetime of the entire network.

Let A represents the areas that need to be monitored in the given 3D indoor en-

vironment. We use L to denote the candidate location set (e.g., ceiling and upper half of

walls) where the wireless visual sensor can be deployed. A tuple (L,D) represents the visual

sensor that is deployed at the location L ∈ L with D as the facing direction. We divide the

continuous space in A and L into discrete grids, and use gA to denote the granularity of the

grids used in A and gL the granularity in L. In addition, we also divide the surface of the

facing direction sphere into grids (e.g., like the longitudes and latitudes divide the surface of

the earth) and use gD to denote the granularity.

We assume that, time is divided into equal intervals referred to as time-frames, and

each time-frame can be further split into slots of identical length referred to as time-slots.

We use slot to denote one single time slot. The considered wireless visual sensor network

can be deemed as a graph G = (V,E). Each v ∈ V denotes a wireless visual sensor,

and every e ∈ E represents the communication link between two sensors or between a

sensor to the base station. Rmax denotes the maximum communication range achievable

for each wireless visual sensor node. Our objectives are thus to find the deployment plan

P = {(L1, D1), (L2, D2), ...}, and the contention-free link layer scheduler. As visual data

streaming is often collected in a round by round manner in WVSNs, we let the data generated

at node vi be ri packets per round, for i = 1, 2, ..., |V |, and v0 represents the base station.

Let t0 denotes the time that a data collection round starts.

Define a link schedule as Schedule = {(lx1,y1 , t1) , (lx2,y2 , t2), ..., (lxk,yk , tk)}, t0 ≤ t1 ≤

... ≤ tk, where (lxi,yi , ti) means that the link at edge (xi, yi) will be activated at time ti to

send a packet from sensor xi to yi. The deployment and traffic scheduling together can thus
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be formulated as a cross-layer optimization problem to find a deployment plan P and link

schedule Scheduler, subject to the following constrains:

(1) Area Coverage Constraint:

∀a ∈ A,∃(L,D) ∈ P, such that a ∈ cover(L,D,RS) ,

where RS is the sensing range of a visual sensor and cover(L,D,RS) represents the 3D space

covered by the visual sensor at (L,D).

(2) Interference-free Constraint:

∀(lxi,yi , ti), (lxj ,yj , tj) ∈ Scheduler, if ti = tj,

then, |xi, xj| > Rmax, |xi, yj| > Rmax, |yi, xj| > Rmax,

|yi, yj| > Rmax, xi 6= xj, xi 6= yj, yi 6= xj, yi 6= yj.

(3) Traffic Source Constraint:

ri +
∑

(Lxj,yj ,tj)∈Schedule

I[yj=vi] =

∑
(lxj,yj ,tj)∈Schedule

I[xj=vi];

(4) Traffic Destination Constraint:

∑
(lxj,yj ,tj)∈Schedule

I[yj=v0] =
∑

1≤i≤|V |

ri;

where I[·] is the indicator function. Constraints (3) and (4) focus on end-to-end traffic, which

follow that when the data collection round finishes, each sensor must send out all its data

packets and the base station must receive all of them. In order to minimize the visual data
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streaming delay of the entire WVSN, an utility function is established as bellow:

U(G) =
1

tk

The rationale therein is that maximizing U(G) can minimize the number of slots in a frame,

which can potentially increase the throughput (i.e., allow better streaming quality) or de-

crease the latency to send all streaming data to the base station (i.e., minimize the streaming

delay). Additionally, maximizing U(G) can improve the reliability as in practice some saved

time slots can be added back to the end of the schedule and used to rescue the occasionally

lost packets.

Our objectives are thus to (a) minimize |P |, (b) minimize the traffic bottleneck, i.e.,

the load of the wireless communication link with the maximum traffic load among all the

wireless communication links min{max
ei∈E

∑
(lxj,yj ,tj)∈Scheduler

I[lxj,yj=ei]}, (c) maximize the utility

of visual data streaming max{U(G)}. In practice, these objectives may conflict with each

other and not achieve optimal simultaneously. In order to maximize the benefits, we adopt a

linear combination to merge them into one objective function, which in practice can provide

more flexibility to users according to their preferences (e.g., users can give 30% of weight to

minimize traffic bottleneck and 70% of weight to maximize the utility of visual data steam-

ing). Therefore, we use α and β to represent the weight of max
ei∈E

∑
(lxj,yj ,tj)∈Scheduler

I[lxj,yj=ei]

and U(G), respectively, where α + β = 1. In this combined objective function, our goal is

to minimize the combination of total number of visual sensors, traffic bottleneck, and total

time-slots, where total time-slots can be denoted with the reciprocal of U(G). Then, the

objective function can be presented as

min{|P |+ αmax
ei∈E

∑
(lxj,yj ,tj)∈Scheduler

I[lxj,yj=ei] + β
1

U(G)
}.

Since the first priority of this optimization is to minimize the total number of visual sensors,
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the number of traffic loads and time slots have been normalized into range 0 to 1. Let m,n

represent max
ei∈E

∑
(lxj,yj ,tj)∈Scheduler

I[lxj,yj=ei] and 1
U(G)

, respectively. Then, we have mnormalized =

m−mmin

mmax−mmin
, and nnormalized = n−nmin

nmax−nmin
. Therefore, the summation of αmnormalized+βnnormalized

should be in range 0 to 1 as well.

4.4 SOLUTION DESIGN

We use a divide and conquer strategy to tackle the formulated cross layer optimization

problem. Specifically, we first propose a solution to achieve optimal traffic load balancing

in a given network topology, which is discussed in the previous chapter. We then present

a collision-free scheduling solution named Busy Link First algorithm which can also obtain

the optimal result for a given traffic load. Finally, we use them as building blocks to further

solve the original cross layer optimization problem.

4.4.1 Busy Link First Algorithm

For a given topology, we can apply the Edge-Coloring algorithm to group together the

communication links together that can carry out transmission simultaneously. Edge-coloring

of a graph is an assignment of ”colors” to the edges of the graph so that no two incident

edges have the same color. For example, Figure 4.1 shows an edge coloring of a graph by the

colors red, blue, and green. The edges in the graph can be deemed as wireless communication

links, and the vertices can be wireless visual sensors in the WVSN. Therefore, since edge

AC, BE and DG have been colored by red, the wireless communications between AC, BE

and DG can be performed simultaneously, the same situation for AB and CF. However,

the communication between BD has to occupy additional time interval. As such, the links

with same color can transmit messages simultaneously without collision, which serves as

fundamental base of collision-free traffic scheduling algorithm.

When we deal with scalar data captured by normal wireless sensor, it can be trans-

ferred within single time-slot for each group of communication links with same color due
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to the smaller size of data, even the accumulated data can be forwarded to the next hop

within single time-slot. In such cases, the traditional TDMA solution can be directly applied,

and the total number of time-slots used in each round is equal to the number of groups of

communication links (i.e., the number of colors).

However, in WVSNs, we collect visual data which is much larger than scalar data

in size, and some wireless visual sensors have to serve as relay node to forward visual data

for other sensor nodes. Therefore, the captured visual data or accumulated data cannot be

transmitted to next hop within single time-slot in each round. In order to collect all the

captured visual data to the base station in each round, multiple time-slots have to be applied

to some groups of communication links.

Moreover, we note that the time-slots used by each group of communication links

may not be equal, where the number of time-slots for each group is decided by the busiest

communication link in the group. For instance, without loss of generality, assuming in Figure

4.1 each visual sensor generates 1 unit of visual data in each round, and 1 unit of visual data

can be transmitted to next hop within 1 time-slot. Figure 4.2 shows the network topology

with traffic load attached beside each communication link to illustrate how much traffic may

go through the corresponding link. From Figure 4.2, we know that communication links

CF, BE, and DG transmit 1 unit of visual data in each round (i.e., 1 unit/round), BD and

AC transmit 2 unit/round, and AB transmits 4 unit/round. According to Figure 4.1 which

indicates the same network topology as figure 4.2, we know that the total communication

links need to be divided into 3 groups in order to achieve conflict-free transmission based

on the edge-coloring solution. Since identical time-slots have to be assigned to each group

in traditional TDMA, 12 time-slots are needed to collect all the visual data back to the

base station in each round, where 12 time-slots are calculated by 4 unit/round times 3

groups, where 4 unit/round has to be chosen as the number of time-slots for each group of

communication links due to the traffic load of the most busy link is 4 unit/round. However,

according to Figure 4.1 and 4.2, since we know the maximum traffic load within each group of
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communication links as 2 unit/round in red group, 4 unit/round in green, and 2 unit/round

in blue group, respectively, then it is easy to calculate how much time-slots will be wasted

if the traditional TDMA solution has been applied (i.e., 4 time-slots are wasted in each

round as 2 time-slot in red + 2 time-slots in blue = 4 time-slots). However, if we know the

exact traffic load for each communication link, the total time-slots used to collect all the

visual data back to the base station in each round can be dramatically decreased, because

we can customize the time-slots for each group of communication links according to the

maximum traffic load in each group. This can be achieved by retrieving the exact traffic

load information from the network layer in our cross-layer design approach. As a result,

when we apply color assignment solution provided in Figure 4.1, 8 time-slots are needed to

collect all the data in each round. The group of communication links with red color occupies

2 time-slots, the group with blue color needs 2 time-slot, and group with green color uses 4

time-slots, respectively.

It is worth nothing that the color assignment solution for each network topology is

not unique. For instance, Figure 4.1 and 4.3 are showing two color assignment solutions for

the same network topology, and there may exist more color assignment solutions for this

network topology. Since multiple color assignments exist for each network topology, one

nature question is whether they are the same or some one is better than others in terms of

shortened delay when performing data collection. According to color assignment solution

presented in Figure 4.3, only 7 time-slots are needed to achieve the same goal which is

even better than the solution showing in Figure 4.1 (8 time-slots). Therefore, different color

assignment solutions may have diverse performance in terms of shortened delay. And our

goal is thus to explore one of the most efficient color assignment solutions among all the

combinations of communication links. To this end, we develop Busy Link First Algorithm to

optimally address this problem. The Busy Link First algorithm sorts all the communication

links in descending order according to their traffic load. It then picks the most busy and

available communication link to assign the color first, which can generate the optimal solution
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in terms of minimizing the total number of time-slots as shown by the below theorem.

Theorem 3. On any given network topology, Busy Link First algorithm can return the

optimal solution to minimize the total number of required time-slots.

Proof. Suppose there are totally p groups of communication links generated from the edge-

coloring solution. Let Li represents the communication link with the maximum traffic load

in group i, where 1 ≤ i ≤ p. Then the final solution getting from Busy Link First algorithm

is S∗ = {L∗p, L∗p−1, ..., L∗i , ..., L∗1}, where the items in S∗ are in descending order. Assuming

that S ′ exists which is better than S∗ in terms of total time-slots used. Therefore, within

S ′, ∃ L′m and 1 ≤ m ≤ p, where L′m < L∗i , which means that L∗i can be replaced by L′m

the communication link with smaller traffic load. According to Busy Link First Algorithm

which is greedy algorithm, L∗i has been chosen in group i due to L∗i is conflict with members

in group n (i.e., the links with larger traffic load and directly connecting with L∗i are already

added into group n), where i < n ≤ p. If L∗i can be replaced by L′m, L∗i has to be added

into group n, it makes L∗i conflicted with neighbor link who is already added into that

group, which leads the contradiction. Therefore, the solution generated by our algorithm is

optimal.

Algorithm 5 summarizes our Busy Link First Algorithm, which takes a set of com-

munication links with traffic load on each link. Then, according to the traffic load of each

communication link, the communication link set is sorted in descending order (line 1). Within

the while loop, the busiest and available edge is chosen and assigned a free color (line 4-10).

For each set of communication links with the same color, the algorithm finds out the busiest

link within each color and put the link into a set B (line 12-16). Thereafter, the number

of time-slots for each set of communication links (i.e., the communication links have been

assigned with same color) is assigned according to the traffic load of the busiest link within

the corresponding set. Finally, the optimal time-slots assignment solution S is returned.
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Figure 4.1. Example of Edge Coloring
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Figure 4.2. Network Topology with Traffic Load
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Figure 4.3. Example of Different Edge Coloring
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Algorithm 5 Busy Link First Algorithm

Input: A graph G. A set of communication links with traffic load as edge set E(G)
Output: Time-slots assignment solution S
1: Sort E(G) according to traffic load in descending order.
2: Let U := E(G)
3: while U 6= ∅ do
4: Let (u, v) be most busy edge in U .
5: Let F [1 : k] be a maximal fan of u starting at F [1] = v.
6: Let c be a color that is free on u and d be a color that is free on F [K].
7: Invert the cdu path.
8: Let w ∈ V (G) be such that w ∈ F, F ′ = [F [1]...w] is a fan and d is free on w.
9: Rotate F ′ and set c(u,w) = d.

10: U := U − {(u, v)}
11: end while
12: for color c in all assigned colors do
13: for edge e in E(G) do
14: if color of e is c and traffic load is larger than S(c) then
15: update S(c)
16: end if
17: end for
18: end for
19: return S

4.4.2 SchEduling-aware Enhanced Depth-first search Algorithm

With the Busy Link First algorithm as building block, we propose a visual sensor de-

ployment solution named SchEduling-aware Enhanced Depth-first search algorithm (SEED)

which can obtain optimal solution if given enough time. Dislike Traditional DFS algorithms

that exhaustively evaluate each search branch, SEED algorithm uses branch pruning to cut

the candidate location searching branches that are guaranteed not able to improve the cur-

rently found best solution, so that the explored solution space can be significantly reduced.

Algorithm 6 summarizes SEED algorithm, where depth denotes the number of used visual

sensors to cover the space in the current search branch, and best is the currently found best

solution. Our first enhancement is to determine its feasibility by comparing the current

search branch to our best found solution (line 2). We next make a decision that whether

we need to update best or trim the current branch. If the current solution is better than

the best, the final solution set Sminresult
is reset to be empty, and the Busy Link First algo-
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rithm is applied to calculate the minimum number of time slots under the current network

topology. Meanwhile, the currently best found solution is added into Sminresult
(line 6-11).

To further improve the efficiency of SEED, out second enhancement selects the location in

each iteration by sorting all of remaining L ∈ L in descending order based on the maximum

number of fresh vertices that a visual sensor placed at the corresponding location can cover

and the produced facing direction is handled in a similar way (line 13-21). This can further

reduce the chances to select infeasible solution options so as to quickly find better quality

candidate location options. We also ensure in the algorithm, that all the candidate locations

in the list have a communication path to the base station (line 24). The next enhancement is

defined by the following constraint: F
F 1
c

+ depth < best where F denotes the remaining fresh

vertices ready to be covered, F 1
c represents the number of covered vertices by the first visual

sensor of current solution, (where we choose F 1
c as denominator due to that since all the

candidate location has been sorted before choosing by descending order, the number of fresh

vertices covered by the first visual sensor is the maximum compared with others, which can

guarantee the best solution will not be pruned). (line 25-30) The function of this constraint

is to bound the currently estimated branch that the number of candidate locations to cover

the remaining fresh vertices plus the depth must be smaller than the currently found best

solution, otherwise the branch will be pruned.

4.5 PERFORMANCE EVALUATION

An extensive simulations are conducted to evaluate our solutions using a customized

simulator implemented by JavaScript, which can emulate the 3D deployment of wireless

visual sensor nodes in a virtual environment. Table I outlines the default parameters settings

that are utilized in the performance evaluation.

For comparison, we implement a baseline algorithm that randomly selects locations

in L to deploy video sensors. Once a location is selected, the facing direction of the visual

sensor is adjusted to greedily cover the maximum number of fresh grid points (i.e., those
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Algorithm 6 SchEduling-aware Enhanced Depth-first search Algorithm

Input: L, A, D
Output: Set of minimized deployment solutions Sminresult

Initialize: List of A, D, L and best
1: DFS(depth)
2: if depth ≥ best then
3: return
4: end if
5: if A == 0 then
6: if depth < best then
7: clear Sminresult

8: end if
9: update best

10: minresult.timeSlots← BusyLinkFirst
11: add minresult → Sminresult

12: else
13: for all CL in L do
14: compute all face ∈ D for CL

15: select face with max Fc

16: end for
17: sort tempList by descending order according Fc

18: for all rank (i.e., all CL with the same max Fc) in tempList do
19: resort each rank by ascending order
20: end for
21: store tempList → Queue
22: while Queue 6= Ø do
23: CL ← Dequeue
24: if CL within Rmax of any deployed visual sensor then
25: if lowerBound(F ) + depth ≥ best then
26: break
27: end if
28: record CL∗ and Fc∗ then remove them
29: DFS(depth+1)
30: add Fc∗ back to A
31: end if
32: end while
33: add all removed CL∗ back
34: end if
35: return Sminresult
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Testing Parameters
Parameter Default Value
3D indoor space Length× 60× 100
A Same as 3D indoor space
L Top half of walls and ceiling
gA 25
gL 25
gD 15 degrees
FOV 50 degrees
Aspect Ratio 1.7778
Near Field 1
Far Field 100

Table 4.1. Simulation parameter settings

points that have not been covered by previously deployed visual sensors). The visual sensor

will be removed if it cannot cover any fresh points, and another random location will be

selected. This process will continue until all the grid points in A have been covered. We run

the baseline algorithm 100 times to show the average results. In this random algorithm, the

connectivity has not been considered. Otherwise, the result may not be able to returned,

especially for longer corridor cases. The evaluation results indicate that our solution SEED

can outperform the random algorithm by 64%.

In this paper, the original TDMA method has been implemented as baseline that equal

number of time-slots have been assigned to each group of communication links. And the time-

slot number is equivalent to the traffic load of the most busy communication link within the

entire network. Figure 4.4 shows the number of time-slots utilized by different approaches

with various 3D indoor space. As expected, more time-slots are required to transmit all the

raw data back to base station, as long as the size of 3D indoor space increasing. Moreover,

our customized TDMA without sorting algorithm produces a 25% reduction on the number

of time-slots compared with the baseline algorithm. The Busy Link First algorithm can

further outperform the customized TDMA without sorting algorithm by 29%.

It is worth nothing that we run the simulation on a standard PC with configurations

listed as: i7 processor, 16GB RAM, 1TB SSD and set a short time limitation (1 hour) for
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Corridor Length Random Algorithm (Average) SEED
100 8 3
200 14 5
300 20 8
400 26 11
500 32 13
600 38 17
700 45 19
800 50 23

Table 4.2. Total number of visual sensors used to cover the entire 3D indoor space

Figure 4.4. Comparison among three TDMA solutions
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SEED solution in our evaluation, it can still successfully return the optimal results for the

case with the length of 3D indoor space equal to 100 and 200. We thus conjecture that our

Enhanced-DFS solution can return optimal results for more cases if it runs on a local or

cloud server that has much more computation power and more time is allowed. Since the set

with minimum number of visual sensors to fully cover the monitored area is not unique, the

SEED has ability to dig out multiple sets for each corridor length. Figure 4.5 demonstrates

the upper bound and lower bound of each corridor length in the aspect of total time-slots.

The results indicate that the difference between upper bound and lower bound can be up to

46%. Similarly, Figure 4.6 shown that the gap between upper bound and lower bound can

be reach to 62% in terms of traffic load balancing.

As we mentioned in the previous section, the objectives of minimizing the traffic

load and minimizing the total time-slots may not be optimized simultaneously. There-

fore, the linear combination has been applied to maximize the total benefit from these two

objectives. Surprisingly, the evaluation results indicate that these two objectives can be

optimized at the same time in our testing cases, when we set the α and β combinations as

α = x{x|0.1, 0.2, ..., 0.9}, β = y{y|0.9, 0.8, ..., 0.1} in Table III. According to the experiment

results in Table III, we conclude that our solution is insensitive to the linear combination

weight. Furthermore, the results of minimized tradeoff combinations have been demonstrated

in Figure 4.7. In Figure 4.7, we demonstrate that the upper bound and lower bound of total

time-slots within various corridor length when the traffic load as minimum has been fixed.

Figure 4.8 shown that the objective of minimizing the total time-slots may not be achieved

automatically while we optimized the objective of minimizing the traffic load, which further

indicates the effectiveness of our solution. The similar scenario for objective of minimizing

the traffic load while fixed the total time-slots as minimum is demonstrated in Figure 4.9.
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Figure 4.5. Total time-slots boundary within various corridor length
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Figure 4.6. Traffic load boundary within various corridor length
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Figure 4.7. Minimized tradeoff combination value of traffic load and total time-slots. The
weight of α is 0.7, 0.5, or 0.3, and the weight of β = 1 - α.
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Figure 4.8. Total time-slots boundary within various corridor length while fixed the traffic
load as minimum
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Figure 4.9. Traffic load boundary within various corridor length while fixed the total time-
slots as minimum
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100 200 300 400 500 600 700 800
Traffic Bottleneck (Chosen) 1 2 2 4 5 7 10 9
Min Traffic Bottleneck 1 2 2 4 5 7 10 9
Total Time-slots (Chosen) 4 6 9 12 14 18 20 24
Min Total Time-slots 4 6 9 12 14 18 20 24
α = 0.1 β = 0.9 3.7 5.6 8.3 11.2 13.1 16.9 19 22.5
α = 0.2 β = 0.8 3.4 5.2 7.6 10.4 12.2 15.8 18 21
α = 0.3 β = 0.7 3.1 4.8 6.9 9.6 11.3 14.7 17 19.5
α = 0.4 β = 0.6 2.8 4.4 6.2 8.8 10.4 13.6 16 18
α = 0.5 β = 0.5 2.5 4 5.5 8 9.5 12.5 15 16.5
α = 0.6 β = 0.4 2.2 3.6 4.8 7.2 8.6 11.4 14 15
α = 0.7 β = 0.3 1.9 3.2 4.1 6.4 7.7 10.3 13 13.5
α = 0.8 β = 0.2 1.6 2.8 3.4 5.6 6.8 9.2 12 12
α = 0.9 β = 0.1 1.3 2.4 2.7 4.8 5.9 8.1 11 10.5

Table 4.3. Trade-off Between Traffic Load and Total Time-slots
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

In this dissertation, we propose a cross-layer design approach to address deployment,

traffic balancing, and link layer scheduling problems on application layer, network layer and

link layer, respectively. Firstly, we studied the 2-angular-coverage problem on the Appli-

cation Layer for WVSNs and developed a scheme to effectively monitor a 3D indoor space

from different perspectives using visual sensor networks. For each perspective, we ensured

that all the points inside the interest areas were covered. In each candidate location for a

visual sensor, we discretize the area to effectively deploy 2-angular-coverage visual sensors.

By iteratively selecting the facing direction choices for each visual sensor, our enhanced-DFS

algorithm improved the coverage of the space and provided feasible solutions for networks

with small values of M.

Secondly on the Network Layer, the general deployment problem of optimizing the

placement and angular direction of each visual sensor was first formulated in a continuous

space, and then converted into a discrete version where 3D grid lattices are applied so as to

be able to achieve arbitrary approximation accuracy by adjusting their granularities. We also

noted that tree topology is not sufficient to minimize the traffic load bottleneck and developed

an optimal load balance algorithm by transforming the problem into a generalized max-flow

problem and solving it efficiently. With this as building block, we further proposed a Greedy

Heuristic and an Enhanced-DFS solutions to address the traffic-aware WVSN deployment

problem, where if given enough time, the latter can return the optimal results. Our extensive

simulations demonstrated that our Greedy algorithm produces a 62.5% reduction on the

number of used visual sensors compared with the baseline algorithm. The Enhanced-DFS

64



can further outperform the Greedy algorithm by up to 17%. Additionally, our traffic-aware

solution can further reduce the bottleneck of traffic load by up to 20% compared to the tree

topology based approach.

Finally, we studied the scheduling aware WVSN deployment problem for 3D indoor

monitoring on the Link Layer. We applied customized TDMA MAC protocol named Busy

Link First which assisted by Directed Edge Coloring algorithm to tackle the scheduling

problem in order to achieve collision-free wireless visual sensor network. Our extensive

simulation demonstrated that our customized TDMA solution Busy Link First algorithm

can further reduce the number of total time slots by 39% compared with the original TDMA

solution. With this as a building block, we proposed a SchEduling-aware Enhanced Depth-

first search algorithm to address WVSN deployment problem in 3D indoor area, where if

given enough time, the optimal solutions can be returned. Beyond these goals, the evaluation

results indicate that the objectives minimized traffic load and minimized total time-slots can

be optimized simultaneously from our solution in the testing cases.

We plan to further fine-tune our solution based on the preliminary performance eval-

uation. For example, we are going to implement coverage rechecking step to eliminate the

redundancy of deployed visual sensors from previous result on both algorithms. When we

deploy new sensors into the interesting field, the area covered by previously deployed visual

sensors may be covered again by newly mounted visual sensors. If that is the case, the pre-

viously deployed visual sensors can be removed in order to eliminate the redundancy (i.e.,

save the budget).

In the second research stage, the sequential search has been used in the Optimal Traffic

Load Algorithm to find the minimized maximum traffic load by sequentially increasing the

link capacity of Non-Virtual-Link. In small size of 3D space, our solution is efficient due to

the size of traffic bottleneck is much smaller compare to the total number of wireless virtual

sensors used in the solution. However, when the interested area is quite larger, more sensors

are required. The traffic load may be reached to tens or even hundreds. Under this situation,
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if more efficient searching algorithm is applied to replace the sequential search such as binary

search, which can make our Optimal Traffic Load Algorithm even more efficient. In our next

research step, the aforementioned strategy will be applied and tested to further improve our

solution.
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