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ABSTRACT

The biopolymer unfolding process can be conceptualized as the thermally activated crossing

of a barrier in some energy landscape; the real-world unfolding dynamics are in correspondence

with the rate of transit over the barrier. In this dissertation, we report on four projects that exploit

this analogy to advance our understanding of so-called pulling experiments, in which a biopolymer

chain is encouraged to unfold by direct application of forces to its two ends. Regardless of the

specific experimental realization, standard pulling techniques give rise to a biased barrier crossing

problem. The applied force has the effect of tilting the energy landscape. The height and shape of

the barrier are altered by the tilt, and the rate of transit over the barrier is highly sensitive to such

changes.

In the first project, we improve on existing analyses that treat the problem of barrier crossing

in one dimension (1D). In the context of pulling experiments, biopolymers are often characterized

by an effective 1D energy profile that depends on a single reaction coordinate, the extension or

end-to-end distance. Features of this profile can be extracted from the probability distribution of the

critical applied force at which the polymer unfolds. This analysis is typically based on the historical

rate equations due to Bell and Evans or on the improved rate equations proposed by Dudko et al. We

argue, however, that the former is inadequate, leading to unreliable landscape parameters in many

common situations, and that the latter, while providing a better model at low pulling forces, displays

unphysical behavior at high pulling and is afflicted with a point of mathematical breakdown. We

propose a new form of the rate equation, one that is well-behaved everywhere (no pathologies

or unphysical regimes), that produces a closed-form expression for the critical force distribution

(which Dudko’s form lacks), that leads to more reliable and faithful parameter extraction, and that

is valid even up to fast pulling rates, as revealed by our numerical simulations.
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In the second project, we argue that biased barrier crossing is governed by three intrinsic

force scales, corresponding to the barrier-vaulting thermal kick that the bath provides, the applied

pulling force required to fully deplete the barrier, and the instantaneous applied force. We further

suggest that two independent ratios of these forces constitute arguments to an underlying scaling

function. We identify universal behavior and demonstrate that data collapse onto a universal curve

can be achieved for simulated data over a wide variety of energy landscapes having barriers of

different height and shape and for loading rates spanning many orders of magnitude.

In the third project, we address some of the limitations of tracking only one reaction

coordinate. For instance, a 1D analysis is insensitive to configurations that are degenerate in the

end-to-end length; nor can it distinguish rate contributions from multiple transition pathways. As a

first step, we extend our rate modeling to account for energy landscapes in two dimensions (2D). We

derive a 2D form of our rate equation and numerically test its reliability with regard to prediction

and landscape parameter extraction. We also test the degree of consistency between the 1D and 2D

approaches.

In the fourth project, we simulate a semi-realistic toy model of a biopolymer using Monte

Carlo sampling and parallel tempering with the goal of exploring how to choose a secondary reaction

coordinate, complementary to the primary end-to-end extension. We assume that monomers in

the chain backbone move in the continuum with a constraint of fixed neighbor distance (chemical

bond length), subject to the energetic costs of bond-bending and of long-range interactions that

account for excluded volume effects, hydrophobic attraction, and electrostatics. We implement local

and global updates that produce an ergodic and efficient exploration of the conformational phase

space. These computational tools are put to work on real protein sequences in order to highlight

the limitations of the conventional analysis of pulling experiments that assumes projection onto a

single reaction coordinate.
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CHAPTER 1

BACKGROUND MATERIAL

1.1 Introduction

A biopolymer consists of repeating units, or monomers, that are strung together to produce

a long, flexible chain. In the case of a protein (a many-unit polypeptide chain), the monomers are

amino acids; the repeating path of N–C–C–O atoms can be seen as the chain backbone, supporting

the various residues. The chain’s flexibility, along with the existence of monomer-monomer

interactions of varying strength, character, and range, allows for the emergence of compact, folded

configurations that are thermodynamically stable or at least long-lived. Biopolymers are typically

described in terms of conformational energy landscapes [1–3]. Their folding, unfolding, and

fluctuation processes can be represented by diffusive motion through these landscapes [4], which

are complex, multidimensional hypersurfaces in the atomic or monomer coordinates.

The contribution of explicitly quantum processes notwithstanding [5], classical energy

landscape theory [6–8] provides a useful framework for describing the evolution of biopolymers.

Through this lens, structural transformation is viewed as a thermally driven escape from a local con-

fining potential [9]. That is to say, the transition between a folded and an unfolded conformation—or

between two differently folded ones—corresponds to a (stochastic) trajectory through the landscape,

passing out of one well, over a barrier, and into another well.

Developing tools of analysis within this framework has become ever more pressing, given

the profound developments in single-molecule biophysics [10–23]. One of the key practical

problems is how to infer the energy landscape, or at least a projection of it onto an appropriate

reaction coordinate, from experimentally measured quantities [24–33]. As is typical of inverse

problems, recovery of the landscape from measured data is ill-conditioned: it is highly sensitive to
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experimental uncertainties and to any assumptions that go into the forward model.

Thermally activated barrier crossing [34–37] is a ubiquitous and highly consequential

process in physics, chemistry, and biology. An understanding of the factors that influence the rate

of barrier crossing [38–41] is necessary for the interpretation of experiments that attempt to infer

barrier height and shape from measurements of the escape rate. An important specialization—

falling under the rubric of pulling experiments—is the case in which the barrier is diminished by

an applied force, with the escape rate enhanced accordingly.

Experimental access to escape rate information in biochemistry has been revolutionized

by the development of single-molecule force spectroscopy [42–46], in which a mechanical load

is applied across a single molecule using an atomic force microscope or optical tweezers. The

landscapes for biologically relevant sequences contain distinct, barrier-separated wells correspond-

ing to various folded and unfolded conformations. (It is postulated that evolution has produced

highly structured energy landscapes, rather than randomly corrugated ones, that typically possess

a guiding funnel toward each biological useful conformation.) The rate of transition [47–49] from

one well to another depends primarily on the height of the intervening barrier but also on its shape.

To simplify the task of analysis, landscapes are often converted into lower-dimensional

manifolds [50–55] via projection or other dimensional reduction techniques. The most extreme

example is the projection of the landscape onto an effective 1D free energy profile that has as

its single functional argument the polymer chain’s end-to-end distance. Despite the huge loss of

information, this is still meaningful in the context of pulling experiments, because the molecular

extension serves as a natural reaction coordinate, and the 1D energy profile often correctly encodes

the folding dynamics. Numerous studies have been carried out to explore the unfolding process

under the application of constant and time-varying pulling forces [56–62]. A key experimental

goal is to be able to reliably reconstruct the 1D energy profile from measurements of an ensemble

of escape events [63–66].

The motion of biopolymers can be simulated in real time using heat-bath-coupled Langevin

dynamics, an approach that is well-justified within thermodynamics and statistical mechanics. The
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heat bath (or thermal bath or thermal reservoir) in thermodynamics refers to a large body held at

a constant temperature with which the system of interest is in contact; the system and bath must be

able to exchange heat so that the two can come into equilibrium. In this work, the system of interest

is the biopolymer, and the aqueous solution in which it is immersed serves as the bath. The bath

is assumed to possess a large enough heat capacity to be an essentially infinite source of thermal

energy, so that it can exchange energy with the system (as a thermal source or as a heat sink) without

altering its temperature. For a system that has reached equilibrium, we can also consider motion in

fictitious Monte Carlo time, so long as the conformational update rules produce correctly weighted

coverage of the phase space.

In this dissertation, we are primarily interested in the mechanical unfolding of biopolymers

by application of a bias force. The simulations we perform, analyze, and discuss run the gamut

from point-particle dynamics over a 1D barrier up to Monte Carlo treatment of semi-realistic,

coarse-grained, bead-and-rod models that include explicit molecular interactions.

Non-spontaneous unfolding of a biopolymer chain can be induced by an external pulling

force. Such work is crucial to understanding the mechanical properties of the biopolymer and the

details of the underlying energy landscape. How a protein molecule responds to external stimulus,

particularly its extension in response to pulling, can provide valuable insight into its mechanical

stability. The mechanical pulling process can be viewed as an activated barrier crossing process

with bias. To explain the rate of barrier crossing, much excellent work has been done [67, 68]. In

this dissertation, we build on those foundational insights.

A protein can be mechanically unfolded using a number of experimental techniques [69],

including optical tweezers [70–72], magnetic tweezers [73, 74], and atomic force microscopy

(AFM) [75–78]. In each of these approaches, the protein chain is typically tethered at one end to a

surface and another end is left free for applying mechanical force. In the case of optical tweezers,

both ends may be free and attached to polystyrene beads, which are manipulated with the potential

gradients created by focused lasers (as illustrated in Fig. 1.1). The force response of the protein

is monitored, typically under conditions of a time-dependent force with a constant loading rate

3



(a)

(b)

Laser
Force

Extension

Extension

Laser
Force

Laser
Force

Figure 1.1. Schematic representation optical trap arrangement. (a) Single optical trap where the
molecule is tethered at one end and pulled at the other end by using the laser potential (b) Double
optical trap where the molecule is pulled on either end by using the laser potential

(force-extension mode) [79] or a constant force (force-clamp mode) [80]. In this dissertation, we

try to simulate the mechanical pulling of protein chains with an eye to interpreting those numerical

experiments in terms of a biased activated barrier crossing process [34–37]. We employ the kind

of rate analysis commonly applied to chemical reactions.

1.2 Thermodynamic and kinetic stability of proteins

A protein chain is said to be in its native conformation when it has achieved the minimum

value of its thermodynamic Gibbs free energy, 𝐺. For a system at constant temperature 𝑇 and
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Figure 1.2. Left: schematic of two-state energy landscape of a protein, where the Folded state is
separated by a single barrier TS. For an unfolding process, energy Δ𝐺𝑇𝑆 is required to overcome
the barrier. Right: a three-state energy landscape is shown containing a Folded, Intermediate, and
Unfolded state. The unfolding process in this landscape is a two-step process. First, energy of
Δ𝐺𝑇𝑆1 is required to overcome the barrier at TS1 and then energy of Δ𝐺𝑇𝑆2 is required to overcome
the barrier at TS2. Δ𝐺𝑇𝑆2 is the barrier height to unfolded state with respect to the intermediate
state. Energies Δ𝐺 𝐼 and Δ𝐺𝑈 are the energies of intermediate and unfolded state respectively with
respect to the folded state.

pressure 𝑃, the change in the Gibbs free energy, Δ𝐺, is used to determine whether a reaction

is favorable or unfavorable. In the context of protein unfolding, the difference in Gibbs energy

between unfolded and folded conformations determines the protein’s thermodynamic stability. The

difference in Gibbs energy simply refers to the amount of work done to transfer a body from one

state to another as the body exchanges heat with its environment. The mathematical expression for

that difference is Δ𝐺 = Δ𝐻 − 𝑇Δ𝑆, where Δ𝐻 refers to the change in enthalpy and Δ𝑆 refers to the

change in entropy. The left panel of Fig. 1.2 illustrates the simplest situation, which corresponds

to two wells separated by a single barrier. Many proteins exhibit more complex landscapes, where

they can fold or unfold via intermediate states (see the right panel of Fig. 1.2).

Figure 1.3 shows a polypeptide chain moving down its folding funnel [3, 81]. If the energy

landscape is rough, the chain passes through several short-lived, intermediate states before reaching

the native state at the global minimum.
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Figure 1.3. Folding funnel showing multiple folding intermediates before reaching a global
minimum native state.

1.3 Relevant forces for proteins

The magnitude of the biologically relevant forces that affect proteins is crucial to the study

of their mechanical properties. Proteins experience thermal agitation due to fluctuations consistent

with the bath energy scale 𝑘𝐵𝑇 = 4 × 10−21 J = 4.1 pN nm at room temperature. This roughly

translates to 0.6 kcal/mol. The force magnitudes and associated length scales of various molecular

processes are depicted in Fig. 1.4. As the chain is extended, the entropy tends to decrease (because of

a reduction in the number of available microstates) and in the fully extended state the chain has only

the unique straight-backbone configuration. As revealed by single molecular force spectroscopy,

the typical length scale of interaction is on the order of nanometers, energies are on the order of

𝑘𝐵𝑇 , and entropic forces are on the order of piconewtons.

1.4 Reaction rate theory

The process of escape from a confining potential is understood from the theory of chemical

reactions. Reaction rate theory is widely used, across areas such as chemical kinetics, diffusion in
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solids, homogenous nucleation, and electrical transfer theory. Chemists like to depict the progress

of a chemical reaction as the motion along an effective one-dimensional coordinate, the so-called

reaction coordinate, along which a free energy with a barrier is traced out. Fortunately, any

activated barrier crossing problem can be treated with the same formalism. The concept of a rate

theory was pioneered by Arrhenius. He was the first to explain the rate of chemical reaction as

the product of a base rate and a suppression term that is exponentially sensitive to the ratio of the

barrier height and temperature.

Variations of rate theory, such as transition state theory and Kramer’s theory of diffusive

barrier crossing [34], have been proposed. These theories are considered different from each other

on the basis of assumptions they make about the motion leading to the transition and the definition

of the transition state (TS). Here, TS refers to the surface that separates the reactant and the product

state. In our work, the reactant state is considered to be the folded state and the product state to be

the unfolded state. These states are separated by the free energy bottleneck. Rate theories are very

important as they can be used to analyze, explain, and predict outcomes of the activated barrier

crossing process.

1.4.1 Arrhenius law

The Arrhenius law states that the rate of chemical reaction 𝑘 can be expressed in terms of

two parameters, the activation free energy Δ𝐺 and a prefactor 𝐴:

𝑘 = 𝐴𝑒−𝛽Δ𝐺 . (1.1)

Here 𝛽 = 1/𝑘𝐵𝑇 , with 𝑘𝐵 being Boltzmann’s constant and 𝑇 the temperature. Although the Arrhe-

nius law was originally motivated by the rate of chemical reactions, the basic concept is applicable

to almost any noise-activated barrier crossing mechanism. Generally, theories of chemical dynam-

ics that invoke Eq. (1.1) in interpreting the experimental data view the transition as motion along a

one dimensional reaction coordinate over a free energy barrier.
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1.4.2 Transition state theory

The assumption in transition state theory is that a system moving toward its product state

along the reaction coordinate is certain to achieve the product state once it crosses the TS. In other

words, transition state theory views the orbit crossing TS as the “point of no return.” It also contains

a strong-coupling assumption, which presupposes thermal equilibrium throughout the entire system

and neglects any effects due to a deviation from thermal equilibrium.

1.4.3 Kramer’s theory

Kramer’s theory connects more directly to the underlying Brownian motion. For a reaction

coordinate 𝑥, this theory treats the dynamics along 𝑥 as thermally randomized, damped motion in

the presence of an effective potential𝑈(𝑥). In this interpretation, the TS is no longer just the “point

of no return” but instead is viewed as the point of “maximum indecision” at which the thermal

fluctuations can take the system to either product or reactant state with equal probability.

The Langevin equation,

𝑚 ¥𝑥 = 𝑚¤𝑣 = −𝜕𝑈
𝜕𝑥

− 𝛾𝑣 + 𝜉(𝑡), (1.2)

is the basis of Kramers’ theory. The noise 𝜉(𝑡) is only instantaneously correlated (no memory)

and ⟨𝜉(𝑡)𝜉(𝑡′)⟩ = 2𝑘𝐵𝑇𝛾𝛿(𝑡 − 𝑡′). Here, 𝛾 represents the damping parameter and is a uniform,

temperature-independent, velocity relaxation rate. An overdamped limit with very high 𝛾 is

sometimes assumed for the reaction dynamics in solution, and in this limit the left-hand-side of

Eq. (1.2) is assumed to be negligible (since |𝛾𝑣 | ≫ 𝑚 | ¤𝑣 |). That is to say, the particle executes pure

Brownian motion. For low 𝛾, there will also be a significant inertial contribution.

1.5 Projection of biopolymer energy landscape onto lower dimension

Biopolymers such as DNA or proteins are ubiquitous in nature. There has lately been great

interest in the study of these polymers, since they can be captured and manipulated individually.

The other important aspect is that the behavior inside these polymers is best described using
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statistical mechanics. The internal dynamics of these polymers are very complicated and expressed

in terms of diffusion through a complicated multidimensional landscape. However, projecting this

cumbersome multidimensional landscape onto a simpler, effective landscape in lower dimension

simplifies the analysis.

1.5.1 One-dimensional analysis

It is common to suppose that the multidimensional hypersurface has been projected onto

a lower-dimensional object. The projection can be effected using a straightforward mathemat-

ical trick: for a general reduction to dimension 𝑑 < 3𝑁 , there is an effective energy potential

𝑉eff(𝑞1, 𝑞2, . . . , 𝑞𝑑) defined according to

𝑃(𝑞1, 𝑞2, . . . , 𝑞𝑑) =
1
𝑍

ˆ
𝑑®𝑟1· · ·𝑑®𝑟𝑁 𝑑 ®𝑝1· · ·𝑑 ®𝑝𝑁 𝑒−𝛽𝐻(®𝑟1,...,®𝑟𝑁 , ®𝑝1,..., ®𝑝𝑁 )

× K(𝑞1, 𝑞2, . . . , 𝑞𝑑; ®𝑟1, ®𝑟2, . . . , ®𝑟𝑁 )

≡ 𝑒−𝛽𝑉eff(𝑞1,𝑞2,...,𝑞𝑑).

(1.3)

Hence, for 𝑑 = 1, with the end-to-end distance 𝑞1 = ℓ selected via the choice of kernel,K(ℓ; ®𝑟1, ®𝑟𝑁 ) =

𝛿(ℓ − |®𝑟𝑁 − ®𝑟1 |), we get

𝑉eff(ℓ) = −1
𝛽

ln
1
𝑍

ˆ
𝑑®𝑟1...𝑑®𝑟𝑁 𝑑 ®𝑝1...𝑑 ®𝑝𝑁 𝑒−𝛽𝐻(®𝑟1...®𝑟𝑁 , ®𝑝1... ®𝑝𝑁 )𝛿(ℓ − |®𝑟𝑁 − ®𝑟1 |). (1.4)

In most applications, we assume this landscape to be a double-well potential separated by a

barrier, where one well represents the folded state and the other represents the unfolded state. The

experimental art of pulling using an applied force is mimicked by tilting the landscape. As a matter

of pulling protocol, the bias force can be either constant or variously time dependent.

Landscape parameters

There are several parameters that are useful in characterizing the features of an energy

landscape. In the 1D picture (see Fig. 1.5), the most useful are the following:
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Figure 1.5. An unbiased double-well potential (solid purple line) and its biased counterpart (solid
green line) are held up to comparison. In the unbiased potential, a particle escaping (left to right)
from the well must traverse a barrier of height of Δ𝐺‡ = 𝑈(𝑥𝑏)−𝑈(𝑥𝑙), over a distance 𝑥‡ = 𝑥𝑏 − 𝑥𝑙 ,
where 𝑥𝑙 and 𝑥𝑏 are the positions of the left well and barrier. With application of an assistive pulling
force (𝐹 > 0), the potential tilts to favor the destination well to the right of the barrier. The pulling
force causes the well positions to shift; the barrier height and barrier distance decrease.
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• intrinsic rate (𝑘0) : rate of transition from unfolded to folded state in the unbiased situation

(i.e, the untilted landscape)

• barrier distance (𝑥‡) : distance between the barrier and the minima of the folded well;

• barrier Height (Δ𝐺‡) : height of the barrier as viewed from the folded (originating) well;

• effective curvature (𝜅‡) : an inverse of the sum of the inverses (in the spirit of the reduced

mass of the two-body central force problem),

1
𝜅‡

=
1

𝑈′′
0 (𝑥𝑙)

− 1
𝑈′′

0 (𝑥𝑏)
=

1
𝜅𝑙

+ 1
𝜅𝑏
, (1.5)

where 𝜅𝑙 and 𝜅𝑏 are the curvatures of folded well and barrier, respectively;

• shape parameter (𝜈): characterizes the shape of the barrier and is defined as 𝜈 = 2Δ𝐺‡/𝜅‡𝑥‡
2.

Escape rate modeling

To address the response of proteins to a mechanical pulling force, and the attendant changes

in the corresponding landscape (see Fig. 1.6), several rate models have been developed. These

predict the unfolding rate in the presence of bias with respect to the rate established in the unbiased

case.

Bell-Evans or Bell-Evans-Richie model—this model explains protein unfolding via a two-state

process by an energy barrier between folded and unfolded states. The energy barrier is defined by

a single reaction coordinate, typically the end-to-end length. In pulling experiments using optical

tweezers [82], the determination of landscape features has historically been carried out using this

phenomenological theory [58–60, 67, 83], which predicts a rate

𝑘BE(𝐹) = 𝑘0𝑒
𝛽𝐹𝑥‡. (1.6)

Here, 𝛽−1 = 𝑘𝐵𝑇 is the thermal energy scale set by the aqueous environment; 𝑥‡ is the minimum-

to-barrier distance of the effective 1D potential 𝑈(𝑥), a continuous (but not necessarily smooth)
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function of the end-to-end extension. The model is expected to valid in the limit of weak applied

force or extremely low pulling rate and very high barrier.

Dudko-Hummer-Szabo Model—Dudko and coworkers have tried to make the analysis more rig-

orous [68]. They calculated 𝑘(𝐹) and the corresponding probability density of the rupture force

𝑝(𝐹𝑐) within the framework of Kramer’s theory for two specific free energy surfaces—the cusp

surface and the linear cubic surface—and showed that these two examples can be subsumed into a

single result [appearing as Eq. (3) in Ref. 68],

𝑘D(𝐹) = 𝑘0

Å
1 − 𝜈𝐹𝑥‡

Δ𝐺‡

ã1/𝜈−1
𝑒
𝛽Δ𝐺‡

[
1−(1−𝜈𝐹𝑥‡/Δ𝐺‡)1/𝜈

]
, (1.7)

with interpolation provided by a shape parameter 𝜈. This encompasses the Bell-Evans result, since

𝑘D(𝐹) → 𝑘BE(𝐹) as 𝜈 → 1. It is clear, however, that for all 𝜈 ≠ 1 Eq. (1.7) has a dangerous point

of nonanalyticity. The vanishing of the rate 𝑘D(𝐹) → 0 as 𝐹 → Δ𝐺‡/𝑥‡𝜈 (for shape parameters

in the range 0 < 𝜈 < 1) is manifestly unphysical; hence the Dudko expression is only appropriate

for the pulling regime in which 𝐹 ≪ Δ𝐺‡/𝑥‡𝜈. In fact, the region of validity is more constrained

still, since we should further require that the escape rate grow with pulling force. As it turns out,

the function 𝑘D(𝐹) is monotonically increasing only for

𝐹 <
Δ𝐺‡

𝑥‡𝜈

ñ
1 −
Å

1 − 𝜈
𝛽Δ𝐺‡

ã𝜈ô
. (1.8)

We propose more robust analysis to address these limitations in Ch. 3.

1.5.2 Two-dimensional analysis

In 2D analysis, the multidimensional landscape is projected onto a two dimensional land-

scape given by Eq. (1.9) which comes from Eq. (1.3) with 𝑑 = 2.
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Figure 1.6. Top row: transformation from the folded (left) to unfolded (right) state proceeds by way
of intermediate conformations that are positioned along the intervening energy barrier. Bottom
row: in a balanced energy landscape, the chain in equilibrium will appear folded and unfolded
with equal frequency, and the rate from left to right will match the rate from right to left; the
application of a bias force tilts the landscape—favoring one state or another—and can eventually
deplete barrier, so that the folded or unfolded state alone is stable.
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Figure 1.7. Figure to depict the transition paths from left well to right well: (a) One-dimensional
landscape where there is only one possible path for the transition and (b) Two-dimensional landscape
where there are multiple possible paths for the transition.

𝑃(𝑥, 𝑦) =
1
𝑍

ˆ
𝑑®𝑟1...𝑑®𝑟𝑁 𝑑 ®𝑝1...𝑑 ®𝑝𝑁 𝑒−𝛽𝐻(®𝑟1...®𝑟𝑁 , ®𝑝1... ®𝑝𝑁 )𝛿(𝑥 − |®𝑟𝑁 − ®𝑟1 |)𝛿(𝑦 − 𝑅𝑔(𝑐))

≡ 𝑒−𝛽𝑉eff(𝑥,𝑦).

(1.9)

The projected 2D landscape consists of primary and secondary reaction coordinates end-to-

end length 𝑙 and cylindrical radius of gyration 𝑅𝑔 respectively. The expression of 𝑅𝑔 in our analysis

is given by Eq. (1.14).

Motivation

The motivation behind 2D generalization was the inability of 1D model to recognize the

protein chain with same end-to-end length but different conformational structure. In other words, in

1D model, the chain with same end-to-end length would have degenerate states as in Fig. 1.8 even if

they have different folding conformations. This method works well in case of small proteins but it

is suboptimal in case of protein with knots and multiple transition pathways of unfolding as shown

in Fig. 1.7 (b). This sub-optimality in 1D model led to 2D generalization. To address this issue, we

thought the most intuitive way would be to consider secondary reaction coordinate perpendicular
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Figure 1.8. Chain configuration in one-dimensional analysis showing degenerate states for the
chain with same end-to-end length (top right) and configuration states of biopolymer chain it
two-dimensional analysis (bottom right). Two dimensional model lifted the degeneracy and 2D
configuration can be projected into one dimensional configuration.

to primary reaction coordinate (as it lifts the degeneracy) and observe how analysis works. The

analysis in fact worked so well and its robustness was validated by the numerical simulation in

Ch. 5.

Landscape parameters

• intrinsic rate (𝑘0): rate of going from unfolded to folded state in unbiased situation;

• barrier distance (𝑟‡): distance between the barrier and the minima of the folded well

𝑥‡ = 𝑥𝑏 − 𝑥𝑙

𝑦‡ = 𝑦𝑏 − 𝑦𝑙

𝑟‡ = 𝑥‡ cos 𝜃 + 𝑦‡ sin 𝜃;

(1.10)
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• barrier height (Δ𝐺‡): height of the barrier in relation to the folded well

Δ𝐺‡ = 𝑈(𝑥𝑏, 𝑦𝑏) −𝑈(𝑥𝑙 , 𝑦𝑙); (1.11)

• effective curvature (𝜅‡): see Sec. 5.2 for the full expression of 𝜅‡.

1.6 Role of temperature in the mechanical properties of proteins

Mechanical flexibility is very important for the function of many proteins. How temperature

affects in pulling experiments is very important to figure out. The study suggested that with increase

in temperature, the unfolding force distributions narrowed and the value of minimum to barrier

distance from folded well increased. This claim is corroborated by the results obtained from our

simulation seen in table 1.1.

Table 1.1. Effect of temperature in critical force distribution. The value of 𝑘𝐵𝑇 is in pN nm and
force is in pN. As the temperature of the simulation increases, the critical force distribution narrows
down as seen in table below. The barrier height Δ𝐺‡of the potential considered here is 54 pN nm
and the loading rate 𝐾𝑉 is 10−3 pN µs−1.

𝑘𝐵𝑇 Critical force (𝐹𝐶) Uncertainty in critical force (𝛿𝐹𝐶)
10.8 0.21 0.20
18.9 0.025 0.024
24.3 0.013 0.012
32.4 0.0072 0.0067

1.7 Semi-realistic modeling

1.7.1 Polymer chain architecture

A polymer molecule consists of similar repeating units called monomers. We considered

a polymer chain with 𝑁 monomers, each of which is separated by bonds of length 𝑏 as shown in

Fig. 1.9. The positions of the monomers are denoted by ®𝑟𝑖 (𝑖 = 0, 1, 2, ..., 𝑁 − 1). The two ends of

the 𝑖th bond are at ®𝑟𝑖−1 and ®𝑟𝑖. In this case the end-to-end vectors between two bonds can be defined

by
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Figure 1.9. Polymer chain showing end-to-end vector ®𝑙 = ®𝑟𝑁−1 − ®𝑟0 and and cylindrical radius of
gyration 𝑅𝑔 =

»
⟨∑𝑁−1

𝑖=0 𝜌2
𝑖
⟩/𝑁 .

®𝑙 ≡ ®𝑟𝑁−1 − ®𝑟0. (1.12)

The value of ®𝑙 differs from configuration to configuration. Although ®𝑙 represents only a

portion of the conformational information, its average is always a good estimation of the chain’s

overall extent. The mean-square end-to-end distance of the chain is the thermally averaged value

of ®𝑙 · ®𝑙:

⟨𝑙2⟩ = ⟨(®𝑟𝑁−1 − ®𝑟0)2⟩. (1.13)

In some cases, the end-to-end distance is not sufficient to distinguish the various folded

states. Hence, we have incorporated another quantity we call the cylindrical radius of gyration 𝑅𝑔

with

𝑅𝑔 =

 
⟨∑𝑁−1

𝑖=0 𝜌2
𝑖
⟩

𝑁
. (1.14)

We can assume the whole chain to be contained in the cylinder of radius equal to the largest 𝜌𝑖 and

length 𝑙 with its axis along end-to-end length vector as shown in Fig. 1.9.
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1.7.2 Coarse-grained bead and rod model

The chain was assumed to be a combination of beads and rods. The beads represented

monomers and the rods represented the covalent bond in between. Hydrophobic, charged and

neutral monomers were taken into consideration and different update schemes like pivot rotation

and site rotation were incorporated to map the chain onto the energy landscape with interaction

potential:

𝑉𝑖𝑛𝑡 = 𝐽

𝑁−2∑︁
𝑖=1

cos 𝜃𝑖 +
𝑁−3∑︁
𝑖=0

𝑁−1∑︁
𝑗=𝑖+2

(
𝑉𝐸𝑉𝑖 𝑗 +𝑉𝐻𝑖 𝑗 +𝑉𝐶𝑖 𝑗

)
. (1.15)

The first term in Eq. (1.15) represents the nearest neighbor bending cost summed over the

whole chain. 𝐽 is a constant representing the bending energy scale. The higher its value, the more

difficult the chain is to bend (more rigid, less flexible). The 𝜃𝑖 values represent the bending angle

between two adjacent bonds (the angle in the triangle formed by the three positions ®𝑟𝑖−1, ®𝑟𝑖, and

®𝑟𝑖+1) and it takes the values from 0 to 2𝜋. At 𝜃𝑖 = 0, the chain has fully extended configuration and

this was assumed to be the initial state of our simulation.

Second term in Eq. (1.15) represents the pairwise long range interaction. Here, 𝑉𝐸𝑉
𝑖 𝑗

=

𝑉0Θ(𝑎 − 𝑟𝑖 𝑗 ) represents excluded volume interaction term which prevents the overlapping of

monomers. The value of 𝑉0 is very high and almost tends to ∞. Θ(𝑎 − 𝑟𝑖 𝑗 ) is a Heaviside

step function which is equal to 1 for positive argument and zero for negative argument.

Similarly,𝑉𝐻
𝑖 𝑗

= 𝑓 (𝐴𝑖, 𝐴 𝑗 ) exp
[
(𝑎−𝑟𝑖 𝑗 )/𝑏

]
represents the hydrophobic attraction term where

𝑓 (𝐴𝑖, 𝐴 𝑗 ) represents the strength of hydrophobic attraction between monomers 𝐴𝑖 and 𝐴 𝑗 . These

monomers basically try to shield them from water by coming closer to each other. The attraction

is larger if both 𝐴𝑖 and 𝐴 𝑗 are hydrophobic and smaller if one of them is neutral and other is

hydrophobic. However, zero attraction is assumed if both of them are neutral. We will precisely

talk about their magnitudes in numerical simulation.

Finally, 𝑉𝐶
𝑖 𝑗

= 𝑔(𝐴𝑖, 𝐴 𝑗 ) exp
(
−𝑟𝑖 𝑗/𝜆

)
/
»
𝑏2 + 𝑟2

𝑖 𝑗
represents the coulomb interaction term

where 𝑔(𝐴𝑖, 𝐴 𝑗 ) represents the strength of coulomb interaction. It is assumed to be positive if both

𝐴𝑖 and 𝐴 𝑗 have like charges and assumed to be negative if they have unlike charges. The magnitudes
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however are equal in both the cases. This term does not contribute if either or both the monomers

in pair are neutral. The term 𝜆 represents the screening length.

1.8 Motivation

Mechanical unfolding of protein and its response to mechanical pulling force provides

a valuable insight regarding the mechanical stability of protein. It would also help to provide

the knowledge about the underlying protein landscape. Henceforth, we are really interested in

simulating these experiments numerically and address the analytical limitations of these analyses.

The limitations in preexisting rate equations defining rate of going from unfolded to folded state

motivated us to come up more robust form of rate equation given by Eqs. (3.1) and (3.11). We

believe, this piece of work in Ch. 3 improved 1D rate analysis in much better way. We continued

this piece of work as we were motivated to get the global picture in 1D rate analysis and displayed

the universality in 1D barrier escaping analysis via our work described in Ch. 4. Now, since we

reinforced the 1D analysis as a whole, we thought it is better to address the limitation of 1D analysis

and come up with some modifications to it. Since, the projection of multidimensional landscape

to one dimension was not always optimal, especially for protein with larger sizes i.e, with knots

and multiple unfolding pathways, we were motivated to propose a 2D model and generalize our 1D

analysis in Ch. 3 to the work described in Ch. 5. The result we obtained were really encouraging and

it further motivated us to explore the real physical form of the secondary reaction coordinate which

motivated us to pursue different method of analysis using Monte Carlo simulation with efficient

sampling techniques for semi-realistic polymer chains. This piece of work is described in Ch. 6.

This is overall motivation behind pursuing the work explained in this dissertation.

1.9 Organization of dissertation

The dissertation will be organized in the following way. The relevant numerical methods

used in this dissertation will be discussed in Ch. 2. In Ch. 3, the first project, biased activated barrier

crossing in one dimension is discussed in detail. This piece of work has already been published
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in Physical Review Research [84]. Second project depicting the universality in biased activated

barrier crossing is described in Ch. 4. In Ch. 5, the sub optimality of one dimensional rate analysis is

addressed by proposing a two dimensional analysis. This analysis works well in case of an abstract

two dimensional landscape and we were even able to obtain a nice degree of convergence between

one dimensional analysis and two dimensional analysis under suitable rescaling. In Ch. 6, we tried

to reveal the limitation of single reaction coordinate picture using the Monte Carlo technique. This

was our fourth project. Finally in Ch. 7, we summarize the whole dissertation work.
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CHAPTER 2

METHODS

To accomplish this dissertation work, we have used three different methods. Heat bath cou-

pled one-dimensional Langevin Dynamics, two-dimensional Langevin Dynamics with optimization

and Monte Carlo technique with efficient sampling techniques such as parallel tempering and adap-

tive biasing force. We used 1D Langevin Dynamics for Chs. 3 and 4, 2D Langevin dynamics for

Ch. 5 and Monte-Carlo technique for Ch. 6.

2.1 One-dimensional Langevin Dynamics

This particular work is one dimensional analysis of activated barrier crossing in relation to

biopolymers like protein. For this work we assumed the protein chain to be in one dimensional

conformational landscape with single reaction coordinate 𝑥. This reaction coordinate was made to

execute the Langevin’s dynamics according to 1D Langevin equation

𝑚 ¥𝑥 = 𝑚¤𝑣 = −𝜕𝑈
𝜕𝑥

− 𝛾𝑣 + 𝜉(𝑡). (2.1)

The process was implemented using a modern reformulation [85] of the Verlet algo-

rithm [86]. The relevant experimental situation for this was a molecule of mass 𝑚 executing

stochastic motion in a biquadratic potential𝑈(𝑥). The molecule was assumed to be pulled from two

ends by a laser potential of force constant 𝐾 and pulling velocity𝑉 ; i.e, with an instantaneous force

𝐹 = 𝐾𝑉𝑡 that increases linearly with time. The stochastic force 𝜉(𝑡) was drawn randomly from the

Gaussian distribution of width
√︁

(2𝑚𝛾𝑘𝐵𝑇𝛿𝑡) with 𝛾 being the damping parameter. Low value of

𝛾 meant the inertial limit and high 𝛾 meant diffusion limit with the system executing Brownian

motion.
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The value of pulling force at which the molecule was fully extended was recorded. In the

context of simulation, that’s when the molecule either crossed the barrier or the barrier vanished.

This value of force is known as the rupture or critical force. After getting the value of critical

force for a protein molecule in a particular landscape, further analysis related to the probability and

cumulative probability distribution was done to test the reliability of analytic expression of our rate

equation in both prediction and parameter extraction. For prediction, the probability distribution and

cumulative probability distribution of critical force were compared with the expressions obtained

from Bell-Evans rate equation and our rate equation. For parameter extraction, bootstrapping

technique was used. The simplified algorithm is written below.

2.1.1 Algorithm

Forward Problem - Prediction

1. Initialize the simulation in the left well, i.e, folded well.

2. Draw the starting velocity 𝑣0 and position 𝑥0 from distributions 𝑒−𝛽𝑚𝑣2/2 and 𝑒−𝛽𝑈(𝑥)Θ(𝑥𝑏−𝑥),

respectively, so that each simulation began fully thermalized.

3. Apply the biasing force 𝐹 to the potential landscape and update the position and velocity of

the particle using modified form [85] of Verlet algorithm [86].

4. Flag the value of the pulling force and time at which the particle convincingly crossed the

barrier or barrier vanished.

5. Repeat steps 1 to 4 for 2500 times to get 2500 values of critical or rupture forces .

Inverse Problem - Landscape parameter extraction

1. Sort critical force distribution obtained from step 5 of forward problem

2. Bootstrap and generate multiple copies of the force distribution

3. Fit each of these copies of distribution using analytic expression of cumulative probability

distribution and extract well parameters.
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4. Compare these obtained parameters with actual values of well parameters to investigate the

reliability of theoretical equations.

2.2 Two-dimensional Langevin Dynamics

For this particular work, 2D landscape with minima on either side of the saddle barrier was

chosen to be the protein landscape. Unlike one dimensional analysis; we assumed the chain here

to execute Langevin dynamics simultaneously in two mutually perpendicular directions though the

motion along each reaction coordinate was assumed to be independent with each other.

𝑚 ¥®𝑞 = 𝑚 ¤®𝑣 = 𝜕𝑈

𝜕 ®𝑞 − 𝛾 ¤®𝑞 + ®𝜉(𝑡). (2.2)

Here, ®𝑞 is the generalized coordinate. Equation (2.2) can be broken into two independent

equations as in Eq. (2.3) and can be used to address the motion of molecule along two independent

directions 𝑥 and 𝑦.

𝑚𝑥 ¥𝑥 = 𝑚𝑥 ¤𝑣𝑥 =
𝜕𝑈

𝜕𝑥
− 𝛾𝑥 ¤𝑥 + 𝜉𝑥(𝑡)

𝑚𝑦 ¥𝑦 = 𝑚𝑦 ¤𝑣𝑦 =
𝜕𝑈

𝜕𝑦
− 𝛾𝑦 ¤𝑦 + 𝜉𝑦(𝑡).

(2.3)

The pulling force used here was similar to the one used in 1D analysis. However, the

landscape potential in 2D analysis was rotated at discrete angles to explore the change in the impact

of pulling force with respect to the pulling angle. The direction of pulling was always maintained

along x-axis, primary reaction coordinate. Other similar analysis would be to apply the pulling

force at an angle to x-axis until it becomes ineffectual. Theoretically it should happen when the

pulling force is applied at right angle to x-axis or after the potential has been rotated by ninety

degree still applying the force along the direction of unrotated x-axis.

The value of rupture force obtained from this analysis was recorded and the action was

repeated numerous time to obtain the distribution of the rupture force. After this the 2D landscape

24



was projected to get the 1D landscape and simulation was carried out to see the degree of conver-

gence between simulation in 2D landscape and reconstructed 1D landscape. On suitable scale of

values of damping parameter 2D landscape simulation converged to the simulation in reconstructed

1D landscape. This process happened only till 2D landscape was rotated by reasonably small angle.

At larger angle, these two simulations did not match. This is understandable as 1D projection won’t

account the rotation of 2D landscape and at some point it will be converted into single well instead

of double well seemingly bi-quadratic potential. While executing 2D simulation gradient descent

algorithm was used to flag the extrema in each step of the simulation. Also, we were not always

able to reconstruct closed form expression of 1D landscape from 2D landscape and hence we used

mathematical spline, an interpolation technique, to reconstruct the 1D landscape.

2.2.1 Transition analysis

Figuring out the transition state was one of the most challenging tasks we faced during two

dimensional analysis. It was not that straightforward and obvious as one dimensional analysis. To

resolve this issue we had to come up with some sort of mini-algorithm.

Consider a two dimensional potential well 𝑈(𝑥, 𝑦) separated by a saddle barrier with left

/ folded well at coordinate (𝑥𝑙 , 𝑦𝑙) and right / unfolded well at coordinate (𝑥𝑟 , 𝑦𝑟). If ®𝑟𝑙 , ®𝑟𝑟 and ®𝑟𝑡

are the position vectors of bottom of the left well, bottom of the right well and the position of the

particle at any instant of time 𝑡 in simulation respectively, then

®𝑟𝑙 = ⟨𝑥𝑙 , 𝑦𝑙⟩

®𝑟𝑟 = ⟨𝑥𝑟 , 𝑦𝑟⟩

®𝑟𝑡 = ⟨𝑥(𝑡), 𝑦(𝑡)⟩

(2.4)

Let

®Δ𝑟𝑙 = ®𝑟𝑙 − ®𝑟𝑡

®Δ𝑟𝑟 = ®𝑟𝑟 − ®𝑟𝑡
(2.5)
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If 𝑔̂ is the unit gradient vector then,

®∇𝑈 = 𝑖
𝜕𝑈

𝜕𝑥
+ 𝑗 𝜕𝑈

𝜕𝑦

| ®∇𝑈 | =
 (𝜕𝑈

𝜕𝑥

)2 +
(𝜕𝑈
𝜕𝑦

)2

𝑔̂ = −
®∇𝑈
| ®∇𝑈 |

(2.6)

At transition, 𝑔̂ · ®Δ𝑟𝑙 and 𝑔̂ · ®Δ𝑟𝑟 flip their sign, i.e, at transition 𝑔̂ · ®Δ𝑟𝑙 turns negative and

𝑔̂ · ®Δ𝑟𝑟 turns positive simultaneously.

2.2.2 Algorithm

Two dimensional Langevin dynamics

1. consider a two dimensional potential𝑈 = 𝑈(𝑥, 𝑦) with two wells separated by a saddle barrier.

2. Initialize the simulation in the bottom of left well, i.e, folded well.

3. Draw the stochastic forces on the molecule along 𝑥 and 𝑦 direction given by 𝜉𝑥(𝑡) and

𝜉𝑦(𝑡) respectively, randomly from the Gaussian Distribution of width (2𝑚𝑥𝛾𝑥𝑘𝐵𝑇𝛿𝑡)1/2 and

(2𝑚𝑦𝛾𝑦𝑘𝐵𝑇𝛿𝑡)1/2 respectively with 𝑘𝐵𝑇 = 4.1 pN ·nm, 𝛾𝑥 = 20 µs−1, 𝛾𝑦 = 20 µs−1 and 𝛿𝑡

ranging from 10−1 µs to 10−5 µs from low to high pulling rates.

4. Apply the biasing force 𝐹 to the potential landscape along the primary reaction coordinate

and update the position and velocity of the particle using modified Verlet algorithm.

5. Flagged the value of the pulling force and time at which the particle convincingly crossed the

barrier or barrier vanished that is when 𝑔̂ · ®Δ𝑟𝑙 and 𝑔̂ · ®Δ𝑟𝑟 flip their sign.

6. Repeat steps 1 to 5 for 2500 times.

7. Repeat steps 1 to 6 for different discrete angles of rotation of the potential landscapes.
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Projection of 2D landscape to 1D landscape and spline interpolation

1. Obtained discrete values of 1D potential corresponding to our 2D potential using mathemat-

ical technique as seen in Eq. (5.14).

2. Used cubic spline technique of interpolation to obtain smooth form of 1D potential corre-

sponding to 2D potential used.

3. Repeated 1D analysis for this reconstructed 1D landscape.

4. Cumulative probability distribution of the rupture force corresponding to 1D and 2D land-

scapes were compared to see the degree of convergence.

2.3 Monte Carlo

In this work, we allowed the protein chain with 𝑁 monomers 𝐴𝑖 (𝑖 = 0, 1, . . . , 𝑁 − 1) of

diameter 𝑎 separated by bond length 𝑏, explore the energy space given by the energy hamiltonian

(Eq. (1.15)) with given interation potential using various methods of updates. Two different update

methods, pivot rotation and site rotation, were used. The move was accepted if either 𝑑𝐸 < 0 or

ratio of probabilities of two successive states, exp(−Δ𝐸/𝑘𝐵𝑇) was greater than a small randomly

generated number from uniform distribution between 0 and 1. Metropolis Monte Carlo method [87]

was used for this. To make sure simulation did not get stuck in local minima, efficient sampling

techniques like parallel tempering [88] or adaptive biasing force were used.

2.3.1 Pivot rotation

A random site was chosen and the portion of chain after that site was allowed to rotate freely

about that site given by following rotation transformation.

1. Choose random site 𝑗 = 1, . . . , 𝑁 − 2 to be the origin for the rotation i.e, exclude the end

sites.

2. Identify 𝑗 + 1, 𝑗 + 2, . . . 𝑁 − 1 as a rigid body to rotate, origin at ®𝑟 𝑗 .

Update rule:
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Choose 𝜙 ∈ (0, 2𝜋), 𝜃 ∈ (−𝜋, 𝜋) and update ®𝑟 𝑗+1, ®𝑟 𝑗+2, . . . ®𝑟𝑁−1 to ®𝑟′ 𝑗+1, ®𝑟′ 𝑗+2, . . . ®𝑟′𝑁−1

respectively given by the update relation:

®𝑟 𝑗+1 → ®𝑟′ 𝑗+1 = 𝑅𝜃,𝜙(®𝑟 𝑗+1 − ®𝑟 𝑗 ) + ®𝑟 𝑗

®𝑟𝑁−1 → ®𝑟′𝑁−1 = 𝑅𝜃,𝜙(®𝑟𝑁−1 − ®𝑟 𝑗 ) + ®𝑟 𝑗
(2.7)

3. Check if | ®𝑟′𝑛+1 − ®𝑟′𝑛 | ≡ 𝑎, within uncertainty 10−12.

4. After pivot rotation, the components of a vector change to,

𝑟𝑥 → 𝑟′𝑥 = 𝑟𝑥 cos 𝜃 − 𝑟𝑦 sin 𝜃

𝑟𝑦 → 𝑟′𝑦 = cos 𝜙(𝑟𝑥 sin 𝜃 + 𝑟𝑦 cos 𝜃) − 𝑟𝑧 sin 𝜙

𝑟𝑧 → 𝑟′𝑧 = sin 𝜙(𝑟𝑥 sin 𝜃 + 𝑟𝑦 cos 𝜃) + 𝑟𝑧 cos 𝜙

(2.8)

2.3.2 Site rotation

Each site excluding two end sites were allowed to rotate freely under following transforma-

tion.

1. Consider a chain as shown in Fig. 2.1.

2. Choose sites 𝑖 and 𝑘 > 𝑖 + 1.

3. Range over all 𝑗 = 𝑖 + 1, . . . , 𝑘 − 1

4. For each cylindrical coordinate 𝑗 ,

𝑒𝑧 =
®𝑟𝑘 − ®𝑟𝑖
|®𝑟𝑘 − ®𝑟𝑖 |

𝑧 𝑗 = (®𝑟 𝑗 − ®𝑟𝑖).𝑒𝑧

®𝜌 𝑗 = (®𝑟 𝑗 − ®𝑟𝑖) − 𝑧 𝑗 .𝑒𝑧

(2.9)
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Figure 2.1. Diagrammatic representation of a chain depicting chain parameters and unit vectors in
cylindrical coordinate system for site rotation.

5. Rotate ®𝜌 𝑗 to ®𝜌′
𝑗

such that

®𝜌′𝑗 = 𝜌 𝑗 (cos 𝜃𝑒𝜌 + sin 𝜃𝑒𝜃)

= cos 𝜃 ®𝜌 𝑗 + 𝜌 𝑗 sin 𝜃(𝑒 𝑗 × 𝑒𝜌)

= cos 𝜃 ®𝜌 𝑗 + sin 𝜃(𝑒 𝑗 × ®𝜌 𝑗 )

(2.10)

6. Plugging in the value of ®𝜌 𝑗 from Eq. (2.9) to Eq. (2.10),

®𝜌′𝑗 = [(®𝑟 𝑗 − ®𝑟𝑖) − 𝑒𝑧(®𝑟 𝑗 − ®𝑟𝑖) · 𝑒𝑧] cos 𝜃 + [𝑒𝑧 × (®𝑟 𝑗 − ®𝑟𝑖)] sin 𝜃 (2.11)

7. Finally the rotated 𝑗 site position is:

®𝑟′ 𝑗 = ®𝑟𝑖 + 𝑧 𝑗𝑒𝑧 + ®𝜌′𝑗 (2.12)
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8. Each 𝑗 site was allowed to rotate to a position given by Eq. (2.12).

2.3.3 Metropolis algorithm

1. Initialize the chain state, in our case the chain was chosen to be straight.

2. Generate the proposed state by implementing pivot and site rotation.

3. Compute the energy of the proposed state by using Eq. (1.15) and henceforth the transition

probability.

4. Generate the random number 𝑥 ∈ [0, 1]. If the probability is larger than the random number

or the energy is lowered the move is accepted. If not, step 2 to 4 is repeated.

5. Once the next step is accepted, values of observables are recorded.

2.3.4 Efficient sampling techniques

To prevent the simulation from getting stuck in local minima, we incorporated some of the

sampling techniques like parallel tempering and dynamic biasing force. These are discussed below.

Parallel tempering technique

We used replica exchange parallel tempering [88] as given by the algorithm below.

1. 𝑀 noninteracting copies of the system are simulated in parallel at different temperatures

𝑇1, 𝑇2, . . . , 𝑇𝑀 .

2. After one complete Monte Carlo sweep two copies at neighboring temperatures 𝑇𝑖 and 𝑇𝑖+1

are exchanged with a probability:

𝑝[(𝐸𝑖, 𝑇𝑖) → (𝐸𝑖+1, 𝑇𝑖+1)] = min
[
1, exp[(𝐸𝑖+1 − 𝐸𝑖)(1/𝑘𝐵𝑇𝑖+1 − 1/𝑘𝐵𝑇𝑖)]

]
(2.13)
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Dynamic Biasing force

Dynamic biasing force was also used as another option for an efficient sampling. The force

was applied along the direction of end-to-end length vector. The biased energy hamiltonian has the

form in Eq. (2.14),

𝐻′ = 𝐻 − ®𝐹 · (®𝑟𝑁−1 − ®𝑟0) (2.14)
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CHAPTER 3

ESCAPE RATE ANALYSIS IN ONE DIMENSION

3.1 Introduction

In pulling experiments using optical tweezers [82], the determination of landscape features

has historically been carried out based on Bell-Evans phenomenological theory [58–60, 67, 83],

which assumes that the rate constant 𝑘(𝐹) scales up exponentially with applied force from its

unperturbed, intrinsic value 𝑘0 according to Eq. (1.6). In what follows, we use conventional

notation: 𝛽−1 = 𝑘𝐵𝑇 is the thermal energy scale set by the aqueous environment, and 𝑥‡ is the

minimum-to-barrier distance of the effective one-dimensional potential𝑈(𝑥), a continuous (but not

necessarily smooth) function of the end-to-end extension.

A common experimental situation involves the application of a pulling force 𝐹 = 𝐾𝑉𝑡 that

grows linearly in time until the rupture force 𝐹𝑐 is reached. Although other pulling protocols are

sometimes employed [51, 56, 89–91], we focus on the case of fixed loading rate (𝐾𝑉 = constant),

and we ignore instrument-specific issues of compliance [57, 92, 93].

It is recognized that a description of pulling experiments based on the Bell-Evans formula

for the force-induced rupture rate is in poor accord with results from numerical simulations [61].

The naive thermal-activation picture, represented by Bell-Evans, suffers from various inadequacies

that are important to address. To begin, Eq. (1.6) is strictly applicable only in the limit of low pulling

rate (𝐾𝑉 ≲ 𝐾𝑉min = 𝑘0/𝛽𝑥
‡) and ultra high barrier (Δ𝐺‡ ≫ 𝐹𝑥‡, 𝑘𝐵𝑇). Even in the moderate

pulling regime, it incorrectly predicts the rupture force distribution. It also ignores self-consistency

effects in the sense that it does not account for the fact that the distance 𝑥‡ and the energy barrier

Δ𝐺‡ are themselves force-dependent and both diminish with increasing 𝐹 as the energy landscape

is tilted. Nor does it properly account for the shape of the barrier, which plays a vital role in
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establishing the escape rate and the nature of the escape trajectory for more modest, biologically

relevant barrier heights.

Consequently, there are many situations in which the phenomenological theory incorrectly

predicts the results of pulling experiments. It tends to overestimate the rate of rupture 𝑘(𝐹) at a

given force 𝐹 and to underestimate the mean and most-probable rupture forces. Hence, when the

Bell-Evans rate, 𝑘BE(𝐹), is used as the basis for a fit to experimental data, the extracted parameters,

Δ𝐺‡, 𝑥‡, and 𝑘0, may be incorrectly predicted. Our main concern here lies in the reliable extraction

of these physical quantities.

Attempts have been made to improve on Bell-Evans by introducing additional fitting pa-

rameters [62, 94], sometimes in an ad hoc way. Dudko and coworkers have tried to make the

analysis more rigorous [68]. They calculated 𝑘(𝐹) and the corresponding probability density of

the rupture force 𝑝(𝐹𝑐) within the framework of Kramer’s Theory [34] for two specific free energy

surfaces—the cusp surface and the linear cubic surface—and showed that these two examples can

be subsumed into a single result [appearing as Eq. (1.7) in this document and as Eq. (3) in Ref. 68],

with interpolation provided by a shape parameter 𝜈. This encompasses the Bell-Evans result, since

𝑘D(𝐹) → 𝑘BE(𝐹) as 𝜈 → 1. It is clear, however, that for all 𝜈 ≠ 1, Eq. (1.7) has a dangerous point

of nonanalyticity. The vanishing of the rate 𝑘D(𝐹) → 0 as 𝐹 → Δ𝐺‡/𝑥‡𝜈 (for shape parameters in

the range 0 < 𝜈 < 1) is manifestly unphysical; hence the Dudko expression is only appropriate for

the pulling regime in which 𝐹 ≪ Δ𝐺‡/𝑥‡𝜈. In fact, the region of validity is more constrained still,

since we should further require that the escape rate grow with pulling force. As it turns out, the

function 𝑘D(𝐹) is monotonically increasing only for up to the force threshold given by Eq. (1.8).

We pursue a different approach that produces no nonanalyticity and no obviously unphysical

behavior. We compute log 𝑘(𝐹)/𝑘0 order by order in the pulling force. Rather than truncate the

expansion, we approximate the higher order terms as a resummation by geometric series—similar

in spirit to the Random Phase Approximation or the infinite summation of ladder diagrams in
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many-body theory—which yields

𝑘(𝐹) = 𝑘0 exp
Å

𝛽𝐹𝑥‡

1 + 𝐹/2𝜅‡𝑥‡

ã
. (3.1)

Here, 𝜅‡ is the reduced curvature of the well and barrier. The route to Eq. (3.1) is nothing more

than a mathematical trick, but it rather elegantly cures the ill behavior of a truncated expansion,

and it fortuitously leads to a closed-form expression for the cumulative probability distribution.

Our attempts to benchmark Eq. (3.1) fall into two categories: prediction and parameter

extraction, which correspond to the forward and inverse problems. In the forward direction,

we determine the escape rates and the cumulative probability distribution of the critical force

following the numerical method described in Sec. 5.3. We compare the simulated behavior to the

various analytical predictions. We find that our proposal outperforms the Bell-Evans and Dudko

expressions, across many different choices of energy landscape and over a broad range of pulling

rates. In the inverse direction, analytical forms for the cumulative probability distribution 𝑃(𝐹𝑐)

are fit to the simulated data to extract the optimal values of the intrinsic parameters 𝑘0, 𝑥‡, and 𝜅‡.

The results we achieve are compelling. The values of the three parameters that we extract

are in excellent agreement with the actual values that characterize the underlying energy landscape.

Moreover, the agreement appears to hold over an unexpectedly large range of pulling rates, with

𝐾𝑉/𝐾𝑉min spanning six or seven orders of magnitude.

In contrast, fits of simulation data to the Bell-Evans cumulative probability distribution,

insofar as they are able to produce good values of 𝑘0 and 𝑥‡ at all, only do so at the very slowest

pulling rates. It is difficult to speak definitively of how well Dudko’s expression performs, since in

that context fits must be carried out in conjunction with a force cutoff somewhere below the point

of nonanalyticity. This is an unwelcome complication. The cutoff itself introduces a significant

element of uncertainty in the fit, since where best to put the cutoff cannot be determined if the

landscape is not yet known.
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Figure 3.1. (Blue) The double-well potential has equilibrium positions at 𝑥𝑙 and 𝑥𝑟 , separated
by a barrier at 𝑥𝑏. A particle escaping from left to right experiences a barrier of height Δ𝐺‡ =

𝑈(𝑥𝑏) − 𝑈(𝑥𝑙), peaked at a distance 𝑥‡ = 𝑥𝑏 − 𝑥𝑙 from the bottom of the left well. (Red) After
application of a pulling force 𝐹, the energy landscape has tilted to favor the destination well on the
right. Observe that the well positions have shifted and that the height of the barrier holding the
particle in the left well has decreased.

3.2 Formal development

Kramers theory tells us that the escape rate depends weakly (polynomially) on the curvature

at the bottom of the well and the top of the barrier but strongly (exponentially) on the height of the

apparent energy barrier in the direction of travel [34, 37]. We consider a double well potential𝑈(𝑥),

with wells at positions 𝑥𝑙 and 𝑥𝑟 separated by a barrier at 𝑥𝑏 (𝑥𝑙 < 𝑥𝑏 < 𝑥𝑟), as illustrated in Fig. 4.1.

The well escape rate from left to right is given by 𝑘0 ∼ exp(−𝛽Δ𝑈), where Δ𝑈 = 𝑈(𝑥𝑏) −𝑈(𝑥𝑙).

We allow for a pulling force 𝐹 that tilts the potential landscape according to

𝑈̃(𝑥) = 𝑈(𝑥) − 𝐹𝑥. (3.2)

The corresponding rate equation becomes

𝑘(𝐹) ∼ exp
[
−𝛽

(
𝑈̃(𝑥𝑏 + 𝛿𝑥𝑏) − 𝑈̃(𝑥𝑙 + 𝛿𝑥𝑙)

)]
, (3.3)
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where 𝛿𝑥𝑙 and 𝛿𝑥𝑟 denote the shifts in the well positions as a result of the tilt. Taylor expansions of

the extremal conditions 𝑈̃′(𝑥𝑙 + 𝛿𝑥𝑙) = 0 and 𝑈̃′(𝑥𝑏 + 𝛿𝑥𝑏) = 0 around 𝑥𝑙 and 𝑥𝑏 up to first order in

𝛿𝑥𝑙 and 𝛿𝑥𝑏 give 𝛿𝑥𝑙 = 𝐹/𝑈′′(𝑥𝑙) = 𝐹/𝜅𝑙 and 𝛿𝑥𝑏 = 𝐹/𝑈′′(𝑥𝑏) = −𝐹/𝜅𝑏. A further expansion of

𝑈̃(𝑥𝑏 + 𝛿𝑥𝑏) and 𝑈̃(𝑥𝑙 + 𝛿𝑥𝑙) around 𝑥𝑏 and 𝑥𝑙 , respectively, up to second order in 𝐹, yields a rate

equation of the form

𝑘(𝐹) = 𝑘0 exp
ï
𝛽𝐹𝑥‡

Å
1 − 𝐹

2𝜅‡𝑥‡

ãò
. (3.4)

Here, 𝑥‡ = 𝑥𝑏 − 𝑥𝑙 , and 𝜅‡ is given by Eq. (1.5).

Successive terms in the expansion of log 𝑘(𝐹)/𝑘0 have alternating sign, which is important

for proper convergence of the series. Indeed, there is no polynomial expression, arising as a

truncation of the series at finite order, that does not either substantially over- or undershoot the

true rate for large applied 𝐹. The negative-prefactor terms at even powers of 𝐹 are particularly

troublesome, because they lead to nonmonotonicity. As a workaround, we make use of the idea of

infinite resummation, 1− 𝜖 + 𝜖2 − · · · ≈ 1/(1+ 𝜖), which transforms Eq. (3.4) into Eq. (3.1), at least

up to discrepancies at𝑂(𝐹3). The transformed expression is well-behaved everywhere and displays

no obviously unphysical behavior. See Fig. 3.2. Moreover, it leads to a closed-form expression

for the cumulative probability distribution (with the correct normalization 𝑃(𝐹𝑐) → 1 as 𝐹𝑐 → ∞;

Dudko’s expression, in contrast, cannot be properly normalized).

In the usual adiabatic limit, the expression for the cumulative probability distribution of the

rupture force is given by

𝑃(𝐹𝑐) = 1 − exp
ñ
−
ˆ 𝐹𝑐

0

𝑑𝐹

¤𝐹
𝑘(𝐹)
ô
. (3.5)

Equations (1.6) and (3.5) together give the cumulative probability distribution of the rupture force

as predicted by the Bell-Evans phenomenological model,

𝑃BE(𝐹𝑐) = 1 − exp
ï

𝑘0

𝐾𝑉𝛽𝑥‡
(
1 − 𝑒 𝛽𝐹𝑐𝑥‡

)ò
. (3.6)

If instead we put Eq. (3.1) into Eq. (3.5), we get a more complicated result, but one that is still
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Figure 3.2. The well escape rate 𝑘(𝐹) is plotted against the applied pulling force 𝐹. The upper
(bashed blue) curve corresponds to the Bell-Evans (BE) rate [Eq. (1.6)]; the middle (solid red)
to our proposed infinite-resummation expression [Eq. (3.1)]; and the lower (dot-dashed green)
to an expansion truncated at second order in the pulling force [Eq. (3.4)]. The BE result grows
exponentially without bound (but shows as a straight line because of the log-linear scale). The
truncated expression turns over and becomes unphysical around 80 pN. The resummed form strikes
a middle course, growing monotonically but saturating at a large, finite value, 𝑘0 exp

[
2𝛽𝜅‡(𝑥‡)2].

simple enough to use for fitting (e.g., via Marquardt-Levenberg):

𝑃(𝐹𝑐) = 1 − exp
ï
𝑘0
𝐾𝑉

(
𝐹1 + 𝐹2 − 2𝑥‡𝜅‡

)ò
. (3.7)

The quantities 𝐹1 and 𝐹2 have units of force and are explicit functions of the critical value 𝐹𝑐:

𝐹1 =
(
𝐹𝑐 + 2𝑥‡𝜅‡

)
exp
Ç

2𝐹𝑐𝑥‡
2
𝛽𝜅‡

𝐹𝑐 + 2𝑥‡𝜅‡

å
,

𝐹2 = 4𝑥‡3
𝛽𝜅‡

2 exp
(
2𝑥‡2

𝛽𝜅‡
)ñ

Ei
Ç
− 4𝑥‡3

𝛽𝜅‡
2

𝐹𝑐 + 2𝑥‡𝜅‡

å
− Ei

(
−2𝑥‡2

𝛽𝜅‡
)ô
.

(3.8)

The exponential integral Ei(𝑥) = −
´ ∞
−𝑥 𝑑𝑡 𝑡

−1𝑒−𝑡 is a standard special function that is available in

most data analysis software.

The choice 𝐹 = 𝐾𝑉𝑡 is helpful here but not essential. Its main advantage is that the

differential appearing in Eq. (3.5) simplifies to 𝑑𝐹/ ¤𝐹 = (𝐾𝑉)−1𝑑𝐹, and hence the integration

measure is trivial. The closed form expression that we obtain in Eqs. (3.7) and (3.8) does depend
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Figure 3.3. Numerical measurements of the escape rate (green data points with error bars) are
plotted versus the applied pulling force. Also shown for comparison are the predictions of Bell-
Evans [Eq. (1.6), blue dashed line], Dudko [Eq. (1.7), orange dot-dashed], and our renormalized
rate equation [Eq. (3.11) with a common value 𝛼 = 1/3, solid red]. The simulations were carried
out for potentials with various values of 𝜈 = 2Δ𝐺‡/𝜅‡(𝑥‡)2, the shape parameter: in the top row,
panels (a), (b), (c) correspond to 𝜈 = 0.66, 0.75, 0.82; in the bottom row, (d), (e), (f) correspond
to 𝜈 = 0.9, 1.0, 1.1. We note the remarkable agreement between simulation and the renormalized
form. No fitting is involved.
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on this choice. But any pulling schedule 𝐹(𝑡) that is monotonically increasing (so that ¤𝐹 never

vanishes or goes negative) and growing at most as a polynomial in 𝑡 can be treated similarly.

We now comment on the connection to the prior work of Dudko and coworkers. The

unperturbed potential 𝑈(𝑥) can be expanded to quadratic order around the bottom of the well,

𝑈𝑙(𝑥) = 𝑈(𝑥𝑙)+ (𝜅𝑙/2)(𝑥 − 𝑥𝑙)2, and around the peak of the barrier,𝑈𝑏(𝑥) = 𝑈(𝑥𝑏)− (𝜅𝑏/2)(𝑥 − 𝑥𝑏)2.

We identify the position 𝑥∗ = (𝜅𝑏𝑥𝑏 + 𝜅𝑙𝑥𝑙)/(𝜅𝑙 + 𝜅𝑏) where the two approximations take a common

slope and match the functions smoothly there. The resulting piecewise composite curve has a total

rise of

𝑈𝑙(𝑥∗) −𝑈(𝑥𝑙) +𝑈𝑏(𝑥∗) −𝑈(𝑥𝑏) =
𝜅𝑙𝜅𝑏(𝑥𝑏 − 𝑥𝑙)2

2(𝜅𝑙 + 𝜅𝑏)
=

1
2
𝜅‡(𝑥‡)2, (3.9)

which differs from the the true barrier height Δ𝐺‡ = 𝑈(𝑥𝑏) −𝑈(𝑥𝑙) by a factor that Dudko labels

1/𝜈. That is,
Δ𝐺‡

𝜈
=

1
2
𝜅‡(𝑥‡)2. (3.10)

The equality 𝜈 = 2/3 holds for any degree-three polynomial. If the energy landscape is represented

by a higher-degree polynomial, then the value of the shape parameter is idiosyncratic and should

be viewed as drawn from a distribution with average ⟨1/𝜈⟩ < 3/2. For smooth potentials (no

cusps or discontinuities), typical values of the shape parameter 𝜈 range between 2/3 and ≈1.1. An

advantage of working in terms of 𝜈, rather than the effective curvature 𝜅‡, is that the former can be

defined even if the derivatives 𝑈′′(𝑥𝑙) and 𝑈′′(𝑥𝑏) vanish (e.g., a quartic well or barrier) or are not

well defined (e.g., a cusp barrier).

With Eq. (3.10) in mind, matching our resummed rate expression to that of Dudko order by

order in the small-pulling-force, large-barrier-height limit suggests the form

𝑘(𝐹) = 𝑘0 exp
ñ

𝛽𝐹𝑥‡

(1 + 𝛼/𝛽Δ𝐺‡)(1 + 𝜈𝐹𝑥‡/4Δ𝐺‡)

ô
, (3.11)

where 𝛼 > 0 is a pure number with a weak dependence on the shape parameter. Equation (3.11) can

be understood as a rewriting of Eq. (1.6), the Bell-Evans phenomenological rate, with an upward

renormalization of the temperature, 𝛽 → 𝛽/(1 + 𝛼/𝛽Δ𝐺‡), and a downward renormalization of
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the barrier distance 𝑥‡ → 𝑥‡/(1 + 𝜈𝐹𝑥‡/4Δ𝐺‡). Unlike Eq. (1.7), Eq. (3.11) is well-behaved

everywhere.

In the case of an ultra-high barrier, defined by the double limit 𝛽Δ𝐺‡ ≫ 1 and Δ𝐺‡ ≫ 𝐹𝑥‡,

Eq. (3.11) reduces to Eq. (1.6). For more modest barriers or higher temperatures, one or both

of the factors (1 + 𝛼/𝛽Δ𝐺‡) and (1 + 𝜈𝐹𝑥‡/4Δ𝐺‡) may differ appreciably from 1; this allows the

rate expression to become aware of the details of the barrier’s height and shape through the factor

Δ𝐺‡/𝜈.

The reliability of Eq. (3.11) was tested for six potential landscapes with different values of

𝜈 using the simulation scheme described in the next section. In every test example (see Fig. 3.3),

our renormalized equation closely tracked the empirical escape rate determined from simulations.

It noticeably outperformed the Bell-Evans and Dudko escape rate equations.

3.3 Numerical Simulations

The reaction coordinate 𝑥 was made to execute Langevin dynamics according to Eq. (2.1).

This was implemented using a modern reformulation [85] of the Verlet algorithm [86]. We

mimicked the experimental situation by assuming stochastic motion of a molecule of effective mass

𝑚 = 2 pg in a biquadratic potential. The data that appear in Figs. 3.4–3.7 correspond to the choice

𝑈(𝑥) = 4𝑥4 − 32𝑥2 + 64 (with 𝑥 measured in nm and 𝑈 in pN nm). The molecule was assumed to

be pulled from two ends along the reaction coordinate 𝑥 by a laser potential with force constant

𝐾 and pulling velocity 𝑉 ; i.e., with an instantaneous force 𝐹 = 𝐾𝑉𝑡 that increases linearly in

time. For the given potential, the energy barrier was Δ𝐺‡ = 64 pN nm, the minimum-to-barrier

distance 𝑥‡ = 2 nm, and the effective curvature 𝜅† = 42.7 pN nm−1. The stochastic forces 𝜉(𝑡)

on the molecule were drawn randomly from a Gaussian distribution of width (2𝑚𝛾𝑘𝐵𝑇𝛿𝑡)1/2 with

𝑘𝐵𝑇 = 4.1 pN nm, 𝛾 = 7 µs−1, and a discrete timestep 𝛿𝑡 ranging from 10−2 µs to 10−6 µs.

Note that, for generality, small inertial effects were included in the numerics. The simula-

tions were not run in the strongly over-damped, diffusion-only limit: parameter values were chosen

to be physically plausible but also to produce a non-extreme limit (neither 𝛾 ≪ 𝜔𝑏 nor 𝛾 ≫ 𝜔𝑏) of
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the prefactor to the exponential in the Kramers rate [which will appear in Eq. (3.12)].

Pulling rates for the force 𝐹 = 𝐾𝑉𝑡 are measured with respect to 𝐾𝑉min = 𝑘0/𝛽𝑥
‡, which

is the minimum rate for effectual pulling. Below 𝐾𝑉min, the probability density 𝑝(𝐹𝑐) is peaked at

𝐹𝑐 = 0; the particle escapes the well on its own before the applied force has appreciably modified

the energy landscape. On the other hand, for rates above 𝐾𝑉/𝐾𝑉min ≈ 106, the barrier vanishes

too quickly, long before the particle has moved any significant distance. Accordingly, we worked

in the regime of pulling rates between these two extremes.

The simulation was initialized in the left well by drawing starting values of velocity 𝑣

and position 𝑥 from the distributions 𝑒−𝛽𝑚𝑣2/2 and 𝑒−𝛽𝑈(𝑥)Θ(𝑥𝑏 − 𝑥), respectively, so that the each

simulation began fully thermalized. The simulation flagged the value of pulling force at which 𝑥

convincingly crossed the barrier or the barrier vanished; we took this to be the rupture or critical

force 𝐹𝑐. For each value of the pulling rate 𝐾𝑉 , the simulation was carried out 2500 times, each run

generating a unique value of the rupture force. The cumulative probability distribution 𝑃(𝐹𝑐) was

constructed in the standard way—by sorting the measured rupture forces in ascending order and

then pairing them with a uniform grid of values running from 0 to 1. The plot for 𝑃(𝐹𝑐) so obtained

was tested against Eq. (3.7) and against the Bell-Evans form, Eq. (3.6). The process was repeated

for pulling rates ranging from 𝐾𝑉 = 10−7 pN µs−1 to 0.6 pN µs−1 (roughly 1 ≲ 𝐾𝑉/𝐾𝑉min ≲ 107)

to determine how these expressions fare in the slow, intermediate, and fast pulling regimes.

In order to test parameter extraction, the original 𝑃(𝐹𝑐) dataset for each pulling rate was

bootstrapped 100 times to generate 100 new instantiations. These data were fitted with Eq. (3.7) to

extract the intrinsic parameters of the potential landscape: 𝑘0, 𝑥‡ and 𝜅‡. The spread in fit values

was used to generate error estimates.

The datasets were also fitted to the Bell-Evans form given by Eq. (3.6) in order to extract

the values of 𝑘0 and 𝑥‡ (𝜅‡ does not appear in the Bell-Evans expression). The bootstrap-average

values of the extracted parameters were compared to their known values. The theoretical intrinsic
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rate 𝑘0 was computed according to the usual Kramers result,

𝑘0 =
𝜔𝑙

2𝜋

»
𝛾2/4 + 𝜔2

𝑏
− 𝛾/2

𝜔𝑏
exp

(
−𝛽Δ𝐺‡). (3.12)

Our test potential corresponded to𝜔𝑙 =
√
𝜅𝑙/𝑚 = 8 µs−1 and𝜔𝑏 =

√
𝜅𝑏/𝑚 = 5.65 µs−1. We verified

that the theoretical value of 𝑘0 = 1.192×10−7 µs−1 was in agreement with numerical measurements

of the escape rate for the nontilted energy landscape.

3.4 Results and Conclusions

In the left column of Fig. 3.4, the rupture force distributions predicted by Eqs. (3.6) and

(3.7) are compared to the results from simulation for three different pulling rates (corresponding to

𝐾𝑉/𝐾𝑉min ≈ 101, 103, 105). For slow pulling (top row), the Bell-Evans theory and our resummed

expression are well-matched to each other and to the numerics. For intermediate pulling (middle

row), the Bell-Evans result begins to deviate significantly, whereas our proposal continues to give

accurate results (i.e., the solid green and red dotted lines coincide). Only at the highest pulling

rates (bottom row) do we find significant deviation from the simulated rupture force distributions

for both Eqs. (3.6) and (3.7); although, even there, our expression performs better and is in good

agreement up to ∼ 25 pN.

It is instructive to look at the corresponding probability density of the rupture force, 𝑝(𝐹𝑐) =

𝑃′(𝐹𝑐), obtained from Bell-Evans and our resummed form, as shown in the right column of

Fig. 3.4. The Bell-Evans result systematically underestimates the pulling force required to traverse

the barrier—and increasingly so for faster pulling. One observes that both its peak (typical

rupture force) and its overall weight (mean rupture force) are positioned too far to the left (toward

low force values). The same information is contained in the average critical force ⟨𝐹𝑐⟩, which

we obtained from the cumulative probability distributions, Eqs. (3.6) and (3.7), by numerical

integration. Figure 3.5 shows a plot of ⟨𝐹𝑐⟩ as a function of the relative pulling rate. One can

readily identify an intermediate regime (102 ≲ 𝐾𝑉/𝐾𝑉min ≲ 105) in which the curve computed
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Figure 3.4. Plots paired on the left and right show the cumulative probability distribution 𝑃(𝐹𝑐)
and the corresponding probability density 𝑝(𝐹𝑐) = 𝑃′(𝐹𝑐) of the rupture force. Each row shows
results for successively faster pulling rates: 𝐾𝑉 = 4×10−6 pN µs−1 for (a) and (b), 4×10−4 pN µs−1

for (c) and (d), and 4 × 10−2 pN µs−1 for (e) and (f).
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Figure 3.5. The average rupture force ⟨𝐹𝑐⟩ =
´
𝑑𝐹 𝐹𝑃′(𝐹), determined by numerical integration

with 𝑃(𝐹) taken from Eqs. (3.6) (dashed blue line) and (3.7) (red line), is compared to the empirical
values from simulation (green crosses).

from the resummed rate tracks the true, numerically determined values of the average rupture force.

In that same regime, the Bell-Evans curve deviates significantly.

The second part of the numerical analysis focused on the inverse problem. Here, the

simulated data were fitted using Eq. (3.7), and the intrinsic parameters of the energy landscape,

viz., 𝑘0, 𝑥‡ and 𝜅‡, were determined by minimizing discrepancies between theory and data in the

least-squares sense. The process was repeated for Eq. (3.6), but only with 𝑘0 and 𝑥‡ (since 𝜅‡ does

not appear in the fitting function). We found unambiguously that the parameter extraction is much

more reliable using our resummed form. Indeed, use of the Bell-Evans theory was often quite

misleading, because it would produce an apparently good fit that corresponded to incorrect values

of the landscape parameters.

The top panel of Fig. 3.6, which shows a fast-pulling example with 𝐾𝑉 = 4× 10−2 pN µs−1,
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Figure 3.6. (a) The cumulative probability distribution of the rupture force, computed from 2500
simulated pulling experiments at rate 𝐾𝑉 = 0.04 pN/µs (green line), is plotted alongside the best
fits for Eqs. (3.6) (blue dashed line) and (3.7) (red dotted line). The near indistinguishability of
the curves illustrates the strong tendency toward overfitting. The Bell-Evans expression, though
ill-suited for describing the behavior at this high pulling rate, is able to mimic the numerical data—
but at the cost of producing fitting parameters that have drifted far from their true values. This is
in contrast to the poor agreement in Fig. 3.4(e), where there is no fitting and the known values of
𝑘0 and 𝑥‡ are used. Estimates of the intrinsic escape rate 𝑘0 (b) and the barrier distance 𝑥‡ (c), as
determined from fits of Eqs. (3.6) (blue crosses) and (3.7) (red diamonds) to simulation data over
a range of pulling rates, are plotted alongside the actual value (green line).
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determined from fits of Eq. (3.7) to simulation data. They compare favorably to the actual value
(green line) over a range pulling rates spanning many decades.

emphasizes this point. The cumulative probability distribution appears to be equally well fit by

Eqs. (3.6) and Eq. (3.7). The middle and bottom panels reveal this to be illusory. In the Bell-Evans

analysis, the value of 𝑘0 is systematically overestimated and 𝑥‡ underestimated, and both ever more

so as the pulling rate is ramped up. On the other hand, the analysis based on our resummed form

yields values consistent with the correct landscape parameters. Moreover, even at low pulling rates,

where Bell-Evans performs not too badly, our proposal is more reliable and produces less scatter

in the parameter values.

We remark that fits of the simulation data to Eq. (3.7) yield astonishingly good values of 𝜅‡,

the effective curvature. See Fig. 3.7. In almost every case, regardless of pulling rate, the predicted

value of 𝜅‡ coincides with the true value. This suggests to us that our inclusion of higher-order

corrections in the rate equation plays an important role in improving the overall quality of the

parameter extraction.

To conclude, our work highlights the known inadequacies of the Bell-Evans phenomeno-
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logical well escape rate. It also suggests that the celebrated equation due to Dudko and coworkers

is not an adequate fix. We propose a new expression, Eq. (3.1), that improves on Bell-Evans by

including beyond-Arrhenius contributions from the shape of the energy potential. Equation (3.1)

clearly outperforms the Bell-Evans and Dudko expressions in terms of predicting the well escape

rate (as is evident from Fig. 3.3). Crucially, it avoids the unphysical behavior that plagues Dudko’s

rate equation at large pulling force.

Of particular utility is that Eq. (3.1) integrates to give a manageable, closed-form expression

for the cumulative probability distribution. The resulting Eq. (3.7) is straightforward to implement

as a fitting function and can be incorporated into existing workflows with little additional effort.

Rigorous numerical tests (illustrated in Figures 3.6 and 3.7) confirm that fits to Eq. (3.7) can be

used to reliably extract the parameters that characterize the underlying energy landscape.
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CHAPTER 4

UNIVERSALITY IN BIASED ACTIVATED BARRIER CROSSING

4.1 Introduction

The purpose of this chapter is to describe universal aspects of the biased activated-barrier-

crossing process that we have uncovered in numerical simulations of various one-dimensional

potentials. Our work points the way to an alternative data analysis technique that would allow

for the determination of otherwise unknown landscape details by overlaying data from multiple

experiments and adjusting free parameters until the scattered data align along a common curve.

The concept of universality comes to us from the study of critical phenomena [95]. In

that context it allows us to understand how phase transitions can be characterized and grouped

into families according to common critical exponents, wholly independent of the microscopic

details of the underlying models; it also explains the existence of scaling relations that govern how

thermodynamic quantities behave in the vicinity of criticality. An important mark of universality

is that data from different models or different physical systems can be plotted in reduced variables

so that they collapse onto a single universal curve [96–98].

Criticality has previously been invoked by Singh, Krishan, and Robinson in the context of

the unbiased-activated-barrier crossing problem [99, 100]. They considered the non-Markovian

crossing of a quadratic barrier, where the frictional term in the Langevin equation includes a

memory kernel with a long time scale. The authors proposed a scaling hypothesis, making analogy

with the criticality of the Ising model, and were able to derive scaling relations for the reduced rate

near a critical value of the memory kernel time scale.

Our approach here is rather different. We focus on the relative change in the escape rate as

a function of an applied pulling force—both for uniform pulling (𝐹 constant) and steady loading
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Figure 4.1. Seven energy profiles are depicted, rescaled so that the bottom of the well and top of
the barrier coincide. The color key shows the shape parameter (𝜈) values for each curve.

(𝐹 = 𝐾𝑉𝑡 with 𝐾𝑉 constant). We propose that 𝐹 exists alongside two other important force scales

and that the two independent ratios that can be formed serve as arguments to a scaling function.

We have carried out Langevin-type simulations of a particle in a one-dimension energy potential,

coupled to a heat bath. Many thousands of instantiations provide us with a large data set that offers

good coverage of the model space. What is so striking is the almost unreasonable effectiveness of

the scaling ansatz, which appears to be valid over a huge variety of well shapes and barrier heights

and over loading rates spanning many orders of magnitude.

4.2 Scaling ansatz

We argue that the barrier-crossing process is controlled by the relative magnitudes of three

intrinsic force scales: the typical thermal force that provides the kick out of the well (𝐹𝑇 ≈ 1/𝛽𝑥‡);

the larger applied force required to fully extinguish the barrier (𝐹𝐵 ≈ 𝜅‡𝑥‡); and the pulling force

used as an external bias (𝐹). In our notation, 𝛽 is the inverse temperature, and 𝑥‡, 𝜅‡ are the barrier
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distance (see Fig. 4.1) and effective curvature [84]. In particular, we propose that the rescaled,

logarithmic relative escape rate (𝐹𝑇/𝐹𝐵) log[𝑘(𝐹)/𝑘0], when plotted against the reduced pulling

force 𝐹/𝐹𝐵, collapses onto a universal curve. The function 𝑘(𝐹) is the escape rate associated with

the potential landscape under bias, and 𝑘0 is the corresponding rate in the untilted landscape.

More precisely, the claim is that

𝑌 (𝐹) = log
𝑘(𝐹)
𝑘0

=

Å
𝐹𝑇

𝐹𝐵

ã−1
Y(𝐹/𝐹𝐵, 𝐹𝑇/𝐹𝐵)

=

Å
𝐹𝑇

𝐹𝐵

ã−1ï
Y(𝐹/𝐹𝐵, 0) +

Å
𝐹𝑇

𝐹𝐵

ã𝜔
W(𝐹/𝐹𝐵) + · · ·

ò
.

(4.1)

Up to subleading corrections (characterized by an exponent 𝜔 > 0), the escape behaviour is

controlled by a universal function Y(𝑥, 𝑦) that satisfies Y(𝑥, 0) = 𝑥 +𝑂(𝑥2). Further justification for

this form is presented in Sec. 4.4. The implication of Eq. (4.1) is that a plot of (𝐹𝑇/𝐹𝐵)𝑌 versus

𝑓 = 𝐹/𝐹𝐵 should produce data collapse regardless of the microscopic details of the simulation.

In the context of dynamical pulling, there is another useful analysis. A population of

particles trapped in the originating well is depleted according to −𝑑𝑛/𝑑𝑡 = 𝑘(𝐾𝑉𝑡)𝑛(𝑡), a product

of the instantaneous escape rate and the current population. The half-life of such a population is

characterized by log 2 =
´ 1/2

1 𝑑𝑛/𝑛 = −(1/𝐾𝑉)
´ 𝐹̂

0 𝑑𝐹 𝑘(𝐹). Here, 𝐹̂ = 𝐾𝑉𝑡 is the typical applied

force that is in effect during barrier transit, and 𝑡 is the median elapsed time for escape. It follows

from Eq. (4.1) that 𝐹̂ (measured with respect to the thermal force 𝐹𝑇 ) must be a monotonic, universal

function of ¤𝐹 = 𝐾𝑉 (measured with respect to 𝑘0𝐹𝑇 , a loading rate threshold defined by the thermal

processes in the potential well). Hence, there is an additional data collapse analysis that can be

used to independently test the validity of the scaling hypothesis.

In our numerical experiments, the external bias is applied in two ways: (i) as a time-

invariant pulling force of constant strength and (ii) as a linearly time-varying force with a constant

loading rate. In the case of constant pulling, the system is prepared in the equilibrium state of

the tilted energy profile [viz. 𝑈̃(𝑥) = 𝑈(𝑥) − 𝐹𝑥] and remains in thermal equilibrium throughout

the simulation. In the case of steady loading, the system is prepared in the equilibrium state of
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the unbiased profile (𝐹 = 0 for all 𝑡 ≤ 0), but as time elapses it is driven away from equilibrium

(𝐹 = 𝐾𝑉𝑡 for all 𝑡 > 0) in proportion to how much 𝐾𝑉 exceeds 𝑘0𝐹𝑇 .

In both cases, the role of 𝐹 is to gently tilt the landscape (statically or dynamically), as

depicted in Fig 1.5. There, the purple curve depicts the potential profile in its unbiased state; the

green curve shows the profile after application of the external bias. Generically, the force-dependent

values of the barrier distance 𝑥‡(𝐹) and barrier height Δ𝐺‡(𝐹) are monotonically decreasing in 𝐹,

and hence the barrier crossing process becomes energetically less costly (and crossing events more

frequent) as the external bias is ramped up.

4.3 Numerical results

We carried out a thorough and comprehensive Langevin simulation study. At the start of

each run, the system was prepared in a properly equilibrated state: an initial position and velocity

were drawn from the heat bath distribution of the appropriate energy profile, with the constraint

that the particle be situated on the originating-well side of the barrier. Forward evolution was

carried out with adaptive time steps taken small enough that the discretization error could be shown

to be negligible. The simulation made use of a high-quality, long-period pseudorandom number

generator that guaranteed the statistical independence of the instantaneous thermal forces.

We considered seven different potentials having shape parameter [68] 𝜈 = 0.66, 0.75, 0.83,

0.9, 1, 1.1, 1.2; these values step through the full range of possibilities for smooth potentials

based on polynomials. This family of energy potentials—translated and rescaled to coincide at

the bottom of the originating well and at the top of the barrier so as to emphasize the shape

difference—is displayed in the lower panel of Fig 4.1. We also considered eight barrier regimes,

with 1/𝛽Δ𝐺‡ = 𝑘𝐵𝑇/Δ𝐺
‡ taking values 0.25, 0.3, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, a list that

includes temperatures high enough (or, equivalently, barriers low enough) to be outside the range

of validity for pure Arrhenius-law behavior. Simulations were carried out in both the constant-

force and steady-loading modes, with relative applied forces (𝐹/𝐹𝐵) and relative loading rates

(𝐾𝑉/𝑘0𝐹𝑇 ) each spanning nearly 10 orders of magnitude. For each run, the trajectory leading to
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barrier traversal was captured and analyzed.

The numerical simulations were carried out using a modified version [85] of the standard

Verlet algorithm [86]. In each run, a critical time 𝑡𝑐, taken to be either the first-passage time of

the particle over the barrier or the moment at which the barrier vanished, was recorded. For each

energy potential profile and simulation mode, 3000 instantiations were generated.

In the constant-force mode, the rate 𝑘(𝐹) was computed from the mean escape time: 𝑘(𝐹) =

1/𝑡avg, where 𝑡avg = (1/3000)
∑3000
𝑖=1 𝑡

(𝑖)
𝑐 . In the steady-loading mode, the linear correspondence

𝐹𝑐 = 𝐾𝑉𝑡𝑐 gave rise to 3000 critical force values, on the basis of which further analyses were

performed. First, the 𝐹𝑐 values were sorted to identify their median value, which corresponds

to the half-life force 𝐹̂ (the force at which half of a population of independent particles would

have escaped the well). Second, the 𝐹𝑐 values were bootstrapped [101] to obtain the cumulative

probability distribution 𝑃(𝐹𝑐) =
´ 𝐹𝑐

0 𝑑𝐹 𝑝(𝐹) and probability density 𝑝(𝐹𝑐) = 𝑃′(𝐹𝑐). Finally the

value of 𝑘(𝐹) = 𝑘(𝐾𝑉𝑡), the instantaneous rate of barrier crossing at a particular bias strength, was

obtained using the relation 𝑘(𝐹𝑐) = 𝐾𝑉𝑝(𝐹𝑐)/(1 − 𝑃(𝐹𝑐)) [68].

The next step was to test the universality proposition by graphical means. We found strong

evidence in its favor: the data collapse predicted by Eq. (4.1) is revealed in Fig. 4.2. In order to

perform the conversion to reduced variables, each data point was associated with an individualized

value of 𝐹𝐵 and 𝐹𝑇 . The former was obtained numerically, simply by solving for the applied force

required to extinguish the barrier; the latter was estimated according to

1
𝐹𝑇

= 𝛽𝑥‡ +
𝑅
‡
1,2

2𝜅†2 = 𝛽(𝑥𝑏 − 𝑥𝑙) +
1
2

Å
𝑅𝑏

𝜅2
𝑏

+ 𝑅𝑙
𝜅2
𝑙

ã
. (4.2)

The new symbols here refer to the curvature and skew at the bottom of the left well and at the top

of the barrier: 𝜅𝑙 = 𝑈′′(𝑥𝑙) and 𝜅𝑏 = −𝑈′′(𝑥𝑏); 𝑅𝑙 = −𝑈′′′(𝑥𝑙) and 𝑅𝑏 = −𝑈′′′(𝑥𝑏). A full rationale

for Eq. (4.2) is given in Sec. 4.4.

Figure 4.2(a) presents a linear-log plot of (𝐹𝑇/𝐹𝐵)𝑌 (𝐹) = (𝐹𝑇/𝐹𝐵) log (𝑘(𝐹)/𝑘0) versus

𝑓 = 𝐹/𝐹𝐵. The data points for the steady-loading analysis are colored according to the simulation-
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Figure 4.2. The upper and lower panels show plots of (𝐹𝑇/𝐹𝐵)𝑌 (𝐹) = (𝐹𝑇/𝐹𝐵) log (𝑘(𝐹)/𝑘0) versus
𝑓 = 𝐹/𝐹𝐵 and offer different views of the same underlying data set. Black circles correspond to
simulations executed in the constant-force mode, and the green line is a low-order Padé approximant
fit through these data points. Colored solid circles denote data from steady-loading runs. (a)
The horizontal axis uses a log scale. Color intensity increases with the relative pulling rate,
𝑟𝑇 = 𝐾𝑉/(𝑘0𝐹𝑇 ). Numbers on the palette legend show the order of magnitude, log 𝑟𝑇 . (b) Both
axes are linear. Colors now represent 𝐹𝑇/𝐹𝐵 ≈ 1/𝛽𝜅‡𝑥‡2 ≈ 𝜈/2𝛽Δ𝐺‡, which characterizes the
barrier regime.
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Figure 4.3. These data are from simulations performed with dynamic tilting of the potential at a
constant loading rate. Shown here is 𝑓𝑇 = 𝐹̂/𝐹𝑇 , the force at half-life measured with respect to the
thermal force scale, plotted against the effective pulling rate, 𝑟𝑇 = 𝐾𝑉/(𝑘0𝐹𝑇 ). Each data point is
a solid circle, colored as per the legend according to its 𝐹𝑇/𝐹𝐵 value.

specific loading rate, and one can observe the smooth progression of data-point placement, weak

loading to strong, tracing out the universal curve from left to right. The constant-force data (black

circles) show considerably less scatter, but the two data sets are remarkably consistent. What makes

this result so compelling is that the data collapse holds over a huge diversity of energy profiles

and simulation conditions. We also remark that the steady-loading and constant-force approaches

require quite different styles of simulation and analysis, but both yield the same underlying curve;

Padé approximants fit to one or the other data set produce nearly identical functions.

Figure 4.2(b) shows the same data plotted on a linear scale. This view highlights the

behavior at large forces, a regime in which the barrier is already substantially reduced at the time

of barrier traversal. Here, the false color emphasizes the diversity in barrier height regimes, and

we can see that data collapse holds over a wide range of ratios 𝐹𝑇/𝐹𝐵.

Figure 4.3 presents a wholly different data collapse scheme, based only on simulations

performed in the steady-loading mode. There, the reduced half-life force 𝑓𝑇 = 𝐹̂/𝐹𝑇 is plotted
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versus the reduced loading rate 𝑟𝑇 = 𝐾𝑉/(𝑘0𝐹𝑇 ). It is worth emphasizing again that the complete

data set comes from simulations with seven different potential landscapes covering the full range

of plausible 𝜈 values, 1/(𝛽Δ𝐺‡) ranging from 0.2 to 0.6, and loading rates running from 𝑟𝑇 = 10−8

to 100. Despite encompassing a large collection of different systems in distinct physical regimes,

these data show an astonishing degree of collapse.

4.4 Theoretical motivation

In this section, we briefly review some of the theoretical considerations that originally led

us to believe that scaling and data-collapse behavior are likely to manifest.

4.4.1 Locally quadratic approximation

We consider a one-dimensional, double-well energy landscape𝑈(𝑥) with minima on the left

and right, at positions 𝑥𝑙 and 𝑥𝑟 , separated by a barrier at 𝑥𝑏. A barrier of heightΔ𝐺‡ = 𝑈(𝑥𝑏)−𝑈(𝑥𝑙)

impedes transitions from left to right. By definition 𝑈′(𝑥𝑙) = 𝑈′(𝑥𝑏) = 𝑈′(𝑥𝑟) = 0. In the locally

quadratic approximation, we assume

𝑈(𝑥) =


𝑈(𝑥𝑙) + 1

2𝜅𝑙(𝑥 − 𝑥𝑙)
2 for 𝑥 ≃ 𝑥𝑙 ,

𝑈(𝑥𝑏) − 1
2𝜅𝑏(𝑥 − 𝑥𝑏)

2 for 𝑥 ≃ 𝑥𝑏,
(4.3)

where 𝜅𝑙 = 𝑈′′(𝑥𝑙) and 𝜅𝑏 = −𝑈′′(𝑥𝑏) are measures of the curvature at the bottom of the well and

at the top of the barrier.

With the application of a bias force 𝐹, the extrema of the tilted landscape 𝑈̃(𝑥) = 𝑈(𝑥)−𝐹𝑥

are found as follows:

0 = 𝑈̃′(𝑥) = 𝑈′(𝑥) − 𝐹 =


+𝜅𝑙(𝑥 − 𝑥𝑙) − 𝐹,

−𝜅𝑏(𝑥 − 𝑥𝑏) − 𝐹.
(4.4)

At this level of approximation, the bias-induced shifts in the extrema are linear in 𝐹. In response to
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the applied force (𝐹 > 0), the well basin moves to the right and the barrier peak moves to the left:

𝑥𝑙 = 𝑥𝑙 +
𝐹

𝜅𝑙
, 𝑥𝑏 = 𝑥𝑏 −

𝐹

𝜅𝑏
. (4.5)

The two points eventually coalesce when 𝑥𝑙 = 𝑥𝑏; i.e., when

𝑥‡ = 𝑥𝑏 − 𝑥𝑙 =
Å

1
𝜅𝑙

+ 1
𝜅𝑏

ã
𝐹 ≡ 𝐹

𝜅‡
. (4.6)

The particular force value at which Eq. (4.6) holds is the barrier extinction force 𝜅‡𝑥‡. We follow

the usual practice of decorating with a double-dagger superscript any quantity that is defined with

respect to the barrier and the originating well. This includes the barrier distance 𝑥‡ = 𝑥𝑏 − 𝑥𝑙 and

the effective curvature

𝜅‡ =

Å
1
𝜅𝑏

+ 1
𝜅𝑙

ã−1
=

𝜅𝑙𝜅𝑏

𝜅𝑙 + 𝜅𝑏
. (4.7)

In order to find an expression for the barrier height that is consistent with the approximation

in Eq. (4.3), we must match the two piecewise quadratic curves. We do so at the point of common

slope, where

𝑈′(𝑥∗) = 𝜅𝑙(𝑥∗ − 𝑥𝑙) = −𝜅𝑏(𝑥∗ − 𝑥𝑏). (4.8)

The reference position

𝑥∗ =
𝜅𝑙𝑥𝑙 + 𝜅𝑏𝑥𝑏
𝜅𝑙 + 𝜅𝑏

. (4.9)

is a weighted average satisfying 𝑥𝑙 ≤ 𝑥∗ ≤ 𝑥𝑏. The height of the barrier in the untilted landscape

(𝐹 = 0) is estimated to be

Δ𝐺‡ = 𝑈(𝑥𝑏) −𝑈(𝑥∗) +𝑈(𝑥∗) −𝑈(𝑥𝑙)

≈ 1
2
𝜅𝑏(𝑥∗ − 𝑥𝑏)2 + 1

2
𝜅𝑙(𝑥∗ − 𝑥𝑙)2 =

1
2
𝜅‡𝑥‡

2
.

(4.10)

Formally, the barrier extinction force is given by the derivative of the barrier height with respect to
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the barrier position. At the level of approximation of Eq. (4.10), we have

𝜕Δ𝐺‡

𝜕𝑥‡
= 𝜅‡𝑥‡. (4.11)

4.4.2 Higher-order corrections

We can do better by including further contributions to the energy landscape expansion:

𝑈(𝑥) =


𝑈(𝑥𝑙) + 1

2!𝜅𝑙(𝑥 − 𝑥𝑙)
2 − 1

3!𝑅𝑙(𝑥 − 𝑥𝑙)
3 + 1

4!𝑄𝑙(𝑥 − 𝑥𝑙)
4 − · · · ,

𝑈(𝑥𝑏) − 1
2!𝜅𝑏(𝑥 − 𝑥𝑏)

2 − 1
3!𝑅𝑏(𝑥 − 𝑥𝑏)

3 − 1
4!𝑄𝑏(𝑥 − 𝑥𝑏)4 − · · · .

(4.12)

As in Eq. (4.3), the upper expression in Eq. (4.6) is for 𝑥 ≃ 𝑥𝑙 ; the lower corresponds to 𝑥 ≃ 𝑥𝑏. In

addition to the two local curvatures, 𝜅𝑙 and 𝜅𝑏, we have also defined measures of the skew [𝑅𝑙 =

−𝑈′′′(𝑥𝑙) = −𝑈(3)(𝑥𝑙) and 𝑅𝑏 = −𝑈(3)(𝑥𝑏)] and the kurtosis [𝑄𝑙 = 𝑈(4)(𝑥𝑙) and 𝑄𝑏 = −𝑈(4)(𝑥𝑏)].

The positions of the shifted extrema are once again determined by 0 = 𝑈′(𝑥) − 𝐹. This

demands that the expression

𝑠𝜅𝛼(𝑥 − 𝑥𝛼) − 1
2
𝑅𝛼(𝑥 − 𝑥𝛼)2 + 𝑠

6
𝑄𝛼(𝑥 − 𝑥𝛼)3 + · · · − 𝐹 (4.13)

vanish for both 𝛼 = 𝑙, 𝑠 = +1 and 𝛼 = 𝑏, 𝑠 = −1. Ensuring that it does so leads to

𝑥𝛼 = 𝑥𝛼 +
𝑠𝐹

𝜅𝛼
+ 𝑠𝑅𝛼𝐹

2

2𝜅3
𝛼

+
𝑠(3𝑅2

𝛼 −𝑄𝛼𝜅𝛼)𝐹3

6𝜅5
𝛼

+ · · · (4.14)

and hence to an expression for 𝑥𝑏 − 𝑥𝑙 , the barrier distance in the tilted energy landscape:

𝑥‡ − 𝐹

𝜅‡
−
𝑅
‡
1,3𝐹

2

2𝜅‡3 −
Å3

(
𝑅
‡
2,5
)2

𝜅‡5 −
𝑄

‡
1,4

𝜅‡4

ã
𝐹3

6
+ · · · . (4.15)
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As a convenience, we have adopted the notation

𝐴‡𝑚,𝑛 = 𝜅
‡𝑛
Å
𝐴𝑚
𝑙

𝜅𝑛
𝑙

+
𝐴𝑚
𝑏

𝜅𝑛
𝑏

ã
=
𝐴𝑚
𝑙
𝜅𝑛
𝑏
+ 𝐴𝑚

𝑏
𝜅𝑛
𝑙

(𝜅𝑙 + 𝜅𝑏)𝑛
. (4.16)

If we then repeat the analysis used previously, we can produce expressions for the barrier

height and barrier extinction force that are analogs of Eqs. (4.10) and (4.11):

Δ𝐺‡ =
1
2!
𝜅‡𝑥‡

2 − 1
3!
𝑅
‡
1,3𝑥

‡3 + 1
4!

Å
3
𝜅‡
[
(𝑅‡

1,3)2 − 𝑅‡
2,5
]
+𝑄‡

1,4

ã
𝑥‡

4 + · · · (4.17)

and
𝜕Δ𝐺‡

𝜕𝑥‡
= 𝜅‡𝑥‡ − 1

2
𝑅
‡
1,3𝑥

‡2 +
Å (𝑅‡

1,3)2

2𝜅‡
−
𝑅
‡
2,5

2𝜅‡
+ 1

6
𝑄

‡
1,4

ã
𝑥‡

3 + · · · (4.18)

It is helpful to distinguish the barrier height expressions in Eqs. (4.10) and (4.17) by the

labels Δ𝐺‡
quad and Δ𝐺‡. Their ratio is simply the shape parameter defined by Dudko, Hummer, and

Szabo [68]:

𝜈 =
Δ𝐺‡

Δ𝐺
‡
quad

=

1
2𝜅

‡𝑥‡
2 − 1

6𝑅
‡
1,3𝑥

‡3 + · · ·
1
2𝜅

‡𝑥‡2

= 1 −
𝑅
‡
1,3𝑥

‡

3𝜅‡
+
Å (𝑅‡

1,3)2

4𝜅‡2 −
𝑅
‡
2,5

4𝜅‡2 +
𝑄

‡
1,4

12𝜅‡

ã
𝑥‡

2 + · · ·

(4.19)

That is to say, 1 − 𝜈 encodes deviations from the behaviour of the purely quadratic model (in

which 𝑅𝑙 = 𝑅𝑏 = 0, etc.). Insofar as Eq. (4.19) is a fast-converging power-series in 𝑥‡, with each

subsequent term much smaller than the previous, it makes sense to view the subleading term on the

right-hand-side of Eq. (4.19) as a proxy for those deviations:

𝑅
‡
1,3𝑥

‡

3𝜅‡
=

(𝑅𝑙𝜅3
𝑏
+ 𝑅𝑏𝜅3

𝑙
)(𝑥𝑏 − 𝑥𝑙)

3𝜅𝑙𝜅𝑏(𝜅𝑙 + 𝜅𝑏)2

= 1 − 𝜈 + small corrections.

(4.20)

Hence, via Eq. (4.18), the extinction force can be approximated by its quadratic-model value
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[Eq. (4.11)] up to rescaling by a shape-dependent factor:

𝜕Δ𝐺‡

𝜕𝑥‡
= 𝜅‡𝑥‡ − 𝜅‡𝑥‡

𝑅
‡
1,3𝑥

‡

2𝜅‡
+ · · ·

= 𝜅‡𝑥‡
î
1 − 3

2
(1 − 𝜈)

ó
+ · · · ≈ 𝜅‡𝑥‡

Å
3𝜈 − 1

2

ã
.

(4.21)

Typical values for smooth energy profiles (2/3 ≲ 𝜈 ≲ 6/5) suggest 0.5 ≲ (3𝜈 − 1)/2 ≲ 1.3, so we

expect the true extinction force value to be never more than a factor of two away from 𝜅‡𝑥‡. Of

course, when𝑈(𝑥) is known, it is straightforward to compute the extinction force numerically.

4.4.3 Universality of the biased escape rate

The calculations in this section are meant merely as a motivation for the two-force-scale

arguments we make in the paper. We assume Langevin behaviour with moderate to strong friction

and ignore the complications of non-Markovian dynamics. Following Kramers, the escape rate

from the left well of the untilted energy landscape is

𝑘0 ∝ 1
√
𝜅𝑙𝜅𝑏

exp
(
−𝛽Δ𝐺‡)

=
1

√
−𝑈′′(𝑥𝑙)𝑈′′(𝑥𝑏)

exp
(
−𝛽[𝑈(𝑥𝑏) −𝑈(𝑥𝑙)]

)
.

(4.22)

The corresponding expression for the tilted case can be produced by substituting 𝑈(𝑥𝛼) → 𝑈̃(𝑥𝛼).

If we expand around the 𝐹 = 0 case and collect terms order by order within the argument of the

exponential, we arrive at

𝑘(𝐹) = 𝑘0 exp
ï
𝐹

Å
𝛽𝑥‡ +

𝑅
‡
1,2

2𝜅‡2

ã
−𝐹2
Å
𝛽

2𝜅‡
−
𝑅
‡
2,4

2𝜅‡4 +
𝑄

‡
1,3

4𝜅‡3

ã
−𝐹3
Å
𝛽𝑅

‡
1,3

6𝜅‡3 −
2𝑅‡

3,6

3𝜅‡6 + · · ·
ã
+𝑂(𝐹4)

ò
.

(4.23)
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We expect the largest terms to be those proportional to 𝛽, which come from the exponential in

Eq. (4.22); the contributions originating under the radical in the prefactor are smaller.

An important insight is that the logarithmic relative rate can be written in the form

𝑌 (𝐹) = log
𝑘(𝐹)
𝑘0

=
𝐹

𝐹𝑇
− 𝐹2

2𝐹𝑇𝐹𝐵
− 𝐶𝐹3

2𝐹𝑇𝐹2
𝐵

+ · · · (4.24)

In this expression we have introduced two new dimensionful coefficients (with units of force),

defined according to

1
𝐹𝑇

= 𝛽𝑥‡ +
𝑅
‡
1,2

2𝜅†2

= 𝛽𝑥‡
ß

1 +
𝑅
‡
1,2

2𝛽𝜅†2
𝑥‡︸      ︷︷      ︸

𝜆𝑇

™
≡ 1 + 𝜆𝑇

𝐹
(0)
𝑇

,

1
𝐹𝑇𝐹𝐵

=
𝛽

𝜅‡
−
𝑅
‡
2,4

𝜅‡4 +
𝑄

‡
1,3

2𝜅‡3

=
𝛽𝑥‡

𝜅‡𝑥‡

ß
1 − 1

𝛽

Å
𝑅
‡
2,4

𝜅‡3 −
𝑄

‡
1,3

2𝜅‡2︸                ︷︷                ︸
𝜆𝑇𝐵

ã™
≡ 1 − 𝜆𝑇𝐵
𝐹

(0)
𝑇
𝐹

(0)
𝐵

,

(4.25)

along with a dimensionless constant 𝐶. Matching the 𝑂(𝐹3) terms in Eqs. (4.23) and (4.24) and

invoking Eq. (4.20), we identify 𝐶 = 1 − 𝜈 + · · · , with the elision hiding additional terms that are

shape- and temperature-dependent but small; specifically,

𝐶 =
𝑅
‡
1,3𝑥

‡

3𝜅‡
(1 + 𝜆𝑇 )

(1 − 𝜆𝑇𝐵)2

Å
1 −

4𝑅†
3,6

3𝛽𝑅‡
1,3𝜅

‡3 + · · ·
ã
. (4.26)

The advantage of the rewriting in Eq. (4.24) is that we have picked out two force scales,

𝐹𝑇 and 𝐹𝐵, whose magnitude is determined—up to modest renormalization by 𝜆𝑇 and 𝜆𝑇𝐵—by

𝐹
(0)
𝑇

= 1/𝛽𝑥‡ and 𝐹(0)
𝐵

= 𝜅‡𝑥‡. Equation (4.25) implies

𝐹𝑇 = 𝐹
(0)
𝑇

Å
1

1 + 𝜆𝑇

ã
, 𝐹𝐵 = 𝐹

(0)
𝐵

Å
1 + 𝜆𝑇

1 − 𝜆𝑇𝐵

ã
. (4.27)
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To give a more physical picture, we interpret 𝐹𝑇 as the typical thermal force that provides the kick

out of the well and 𝐹𝐵 as the applied force required to fully extinguish the barrier: The ratio of the

two force scales is
𝐹𝐵

𝐹𝑇
= 𝛽𝜅‡𝑥‡

2 (1 + 𝜆𝑇 )2

(1 − 𝜆𝑇𝐵)
=

2𝛽Δ𝐺‡

𝜈
(1 + · · · ). (4.28)

A key observation is that if we view the escape rate as a function of a reduced applied force

𝑓 = 𝐹/𝐹𝐵, measured in units of the barrier extinction force scale, then Eq. (4.24) transforms to

𝑌 (𝐹)
𝐹→𝐹𝐵 𝑓−−−−−−→𝐹𝐵 𝑓

𝐹𝑇
− (𝐹𝐵 𝑓 )2

2𝐹𝑇𝐹𝐵
− 𝐶(𝐹𝐵 𝑓 )3

2𝐹𝑇𝐹2
𝐵

+ · · ·

=
𝐹𝐵

𝐹𝑇

Å
𝑓 − 1

2
𝑓 2 − 1

2
𝐶 𝑓 3 + · · ·

ã
.

(4.29)

Note that the terms at order 𝑓 and 𝑓 2 are wholly independent of the details of the system. (𝐶/2) 𝑓 3

is the leading nonuniversal term, but even there [as per Eq. (4.26)] the shape dependence is quite

weak and the temperature dependence almost negligible. This means that truly idiosyncratic

contributions do not show up until order 𝑓 4, and those we expect to be heavily suppressed just

by power reduction; in practice, 𝑓 = 𝐹/𝐹𝐵 < 1, since escape almost always precedes complete

elimination of the barrier.

Moreover, since physical considerations demand that the escape rate increase with 𝐹, it is

legitimate to apply a series acceleration transformation by which Eq. (4.29) is expanded in terms of

some function of 𝑓 that is monotonically increasing but slower-growing than the monomial 𝑓 itself;

one might consider 𝑓 /(1+ 𝑓 /2) (as in Ref. 84) or log(1 + 𝑓 ), say. Then 𝑓 − (1/2) 𝑓 2− (𝐶/2) 𝑓 3 + · · ·

can be recast as
𝑓

1 + 𝑓 /2
−
Å
𝐶

2
+ 1

4

ãÅ
𝑓

1 + 𝑓 /2

ã3
+ · · · (4.30)

or

log(1 + 𝑓 ) −
Å
𝐶

2
+ 1

3

ã[
log(1 + 𝑓 )

]3 + · · · . (4.31)

Since we expect −1/5 ≲ 𝐶 ≲ 1/3 (and often |𝐶 | ≪ 1), Eqs. (4.31) and (4.30) are close to

being universal even up to order three. This leads us to posit that the logarithmic relative escape
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rate has a form reminiscent of the finite-size scaling ansatz of a critical state:

𝑌 (𝐹) = log
𝑘(𝐹)
𝑘0

=

Å
𝐹𝑇

𝐹𝐵

ã−1
Y(𝐹/𝐹𝐵, 𝐹𝑇/𝐹𝐵)

=

Å
𝐹𝑇

𝐹𝐵

ã−1ï
Y(𝐹/𝐹𝐵, 0) +

Å
𝐹𝑇

𝐹𝐵

ã𝜔
W(𝐹/𝐹𝐵) + · · ·

ò
.

(4.32)

Here, 𝜔 > 0 is the exponent for the subleading corrections to scaling. Since 𝐹𝑇/𝐹𝐵 ≈ 1/(𝛽𝜅‡𝑥‡2) ≈

𝜈/(2𝛽Δ𝐺‡) ≪ 1, the quantity (𝐹𝑇/𝐹𝐵)𝑌 (𝐹) should collapse onto a universal curve when plotted

against 𝑓 = 𝐹/𝐹𝐵:

𝐹𝑇

𝐹𝐵
𝑌 (𝐹) =

𝐹𝑇

𝐹𝐵
log

𝑘(𝐹)
𝑘0

≈ Y( 𝑓 , 0). (4.33)

Other combinations of (𝐹𝑇/𝐹𝐵)𝑌 (𝐹) may bring about an even cleaner coincidence. For example,

log(1 + 𝑓 ) =
𝐹𝑇

𝐹𝐵
𝑌 (𝐹) +

Å
𝐶

2
+ 1

3

ã[
log(1 + 𝑓 )

]3 + · · ·

=
𝐹𝑇

𝐹𝐵
𝑌 (𝐹)

ß
1 +
Å
𝐶

2
+ 1

3

ãï
𝐹𝑇

𝐹𝐵
𝑌 (𝐹)

ò2™
+ · · · .

(4.34)

Imagine that there is a set of escape rate measurements but the underlying𝑈(𝑥) is unknown.

Even without knowledge of a fitting form such as Eqs. (4.33) and Eq. (4.34), graphical collapse

onto a common curve can be engineered by careful adjustment of the free parameters 𝐹𝑇 and 𝐹𝐵.

4.4.4 Data collapse of the rupture force

A population 𝑛(𝑡) of systems prepared in a well and subject to an escape rate 𝑘(𝐹) is subject

to the rate equation ¤𝑛 = −𝑘𝑛. If the pulling force increases linearly in time, with a constant loading

rate 𝐾𝑉 , then
𝑑𝑛

𝑑𝑡
= −𝑘(𝐹)𝑛(𝑡) = −𝑘(𝐾𝑉𝑡)𝑛(𝑡). (4.35)
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The time 𝑡 for half the population to escape is given by

log 2 =

ˆ 1/2

1

𝑑𝑛

𝑛
= −
ˆ 𝑡

0
𝑑𝑡 𝑘(𝐾𝑉𝑡). (4.36)

In the Bell-Evans picture [58, 67], which supposes that the biased rate is simply 𝑘(𝐹) = 𝑘0 exp
(
𝛽𝐹𝑥‡

)
,

Eq. (4.36) becomes

log 2 =
𝑘0

𝛽𝐾𝑉𝑥‡
(
𝑒𝛽𝐾𝑉𝑡𝑥

‡ − 1
)
=
𝐹

(0)
𝑇
𝑘0

𝐾𝑉

(
𝑒𝛽𝐹̂𝑥

‡ − 1
)
. (4.37)

Then 𝐹̂, the force at half-life, is

𝐹̂ = 𝐹
(0)
𝑇

log
Å

1 + 𝐾𝑉 log 2
𝐹

(0)
𝑇
𝑘0

ã
. (4.38)

On the other hand, if the escape rate is represented using the universal part of Eq. (4.31),

via log[𝑘(𝐹)/𝑘0] = (𝐹𝐵/𝐹𝑇 )( 𝑓 − 𝑓 2/2 + · · · ) = (𝐹𝐵/𝐹𝑇 ) log(1 + 𝑓 ), then

𝑘(𝐹) = 𝑘0 exp
ï
𝐹𝐵

𝐹𝑇
log(1 + 𝑓 )

ò
= 𝑘0

Å
1 + 𝐹

𝐹𝐵

ã 𝐹𝐵
𝐹𝑇

= 𝑘0

Å
1 + 𝐹

𝜅‡𝑥‡

ã𝛽𝜅‡𝑥‡2+···

= 𝑘0

ïÅ
1 + 𝐹

𝜅‡𝑥‡

ã𝜅‡𝑥‡ò𝛽𝑥‡+···
.

(4.39)

The omitted terms [denoted by · · · in the exponent of the last line of Eq. (4.39)] are ones that

become negligible at low temperature and large barrier height; in that same limit, we can formally

take 𝜅‡𝑥‡ → ∞, which allows us to recover the Bell-Evans expression, 𝑘(𝐹) → 𝑘0 exp
(
𝛽𝐹𝑥‡

)
.
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We need not resort to such a limit, however, since the half-life can be solved analytically:

log 2 =

ˆ 𝑡

0
𝑑𝑡 𝑘(𝐹(𝑡)) =

ˆ 𝑡

0
𝑑𝑡 𝑘(𝐾𝑉𝑡)

=

ˆ 𝑡

0
𝑑𝑡 𝑘0

Å
1 + 𝐾𝑉𝑡

𝐹𝐵

ã 𝐹𝐵
𝐹𝑇

= 𝑘0𝐹𝐵

Å−1 + (1 + 𝐾𝑉𝑡/𝐹𝐵)1+𝐹𝐵/𝐹𝑇

(1 + 𝐹𝐵/𝐹𝑇 )𝐾𝑉

ã
.

(4.40)

This corresponds to an average rupture force

𝐹̂ = 𝐾𝑉𝑡 = 𝐹𝐵

ßï
1 +
Å

1 + 𝐹𝐵
𝐹𝑇

ã
𝐾𝑉 log 2
𝑘0𝐹𝐵

ò 𝐹𝑇
𝐹𝑇+𝐹𝐵 − 1

™
=

(log 2)𝐾𝑉
𝑘0

− (log 2)2(𝐾𝑉)2

2𝐹𝑇 𝑘2
0

+ (2𝐹𝐵 + 𝐹𝑇 )(log 2)3(𝐾𝑉)3

6𝐹𝐵𝐹2
𝑇
𝑘3

0
+ · · · .

(4.41)

A useful resummation is

𝐹̂ = 𝐹𝑇 log
ï
1 + 𝐾𝑉 log 2

𝐹𝑇 𝑘0

ò
+ 2𝐹𝐵 − 𝐹𝑇

6

Å
log
ï
1 + 𝐾𝑉 log 2

𝐹𝑇 𝑘0

òã3
+ · · · , (4.42)

the first term of which is identical to the right-hand-side of Eq. (4.38), up to the renormalization

𝐹
(0)
𝑇

→ 𝐹𝑇 .

In order to put Eq. (4.42) into a scale-invariant form, we define the half-life pulling force with

respect to the thermal force scale, 𝑓𝑇 = 𝐹̂/𝐹𝑇 , and a dimensionless loading rate, 𝑟𝑇 = 𝐾𝑉/(𝐹𝑇 𝑘0).

This leads to

𝑓𝑇 = log
(
1 + 𝑟𝑇 log 2

)
+ (2𝐹𝐵/𝐹𝑇 − 1)

6

î
log

(
1 + 𝑟𝑇 log 2

)ó3
≈ log

(
1 + 𝑟𝑇 log 2

)
+ (2𝐹𝐵/𝐹𝑇 − 1)

6
𝑓 3
𝑇 .

(4.43)

In general, 𝐹𝐵/𝐹𝑇 ∼ 2𝛽Δ𝐺‡/𝜈 is not small. But so long as (𝐹𝐵/𝐹𝑇 ) 𝑓 2
𝑇

= 𝐹𝐵𝐹
2/𝐹3

𝑇
≪ 1, it is

appropriate to write

𝑓𝑇

Å
1 − (2𝐹𝐵/𝐹𝑇 − 1)

6
𝑓 2
𝑇

ã
= log

(
1 + 𝑟𝑇 log 2

)
. (4.44)
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4.5 Conclusion

We have argued for universality in the biased activated-barrier-crossing problem and pre-

sented strong numerical evidence in favor of the existence of some underlying scaling function for

𝑌 (𝐹) = log[𝑘(𝐹)/𝑘0]. Our simulated data show collapse onto a single curve when recast into suit-

ably reduced coordinates. This is true for data generated in simulations operating over a wide range

of bath temperatures, applied forces, and loading rates and over a family of potential landscapes

with different underlying barrier shapes.

These observations suggest the utility of data collapse as a practical tool for analysis. While

the original motivation for this work was the mechanical unfolding of biopolymers, the universality

we have identified is widely relevant. It applies to situations across many branches of science,

wherever the energy landscape picture is germane and the experimental setup involves barrier

traversal assisted by active pulling. Our recommendation is that measurements of well-escape

statistics be transformed to identify best values of the intrinsic force scales (from which can be

inferred some combination of 𝑥‡, 𝜅‡, Δ𝐺‡, and 𝜈). 𝐹𝑇 and 𝐹𝐵 are to be treated as free parameters

and tuned until data collapse is achieved and the universal curve emerges.
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CHAPTER 5

ESCAPE RATE ANALYSIS IN TWO DIMENSIONS

5.1 Introduction

In pulling experiments, approximations based on a 1D energy profile have generally been

successful for small proteins [54, 102], although there exist counterexamples in which multiple di-

mensions are required to account for the observed behavior—for example, proteins with knots [103]

or multiple pathways [104]. We understand that using end-to-end length as a single reaction co-

ordinate cannot offer a full description, as we might encounter multiple conformations that are

degenerate in the extension variable, as shown in the left panel of Fig. 1.8. Consequently, the

projection of the multidimensional landscape onto a single reaction coordinate is suboptimal in

some situations and may prevent us from capturing the full dynamics of the folding/unfolding

process. This may lead to poor predictions and incorrect interpretations of experimental measure-

ments [53, 105, 106].

The least disruptive approach is to hold to the 1D analysis but to perform additional

statistical analysis to distinguish various states whose signature might be convolved together in the

1D projection [107]. Instead, the approach we pursue is to allow for one additional coordinate,

largely complementary to the extension, that can lift the degeneracy (see the right panel of Fig. 1.8).

Our goal is to minimize the number of reaction coordinates and yet to address the underlying

problems that plague the 1D analysis.

Our tests were performed on an abstract 2D landscape𝑈(𝑥, 𝑦) having two minima separated

by a saddle barrier. We applied a time-dependent pulling force 𝐹 = 𝐾𝑉𝑡 with constant loading rate

(rather than a constant pulling force as in Ref. 108); the force was applied allowing for a rotation by

angle 𝜃 with respect to the primary reaction coordinate, 𝑥. The rotation of the potential accounts for
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Figure 5.1. Top, 2D double well system at positions (𝑥𝑙 , 𝑦𝑙) and (𝑥𝑟 , 𝑦𝑟) separated by a barrier
at (𝑥𝑏, 𝑦𝑏) (𝑥𝑙 < 𝑥𝑏 < 𝑥𝑟). Bottom, tilted landscape after application of rotating pulling force 𝐹.
Positions of well and barrier get both translational and rotational shift.
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the possibility that efficient pulling might not always be directed exactly along the primary reaction

coordinate or that the folded and unfolded wells might not always be perfectly aligned along the

primary reaction coordinate. We derived our 2D rate equation,

𝑘(𝐹) = 𝑘0 exp
Å

𝛽𝐹𝑟‡

1 + 𝐹/2𝜅‡𝑟‡

ã
, (5.1)

as a generalization of the 1D work [84] that appears in Ch. 3. This is in contrast with the

corresponding 2D Bell-Evans form,

𝑘BE(𝐹) = 𝑘0𝑒
𝛽𝐹𝑟‡ . (5.2)

We tested the reliability of Eqs. (5.1) and (5.2) against numerical simulations. The results

suggest that Eq. (5.1) is much more reliable than Eq. (5.2), especially at high pulling rates. The

match to the probability distribution of the critical force was superior for Eq. (5.1).

As a further check, we projected the 2D landscape onto 1D landscape and tested the

agreement between the fully 2D simulation and the 1D simulation of the 2D profile projected onto

1D. After a careful investigation, we concluded that the downward projection of 2D landscape onto

1D landscape is not always easy and reliable. This was highlighted by the disagreement between

the 1D and 2D simulations when a rotated 2D landscape was projected onto its corresponding 1D

landscape. This meant projection of multidimensional landscape onto 1D landscape might not

always produce the desirable result, which corroborates our initial concerns that the 1D analysis

can be inadequate. This might be due to the presence of multiple transition trajectories in 2D

landscape while going from the unfolded to the folded state unless there is a narrow channel present

in between them. The 1D landscape had only one possible trajectory for a transition from folded

to unfolded state as shown in Fig. 1.7 unlike 2D landscape which has multiple possible unfolded

trajectories.
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5.2 Formal Development

We considered a two dimensional potential landscape 𝑈(𝑥, 𝑦) where, 𝑥 and 𝑦 represent

the primary and secondary reaction coordinates. We applied the pulling force at an angle 𝜃 to

the primary reaction coordinate, as shown in Fig. 5.1, such that a term −𝐹(𝑥 cos 𝜃 + 𝑦 sin 𝜃) was

induced in the free energy. The pulling force had the form 𝐹 = 𝐾𝑉𝑡, which grew linearly in time

with constant loading rate 𝐾𝑉 . The molecule moved in the combined 2D free energy landscape

given by

𝑈̃(𝑥, 𝑦) = 𝑈(𝑥, 𝑦) − 𝐾𝑉𝑡(𝑥 cos 𝜃 + 𝑦 sin 𝜃). (5.3)

If we consider 𝑈(𝑥, 𝑦) to be a double-well potential with wells at positions (𝑥𝑙 , 𝑦𝑙) and

(𝑥𝑟 , 𝑦𝑟) separated by a saddle barrier at (𝑥𝑏, 𝑦𝑏) with (𝑥𝑙 < 𝑥𝑏 < 𝑥𝑟), the well escape rate from left

to right during pulling goes as 𝑘(𝐹) ∼ exp
(
−𝛽Δ𝑈̃

)
, where Δ𝑈̃ = 𝑈̃(𝑥𝑏, 𝑦𝑏) − 𝑈̃(𝑥𝑙 , 𝑦𝑙). Assuming

small perturbation around the well positions (𝑥𝑙 , 𝑦𝑙) and (𝑥𝑏, 𝑦𝑏), the rate equation is

𝑘(𝐹) ∼ exp
[
−𝛽(𝑈̃(𝑥𝑏 + 𝛿𝑥𝑏, 𝑦𝑏 + 𝛿𝑦𝑏) − 𝑈̃(𝑥𝑙 + 𝛿𝑥𝑙 , 𝑦𝑙 + 𝛿𝑦𝑙))

]
. (5.4)

From Eq. (5.3) we get,

𝑈̃(𝑥𝑏 + 𝛿𝑥𝑏, 𝑦𝑏 + 𝛿𝑦𝑏) = 𝑈(𝑥𝑏 + 𝛿𝑥𝑏, 𝑦𝑏 + 𝛿𝑦𝑏)

− 𝐹[(𝑥𝑏 + 𝛿𝑥𝑏) cos 𝜃 + (𝑦𝑏 + 𝛿𝑦𝑏) sin 𝜃]

𝑈̃(𝑥𝑙 + 𝛿𝑥𝑙 , 𝑦𝑙 + 𝛿𝑦𝑙) = 𝑈(𝑥𝑙 + 𝛿𝑥𝑙 , 𝑦𝑙 + 𝛿𝑦𝑙)

− 𝐹[(𝑥𝑙 + 𝛿𝑥𝑙) cos 𝜃 + (𝑦𝑙 + 𝛿𝑦𝑙) sin 𝜃]

(5.5)

Performing Taylor expansions of 𝑈̃𝑥(𝑥, 𝑦) and 𝑈̃𝑦(𝑥, 𝑦) around (𝑥𝑙 , 𝑦𝑙) and (𝑥𝑏, 𝑦𝑏) up to first
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order in 𝛿𝑥𝑙 , 𝛿𝑦𝑙 , 𝛿𝑥𝑏 and 𝛿𝑦𝑏 gives

𝛿𝑥𝑙 = 𝐹(𝑉 𝐿𝑦𝑦 cos 𝜃 −𝑉 𝐿𝑥𝑦 sin 𝜃)/𝑉 𝐿1 ,

𝛿𝑦𝑙 = 𝐹/𝑉
𝐿
1 (𝑉 𝐿𝑥𝑥 sin 𝜃 −𝑉 𝐿𝑥𝑦 cos 𝜃)/𝑉 𝐿1 ,

𝛿𝑥𝑏 = 𝐹/𝑉
𝑏
1 (𝑉 𝑏𝑦𝑦 cos 𝜃 −𝑉 𝑏𝑥𝑦 sin 𝜃)/𝑉 𝑏1 ,

𝛿𝑦𝑏 = 𝐹/𝑉
𝑏
1 (𝑉 𝑏𝑥𝑥 sin 𝜃 −𝑉 𝑏𝑥𝑦 cos 𝜃)/𝑉 𝑏1 .

(5.6)

where

𝑉 𝐿𝑥𝑥 =
𝜕2𝑈(𝑥𝑙 , 𝑦𝑙)

𝜕𝑥2 , 𝑉 𝐿𝑦𝑦 =
𝜕2𝑈(𝑥𝑙 , 𝑦𝑙)

𝜕𝑦2 , 𝑉 𝐿𝑥𝑦 =
𝜕2𝑈(𝑥𝑙 , 𝑦𝑙)
𝜕𝑥𝜕𝑦

,

𝑉 𝑏𝑥𝑥 =
𝜕2𝑈(𝑥𝑏, 𝑦𝑏)

𝜕𝑥2 , 𝑉 𝑏𝑦𝑦 =
𝜕2𝑈(𝑥𝑏, 𝑦𝑏)

𝜕𝑦2 , 𝑉 𝑏𝑥𝑦 =
𝜕2𝑈(𝑥𝑏, 𝑦𝑏)
𝜕𝑥𝜕𝑦

,

𝑉 𝐿1 = 𝑉 𝐿𝑥𝑥𝑉
𝐿
𝑦𝑦 − (𝑉 𝐿𝑥𝑦)2, 𝑉 𝑏1 = 𝑉 𝑏𝑥𝑥𝑉

𝑏
𝑦𝑦 − (𝑉 𝑏𝑥𝑦)2.

(5.7)

Furthermore, expanding terms 𝑈(𝑥𝑏 + 𝛿𝑥𝑏, 𝑦𝑏 + 𝛿𝑦𝑏) and 𝑈(𝑥𝑙 + 𝛿𝑥𝑙 , 𝑦𝑙 + 𝛿𝑦𝑙) in Eq. (5.5)

around points (𝑥𝑏, 𝑦𝑏) and (𝑥𝑙 , 𝑦𝑙), respectively, simplifying using the values of 𝛿𝑥𝑏, 𝛿𝑦𝑏, 𝛿𝑥𝑙 and 𝛿𝑦𝑙 ,

collecting terms up to second order in 𝐹, and finally plugging in the values of 𝑈̃(𝑥𝑏 + 𝛿𝑥𝑏, 𝑦𝑏 + 𝛿𝑦𝑏)

and 𝑈̃(𝑥𝑙 + 𝛿𝑥𝑙 , 𝑦𝑙 + 𝛿𝑦𝑙) in Eq. (5.4), we get the rate equation of the form

𝑘(𝐹) = 𝑘0 exp
ï
𝛽𝐹𝑟‡

Å
1 − 𝐹

2𝜅‡𝑟‡

ãò
. (5.8)

Here, 𝑥‡ = 𝑥𝑏 − 𝑥𝑙 , 𝑦‡ = 𝑦𝑏 − 𝑦𝑙 , 𝑟‡ = 𝑥‡ cos 𝜃 + 𝑦‡ sin 𝜃 and

𝜅‡ =
𝑉 𝐿1 𝑉

𝑏
1

𝑉 𝑏1𝑉
𝐿 −𝑉 𝐿1 𝑉 𝑏

(5.9)

with

𝑉 𝐿 = (𝑉 𝐿𝑦𝑦cos2𝜃 +𝑉 𝐿𝑥𝑥sin2𝜃 − 2𝑉 𝐿𝑥𝑦 sin 𝜃 cos 𝜃),

𝑉 𝑏 = (𝑉 𝑏𝑦𝑦cos2𝜃 +𝑉 𝑏𝑥𝑥sin2𝜃 − 2𝑉 𝑏𝑥𝑦 sin 𝜃 cos 𝜃).
(5.10)
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As before, we make use of the idea of infinite resummation, 1 − 𝜖 + 𝜖2 − · · · ≈ 1/(1 + 𝜖),

which transforms Eq. (5.8) into Eq. (5.1), up to discrepancies at𝑂(𝐹3). The transformed expression

is well-behaved everywhere and displays no obviously unphysical behavior.

In the usual adiabatic limit, the expression for the cumulative probability distribution of

the rupture force is given by Eq. (3.5). Using Eq. (5.2) in Eq. (3.5) we obtained the closed form

expression for Bell-Evans cumulative probability distribution,

𝑃BE(𝐹𝑐) = 1 − exp
ï

𝑘0

𝐾𝑉𝛽𝑟‡
(
1 − 𝑒 𝛽𝐹𝑐𝑟‡

)ò
. (5.11)

Putting Eq. (5.1) into Eq. (3.5), we obtained our form of cumulative probability distribution,

given by Eq. (5.12). If instead we put Eq. (5.1) into Eq. (3.5), we get a more complicated result:

𝑃(𝐹𝑐) = 1 − exp
ï
𝑘0
𝐾𝑉

(
𝐹1 + 𝐹2 − 2𝑟‡𝜅‡

)ò
. (5.12)

The quantities 𝐹1 and 𝐹2 have units of force and are explicit functions of the critical value 𝐹𝑐:

𝐹1 =
(
𝐹𝑐 + 2𝑟‡𝜅‡

)
exp
Ç

2𝐹𝑐𝑟‡
2
𝛽𝜅‡

𝐹𝑐 + 2𝑟‡𝜅‡

å
,

𝐹2 = 4𝑟‡3
𝛽𝜅‡

2 exp
(
2𝑟‡2

𝛽𝜅‡
)ñ

Ei
Ç
− 4𝑟‡3

𝛽𝜅‡
2

𝐹𝑐 + 2𝑟‡𝜅‡

å
− Ei

(
−2𝑟‡2

𝛽𝜅‡
)ô
.

(5.13)

This outlines our 2D work. We obtained modified expressions for rate and cumulative

probability distribution as given by equations Eq. (5.1) and Eq. (5.12), respectively. The reliability

of these equations were tested against data obtained from numerical simulation.

Next, we focussed on dimension reduction of the potential landscape using an art of pro-

jection. As discussed earlier, the projection of multidimensional landscape to the lower dimension

landscape would always make the analysis simpler and easier. However, it is also useful to check

if there is any loss in information or if the lower dimension analysis is optimal. From 2D land-

scape, we could generate an effective 1D landscape with a single reaction coordinate by using an

art of projection, a mathematical trick shown in the Eq. (5.14). In our particular example, the
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integration did not produce closed form expression and we had to use the numerical integration

and interpolation technique called spline to generate the 1D landscape.

𝑒−𝛽𝑈eff(𝑥) =

ˆ ∞

−∞
𝑑𝑦 𝑒−𝛽𝑈(𝑥,𝑦)

𝑈eff(𝑥) = −1
𝛽

log
ˆ ∞

−∞
𝑑𝑦 𝑒−𝛽𝑈(𝑥,𝑦)

(5.14)

The 1D landscape produced from 2D landscape and 2D landscape are represented side by

side in Fig. 5.2.
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Figure 5.2. The 1D counterparts, figures in columns second and fourth, of 2D landscapes, figures
in first and third column respectively, obtained after projection onto single reaction coordinate
end-to-end length, x. In 1D Model, two distinct wells slowly get collapsed onto a single well once
the potential landscape is rotated by 𝜋/2.

5.3 Numerical Simulations

The analytic work above was tested with the numerical simulation. To mimic the exper-

imental scenario, we considered the motion of a biopolymer molecule defined by 2D Langevin
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Equation, Eq. (2.2) which can be broken into two independent equations as in Eq. (2.3) and can be

used to address the motion of molecule along two independent directions 𝑥 and 𝑦.

This was implemented numerically by using a modified modern formulation [85] of Ver-

let algorithm [86], as in 1D analysis. We mimicked the experimental work by assuming the

stochastic motion of the molecule of the effective mass 𝑚𝑥 = 2 pg and 𝑚𝑦 = 2 pg over a two-

dimensional (2D) bi-quadratic potential𝑈0(𝑥, 𝑦) = 𝑥4 + 5(𝑦/3)4 − 80 exp
(
−(𝑥 − 1.5)2 − 5(𝑦/3)2)−

80 exp
(
−(𝑥 + 1.5)2 − 5(𝑦/3)2) + 5 exp

(
2(𝑦/3)2) + 70.45. The molecule was assumed to be pulled

from two ends by a laser potential with force constant 𝐾 and the constant pulling velocity 𝑉 with

the force 𝐹 = 𝐾𝑉𝑡 that increases linearly with time. The chain was assumed to be pulled along

positive x-axis (primary reaction coordinate). The saddle energy barrier was considered to be at

(0, 0) with height Δ𝐺‡ = 58.58 pN ·nm. The bottom positions of left and right well were taken at

(−1.43, 0) and (1.43, 0) respectively. The stochastic forces on the molecule along 𝑥 and 𝑦 direction

given by 𝜉𝑥(𝑡) and 𝜉𝑦(𝑡) respectively, were drawn randomly from the Gaussian Distribution of

width (2𝑚𝑥𝛾𝑥𝑘𝐵𝑇𝛿𝑡)1/2 and (2𝑚𝑦𝛾𝑦𝑘𝐵𝑇𝛿𝑡)1/2 respectively with 𝑘𝐵𝑇 = 4.1 pN ·nm, 𝛾𝑥 = 20 µs−1,

𝛾𝑦 = 20 µs−1 and 𝛿𝑡 ranging from 10−1 µs to 10−5 µs from low to high pulling rates. The act of

applying rotating pulling force on 2D potential or rotating the potential and applying the pulling

force along x-direction theoretically would have been the same thing. However, practically the

latter would make more sense. Hence, we used the latter technique for the numerical simulation.

The simulation was initialized in left well by drawing initial values of velocity (𝑣𝑥 , 𝑣𝑦) from

the distributions (𝑒−𝛽𝑚𝑣2
𝑥/2, 𝑒−𝛽𝑚𝑣

2
𝑦/2) so that the each simulation began fully thermalized. For each

pulling rate 𝐾𝑉 , the simulation flagged the value of pulling force at which the particle crossed

the barrier or barrier vanished; we took this to be the value of rupture or critical force 𝐹𝑐. The

determination of transition region, i.e, the point of time where barrier vanished or particle crossed

the barrier was not straightforward. We had to come up with a mini algorithm described in Chap. 2.

For each value of 𝐾𝑉 the simulation was carried out 4000 times, each run generating a unique

value of the rupture force. The cumulative probability distribution 𝑃(𝐹𝑐) was constructed in the

standard way—by sorting the measured rupture forces in ascending order and then pairing them
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with a uniform grid of values running from 0 to 1. The plot for 𝑃(𝐹𝑐) so obtained was tested with

our form, Eq. (5.12) and Bell-Evans form, Eq. (5.11) to see the degree of agreement.The process

was repeated for different pulling rates 𝐾𝑉 = 10−5 pN/µs to 0.06 pN/µs to determine how these

expressions fare in the slow, intermediate, and fast pulling regimes. This sums up our numerical

work for 2D work.

For the numerical simulation in effective 1D landscape obtained from 2D landscape, since

we were unable to produce the closed-form expression for reconstructed 1D landscape, we used the

technique of mathematical spline. The work we adopted was similar to Sec. III of Ref. 84, except

we used the spline function instead of generic form of 1D landscape. To be precise, we used the

cubic spline.

5.4 Results

In this section, we mostly focussed on two aspects: 2D simulation results and the degree

of convergence between 2D simulation and 1D simulation for the projected landscape. For 2D

simulation results, we inspected the impact of pulling rate and rotation angle on the critical or

rupture force and the reliability of Eq. (5.1) over Eq. (5.2). For this part, we used critical force

values and cumulative probability distribution of the critical force given by equations Eq. (5.11)

and Eq. (5.12).

In Fig. 5.3, we can see the impact of rotating angle on cumulative probability distribution of

the rupture force at constant pulling rate. We can clearly observe cumulative probability distribution

curves shifting towards the right with increasing pulling angle. This is reasonable as zero angle

meant the most efficient pulling (as our wells are aligned perfectly along x-axis) and increasing

pulling angle would make the pulling process less and less efficient. So, to generate the equal pulling

effect, increase in pulling angle meant pulling rate needed to be higher. As a result, cumulative

probability density curves keep shifting towards the right as we keep on increasing pulling angle.

Also, the shift in these curves become less and less apparent as we keep on increasing the

value of pulling rate. This is again understandable as faster pulling would have more effect than
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Figure 5.3. Cumulative probability distribution of the critical or rupture force as a function of
rotating angle 𝜃 measured in radian for different pulling rates: (top left), (top right), (bottom left),
(bottom right) for 𝐾𝑉 = 2 × 10−5 pN µs−1, 2 × 10−4 pN µs−1, 2 × 10−3 pN µs−1, 2 × 10−2 pN µs−1

respectively. Increase in rotating angle 𝜃 shifts the cumulative probability density curve towards
right. However, the shift becomes almost non existent for higher pulling rates.

the misalignment between two wells.

Similarly as revealed in Fig. 5.4, the increase in pulling rate shifted the cumulative probabil-

ity of the rupture force towards right which totally makes sense as higher rate of pulling accumulates

higher pulling force by the time particle crosses the barrier or barrier vanishes.

We also went ahead and tested the value of the critical force as a function of pulling rates

and rotation angle theta. In Fig. 5.5 (top), we can see the plot for the relative critical force as a

function of pulling angle for different pulling rates. For lower pulling rates, the increase in theta

would significantly increase the value of the rupture force. However, for faster pulling, the rotation

angle would produce a small increase in relative rupture force values agreeing the result produced
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Figure 5.4. Cumulative probability distribution of the critical or rupture force as a function of
pulling rate for different pulling angles 𝜃: (top left), (top right), (bottom left), (bottom right),
for 𝜃 = 0, 0.52, 0.78, 1.05 radians respectively. Increase in pulling rate 𝐾𝑉 shifts the cumulative
probability density curve towards right.

in Fig. 5.3. Also in Fig. 5.5 (bottom), the plot of critical force as a function of pulling rates for

different rotation angles can be seen. As seen in the plot, the value of critical force would be larger

for higher rotation angle as expected. Also, the difference in the critical force values will be less

noticeable as we go on increasing the value of pulling rate. This is totally in agreement with earlier

result produced.

We also tried to compute the well escape rate when there was no pulling involved. Just

for a sanity check we recorded the value of this intrinsic rate as a function of the rotating angle

using numerical simulation. Within error-bars, the values of intrinsic rate were equal for all pulling

angles as seen in Fig. 5.6 . This totally makes sense as the well escape rate would not change just

76



 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2

〈
F
C
θ
〉
/〈
F
C
0〉

θ (rad)

KV = 2e-5
KV = 2e-4
KV = 4e-4
KV = 2e-3
KV = 4e-3
KV = 2e-2

 20

 30

 10

10-5 10-4 10-3 10-2

〈
 F
C

 〉

KV

θ = 0.00
θ = 0.52
θ = 0.92
θ = 1.05

Figure 5.5. Top, relative average values of rupture force as a function of rotating angle 𝜃 for
different pulling rates. The effect of rotation on rupture force goes on decreasing for increase in
pulling rate. Bottom, average rupture force as a function of pulling rates for different pulling angle
theta. For larger values of pulling rates rotation does have less impact as compared to smaller
pulling rates.
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Figure 5.6. Intrinsic well escape rate as a function of rotating angle 𝜃 without the application of
pulling force. There is no effect of rotation on rate as expected. The values of rate for all angles
fall within the error range.

by the rotation of landscape if no pulling force is applied.

Fig. 5.7 reflects the reliability of Eq. (5.12) over Eq. (5.11). As seen in this plot, the

simulated data agreed much better with the resummed form than Bell-Evans form up to higher

pulling rates. For lower pulling rates 1× 10−5 pN/µs and 2× 10−4 pN/µs, both forms agreed nicely

with simulation but as pulling rate was increased up to 2× 10−3 pN/µs, the resummed form agreed

better and Bell-Evans form started to deviate significantly from simulation as depicted by Fig. 5.7.

This deviation was more pronounced when pulling rate was 2 × 10−2 pN/µs. Hence, the simulated

results agreed upto much larger pulling rate with the resummed form than Bell-Evans form. This

showcases the reliability of resummed form over Bell-Evans form.

As a next step, the simulation results for 2D landscape and its counterpart 1D landscape

obtained from projection were analyzed to see the degree of convergence between them. For

this work, we used the cumulative probability distribution analysis. We conducted the simulation

for these landscapes using same pulling rate and tried to see if the cumulative probability curves
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Figure 5.7. Cumulative probability distribution of the critical or rupture force for 𝐾𝑉 = 1 ×
10−5 pN/µs (top left), 𝐾𝑉 = 2 × 10−4 pN/µs (top right), 𝐾𝑉 = 2 × 10−3 pN/µs (bottom left), and
𝐾𝑉 = 2 × 10−2 pN/µs (bottom right) as given by Bell-Evans form and our resummed form tested
against simulation data. The resummed form traces the curve for simulated data upto much larger
value of pulling rate as compared to Bell-Evans.

coincide with each other. We obtained some promising results as depicted in Fig. 5.8 which shows

nice agreement between these two simulations at high damping regime when the 2D landscape was

not rotated.

However, this agreement starts to fail if we consider the rotated landscape and its 1D

counterpart obtained after projection. This totally makes sense as the hidden variable gets wiped

out and can no longer be extracted from the projected 1D landscape obtained from the rotated 2D

landscape. Another reason, as pointed earlier, might be multiple possible transition trajectories

while going from the unfolded state to the folded state in 2D landscape which is not the case for the

1D landscape. This shortcoming highlights the suboptimal nature of the 1D analysis. That being
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said, the agreement between these two simulations was not far off even for the rotated 2D landscape

and its projected 1D counterpart. The degree of convergence so obtained was pretty promising.

Overall, this work highlighted both the degree of complexity and the reliability of projection of

multidimensional landscape onto the lower dimensional landscape.
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Figure 5.8. Cumulative probability distribution of the critical or rupture force for different pulling
rates 𝐾𝑉 = 6 × 10−5 pN/µs (top left), 𝐾𝑉 = 6 × 10−4 pN/µs (top right), 𝐾𝑉 = 6 × 10−3 pN/µs
(bottom left), and 𝐾𝑉 = 1 × 10−2 pN/µs (bottom right) for 2D landscape and reconstructed 1D
counterpart. Simulations in both landscapes almost matched perfectly under suitable rescaling.

5.5 Conclusions

To sum up, this work presents a 2D model for well escape rate within certain analytic frame-

work, obtains the more reliable from of rate equation for 2D analysis analytically and showcases
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the reliability of this rate equation over preexisting form of rate equation with the help of numerical

simulations. It also helps to display the art of projecting 2D landscape onto 1D landscape, highlights

the complexities of projection and finally exhibits the degree of convergence between simulations

carried out in these two landscapes. It shows how the downward projection of multidimensional

landscape onto a lower dimension landscape might be suboptimal and the results obtained from

these two landscapes might be different. Above all, this method addresses the suboptimal nature of

1D analysis and somehow overcomes it.
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CHAPTER 6

MONTE CARLO SIMULATIONS REVEAL LIMITATIONS OF THE

SINGLE-REACTION-COORDINATE PICTURE

6.1 Introduction

A random walk through an energy landscape is a meaningful picture of the motion of a

biopolymer. As the walk proceeds, the chains explores the phase space of all possible conformations.

Several discrete lattice models [109, 110] have been proposed and implemented to explain random-

walk chains but our focus will be on such chains moving in the continuum. Implementation is

somewhat more challenging in comparison to the work in discrete lattice space. In our modeling,

we have taken into consideration the nearest-neighbor bending cost and various possible long-range

interactions, including the excluded volume interaction, hydrophobic attraction, and electrostatic

interaction. Each of these interaction terms are cumulatively to produce the complete interaction

potential. The interaction potential had the form given by Eq. (1.15). The chain was then allowed

to execute the random walk constrained by this interaction potential. Two different kinds of update

schemes, pivot and site rotation were incorporated in combination with efficient sampling techniques

such as replica-exchange parallel tempering to produce an ergodic and efficient exploration of the

phase space. Each the update was accepted or rejected with the standard Metropolis criterion.

Complete details were given in Ch. 2.

The main purpose of this work is to implement 2D framework to semi-realistic polymers

apart from the 2D abstract energy landscape discussed in Ch. 5 and develop a clear conceptual

understanding about the secondary reaction coordinate. It was meant to highlight the limitations

of the conventional analysis of pulling experiments that assumes projection onto a single reaction

coordinate. Though we are still not clear about the secondary reaction coordinate, we believe
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cylindrical radius of gyration could be a possibility. We tested all the preliminary results against

the preexisting theories to make sure our simulation setup worked correctly. We extracted the

values of different observables and interpreted their physical significance.

6.2 Theoretical model

For this work, we considered a protein chain with 𝑁 monomers 𝐴𝑖 (𝑖 = 0, 1, . . . , 𝑁 − 1)

of diameter 𝑎 separated by bond length 𝑏. These monomers were assumed to be hydrophobic,

positive, negative, or neutral. A monomer site was randomly chosen and the portion of chain after

that site was allowed to rotate freely about it—the so-called pivot rotation. Furthermore, each

monomer site was allowed to rotate about the line connect its two neighbors in the backbone. This

update scheme was called site rotation. The values of pivot and site rotation angles were drawn

from the uniform distribution on slice of the interval (−𝜋, 𝜋). We used active feedback to adjust the

angular opening of the updates: it was adjusted until the acceptance fraction of the simulation fell

in the range 25–75%. The cylindrical coordinate system was taken into consideration as we tried to

keep track of secondary reaction coordinate, radius of gyration perpendicular to primary reaction

coordinate, end-to-end length as shown in Fig. 1.9.

We incorporated nearest-neighbor bending cost and several possible long-range interactions

such as: excluded volume interaction, hydrophobic attraction, and coulomb interaction to construct

an interaction potential of the form Eq. (1.15). This potential constrained the motion of chain under

different update schemes.

6.3 Numerical work

The numerical simulation for this work was done using Metropolis Monte Carlo simula-

tion [87]. The straight chain was taken as the initial state. It was then allowed to explore the

energy space constrained by the interaction potential and using different update schemes mentioned

earlier. Next step was accepted if either Δ𝐸 < 0 or ratio of probabilities of two successive states,

exp(−Δ𝐸/𝑘𝐵𝑇) was greater than a small randomly generated number from uniform distribution
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between 0 and 1. At 𝑇 = 0 this was simply a steepest descent problem in energy as shown in

Fig. 6.1 but we are simulating at 𝑇 > 0 which allows for the move that explores uphill.

Figure 6.1. The figure showing steepest descent algorithm in 1D landscape (left) and 2D landscape
(right).

This simulation was carried out for different values of 𝑘𝐵𝑇 and 𝑁 , the number of monomers

in the chain. Initially it was done for a general size of chain but later semi-realistic protein chain

were taken into the consideration. We performed the simulation by considering the interaction

potential with only bending energy term at the beginning and then adding interaction terms step

by step to see their impact. Several parameters such as end-to-end distance, radius of gyration,

square of end-to-end distance, and binder ratio were computed in each such steps. We also obtained

2D histogram plot for cylindrical radius of gyration versus end-to-end length to see if we could

develop concrete understanding behind secondary reaction coordinate of interest. There were some

challenges as simulation got stuck in local minima at times. To overcome this issue we used

sampling techniques such as replica exchange parallel tempering and adaptive biasing. These are

described in details in Ch. 2. We wrote and implemented the graphical version of code using

openGL to visualize the chain evolution. Snapshots of the running simulation are included in

Fig. 6.2.
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Figure 6.2. The figure showing the snapshots of the chain motion as depicted by our openGL
program for different 𝑘𝐵𝑇 values. Each of these spheres represented monomers. Different colors
are used for different spheres; blue for hydrophobic, red for positive, green for negative and white
for neutral. Increase in temperature seem to favor more crumpled state.

6.4 Preliminary Results

The main purpose of this project was to implement our 2D framework to semi realistic

protein chain and interpret our results obtained for abstract 2D landscape. For that work the first

important step would be to see if the Monte Carlo simulation setup works correctly and produces

the data which agrees with the preexisting theories.

As a first step, we took an ideal chain into consideration. We included only the bending term

in interaction potential and generated data for 𝐽 = 1. We obtained plots for different parameters

like end-to-end length and end-to-end length squared as a function of 𝑘𝐵𝑇 as shown in Fig. 6.3 , top

panel. We also obtained the plots of end-to-end length and end-to-end length squared as a function
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of 𝑁 as shown in Fig. 6.3, bottom panel, from which we can clearly see that for for low 𝑘𝐵𝑇 i.e,

𝑘𝐵𝑇 = 9 × 10−5, ⟨𝐿⟩ ∼ 𝑁 and ⟨𝐿2⟩ ∼ 𝑁2. However, for much higher 𝑘𝐵𝑇 i.e, 𝑘𝐵𝑇 = 600, we

could see ⟨𝐿⟩ ∼ 𝑁0.5 and ⟨𝐿2⟩ ∼ 𝑁2×0.5. The result obtained in Fig. 6.3 corroborates this. Here,

we can clearly see the data collapse for both ⟨𝐿⟩/𝑁0.5 and ⟨𝐿2⟩/𝑁2×0.5 as 𝑘𝐵𝑇 > 𝐽. This meant

for 𝑘𝐵𝑇 > 𝐽, ⟨𝐿⟩ ∼ 𝑁0.5 and ⟨𝐿2⟩ ∼ 𝑁2×0.5. This is in agreement with preexisting theories.
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Figure 6.3. (Top left) The average end-to-end length versus 𝑘𝐵𝑇 . (Bottom left) The average end-
to-end length versus 𝑁 . (Top right) The average end-to-end length squared versus 𝑘𝐵𝑇 . (Bottom
right) The average end-to-end length squared versus 𝑁 .

As a next step, we included the excluded volume interaction term given by𝑉𝐸𝑉
𝑖 𝑗

= 𝑉0Θ(𝑎−𝑟𝑖 𝑗 )

with𝑉0 = 100. Then, we ran the simulation to see the variation of previously mentioned parameters

as a function of 𝑘𝐵𝑇 . The result was pretty much as expected. We could see the chain exhibiting

self avoiding walk (SAW) when 𝐽 < 𝑘𝐵𝑇 < 𝑉0 and going towards random walk when 𝑘𝐵𝑇 > 𝑉0.

The plot of ⟨𝐿⟩/𝑁0.59 and ⟨𝐿2⟩/𝑁2×0.59 both collapsed for single line for different 𝑁 when 1 <
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𝑘𝐵𝑇 < 100 as seen in Fig. 6.4, top panel. In other words the chain exhibited SAW in this range

which again agrees totally with preexisting theories. This can also be seen in Fig. 6.4, bottom panel.

The fit of ⟨𝐿⟩ vs 𝑁𝛼 produced values of 𝛼 to be 1.01, 0.58 and 0.54 for 𝑘𝐵𝑇 < 𝐽, 𝐽 < 𝑘𝐵𝑇 < 𝑉0

and 𝑘𝐵𝑇 > 𝑉0 respectively. Similarly, the fit of ⟨𝐿2⟩ vs 𝑁2𝛼 produced values of 𝛼 to be 1.01, 0.58

and 0.54 for 𝑘𝐵𝑇 < 𝐽, 𝐽 < 𝑘𝐵𝑇 < 𝑉0 and 𝑘𝐵𝑇 > 𝑉0 respectively. These results obtained so far

highlight the robustness of our simulation.

 0.1

 1

 10

 100

 0.001 0.01  0.1  1  10  100  1000

〈
L
〉
/ N

 0
.5
9

kBT

N = 50

N = 200

N = 400

N = 800

10-1

100

101

102

103

10-3 10-2 10-1 100 101 102 103

〈
L
2 〉
/ N

 2
×
0.
59

kBT

N = 50

N = 200

N = 400

N = 800

100

101

102

103

104

105

102 103

〈
L
〉

 

N

kBT = 0.0002
f(x) = 0.96x1.01

kBT= 60
g(x) = 1.03x0.58

kBT = 6000
h(x) = 0.79x0.54

102

104

106

108

1010

102 103

〈
L
2 〉

 

N

kBT = 0.0002
f(x) = 0.92x(2×1.01)

kBT= 60
g(x) = 1.2x(2×0.59)

kBT = 6000
h(x) = 0.73x(2×0.54)

Figure 6.4. (Top left) The average end-to-end length versus 𝑘𝐵𝑇 . (Bottom left) The average end-
to-end length versus 𝑁 . (Top right) The average end-to-end length squared versus 𝑘𝐵𝑇 . (Bottom
right) The average end-to-end length squared versus 𝑁 .

We also went on to incorporate other long-range interaction terms and obtained two-

dimensional grid plots. Some of these plots obtained are depicted in Fig. 6.5. The simulation was

carried out for different 𝑘𝐵𝑇 values such as 0.02, 0.06, 0.1 and 1. As seen in these plots, the value

of average end-to-end length kept on decreasing with increasing temperature favoring the crumpled
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state at higher temperatures. However, the average values of cylindrical radius of gyration first

increased and again started decreasing with increase in temperature. This is still a work in progress

and we are continuously working on it and we even plan to collaborate on this work after my

graduation.
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Figure 6.5. Two-dimensional grid plots of end-to-end length ⟨𝐿⟩ and radius of gyration ⟨𝑅𝑔⟩ for
different values of temperature. The chain seems to favor the crumpled state for larger temperatures.

6.5 Conclusions

This work overall has been promising so far. It still has lots of prospects as the simulation

works perfectly fine and data generation, data analysis and data visualization phase is still ongoing.

From preliminary results obtained so far, this work seems to strengthen the claim of 1D model

being suboptimal. However, there are certain challenges associated with it too. Being able to
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fine tune the strength of long range interaction terms to represent the physical system representing

biological system is a big challenge. The computational techniques used in this project is widely

used in different real life applications such as protein modeling in drug discovery. The immediate

next step for this work would be to obtain data for different temperatures from the simulation

and obtain two-dimensional grid plot to find two metastable states. It is somewhat similar to the

conformational search implemented in a drug discovery projects.
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CHAPTER 7

SUMMARY

In this dissertation, we considered the mechanical unfolding of biopolymers, such as pro-

teins, in context of the activated barrier crossing problem. The response of biopolymers to applied

force is very important in understanding their mechanical stability and in characterizing the energy

barriers that govern their diffusion through unfolding pathways. We have reported on three com-

pleted projects and a fourth that is ongoing. The background literature is discussed in Ch. 1. It is

comprised of both past and recent developments in the field.

In Ch. 2, the methods adopted in this dissertation, both analytic and numerical, have been

explained thoroughly. Particular attention has been paid to the numerical methods for simula-

tion: one-dimensional heat-bath-coupled Langevin dynamics; its two-dimensional generalization

with added optimization techniques; and Monte Carlo with some enhanced sampling techniques

including replica-exchange parallel tempering and adaptive biasing force. These methods helped

in achieving our goals set for the dissertation.

Ch. 3 addressed the reliable extraction of energy landscape properties from the critical force

distribution. Using simulated data mimicking pulling experiments carried out with optical tweezers,

we flagged the weakness and pathological points in the rate equations that are typically used to

fit the measured rate in real experiments. The simulation was carried out using one-dimensional

bi-quadratic landscape where a barrier separated the folded and unfolded wells. We proposed our

own form of rate equation analytically and showcased with the help of numerical work that this

form was more reliable both in case of prediction (forward modeling) and parameter extraction

(inverse modeling). This work has been published in the journal Physical Review Research [84].

In Ch. 4, we developed a comprehensive framework for universality in the context of

activated barrier crossing under bias. The robustness of this model was validated using data
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collpase, obtained from the numerical simulation for a wide range of temperatures and family of

potential landscapes with different shape parameters. We were able to obtain a striking agreement

between two different kind of analyses, constant force and constant loading rate analysis. A

manuscript based on this work is under review at Physical Review Letters and is already available

on the arXiv preprint server [111].

One dimensional analysis discussed earlier may not always be optimal, especially protein

with knots and multiple transition pathways. At these scenarios, or when the chains are degenerate

in length but with different conformational state, one dimensional analysis with single reaction

coordinate mostly fails. This motivated us to come up with two dimensional generalization. We

explored the possibility of adding a secondary reaction coordinate perpendicular to the primary

reaction coordinate and generalized our 1D analytic model to 2D. We then carried out 2D simulation

in an abstract 2D landscape and showcased the robustness of our 2D rate equation in both prediction

and well parameter extraction. Under certain condition, we were even able to reproduce 1D results

from 2D simulation thereby showing a nice degree of convergence between two analyses. This was

our third project and is on Ch. 5 of the dissertation.

Finally, we were motivated to test the physical form of secondary reaction coordinate as we

found 2D simulation worked well with an abstract 2D landscape. This work is our fourth project

and is in Ch. 6. We adopted a different approaches for this work. We created an energy landscape

for a protein chain considering backbone interaction and long range interactions such as excluded

volume, hydrophobic and electrostatic interaction. Allowing two different kind of update schemes,

we let this chain explore the energy space randomly accepting/rejecting next steps using Monte

Carlo simulation. We recorded the end-to-end chain length as a primary reaction coordinate and

cylindrical radius of gyration as secondary reaction coordinate. Preliminary results show that the

cylindrical radius of gyration is a good candidate for the secondary reaction coordinate for 2D

analysis. Exploring other forms of secondary reaction coordinates such as ‘native contact’ can be

continued in future project.

91



LIST OF REFERENCES

92



[1] D. A. Brant, Conformational analysis of biopolymers: Conformational energy calculations,
Annual Review of Biophysics and Bioengineering 1, 369–408 (1972).

[2] J. D. Bryngelson and P. G. Wolynes, Spin glasses and the statistical mechanics of protein
folding, Proceedings of the National Academy of Sciences 84 (1987).

[3] J. N. Onuchic, Z. Luthey-Schulten, and P. G. Wolynes, Theory of protein folding: the energy
landscape perspective, Annual Reviews of Physical Chemistry 48 (1997).

[4] J. N. Onuchic, H. Nymeyer, A. E. García, J. Chahine, and N. D. Socci, The energy landscape
of protein folding: Insights into folding mechanisms and scenarios, Advances in Protein
Chemistry 53 (2000).

[5] M. Stöhr and A. Tkatchenko, Quantum mechanics of proteins in explicit water: The role of
plasmon-like solute-solvent interactions, Science Advances 5, 13278–13282 (2019).

[6] J. V. Galzitskaya and A. V. Finkelstein, A theoretical search for folding/unfolding nuclei in
three-dimensional protein structures, Proceedings of the National Academy of Sciences 96
(1999).

[7] J. N. Onuchic and P. G. Wolynes, Theory of protein folding, Current Opinion in Structural
Biology 14 (2004).

[8] K. A. Dill and J. L. MacCallum, The protein-folding problem, 50 years on, Science 338
(2012).

[9] P. Talkner and D. Ryter, Lifetime of a metastable state at low noise, Physics Letters A 88
(1982).

[10] R. Merkel, P. Nassoy, A. Leung, K. Ritchie, and E. Evans, Energy landscapes of receptor-
ligand bonds explored with dynamic force spectroscopy, Nature 397 (1999).

[11] J. Liphardt, B. Onoa, S. Smith, I. .Tinoco, and C. Bustamante, Reversible unfolding of single
rna molecules by mechanical force, Science 292 (2001).

[12] P. Li and D. E. Makarov, Simulation of the mechanical unfolding of ubiquitin: Probing dif-
ferent unfolding reaction coordinates by changing the pulling geometry, Journal of Chemical
Physics 121 (2004).

[13] P. Hinterderfer and Y. Dufrene, Detection and localization of single molecular recognition
events using atomic force microscopy, Nature Methods 3 (2006).

[14] Y. Gilbert, M. Deghorain, L. Wang, B. Xu, P. D. Pollheimer, H. J. Gruber, J. Errington,
B. Hallet, X. Haulot, C. Verbelen, P. Hols, and Y. F. Dufrene, Single-molecule force spec-
troscopy and imaging of the vancomycin/d-ala-d-ala interaction, Nano Letters 7 (2007).

93

https://doi.org/10.1146/annurev.bb.01.060172.002101
https://doi.org/10.1073/pnas.84.21.7524
https://doi.org/10.1146/annurev.physchem.48.1.545
https://doi.org/10.1016/S0065-3233(00)53003-4
https://doi.org/10.1016/S0065-3233(00)53003-4
https://doi.org/10.1126/sciadv.aax0024
https://doi.org/10.1073/pnas.96.20.11299
https://doi.org/10.1073/pnas.96.20.11299
https://doi.org/10.1016/j.sbi.2004.01.009
https://doi.org/10.1016/j.sbi.2004.01.009
https://doi.org/10.1126/science.1219021
https://doi.org/10.1126/science.1219021
https://doi.org/10.1016/0375-9601(82)90552-7
https://doi.org/10.1016/0375-9601(82)90552-7
https://doi.org/10.1038/16219
https://doi.org/10.1126/science.1058498
https://doi.org/10.1063/1.1778152
https://doi.org/10.1063/1.1778152
https://doi.org/10.1038/nmeth871
https://doi.org/10.1021/nl0700853


[15] W. J. Greenleaf, M. T. Woodside, and S. M. Block, High-resolution, single-molecule mea-
surements of biomolecular motion, Annual Review of Biophysics and Biomolecular Structure
36 (2007).

[16] K. Neupane, H. Yu, D. A. N. Foster, F. Wang, and M. Woodside, Single-molecule force
spectroscopy of the add adenine riboswitch relates folding to regulatory mechanism, Nucleic
Acids Research 39 (2011).

[17] D. E. Souza, Pulling on single molecules, Nature Methods 9 (2012).

[18] M. S. Bull, R. M. A. Sullan, H. Li, and T. T. Perkins, Improved single molecule force
spectroscopy using micromachined cantilevers, ACS Nano 8 (2014).

[19] D. T. Edwards, J. K. Faulk, A. W. Sanders, M. S. Bull, R. Walder, M.-A. LeBlanc, M. C.
Sousa, and T. T. Perkins, Optimizing 1-µs-resolution single-molecule force spectroscopy on
a commercial atomic force microscope, Nano Letters 15 (2015).

[20] S. R. Okoniewski, L. Uyetake, and T. T. Perkins, Force-activated dna substrates for probing
individual proteins interacting with single-stranded dna, Nucleic Acids Research 45 (2017).

[21] H. Yu, M. G. W. Siewny, D. Edwards, A. W. Sanders, and T. T. Perkins, Hidden dynamics
in the unfolding of individual bacteriorhodopsin proteins, Science 355 (2017).

[22] R. Walder, W. J. V. Patten, A. Adhikari, and T. T. Perkins, Going vertical to improve the
accuracy of atomic force microscopy based single-molecule force spectroscopy, ACS Nano
12 (2018).

[23] R. Walder, W. J. V. Patten, D. B. Ritchie, R. K. Montange, T. W. Miller, M. T. Woodside,
and T. T. Perkins, High-precision single-molecule characterization of the folding of an hiv
rna hairpin by atomic force microscopy, Nano Letters 18 (2018).

[24] C. Jarzynski, Nonequilibrium equality of free energy differences, Physical Review Letters
78 (1997).

[25] G. Hummer and A. Szabo, Free energy reconstruction from nonequilibrium single-molecule
pulling experiments, Proceedings of the National Academy of Sciences 98 (2001).

[26] N. C. Harris, Y. Song, and C. H. Kiang, Experimental free energy reconstruction from single
molecule force spectroscopy using jarzynski’s inequlity, Physical Review Letters 99 (2007).

[27] A. N. Gupta, A. Vincent, K. Neupane, H. Yu, F. Wang, and M. T. Woodside, Experimental
validation of free-energy-landscape reconstruction from non-equilibrium single-molecule
force spectroscopy measurements, Nature Physics 7 (2011).

[28] Q. Zhang, J. Brujic, and E. V. Eĳnden, Reconstructing free energy profiles from nonequilib-
rium relaxation trajectories, Journal of Statistical Physics 144 (2011).

[29] M. C. Engel, D. B. Ritchie, D. A. N. Foster, K. S. D. Beach, and M. T. Woodside, Re-
constructing folding energy landscape profiles from nonequilibrium pulling curves with an
inverse weierstrass integral transform, Physical Review Letters 113 (2014).

94

https://doi.org/10.1146/annurev.biophys.36.101106.101451
https://doi.org/10.1146/annurev.biophys.36.101106.101451
https://doi.org/10.1093/nar/gkr305
https://doi.org/10.1093/nar/gkr305
https://doi.org/10.1038/nmeth.2149
https://doi.org/10.1021/nn5010588
https://doi.org/10.1021/acs.nanolett.5b03166
https://doi.org/10.1093/nar/gkx761
https://doi.org/10.1126/science.aah7124
https://doi.org/10.1021/acsnano.7b05721
https://doi.org/10.1021/acsnano.7b05721
https://doi.org/10.1021/acs.nanolett.8b02597
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1073/pnas.071034098
https://doi.org/10.1103/PhysRevLett.99.068101
https://doi.org/10.1038/nphys2022
https://doi.org/10.1007/s10955-011-0242-7
https://doi.org/10.1103/PhysRevLett.113.238104


[30] A. P. Manuel, J. Lambert, and M. T. Woodside, Reconstructing folding energy landscapes
from splitting probability analysis of single-molecule trajectories, Proceedings of the Na-
tional Academy of Sciences 112 (2015).

[31] P. R. Heenan, H. Yu, M. G. W. Siewny, and T. T. Perkins, Improved free-energy landscape
reconstruction of bacteriorhodopsin highlights local variations in unfolding energy, Journal
of Chemical Physics 148 (2018).

[32] N. J. L. Alamilla, M. W. Jack, and K. J. Challis, Analysing single-molecule trajectories to
reconstruct free-energy landscapes of cyclic motor proteins, Journal of Theoretical Biology
462 (2019).

[33] N. J. L. Alamilla, M. W. Jack, and K. J. Challis, Reconstructing free-energy landscapes for
cyclic molecular motors using full multidimensional or partial one-dimensional dynamic
information, Physical Review E 462 (2019).

[34] H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical
reactions, Physica 7 (1940).

[35] R. F. Grote and J. T. Hynes, The stable states picture of chemical reactions. ii. rate constants
for condensed and gas phase reaction models, Journal of Chemical Physics 73 (1980).

[36] E. Pollak, Theory of activated rate processes: A new derivation of kramers’ expression,
Journal of Chemical Physics 85 (1986).

[37] P. Hänggi, P. Talkner, and M. Borkovec, Reaction-rate theory: fifty years after kramers,
Reviews of Modern Physics 62 (1990).

[38] G. R. Fleming, S. H. Courtney, and M. W. Balk, Activated barrier crossing: Comparison of
experiment and theory, Journal of Statistical Physics 42 (1986).

[39] G. R. Haynes and G. A. Voth, A theory for the activated barrier crossing rate constant in
systems influenced by space and time dependent friction, Journal of chemical Physics 101
(1994).

[40] P. Kraikivski, R. Lipowsky, and J. Kierfeld, Barrier crossing of semiflexible polymers,
Europhysics Letters 66 (2004).

[41] D. E. Makarov, Barrier crossing dynamics from single-molecule measurements, The Journal
of Physical Chemistry B 125 (2021).

[42] R. M, G. M, O. F, F. JM, and G. HE, Reversible unfolding of individual titin immunoglobulin,
Science 276 (1997).

[43] K. MS, S. SB, G. HL, and B. C, Folding - unfolding transitions in single titin molecules,
Science 276 (1997).

[44] S. T. L, T. J, S. JA, and S. RM, Elasticity and unfolding of single molecules of the giant
muscle protein titin, Nature 387 (1997).

95

https://doi.org/10.1073/pnas.1419490112
https://doi.org/10.1073/pnas.1419490112
https://doi.org/10.1063/1.5009108
https://doi.org/10.1063/1.5009108
https://doi.org/10.1016/j.jtbi.2018.11.015
https://doi.org/10.1016/j.jtbi.2018.11.015
https://doi.org/10.1103/PhysRevE.100.012404
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1063/1.440485
https://doi.org/10.1063/1.451294
https://doi.org/10.1103/RevModPhys.62.251
https://doi.org/10.1007/BF01010842
https://doi.org/10.1063/1.468274
https://doi.org/10.1063/1.468274
https://doi.org/10.1209/epl/i2004-10027-7
https://doi.org/10.1021/acs.jpcb.0c10978
https://doi.org/10.1021/acs.jpcb.0c10978
https://doi.org/10.1126/science.276.5315.1109
https://doi.org/10.1126/science.276.5315.1112
https://doi.org/10.1038/387308a0


[45] M. T. Woodside, C. García-García, and S. M. Block, Folding and unfolding single rna
molecules under tension, Current Opinion in Chemical Biology 12 (2008).

[46] G. Žoldák and M. Rief, Force as a single molecule probe of multidimensional protein energy
landscapes author links open overlay panel, Current Opinion in Structural Biology 23 (2008).

[47] A. Szabo, K. Schulten, and Z. Schulten, First passage time approach to diffusion controlled
reactions, J. Chem. Phys. 72 (1980).

[48] H. S. Chung, J. M. Louis, and W. A. Eaton, Experimental determination of upper bound for
transition path times in protein folding from single-molecule photon-by-photon trajectories,
Proc. Natl. Acad. Sci. 106 (2009).

[49] S. Chaudhury and D. E. Makarov, A harmonic transition state approximation for the duration
of reactive events in complex molecular rearrangements, J. Chem. Phys. 133 (2009).

[50] S. Kirmizialtin, L. Huang, and D. E. Makarov, Topography of the free-energy landscape
probed via mechanical unfolding of proteins, Journal of Chemical Physics 122 (2005).

[51] M. T. Woodside, W. M. Behnke-Parks, K. Larizadeh, K. Travers, D. Herschlang, and S. M.
Block, Nanomechanical measurements of the sequence-dependent folding landscapes of
single nucleic acid hairpins, Proceedings of the National Academy of Sciences 103 (2006).

[52] R. B. Best and G. Hummer, Coordinate-dependent diffusion in protein folding, Proceedings
of the National Academy of Sciences (USA) 107 (2010).

[53] O. K. Dudko, T. G. W. Graham, and R. B. Best, Locating the barrier for folding of single
molecules under an external force, Physical Review Letters 107 (2011).

[54] A. N. G. H. Yu, X. Liu, K. Neupane, A. M. Brigley, I. Sosova, and M. T. Woodside,
Energy landscape analysis of native folding of the prion protein yields the diffusion constant,
transition path time, and rates, Proc. Natl. Acad. Sci. U.S.A. 109 (2012).

[55] W. J. V. Patten, R. Walder, A. Adhikari, S. R. Okoniewski, R. Ravichandran, C. E. Tinberg,
D. Baker, and T. T. Perkins, Improved free-energy landscape quantification illustrated with
a computationally designed protein-ligand interaction, ChemPhysChem 19 (2019).

[56] D. B. Ritchie and M. T. Woodside, Probing the structural dynamics of proteins and nucleic
acids with optical tweezers, Current Opinion in Structural Biology 34 (2015).

[57] M. T. Woodside, J. Lambert, and K. S. D. Beach, Determining intrachain diffusion coef-
ficients for biopolymer dynamics from single-molecule force spectroscopy measurements,
Biophysical Journal 107 (2014).

[58] E. Evans, D. Berk, and A. Leung, Detachment of agglutinin-bonded red blood cells. i. forces
to rupture molecular-point attachments, Biophysical Journal 59 (1991).

[59] M. Rief, F. O. M. Gautel, J. M. Fernandez, and H. E. Gaub, Reversible unfolding of individual
titin immunoglobulin domains by afm, Science 276 (1997).

96

https://doi.org/10.1016/j.cbpa.2008.08.011
https://doi.org/10.1016/j.sbi.2012.11.007
https://doi.org/10.1063/1.439715
https://doi.org/10.1073/pnas.0901178106
https://doi.org/10.1063/1.3459058
https://doi.org/10.1063/1.1931659
https://doi.org/10.1073/pnas.0511048103
https://doi.org/10.1073/pnas.0910390107
https://doi.org/10.1073/pnas.0910390107
https://doi.org/10.1103/PhysRevLett.107.208301
https://doi.org/10.1073/pnas.1206190109
https://doi.org/10.1002/cphc.201701147
https://doi.org/10.1016/j.sbi.2015.06.006
https://doi.org/10.1016/j.bpj.2014.08.007
https://doi.org/10.1016/S0006-3495(91)82296-2
https://doi.org/10.1126/science.276.5315.1109


[60] M. Rief, J. M. Fernandez, and H. E. Gaub, Elastically coupled two- level systems as a model
for biopolymer extensibility, Physical Review Letters 81 (1998).

[61] G. Hummer and A. Szabo, Kinetics from nonequilibrium single-molecule pulling experi-
ments, Biophysical Journal 85 (2003).

[62] R. W. Friddle, Unified model of dynamic forced barrier crossing in single molecules, Physical
Review Letters 100 (2008).

[63] J. C. M. Gebhardt, T. Bornschlögl, and M. Rie, Full distance-resolved folding energy land-
scape of one single protein molecule, Proceedings of the National Academy of Sciences
(USA). 107 (2010).

[64] A. N. Gupta, A. Vincent, K. Neupane, H. Yu, F. Wang, and M. T. Woodside, Experimental
validation of free-energy-landscape reconstruction from non-equilibrium single-molecule
force spectroscopy measurements, Nature Physics 7 (2011).

[65] M. de Messieres, B. Brawn-Cinani, and A. L. Porta, Measuring the folding landscape of a
harmonically constrained biopolymer, Biophysical Journal 100 (2011).

[66] M. T. Woodside and S. M. Block, Reconstructing folding energy landscapes by single-
molecule force spectroscopy, Annual Review of Biophysics 43 (2014).

[67] G. I. Bell, Models for the specific adhesion of cells to cells, Science 200 (1978).

[68] O. K. Dudko, G. Hummer, and A. Szabo, Intrinsic rates and activation free energies from
single-molecule pulling experiments, Physical Review Letters 96 (2006).

[69] K. C. Neuman and A. Nagy, Single-molecule force spectroscopy: optical tweezers, magnetic
tweezers and atomic force microscopy, Nature Methods 5, 491–505 (2008).

[70] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Observation of a single-beam
gradient force optical trap for dielectric particles, Optics Letters 11, 288–290 (1986).

[71] A. Ashkin, J. M. Dziedzic, and T. Yamane, Optical trapping and manipulation of single cells
using infrared laser beams, Nature 330, 769–771 (1987).

[72] C. J. Bustamante, Y. R. Chemla, S. Liu, and M. D. Wang, Optical tweezers in single-molecule
biophysics, Nature Reviews 1, 369–408 (2021).

[73] S. B. Smith, L. Finzi, and C. Bustamante, Direct mechanical measurements of the elasticity
of single dna molecules by using magnetic beads, Science 258, 1122–1126 (1987).

[74] L. Chen, A. Offenhausser, and H. J. Krause, Magnetic tweezers with high permeability
electromagnets for fast actuation of magnetic beads, Review of Scientific instruments 86
(2015).

[75] K. Mitsui, M. Hara, and A. Ikai, Mechanical unfolding of a2-macroglobulin molecules with
atomic force microscope, Research Letters 385, 29–33 (1996).

97

https://doi.org/10.1103/PhysRevLett.81.4764
https://doi.org/10.1016/S0006-3495(03)74449-X
https://doi.org/10.1103/PhysRevLett.100.138302
https://doi.org/10.1103/PhysRevLett.100.138302
https://doi.org/10.1073/pnas.0909854107
https://doi.org/10.1073/pnas.0909854107
https://doi.org/10.1038/nphys2022
https://doi.org/10.1016/j.bpj.2011.03.067
https://doi.org/10.1146/annurev-biophys-051013-022754
https://doi.org/10.1126/science.347575
https://doi.org/10.1103/PhysRevLett.96.108101
https://doi.org/10.1038/nmeth.1218
https://doi.org/10.1364/OL.11.000288
https://doi.org/10.1038/330769a0
https://doi.org/10.1038/s43586-021-00021-6
https://doi.org/10.1126/science.1439819
https://doi.org/10.1063/1.4916255
https://doi.org/10.1063/1.4916255
https://doi.org/10.1016/0014-5793(96)00319-5


[76] J. Zlatanova, S. M. Lindsay, and S. H. Leuba, Single molecule force spectroscopy in biology
using the atomic force microscope, Progress in Biophysics and Molecular Biology 74, 37–61
(2000).

[77] H. C. Schaumann, M. Seitz, R. Krautbauer, and H. E. Gaub, Force spectroscopy with single
bio-molecules, Current Opinion in Chemical Biology 4, 524–530 (2000).

[78] V. Barsegov, D. Klimov, and D. Thirumalai, Mapping the energy landscape of biomolecules
using single molecule force correlation spectroscopy: Theory and applications, Biophysics
Journal 90, 3827–3841 (2006).

[79] T. Hoffmann and L. Dougan, Single molecule force spectroscopy using polyproteins, Current
Opinion in Chemical Biology 41, 4781–4796 (2012).

[80] I. Popa, P. Kosuri, J. A. Cebollada, S. G. Manyes, and J. M. Fernandez, Force dependency
of biochemical reactions measured by single-molecule force-clamp spectroscopy, Nature
Protocols 8, 1261–1276 (2013).

[81] M. Schlierf and M. Rief, Single-molecule unfolding force distributions reveal a funnel-shaped
energy landscape, Biophysics Journal 90 (2006).

[82] R. I. Litvinov, H. Shuman, J. S. Bennett, and J. W. Weisel, Binding strength and activation
state of single fibrinogen-integrin pairs on living cells, Proceedings of the National Academy
of Sciences 99 (2002).

[83] E. Evans and K. Ritchie, Dynamic strength of molecular adhesion bonds, Biophysical Journal
72 (1997).

[84] S. Adhikari and K. Beach, Reliable extraction of energy landscape properties from critical
force distributions, Physical Review Research 2 (2020).

[85] N. Grønbech-Jensen and O. Farago, A simple and effective verlet-type algorithm for simu-
lating langevin dynamics, Molecular Physics 111, 207–202 (2013).

[86] L. Verlet, Computer “experiments” on classical fluids. i. thermodynamical properties of
lennard-jones molecules, Physical Review Letters 159, 207–202 (1967).

[87] N. Metropolis and A. Rosenbluth, Equation of state calculations by fast computing machines,
The Journal of Chemical Physics 21 (1953).

[88] D. J. Earl and M. W. Deem, Parallel tempering: Theory, applications, and new perspectives,
Phys. Chem. Chem. Phys. 7, 3910–3916 (2005).

[89] M. T. Woodside and S. M. Block, Reconstructing folding energy landscapes by single-
molecule force spectroscopy, Annual Review of Biophysics 43 (2014).

[90] V. Barsegov and D. Thirumalai, Probing protein-protein interactions by dynamic force
correlation spectroscopy, Physical Review Letters 95 (2005).

98

https://doi.org/10.1016/S0079-6107(00)00014-6
https://doi.org/10.1016/S0079-6107(00)00014-6
https://doi.org/10.1016/S1367-5931(00)00126-5
https://doi.org/10.1529/biophysj.105.075937
https://doi.org/10.1529/biophysj.105.075937
https://doi.org/10.1039/C2CS35033E
https://doi.org/10.1039/C2CS35033E
https://doi.org/10.1038/nprot.2013.056
https://doi.org/10.1038/nprot.2013.056
https://doi.org/10.1529/biophysj.105.077982
https://doi.org/10.1073/pnas.112194999
https://doi.org/10.1073/pnas.112194999
https://doi.org/10.1016/S0006-3495(97)78802-7
https://doi.org/10.1016/S0006-3495(97)78802-7
https://doi.org/10.1103/PhysRevResearch.2.023276
https://doi.org/10.1080/00268976.2012.760055
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1063/1.1699114
https://doi.org/10.1039/b509983h
https://doi.org/10.1146/annurev-biophys-051013-022754
https://doi.org/10.1103/PhysRevLett.95.168302


[91] A. Maitra and G. Arya, Model accounting for the effects of pulling-device stiffness in the
analyses of single-molecule force measurements, Physical Review Letters 104 (2010).

[92] D. E. Makarov, Communication: Does force spectroscopy of biomolecules probe their
intrinsic dynamic properties?, Journal of Chemical Physics 141 (2014).

[93] G. M. Nam and D. E. Makarov, Extracting intrinsic dynamic parameters of biomolecular
folding from single?molecule force spectroscopy experiments, Protein Science 25 (2016).

[94] A. Garg, Escape-field distribution for escape from a metastable potential well subject to a
steadily increasing bias field, Physical Review B 51 (1995).

[95] H. E. Stanley, Scaling, universality, and renormalization: Three pillars of modern critical
phenomena, Reviews of Modern Physics 71 (1999).

[96] N. Kawashima and N. Ito, Critical behavior of the three-dimensional ±j model in a magnetic
field, Journal of the Physical Society of Japan 62 (1993).

[97] S. M. Bhattacharjee and F. Seno, A measure of data collapse for scaling, Journal of Physics
A: Mathematical and General 34 (2001).

[98] J. Houdayer and A. K. Hartmann, Low-temperature behavior of two-dimensional gaussian
ising spin glasses, Physical Review B 70 (2004).

[99] S. Singh, R. Krishnan, and G. W. Robinson, Critical phenomena and scaling behavior in
theories of activated barrier crossing, Physical Review Letters 68 (1992).

[100] S. Singh, R. Krishan, and G. W. Robinson, Critical scaling behavior in the activated-barrier-
crossing problem, Physical Review E 49 (1994).

[101] B. Efron and R. J. Tibshiran, An introduction to the bootstrap, Chapman and Hall/CRC, 1st
edition (1993).

[102] T. Cellmer, E. R. Henry, J. Hofrichter, and W. A. Eaton, Measuring internal friction of an
ultrafast-folding protein, Proceedings of the National Academy of Sciences 105, 18320–
18325 (2008).

[103] S. Kamitori, A real knot in protein, Journal of American Chemical Society 118, 8945–8946
(1996).

[104] J. B. Udgaonkar, Multiple routes and structural heterogeneity in protein folding, Tata Institute
of Fundamental Research 37, 489–510 (2008).

[105] S. S. Plotkin and P. G. Wolynes, Non-markovian configurational diffusion and reaction
coordinates for protein folding, Physical Review Letter 80 (1998).

[106] D. E. Makarov, Interplay of non-markov and internal friction effects in the barrier crossing
kinetics of biopolymers: insights from an analytically solvable model, Journal of Chemical
Physics 138 (2013).

99

https://doi.org/10.1103/PhysRevLett.104.108301
https://doi.org/10.1063/1.4904895
https://doi.org/10.1002/pro.2727
https://doi.org/10.1103/PhysRevB.51.15592
https://doi.org/10.1103/RevModPhys.71.S358
https://doi.org/10.1143/JPSJ.62.435
https://doi.org/10.1088/0305-4470/34/33/302
https://doi.org/10.1088/0305-4470/34/33/302
https://doi.org/10.1103/PhysRevB.70.014418
https://doi.org/10.1103/PhysRevLett.68.2608
https://doi.org/10.1103/PhysRevE.49.2540
https://doi.org/978-0412042317
https://doi.org/978-0412042317
https://doi.org/10.1073/pnas.0806154105
https://doi.org/10.1073/pnas.0806154105
https://doi.org/10.1021/ja961147m
https://doi.org/10.1021/ja961147m
https://doi.org/10.1146/annurev.biophys.37.032807.125920
https://doi.org/10.1146/annurev.biophys.37.032807.125920
https://doi.org/10.1103/PhysRevLett.80.5015
https://doi.org/10.1063/1.4773283
https://doi.org/10.1063/1.4773283


[107] K. Neupane, A. P. Manuel, and M. T. Woodside, Protein folding trajectories can be described
quantitatively by one-dimensional diffusion over measured energy landscapes, Nature Physics
12 (2016).

[108] Y. Suzuki and O. K. Dudko, Single-molecule rupture dynamics on multidimensional land-
scapes, Physical Review Letter 104 (2010).

[109] M. Mann and R. Backofen, Exact methods for lattice protein models, Bio-Algorithms and
Med-Systems 10 (2014).

[110] A. C. K. Farris and D. P. Landau, The role of chain-stiffness in lattice protein models : A
replica-exchange wang-landau study, The Journal of Chemical Physics 149 (2018).

[111] S. Adhikari and K. S. D. Beach, Universal aspects of barrier crossing under bias, arxiv
(2022).

100

https://doi.org/10.1038/NPHYS3677
https://doi.org/10.1038/NPHYS3677
https://doi.org/10.1103/PhysRevLett.104.048101
https://doi.org/10.1515/bams-2014-0014
https://doi.org/10.1515/bams-2014-0014
https://doi.org/10.1063/1.5045482
https://doi.org/10.48550/arXiv.2203.16277
https://doi.org/10.48550/arXiv.2203.16277


VITA

Sudeep Adhikari

Education

M. Sc. Physics 2012

Jawaharlal Nehru University, New Delhi, India

Experience

Teaching Assistant 2015 – 2020

The University of Mississippi, Oxford, MS

Physics Lecturer 2012 – 2015

National School of Sciences, Kathmandu, Nepal

Published articles and preprints

Adhikari, S. & Beach, K. S. D. (2020). Reliable extraction of energy landscape properties

from critical force distributions. https://doi.org/10.1103/PhysRevResearch.2.

023276

Adhikari, S. & Beach, K. S. D. (2022). Universal Aspects of Barrier Crossing Under

Bias. http://arxiv.org/abs/2203.16277

James R. Michels, Mohammad S. Nazrul, S. Adhikari, D. Wilkins & A. B. Pavel (2022).

Th1, Th2 and Th17 inflammatory pathways predict cardiometabolic protein expres-

sion in serum of COVID-19 patients. https://doi.org/10.1039/D2MO00055E

101

https://doi.org/10.1103/PhysRevResearch.2.023276
https://doi.org/10.1103/PhysRevResearch.2.023276
http://arxiv.org/abs/2203.16277
https://doi.org/10.1039/D2MO00055E


Selected Conference Presentations

APS March Meeting 2021 by American Physical Society March 15-19, 2021

held online.

Title: The universality in activated barrier crossing.

Url: https://meetings.aps.org/Meeting/MAR21/Session/C12.10

APS March Meeting 2020 by American Physical Society March 2-6, 2020

Denver, CO, USA.

Title: An escape rate analysis for pulling experiments based on energy landscapes in two

reaction coordinates.

Url: https://meetings.aps.org/Meeting/MAR20/Session/R24.10

APS March Meeting 2019 by American Physical Society March 4-8, 2019

Boston, MA, USA.

Title: Reliable extraction of energy landscape properties from critical force distributions.

Url: https://meetings.aps.org/Meeting/MAR19/Session/X64.8

Awards and achievements

Dissertation Fellowship Jan 2021- May 2022

The University of Mississippi, Oxford, MS

Summer Research Assistantship June 2020 - Aug 2020

The University of Mississippi, Oxford, MS

Merit scholarship recipient Jan 2011- May 2012

Jawaharlal Nehru University, New Delhi, India

102

https://meetings.aps.org/Meeting/MAR21/Session/C12.10
https://meetings.aps.org/Meeting/MAR20/Session/R24.10
https://meetings.aps.org/Meeting/MAR19/Session/X64.8


Membership

American Physical Society(APS)

Nepal Physical Society (NPS)

Association of Nepali physicists in America (ANPA)

103


	Biopolymer Unfolding as a Process of Biased Activated Barrier Crossing
	Recommended Citation

	ABSTRACT
	DEDICATION
	LIST OF ABBREVIATIONS AND SYMBOLS
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	CHAPTER 1: BACKGROUND MATERIAL
	Introduction
	Thermodynamic and kinetic stability of proteins
	Relevant forces for proteins
	Reaction rate theory
	Arrhenius law
	Transition state theory
	Kramer's theory

	Projection of biopolymer energy landscape onto lower dimension
	One-dimensional analysis
	Two-dimensional analysis

	Role of temperature in the mechanical properties of proteins
	Semi-realistic modeling
	Polymer chain architecture
	Coarse-grained bead and rod model

	Motivation
	Organization of dissertation

	CHAPTER 2: METHODS
	One-dimensional Langevin Dynamics
	Algorithm

	Two-dimensional Langevin Dynamics
	Transition analysis
	Algorithm

	Monte Carlo
	Pivot rotation
	Site rotation
	Metropolis algorithm
	Efficient sampling techniques


	CHAPTER 3: ESCAPE RATE ANALYSIS IN ONE DIMENSION
	Introduction
	Formal development
	Numerical Simulations
	Results and Conclusions

	CHAPTER 4: UNIVERSALITY IN BIASED ACTIVATED BARRIER CROSSING
	Introduction
	Scaling ansatz
	Numerical results
	Theoretical motivation
	Locally quadratic approximation
	Higher-order corrections
	Universality of the biased escape rate
	Data collapse of the rupture force

	Conclusion

	CHAPTER 5: ESCAPE RATE ANALYSIS IN TWO DIMENSIONS
	Introduction
	Formal Development
	Numerical Simulations
	Results
	Conclusions

	CHAPTER 6: MONTE CARLO SIMULATIONS REVEAL LIMITATIONS OF THE SINGLE-REACTION-COORDINATE PICTURE
	Introduction
	Theoretical model
	Numerical work
	Preliminary Results
	Conclusions

	CHAPTER 7: SUMMARY
	LIST OF REFERENCES
	VITA

