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ABSTRACT
BLAIR M. BANNERMAN: Monte Carlo Simulation of a Nonlinear Epidemic Model

An event-driven Monte Carlo method is used to simulate a simple, nonlinear

epidemic. This model illustrates how quickly and to what degree an epidemic spreads

through a population. Moreover, it yields information concerning the uncertainties of the

epidemic. Some basic assumptions involving the probabilistic dependence of the rate of

change of each class in the population must be determined. The rate of infection and the

rate of removal from infection are based on case studies found in literary sources. The

evolution of the populations is estimated on a time scale that is advanced based on the

waiting time. The waiting time, in turn, is estimated by the aforementioned rates and a

random number generated by a computer program. The simulation is repeated as many

times as there are individuals in the population, so that a mean value and the variance can

be determined. Two Fortran 77 computer programs are used to obtain the Monte Carlo

When the simulation results are compared to the data obtained from

literature, it is shown that all of the data points fell within the variance outlined by the

simulation. The simulation results compare well with those from the master equation.

information.
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Introduction

The spread of epidemics has been a concern throughout scientific history. With

current deadly diseases such as AIDS and the Ebola virus, techniques for determining

how a disease will be transmitted through a population are eagerly sought One such

This approach uses stochastic probability

modeling and random numbers to predict how a population will change with time once an

epidemic is introduced. This method is very simple, yet it can be applied to complex,

nonlinear equations, such as those involved in the spread of a disease. The Monte Carlo

method has additional benefits in that it can also calculate the variance associated with

technique is the Monte Carlo method.

the predicted mean solution. The variance of the solution is also related m the inherent

fluctuations within the system.

This research will examine how a Monte Carlo simulation compares tc ar. actual

case of an influenza epidenuc spreading though a small population.

Theory and Literature Review

Stochastic Method

The stochastic approach to solving complex problems is strongly based on

probability. This is in contrast to the deterministic method more familiar to most

individuals, which involves using equations and mathematical relationships to give an

exact solution. These deterministic equations are generally linear and can require very

complex equations. Stochastic modeling results in  a probability distribution of the

solution to a problem. This method has its advantages because it can be used to model

very complex, nonlinear situations.
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The probability theory associated with stochastic modeling concentrates on

determining how a situation changes with time. In this case, the situation is an epidemic

progressing though a population. There are three categories into which individuals in the

population can be classified; susceptibles (S), infected (I), and removed (R) classes. The

susceptibles category includes all members of the population who are not currently

infected but have the potential to become infected. The infected class is simply those in

the population who are infected with the disease. The removed class consists of those

who have had the disease but are no longer infected. This last class is for those who have

In general, a member of theeither recovered or have succumbed to the illness.

population progresses from the susceptibles to the infected to the removed class, hence

the SIR model.

S ̂  I R

Probability is used to estimate the size of these classes al later times in the

The probability of finding a number j of infected individuals in the

population at a time t is taken to be Pj(t). At a later time t + At, the number infected is

equal to another value n. The relationship between these is

Pn(t + At) = E[Pj(t)'Wj.n(At)]

where Wj,n(At) is the conditional probability that n infected individuals exist in the

population at time t + At, given that there were  j infected present at time t.

probability of Pj(t) and Wj,n(At) is summed over all values of j to find the total probability

This total probability can be used to obtain an average solution to how

the population will change as the epidemic progresses. A benefit of this method it that

the variance associated with this average value can also be predicted for the system.

simulation.

(Equation 1)

The

1
Pn at time t + At.

Stienfeld, Jeffery et al. p. 67-68
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Therefore, the internal fluctuations that correspond to the population can be observed. If

data appears outside of the variance boundaries, this implies that an external force, which

is not accounted for in Monte Carlo simulation, is present.

Monte Carlo Method

The Monte Carlo method is a stochastic model which applies random variables to

determine the probability of how a population will change with time. A random variable

is a value that is not known specifically; however, the range for the value is known.

These random variables and the total probability of a population described by equation 1

are used to simulate the progression of an epidemic.

This method relies on the initial concentrations and known characteristics of the

The Monte Carlosystem to simulate the solution to the system as time progresses,

method has several different approaclies, which are dependant on the system being

considered. The first classification for determining the most appropriate model is to

consider the elements in the system. If the elements of the population being considered

are equivalent and change independently of one another, the system is a model A. Model

A elements are not dependent on the size of the group being considered. In contrast,

model B looks at the change of each element within the system simultaneously as the

system changes with time. This model is best for populations in which the probability

that an element in the system will change is based on a continuously changing

population.

The next consideration when modeling a system is to determine the manner in

which time will be updated during the simulation. This is important because most Monte

3



Carlo simulations concentrate on the change of a population with time. The first method

is called time-driven because it regulates the sampling of simulation at certain

predetermined time intervals. The time intervals are very small so that it is unlikely that

more than one change if any will occur during this time period. An event-driven method

can also be used to update the time during a simulation. Using this method, a random

time interval is applied to the system during which an event or change is assumed to

occur. The nature of this change is determined by the probability of change at the end of

the random time interval.

Once the appropriate model has been chosen, one may begin the simulation of the

The simulation is dependent on certain probability factors or transition

intensities. These factors strongly influence whether or not a change will occur and are

dependent on the system.

For this example, a model B Monte Carlo simulation is used. The changes in the

population are dependant on the size of the three different epidemic categories. The rate

of change of the individual classes with time is

system.

(Equation 2)dS / dt = - r ● S ● I

(Equation 3)dI/dt = r S I-a l

(Equation 4)dR / dt = a ● 1

where r is the rate of infection and a is the rate of removal”. These rates are the transition

intensities associated with the population. An event-driven model is chosen to simulate

the epidemic.

Another method of simulating the epidemic is using the master equation. This is

a deterministic approach which is based on the same basic assumption as Monte Carlo.

“ Murray, J.D. p. 612
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The common point between these methods is the Markov assumption. This assumption

essentially states that the current change in a simulation is dependent upon current

conditions, not the changes that occurred prior to the current variation.

Gillespie Algorithm

The Gillespie algorithm is a numerical method that uses the Monte Carlo

stochastic model to simulate a changing population with time. There are two possible

events which can happen to an individual in the population: (1) the change from a

susceptible to an infected or (2) the change from the infected to the removed class. This

simulation is based on the event probability density function, P(t,i), which determines the

probability of one specific event i occurring during a specific time interval x. When this

probability density function described by Gillespie is applied to the first event of this

epidemic, equation 5 is the resulting probability formula.

P(x,i) = (r ‘ S ● I) ● [exp(-(r ● S ● I a ● I) ● x)]

This probability can be broken down into two parts; the probability of i occurring, P(i)

and the probability of an event occurring at x, P(x).

(Equation 5)

(Equation 6)P(x,i) = P(x)*P(i)

From the addition theorem of probability, one can determine P(x) as the sum of P(i, x) for

both events.

(Equation 7)P(x) = IP(x,i)

Therefore, P(i) can be expressed by substituting equation 7 into equation 6.

(Equation 8)P(i) = P(x,i)/IP(x,i)

5



One can also substitute equation 5 into equations  7 and 8 to relate the probabilities to the

epidemic class sizes and rates of infection and removal.

(Equation 9)P(t) = exp(-(r * S ● I + a' I) * t)

(Equation 10)P(i)= (r*S-I)/(r*S-I + a-I)

These last two equations are used to update the time by the time interval t and to

determine which of the two events, a susceptible becoming an infected or an infected

becoming a removed, will happen during this time interval. By solving equation 9 for x

and replacing P(x) with a random number, Rni, one obtains equation 11.

(Equation 11)x = [i/(r-S-I + a*I)]-ln(l/Rni)

In order to determine which event will occur during this time interval, one substitutes P(i)

with a second random number, Rn2, in equation 10 and compares this value to the right

side of the equation. If the random number is greater than this value, the second event

will take place. Otherwise, the first event will transpire.^

i=lifRn2<[(r-S-I)/(r-S-I + a-I)]

(Equation 12)i = 2ifRn2>[(r-S-I)/(r-S-I + a I)J

Therefore, the basic outline of the Gillespie algorithm is as follows. First, one

must obtain the initial sizes of categories, rates of change, and time over which the

simulation is to take place. Using this information about the population sizes and rates of

At this point,change, the probability density function is calculated for the first event.

the two random numbers, each between zero and one, are necessary to determine x and

which of the two events will transpire. The time must now be updated by x and the class

sizes adjusted according to which event took place. At this point, the time of the

simulation must be compared to the stopping time of the simulation. If the time of the

^ Stienfeld, Jeffery et al. 98
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simulation is less than this stopping time, the probability density function is recalculated

with the updated category sizes and the process continues. Otherwise, the simulation

ends.'* This algorithm is presented in a flowchart later in the report. The entire process

described above is carried out from a starting time of zero to the stopping time for as

many individuals as there are in the population so that an accurate probability may be

obtained for the solution.

Design Plan

Software

In order to model this simulation quickly, a computer program was designed to

follow the Gillespie algorithm described above. The Fortran 77 computer language was

used to write the program. This language was appropriate because it contained a random

number generation function and it could handle a large number of files. The program is

written so that it will perform a simulation of the epidemic from time zero to the specified

stopping time and store the generated time, number of susceptibles, and number of

infected individuals into three separate matrices. Once these results have been entered

into the three matrices, the same program begins to sort the class sizes by the time at

which they occurred in the individual simulations. The total time is divided up into 190

The program goes through the time matrix sorting the time and the

corresponding classes into the appropriate time files. This process is repeated within the

program for as many times as there are individuals in the total population. A second

program reads through these time files individually and determines the average and the

variance associated with the values in each file. These averages and variances are stored

increments.

Stienfeld, Jeffery et al. p. 99
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in separate files which can be opened once all of the files have been averaged and the

program is complete. The average and variance values are transferred to MS Excel®

where they can be plotted.

Since such a large amount of information is involved in this process, it was

necessary to use the Mississippi Center for Supercomputing Research (MCSR) so that the

program could be run in a short amount of time. Fortunately, MCSR has a Fortran 77

compiler in one of its machines known as sweetgum.

Base Case

This simulation is based on an influenza epidemic that took place at an English

boarding school in 1978. Detailed statistics of how the epidemic spread are outlined in

an study in British Medical Journal? The influenza epidemic follows the forward

progression of S to I to R, which is necessary for this simulation. Also, the population is

a constant number and the size of each population is documented as the disease

progressed with time. The important information from this article is listed in Table 1

below, and Figure 1 on the following page shows how the three epidemic classes change

with time.

Table 1. Influenza information necessary for proper
Monte Carlo simulation.

 Total Population
Initial Number of Susceptibles, So

Initial Number of Infected, lo
Initial Number of Removed, Ro

763
762
1
0

Rate of Infection, r 0.00218/day
0.44036 / day

15 days

Rate of removal, a
Total Time

British Medical Journal p. 587

8



800

700

600

500
0)
_N
V>

400w
u>
(0

O
300

200

100

0

1  2 3  4 5 6 7 8 9 10 11 12 13

Time (Days)
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Flowchart

The following flowchart shows the Gillespie algorithm as applied to the SIR

epidemic model.

OBTAIN

Initial Size of S, I, and R categories
Ending Time

Rate of Infection and Removal

Calculate probability density of the first

change, RI, and the second change, RR,

and total probability, Pjotai

Determine Waiting Time using a
Random Number, Rni, and

Increase Time. T

Calculate a Second Random

Number, Rn^

I^R S^I

S^S-1
T-^T + 1R->R + 1

Yes NoIs
End

Simulation T < Tpinal ?
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Results and Discussion

Figures 2, 3, and 4 on pages 13, 14, and 15 demonstrate graphically the changes

in the susceptibles, infected, and removed classes respectively as determined by the

Monte Carlo computer simulation. In order to illustrate the accuracy of the simulation,

the actual population sizes as they varied with time are plotted on the same graph as the

Monte Carlo results. These graphs show that the actual data fall within the upper and

lower variance determined by the simulation in all cases. This implies that only internal

variations are present in this epidemic.

The overall trend of the epidemic is for there to be a small period of stagnation

where all the classes remain about the same. After this point, the susceptibles class

decreases rapidly and the infected class increases in size. The infected class reaches a

peak, after w'hich more individuals are entering the removed class than the infected class.

Very soon after this peak point, the susceptibles class nears its final value. The infected

and removed classes turn toward their final values as v/ell shortly after the susceptibles

class.

There are several interesting features in the variance curves, the first of which is

the point in the upper variance of the susceptibles category where the initial stagnation

time is extended by approximately one day. This extension is present in the infected and

removed classes lower variances as well. The susceptibles class lower variance begins to

turn toward its final value at least a half day before the mean value. The infected upper

V2iriance has two peaks. While the second peak is smaller than the frst, it is still

significant. This second peak corresponds to the time at which the susceptibles lower

variance curve begins its early stagnation toward its final value. The susceptibles curve

11



decreases rapidly over a period of five days, while the removed class curve increases

rapidly over a period of eight days. This is due to the second event of an individual

entering the removed class from the infected class becoming the dominant change later in

the epidemic time frame.

When the Monte Carlo approach is compared to the results of the master equation,

the results are very similar. A graduate student, Sankar Bokka, who was doing similar

research at the time of this work, compiled the master equation results. Both methods

illustrate the double peak in the infected population and the period of stagnation in the

susceptibles class as shown in figures 5 and 6 on pages 16 and 17. The master equation

has a much larger variance associated with the information collected for the simulation

than the Monte Carlo method. There is a small deviation between the times at which the

first upper variance peak occurs. Also the second peak is more apparent in the master

Overall, the Monte Carlo and master equation results compare quiteequation data.

favorably.
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Conclusion

The Monte Carlo modeling proves to be quite accurate when compared to the

actual data. The fluctuations of the data are all contained within the upper and lower

variance of the various class sizes. This simulation demonstrates the effectiveness of

modeling epidemics using the Monte Carlo method. Given the results of this simple case,

further research may investigate the application of the Monte Carlo method to more

complex diseases. This information could aid in the study of diseases and may also be

useful in determining the severity of an epidemic.

When the Monte Carlo results are side by side on the same graph as the master

equation results, many of the same characteristics are present in both methods. This is to

be expected since the models stem from the same assumptions. The main difference

between these methods is their application,

differential equations simultaneously, while the Monte Carlo method uses random

numbers and computer programs. The master equation can be solved quickly, but has a

greater variance than the Monte Carlo method.

The master equation involves solving

18
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Appendix A, Computer programs

The following 11 pages contain the two Fortran 77 computer programs necessary for the

Monte Carlo simulation of an epidemic model.
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PROGRAM SIR
*********** 4:* ******* ******************************5f:****5(:*H:****!f:*******5i:

*
* THIS PROGRAM PERFORMS A MONTE CARLO SIMULATION BASED

ON USER ENTERED INFORMATION AND AN EVENT DRIVEN MODEL.*
*

********* ;(::^ :4c:}-;}: ;(;*:(::(::(: :(:*********************************************

* DEFINE VARIABLES
*
* - CONTROL VARIABLE FOR RUNNING PROGRAM

- DETERMINES WHICH EVENT IN THE SYSTEM OCCURS
determines when to STOP THE PROGRAM

- NUMBER OF TIMES THE SIMULATION IS REPEATED
BASED ON THE NUMBER OF INDIVIUALS IN THE
POPULATION

- MAXIMUM DATA POINTS RECORDABLE DURING ONE
SIMULATION

- CURRENT SET OF DATA WITHIN A SIMULTAION BEING
SORTED INTO TIME FILES

- TIME FILE UNIT NUMBER TO WHICH DATA IS BEING
ENTERED

- INDEX VARIABLE USED TO CLOSE SORTED FILE
- RATE CONSTANTOF REMOVAL
- RATE CONSTANT OF INFECTION
- RATIO OF REMOVAL RATE CONSTANT TO INFECTED
RATE CONSTANT

- POPULATION SIZE
- INITIAL TIME OF PROGRAM
- STOPPING TIME OF PROGRAM
- NUMBER OF CURRENT SUSCEPTIBLES IN POPULATION
- ESrn iAL NUMBER OF SUSCEPTIBLES IN THE
POPULATION

- INITIAL NUMBER OF INFECTED CLASS IN POPULATION
- SIZE OF CURRENT INFECTED CLASS IN POPULATION
- NUMBER OF CURRENT REMOVED IN THE POPULATION
- CONTROL VARIABLE
- RANDOM NUMBER USED TO UPDATE TIME INDEX
- RANDOM NUMBER USED TO DECIDE WHICH CHANGE
OCCURS

- PROBABILITY OF A SUSCEPTIBLE BECOMING AN
INFECTED

- PROBABILITY OF AN INFECTED BECOMING A
REMOVED

- TOTAL PROBABILITY OF AN EVENT OCCURING
- NUMBER USED TO CALCULATE RANDOM NUMBERS
- NUMBER USED BY PROGRAM TO CALCULATE SECOND

NST
COUNT
NSTOP

*
*
* X
*
*

M
*
* MNEW
*
* NT
*
* K
* a
* r
*

Density
*
* N
* T
* T2
* S
* SO
*
* 10
* I
* RE
* EPS
* R1
* R2
*
* A1
*
* A2
*
* AO
* SEED

SEED2*

21



* RANDOM NUMBER
- TIME INCREMENT BETWEEN FILES
- CURRENT TIME DURE^G THE SORTING OF GATHERED
DATA INTO THE FILES

- MATRIX TO HOLD TIME DATA GATHERED
DURING ONE SIMULATION

- MATRDC TO HOLD SUSCEPTIBLES DATA
GATHERED DURING ONE SIMULATION

- MATRIX TO HOLD INFECTED DATA GATHERED
DURING ONE SIMULATION

*  TDIV
*  TNEW
*

*  TIME(1,1450)
*

*  SUS(1,1450)
*

*  INF( 1,1450)
*
*

INTEGER NST, COUNT, NSTOP, X, M, MNEW, NT, K

REAL a, r. Density, N, T, T2, S, SO, 10,1, RE, EPS, Rl,
REAL R2, A1, A2, AO, SEED, SEED2, TDIV, TNEW
REAL TIME(1,1450), SUS(1,1450), INF(I,I450)

*
* OPEN A SET OF TIME FILES TO HOLD DATA GENERATED BY THE
*  SIMULATION
*

OPEN (UNIT= 12,FILE='/tmp/siraew/TIME01 ’,STATUS='NEW')
OPEN (UNIT= 13,FILE=7tmp/simew/TIME02',STATUS=’NEW')
OPEN (UNIT= 14,FILE=7tmp/simew/TIME03',STATUS='NEW’)
OPEN (UNIT= 15,FILE=7tmp/simew/TIME04',STATUS='NEW')

*

*  THE MAXIMUM NUMBER OF FILES WHICH COULD BE OPENED IS 190.
THESE FH.ES ARE OPENED IN THE TEMPERARY SECTION OF

*  S WEETGUM TO ALLOW FOR THEIR LARGE SIZE

*

*

OPEN (UNIT= 199,FILE=7tmp/simew/TIM 188',STATUS=’NEW')
OPEN (UNIT=200,FILE=7tmp/simew/TIM189',STATUS=’NEW')
OPEN (UNIT=201 ,FILE=7tmp/simew/TIM 190',STATUS='NEW)

*

* GET NECESSARY INFORMATION ABOUT THE EPIDEMIC FROM THE USER
*

5  PRINT*, "r= ? Density= ? N= ? I=?
READ*, r. Density, N, I

I

*

*  FOR THIS EPIDEMIC THE CONDITIONS ARE AS FOLLOWS
*

r= .00218

Density = 202
N = 763
1= 1

*

22



a = r * Density

*  INITIALIZE CATEGORY SIZES
*

10 = I
SO = N - I
S = N-I
RE = 0

*
* SET CONTROL VARIABLE WITHIN PROGRAM TO STOP PROGRAM IF
*  ERROR OCCURS
*

EPS = (1/(10*10*10*10*10))
*

*  PRINT VALUES ENTERED BY THE USER TO CONFIRM
*

PRINT*, "EPS = ", EPS
PRINT 101, r,a,S,I
FORMAT (F9.6, IX, F9.7, IX, F10.4, IX, F9.4)101

*
* GET NECESSARY TIME INFORMATION FROM THE USER
*

PRINT*, "INITAL TIME, To? STOPPING TIME, T2?
READ*, T,T2

*
* PRINT DATA TO CONFIRM
*

PRINT*, "T= ",T," T2= ",T2
*

*  FOR THIS EPIDEMIC THE TIME DATA IS AS FOLLOWS
*

T = 0.0
T2= 15

*

*  OBTAIN A NUMBER TO CALCUALTED THE RANDOM NUMBERS NEEDED
*  FOR THIS PROGRAM
*

PRINT*, "ENTER A 6 DIGIT, ODD INTEGER
READ*, SEED

*

*  ALLOW THE USER TO RUN THE PROGRAM IF ENTERED DATA IS AS
THEY WISH*

*

PRINT*, "EXECUTE PROGRAM? (Y=1,N=0)
READ*, NST

*

23



*
IF THE USER DOES NOT WISH TO EXECUTE THE PROGRAM, ALLOW
THEM TO END THE PROGRAM*

*

IF (NST .EQ. 0) GO TO 50
*

* BEGIN SIMULATION OF THE EPIDEMIC FOR THE NUMBER OF
INDIVIDUALS IN THE POPULATION*

*

X= 1

IF (X .LE. 763) THEN
M= I
SEED = SEED + 1372

60

*

* ENTER INITIAL DATA INTO THE FIRST ROW OF EACH MATRIX
*

1= 1.0

INF(X,M) = I
S = 762.0

SUS(X,M) = S
T = 0.0

TIME(X,M) = T
^}C

*  CALCULATE THE RATE ASSOCIATED WITH EACH EVENT OCCURING
*

10 A1 = r * S * I
A2 = a * 1

AO = (r * S * I) + (a * I)
*

*
IF AN ERROR HAS OCCURED ALLOW THE PROGRMA TO QUIT

*

IF (AO .LT. EPS) GO TO 50
*

* determine the random numbers FOR THE PROGRAM
*

R1 = RAN(SEED)
SEED2 = SEED + 202

R2 = RAN(SEED2)
*

*
UPDATE THE TIME BY AN AMOUNT BASED ON THE FIRST RANDOM
NUMBER AND THE TOTAL PROBABILITY*

*

21 T = T + (LOG(1./R1))/AO
*

* CONTROL VARIABLE TO END PROGRAM IF TIME HAS INCREASED
BEYOND STOPPING TIME*

*
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IF (T .LT. T2) THEN
GO TO 25

END IF
*

*  USE THE SECOND RANDOM NUMBER AND THE TOTAL PROBABILITY
*  TO DETERMINE WHICH EVENT OCCURS
*

25 PRINT*, "R2 =". R2, "T= ", T
IF(R2 .GT. (A I/AO)) THEN
COUNT = 2

ELSE
COUNT = 1

END IF
*

*  IF THE FIRST EVENT OCCURS, DECREASE THE SUSCEPTIBLE SIZE AND
*  INCREASE THE INFECTED CLASS. IF THE SECOND OCCURS, DECREASE

THE INFEC:TED category and increase the removed CLASS*
*

IF (COUNT .EQ. 1) THEN
S = S - 1
1 = 1+1
PRINT*, "COUNTIS = ", S, "C0UNT1I= ", I
GO TO 40

END IF

IF (COUNT EQ. 2) THEN
1 = 1-1
RE = RE + 1
PRINT*, "COUNT2S = ", S, "COUNT2I = ", I
GO TO 40

END IF
*

*  SEND THE DATA OBTAINED FOR THIS TIME VALUE TO THE
*  APPROPRIATE MATRIX. THE PROCESS CONTINUES UNTIL THE

STOPPING TIME IS REACHED
*

40 IF (T .LE. T2) THEN
M = M+ 1

TIME(1,M) = T
SUS(1,M) = S
INF(1,M) = I
PRINT*, "T=", T, "S=", S, "I=", I, "X = ",X,"M= ",M
GO TO 10

ELSE
X = X+ 1
GO TO 65

END IF
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END IF
*

* THE USER IS ALLOWED TO STOP THE PROGRAM IF THEY ARE
SATISFIED WITH THE DATA OBTAINED*

*

50 PRINT*, "STOP? (YES=1, NO=0)
READ*, NSTOP

*

* IF THE USER WISHES TO RERUN THE DATA, THEY MAY DO SO
THROUGH THE IF - STATEMENT BELOW*

*

IF (NSTOP EQ. 0) THEN
GO TO 5

ELSE
GO TO 90

END IF

* NOW THE RESULTS FROM ALL OF THE TOTAL NUMBER OF
SIMULATIONS

IS SORTED INTO FILES BASED ON THE TIME TO WHICH THE
SUSCEPTIBLE AND INFECTED CLASS DATA CORRESPOND

*

*

65 TDIV = T2/190

THIS STARTS A LOOP WHICH WILL READ THROUGH EACH OF THE
COLUMNS OF THE MATRIX*

*

NT = 12
TNEW = TDIV
MNEW = 1

*

THIS BEGINS A LOOP WHICH WILL READ THROUGH EACH ROW IN ONE
COLUMN OF THE MATRIX*

*

85 IF (MNEW .LE. 1450) THEN
IF (TIME(T,MNEW) .GE. T2) THEN
GO TO 60

END IF
*

*
ENTER TIME, SUSCEPTIBLE AND INFECT VALUE INTO CURRENT FILE OR
move to next file if TIME VALUE IS GREATER THAN THE FILE LIMIT*

*

IF (TIME( 1 ,MNEW) .LE. TNEW) THEN
WRITE (NT,*) TIME(1,MNEW), SUS(1,MNEW), INF(1,MNEW)
MNEW = MNEW+1
GO TO 85
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END IF
*

IF (TIME( 1 ,MNEW) .GT. TNEW) THEN
TNEW = TNEW + TDIV
NT = NT + 1

WRITE (NT,*) TIME(I,MNEW), SUS(1,MNEW), INF(1,MNEW)
MNEW = MNEW + 1
GO TO 85

END IF
ELSE
GO TO 60

END IF
*

ELSE
GO TO 90

END IF
*

*  CLOSE FILES CONTAINED SORTED DATA FROM SMUTLATION
*

90 PRINT*, "GOOD"
D0 95 K= 12,201

CLOSE! UN IT=K,STATUS=’KEEP')
95 CONTINUE

STOP
END
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PROGRAM AVERAGE
^  :1c ^ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ^ ̂ ̂ ̂ ̂ ̂ ̂ ̂ jj, j(.  ^^ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ jj, jj, jj. jj. jj. jj. jj. jj. jj. jj. jj. ̂  ̂ ̂ ^ ̂

*
THIS PROGRAM WILL READ THE DATA IN THE SORTED FILES INTO AN
ARRAY AND THEN FIND THE AVERAGE AND VARIANCE OF THAT
ARRAY. THE AVERAGE AND VARIANCE WILL THEN BE READ INTO
ANOTHER FILE, SO THAT IT MAY BE TRANSFERRED TO A GRAPHING
PROGRAM LIKE MS EXCEL

*

*

*

*

*

*

DEFINE VARIABLES
*

* AT - INDEX VARIABLE FOR OPENING SORTED DATA FILES
- THE NUMBER OF SET OF VALUES IN THE FILE
- INDEX VARIABLE FOR NAMES OF SORTED DATA FILES
- SUM OF TIME VALUES WITHIN A DATA FILE, USED
TO DETERMINE AVERAGE TIME VALUE

- SUM OF SUSCEPTIBLE VALUES WITHIN A FILE, USED
TO DETERMINE AVERAGE SUSCEPTIBLE VALUE

- SUM OF INFECTED VALUES WITHIN A FILE, USED
TO DETERMINE AVERAGE INFECTED VALUE

- AVERAGE OF TIME ELEMENTS IN A SINGLE FILE
- AVERAGE OF SUSCEPTIBLE POPULATION IN A SINGLE

FILE
- AVERAGE OF INFECTED POPULATION IN A SINGLE FILE
- TIME OF A SINGLE SAMPLING DURING A SIMULATION
- SUSCEPTIBLES POPULATION AT TIME
- INFECTED POPULATION AT TIME
- USED TO CALCULATE SQUARE OF DEVIATION OF
SUSCEPTIBLE VALUE FROM AVERAGE

- USED TO CALCULATE SQUARE OF DEVIATION OF
INFECTED VALUE FROM AVERAGE

- SUM OF SQX WITHIN A FILE, USED TO DETERMINE
VARIANCE SUSCEPTIBLE VALUE

- SUM OF SQY WITHIN A FILE, USED TO DETERMINE
VARIANCE INFECTED VALUE

- AVERAGE VALUE OF SUSCEPTIBLES POPULATION PLUS
THE VARIANCE OF THIS POPULATION

- AVERAGE VALUE OF SUSCEPTIBLES POPULATION MINUS
THE VARIANCE OF THIS POPULATION

- AVERAGE VALUE OF INFECTED POPULATION PLUS THE
VARIANCE OF THIS POPULATION

- AVERAGE VALUE OF INFECTED POPULATION MINUS THE
VARIANCE OF THIS POPULATION

- ARRAY CONTAINING NAMES OF SORTED FILES

* COUNT
* K
* SUM
*

SUMX
*
* SUMY
*

AVET
AVEX*

*

AVEY
TIME*

X
* Y
*

SQX
*

*
SQY

*

* SUMX2
*

SUMY2
*

* AVEUX
*

AVELX
*

* AVEUY
*

* AVELY
*

*
J(190)
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*-4: 4: ** ^ +4: *♦***♦**♦ 4:4:4: ♦*******!(: :f: ***♦*♦♦♦♦*♦*♦ ♦♦♦***♦♦**** *

4:

INTEGER
REAL

AT, COUNT, K
SUM, SUMX, SUMY, AVET, AVEX, AVEY, TIME, X, Y,

SQX, SQY, SUMX2. SUMY2, AVEUX, AVELX, AVEUY,
AVELY

CHARACTER*6 J(190)
4:

4: * * * 4: * * * * 4: 4: 4: 4= 4: 4: 4: 4: 4= * 4= * 4: 4= 4:4: 4:4:4: ♦ 4:4:4:4:4:4:4= 4:4: ♦ 4:4:  ♦ 4:4:5f! 4:4c 4:4:4:4:4t 4= * 4:4= 4= 4:4:4:4:4t 4:4:4t 4:4:4:4:4:

4=

4: OPEN THE 190 SORTED FILES FOR ANALYSIS IN THIS PROGRAM
*

OPEN (UNIT= 12,FILE='tmp/simew/TIMEOr,STATUS='OLD')
OPEN (UNIT= 13 .FILE='tmp/simew/TIME02',STATUS='OLD')
OPEN (IJNIT= 14,FILE='tmp/sirnew/TIME03',STATUS='OLD')

OPEN (UNIT= 199.FILE='tmp/simevv/riM 188',STATUS='OLD')
OPEN (UNIT=200.FILE='tmp/simew/TIMI89',STATUS='OLD')
OPEN (UNIT=20I.FILE='tmp/siraew/TIMl90',STATUS='OLD')

4c

4c

4c OPEN NEW FILES TO HOLD THE AVERAGE AND VARIANCE VALUES OF
THE POPULATIONS IN EACH OF THE 190 TIME DTVISTIONS4c

4c

OPEN (UNIT=312,FILE='AVET',STATUS='NEW)
OPEN (UNIT-313,FILE='AVETU'.STATUS='NEW)
OPEN (UNIT=314,FILE='AVETL',STATUS='NEW)
OPEN (UNIT=315,FILE='AVEX',STATUS='NEW)
OPEN fUNIT=316,FILE=’AVEXU’,STATUS='NEW)
OPEN (UNIT=31 7,FILE='AVEXL',STATUS='NEW)
OPEN (UNIT=31 8,FILE=’AVEY',STATUS='NEW)
OPEN (UNIT=3 19,FILE='AVEYU',STATUS=’NEW)
OPEN (UNIT=320,FILE=’AVEYL',STATUS='NEW)

4t

4c 4= 4:4c 4c 4= 4c 4c 4c 4:4= 4c 4:4:4c 4c 4c 4c 4c 4c 4c 4c 4:4:4c 4c 4:4:4:4= 4= 4:4= 4:4:4:4c 4c 4c 4c 4c 4= 4:4:4= 4c 4= 4:4c 4:4c 4:4= 4! 4! 4:4:4c 4c 4:4:4c 4c 4c 4= 4:4:4« 4c 4! 4:4=

4c

4c DEFINE THE ARRAY WHICH WILL HOLD THE NAMES OF THE SORTED
FILES4c

4c

AT= 12
J( 1) = 'tmp/simew/TIMEOr
J(2) = ’tmp/simew/TIME02'
J(3) = 'tmp/sirnew/TIME03’

4c

J( 188) = 'tmp/simew/TIM188'
J( 189) = ’tmp/simew/TIM189'
J( 190) = 'tmp/sirnew/TIM190'
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*

*
THIS STARTS A LOOP WHICH WILL DETERMINE THE AVERAGE AND
VARIANCE WITHIN EACH OF THE FILES

*

*

5 SUM = 0
COUNT = 0
SUMX = 0
SUMY=0

*

*
AVERAGE THE TIME, SUSCEPTIBLES, AND INFECTED VALUES WITHIN
ONE TIME INTERVAL FILE*

*

IF(AT.LE. 201) THEN
READ (AT,*,END=15) TIME, X, Y
SUM = SUM + TIME
COUNT = COUNT + 1
SUMX = SUMX+ X
SUMY=SUMY+Y
GOTO 10

AVET = SUM / REAL(COUNT)
AVEX = SUMX / REAL(COUNT)
AVEY = SUMY / REAL(COUNT)

10

15

CLOSE (UNIT=AT,STATUS='KEEP')
K = AT - 11

*

OPEN (LiNn=AT,FILE=J(K),STATUS='OLD')
GO TO 30

5F

* FIND THE VARIANCE OF THE SUSCEPTIBLES AND INFECTED
POPULATION IN ONE TIME INTERVAL FILE♦

*

30 SUMX2 = 0
SUMY2 = 0

READ (AT,*,END=45) TIME, X, Y
SQX = (X - AVEX) * (X - AVEX)
SUMX2 = SQRT(SQX) + SUMX2
SQY = (Y - AVEY) * (Y - AVEY)

SUMY2 = SQRT(SQY) + SUMY2
GO TO 40

AVEUX = (SUMX2 / REAL(COUNT)) + AVEX

AVELX = AVEX - (SUMX2 / REAL(COUNT))
AVEUY = (SUMY2 / REAL(COUNT)) + AVEY

AVELY = AVEY - (SUMY2 / REAL(COUNT))

40

45

*

CLOSE (UNIT=AT,STATUS='KEEF)
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*

*
WRITE THESE AVERAGES AND VARIANCES TO THEIR RESPECTIVE
FILES*

WRITE (312.*) AVET
WRITE (313,*) AVEX
WRITE (314,*) AVEUX
WRITE (315,*) AVELX
WRITE (316,*) AVEY
WRITE (317,*) AVELY
WRITE (318.*) AVEUY
AT = AT + 1
GO TO 5

END IF
*

Cl.OSE THESE FILES SO THAT THEY MAY BE OPENED LATER AND
GRAPHED IN MS EXCEL®*

*

CLOSE(UNIT=312,STATUS='KEEP')
CLOS E( UN IT=313 ,STATUS='KEEP')
Cl,OSE( UNIT=314,ST ATUS='KEEP')
CLOSE(UNIT=315,STATUS='KEEP')
CLOSE(UNIT=316,STATUS='KEEP')
CLOSE(UNIT=317,STATUS='KEEP')
CLOSE(UNIT=318,STATUS='KEEP')

if-

STOP
END
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