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                                                        ABSTRACT 

A thesis on developing statistical models that will aid in predicting signal detection at an 

infrasound sensor given a noise model for the sensor. The thesis aims first to provide a means to 

sample from a set of atmospheric profiles effectively using a statistical model, so we can have a 

smaller sample space to generate transmission loss values, saving time for running propagation 

models. And secondly, it aims to provide a formalism for a signal detection criterion using signal-

to-noise ratio. The statistical model is developed using Empirical Orthogonal Function Analysis 

also known as Principal Component Analysis, and Inverse Transform Sampling. Further, we find 

the optimal sample size using a Cauchy criterion that indicates sampling optimally, which is the 

sample size the probability distribution converges. A joint probability density function is used to 

get the expectation value for the signal detection criterion and a measure of confidence in the 

expectation value. This thesis also presents probability distributions for transmission loss at 

different times and locations, majorly periods with a good ground duct and periods with a very bad 

ground duct. The probability distributions are produced using the Kernel Density Estimation 

approach. The probability distributions reveal the nature of the available ducts by showing high 

probability or low probability for a range of transmission loss values. Also, the atmospheric 

profiles used to generate the transmission loss for which we get probability distributions are those 

sampled from a large set of atmospheric profiles using the statistical model. This thesis has 

application in estimating what a source signal should be so detection can be made. It will be applied 

in the development of early warning systems for tornadoes. 
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CHAPTER 1 

 INTRODUCTION 

 

Signal detection in infrasound involves detecting infrasonic signals at an infrasound sensor. 

Signal to noise ratio (SNR) is a concept used in engineering, finance, science, art. As the name 

implies, it is the ratio of signal-to-noise. The signal-and-noise could have several meanings 

depending on the field. For instance, in engineering and science, the signal and noise are the power 

of a signal and the power of noise, respectively. In user experience (UX), the signal is information 

on the user interface relevant to the user's current needs, and noise is otherwise. For our case in 

this thesis, signal refers to infrasound, and noise here is noise around an infrasound sensor. This 

thesis tries to provide a methodology for predicting if signal will be detected at a particular time 

by a sensor, if we have a noise model for such sensor.  

 In this thesis, we use a noise model developed by Max Willis [1]. The noise model is a 

probability distribution of rms pressure in dB. The noise here is a rms pressure as a function of 

frequency. The rms pressure was computed in the frequency band 0.4 Hz-4.0 Hz. 

           Signal would have undergone attenuation while propagating for it to be detected at some 

distance. This is where transmission loss, for which we developed probability distribution, comes 

up in this thesis. Transmission loss gives the factor by which the signal is attenuated in dB. Signal 

propagates through the atmosphere. The atmospheric state is a major determinant for infrasound 
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detection, the magnitude of transmission loss is dependent on it. Also, the atmospheric state, 

especially winds, which is a major factor in infrasound propagation, can be very dynamic; hence 

signal that would get to the sensor is also random – we can’t always predict it. 

The winds are one of the reasons why infrasonic signals can be detected at long distances 

from their sources. Also, the fact that the attenuation of infrasound is small allows them to be 

detected at long distances. Although for this work, we will be looking at infrasound propagation 

in regional distances, that is, distances less than 100km. In these distances, the winds alongside 

the temperature are primary propagation agents. The winds are not just a aid to the temperature in 

infrasound propagation but a major factor in infrasound propagation. They can generate infrasonic 

ducts that temperature cannot generate. This is illustrated in Figure 1.1. 

 

 

 

 

 

 

Figure 1.1:   An atmosphere that cannot duct infrasound (R. Waxler, 2016, p. 3) 

 

In Figure 1.1, we can see that the sound speed, a function of temperature, is lower at the stratopause 

than at the ground. This is not suitable for ducting infrasound, and signal will be trapped in the 
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atmosphere. This is usually the case at extreme latitudes, except at very cold times of the year. The 

wind hence become pivotal for infrasound propagation. For this work, we will deal with only the 

troposphere. From Figure 1.1, we can see that sound speed in the troposphere is lower than at the 

ground, which calls for wind for ducting. The wind that ducts in the troposphere is the jet stream; 

this is discussed in more detail in the next chapter. 

This thesis builds models for the winds 12 years backward starting from 2021A.D. We 

look at the second week in January, April, August, and October. These months represent the four 

seasons of the year: winter, spring, summer, and fall. Also, we look at the hours, 05:00, 11:00, 

17:00, 23:00 UTC for each day of the week considered. 
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     CHAPTER 2 

INFRASOUND PROPAGATION 

 

Infrasound comes to play in several points of life, from natural occurrences - animal 

communication, thunderstorm, earthquake, etc. - to man-made activities like industrialization, 

wind turbines and even musical instruments (bass instruments), nuclear weapons, etc. Infrasound, 

often called low-frequency sound, is usually described as sound below the human hearing 

threshold, which is sound below 20 Hz, the lowest frequency that humans can typically hear. The 

range of human hearing extends up to about 20,000 Hz. 

 

Figure 2.1:   Decomposition of sound fields into frequency bands (R. Waxler, 2016, p. 1) 

Figure 2.1 gives the characterization of sound that falls into the low-frequency audible range on a 

logarithmic scale into several frequency bands. There is a region in which sound propagates as 

acousto-buoyancy waves in which a distinction cannot be made between acoustic and buoyant 
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waves. They are labeled as deep infrasonic and can originate from meteors exploding in the middle 

atmosphere. This thesis will majorly deal with the mid-infrasonic band, which is about 0.1 Hz to 

a few Hz.     

2.1   The Atmosphere: A Medium for Propagation 

 

Propagation of infrasound occurs in the lower thermosphere downwards. Going 

downwards, we have the thermosphere, the mesopause (top of the mesosphere), the mesosphere, 

the stratopause (top of the stratosphere), the stratosphere, the tropopause (top of the troposphere), 

the troposphere. It is good to know that the atmosphere stratifies reasonably with temperature, as 

seen in Figure 2.2, which is why it serves as a medium of propagation. At the atmospheric 

boundary layer, say 1km, diurnal variation leads to complex behaviors in this region. However, 

above this region, things are quite stable as the temperature decreases with altitude till the 

tropopause, as seen in Figure 2.2. From the tropopause, the temperature starts to increase again till  

 

 

 

 

 

 

 

Figure 2.2:   Variation of the atmosphere with altitude. The atmosphere is shown with 

temperature varying with altitude on the left, wind speed varying with altitude during 

Spring/Summer and Autumn/winter respectively in the center and right position (R. Waxler, 

2016, p. 2) 
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the stratopause. It decreases till the mesopause and then increases through the thermosphere. For 

this thesis, we will only be concerned about the troposphere, as seen in Figure 2.3, and regional 

distances. 

 

Figure 2.3:   Temperature profile for the troposphere on January 11th, 2011. 

 

2.2   The Atmospheric State 

 

As mentioned in the first chapter, infrasound propagation is aided by temperature and wind 

in the atmosphere. Because the vertical changes in the atmosphere are on a greater scale than 

horizontal changes, the atmosphere is often taken to be vertically stratified. A hydrostatic equation 

of state can be represented for this vertical stratification under adiabatic conditions as  

P0(z) =  P0(0)e
−

g

R
∫

1

T0(z,)

z
0

dz′

        (2.1) 

using the ideal gas law P0= ρ0RT0 
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The mean temperature (T0), entropy (S0), pressure (P0), density (ρ0) depend on z as we 

expect vertical stratification to imply. Also, the mean entropy and density can be gotten from 

thermodynamic relations. The mean flow (wind) in the considered stratification, is give as  

V0 =  (
V0,H

0
)  = (

u
v
0

)                    (2.2) 

where u and v are the standard atmospheric science notations for zonal and meridional wind speeds 

and are shown in Fig 2.4.   

The winds are on a large scale and can be taken to have an influence that can make us treat 

them in a locally stratified approximation. Speaking of locally stratified approximation, small 

changes in the atmosphere horizontally can be accounted for by allowing the temperature and the 

wind to depend on location. 

 

Figure 2.4:   Wind speed profile showing the zonal and meridional wind speeds 
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2.3    Infrasonic Ducts 

 

Sound is usually ducted by temperature and wind because sound is refracted by positive 

temperature gradients downwards and upwards by negative temperature gradients. This can be 

explained by Snell's law that signals refracts from regions of higher sound speed (v1) that is 

regions with lower refractive index (n1) to regions of lower sound speed (v2) which is regions of 

higher refractive index (n2). And since sound speed, c, for our purposes, has a relationship with 

temperature (T), it obeys the relation 

c = √γRT          (2.3) 

where γ is the adiabatic index, R is the molar gas constant and T is the temperature. 

This same manner applies for wind in which positive wind shear refracts downwards and 

negative upwards. As shown in Figure 1.1, the temperature at the ground is higher than that at the 

troposphere; hence according to Snell's law, sound will not be ducted (refracted) downwards - 

since as discussed above sound refracts downwards from regions of higher sound speed to regions 

of lower sound speed. Hence for sound to be ducted, the influence of wind is of great advantage. 

This is where the tropospheric jet comes in to help with ducting. Since for there to be downward 

refraction, there is a need for regions above with higher sound speed than the ones below according 

to snell's law. It is also good to know that sound is ducted downwind and refracted away from the 

earth upwind. 
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2.3.1   Effective Sound Speed 

 

For our purposes in this thesis, we will not work directly with the atmospheric 

specifications given above, zonal and meridional wind speed, but with effective sound speed (ceff).  

The effective sound speed is the sum of the sound speed (c) and the horizontal component of wind 

speed (u0) in the direction of propagation, and is given by 

ceff(z) = c(z) +  u0(z)        (2.4) 

It is good to note that the effective sound speed is only valid for low grazing angles and 

small Mach numbers (M << 1), as it overestimates the effect of horizontal wind on sound 

propagation, leading to errors in traveltime and propagation path, trace velocity, and absorption 

[3]. The effective sound speed is the sound speed at the duct. It reflects clearly what regions in the 

atmosphere will produce a duct given a propagation azimuth. Also, the effective sound speed 

concept is used to reduce the complexity of the governing equations for infrasound propagation 

models [4]. 

 

 

 

 

 

(i)                                                                    (ii) 

Figure 2.5:   Sound speed and effective sound speed profiles. (i) shows a sound speed profile on 

January 11th, 2011 and (ii) shows an effective sound speed profile along the 90º azimuth (north) 

on January 11th, 2011. 
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2.3.2     The Tropospheric Duct 

 

The jet stream causes the tropospheric duct in the troposphere. It is located about 10 km 

from the Earth’s surface. Signal returns due to tropospheric ducting can be measured about 100 

km from the source.  

 

    (i)                  (ii) 

Figure 2.6:  Effective sound speed profiles. (i) an effective sound speed profile that will give a 

good ground duct and (ii) an effective sound speed profile that will give a bad ground duct in the 

troposphere. 

 

The tropospheric duct varies in magnitude and direction seasonally. During the winter, 

spring and fall, there is usually a large eastward flow, and during the summer, a small eastward 

and westward flow occur. Figure 2.6 (i) and Figure 2.7 (i) show effective sound speed profile and 

2D transmission loss plot for the summer period in which the tropospheric jet is not as strong as 

in other seasons. This is expected to give a bad ground duct, evident from Figure 2.7 (i). 

The atmospheric profiles used in this thesis are gotten from the Weather Research and 

Forecasting (WRF) model [5]. Other sources of atmospheric profiles are the Ground-to-Space 

(G2S) and European Centre for Medium-Range Weather Forecast (ECMWF). 
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    (i)                                                                         (ii)                                                                                                                                

Figure 2.7:   2D Transmission loss plots. (i) shows the corresponding 2D Transmission loss plot 

for the effective sound speed profiles in Figure 2.6 (i), and (ii) shows the corresponding 2D 

Transmission loss plot for the effective sound speed profiles in Figure 2.6 (ii) 

 

2.4   Propagation Model 

 

 This thesis uses a propagation model to estimate the transmission loss of infrasound along 

propagation paths in the atmosphere. The propagation model used in this thesis is the NCPA 

(National Centre for Physical Acoustics) ePape (Effective Sound Speed Pade Parabolic Equation 

Code)[6]. It is a parabolic equation model (P.E. model). The influence of wind is approximated 

using the effective sound speed approximation. EPape is fullwave and non-linear. EPape supports 

the range-dependent and stratified atmosphere. For this thesis, we use a stratified atmosphere. The 

functions of the differential operators that arise are approximated using a Padé expansion whose 

order can be specified. The Padé expansion is numerically efficient when dealing with high 

elevation angles, although the effective sound speed approximation limits the azimuth used 

(shallow angle approximation). EPape outputs transfer functions for propagation from a unit point 

source at a reference distance of 1 km. The transfer functions have an imaginary and real part, and 

the magnitude of the transfer functions gives the signal attenuation. The transmission is the signal 

attenuation in dB relative to 1. 
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CHAPTER 3 

EMPIRICAL ORTHOGONAL FUNCTION ANALYSIS  

3.1   Empirical Orthogonal Function Analysis 

 

Empirical Orthogonal Function (EOF) analysis is a process of decomposing information 

(data) in terms of basis functions called Empirical Orthogonal Functions (EOF). This method is 

similar to eigenfunction expansion, and the basis functions are derived from the data. The EOF 

analysis is used for two reasons; one is to produce a one-dimensional distribution of the 

coefficients of the EOFs from which we can sample, and two, to have a smaller sample space to 

sample from by truncating optimally. In summary, the EOF analysis is used in conjunction with 

inverse transform sampling to sample efficiently. 

The EOF analysis’ underlying method is the singular value decomposition (SVD). The 

SVD is one of the most used linear algebra methods for processing data. The SVD decomposes 

data into a left orthogonal matrix, a matrix of singular values, and a right orthogonal matrix. It is 

good to see the SVD as a linear algebra generalization of the Fourier series. Instead of having the 

orthogonal functions as the right and left singular vectors, we have them as sine and cosine 

functions. The sampled data from the EOF analysis can represent the real data. This is because the 

first few EOFs, which we will see later as the first few right singular vectors, give the most 

significant part of the information (data). And this is because the singular values are arranged so 

that the first one is the most important. The second gives the next most important and so on. Hence 



 

13 

choosing only the first few singular values which correspond to the first few EOFs gives us a good 

representation of the real data. The other singular values and EOFs can be ignored as they contain 

very little information about the real data.  

Mathematically, we represent the SVD of a matrix X as 

X = U𝛴 V*           (3.1) 

U is a matrix of the left orthogonal vectors, 𝛴 is a diagonal matrix of singular values and V* is a 

matrix of the right orthogonal vectors. U and V are unitary matrices.  In computing the SVD of a 

matrix, we always get the full SVD, as shown in Figure 3.1.  

 

Figure 3.1:   The Full SVD 

However, what most computational algorithms compute is the Economy SVD, seen in Figure 3.2. 

This is obviously because in the reconstruction of matrix X, which is done by an outer product, the 

zeros in the singular value matrix, reduce matrix U. 

Furthermore, because the first few singular values correspond to most of the variance, we 

usually truncate the Economy SVD to singular values and orthogonal matrices corresponding to 
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the first few singular values. This gives us a truncated SVD, as seen in Figure 3.3. The truncated 

SVD provides a smaller number of coefficients of EOFs to sample from. 

 

Figure 3.2:  The Economy SVD. 

The optimal location to truncate is given by Donoho et al (2013) as 

     𝛕∗ = 𝛚(𝛃). 𝐲𝐦𝐞𝐝         (3.2) 

Where 𝝉∗ is the optimal location, (β) is the optimal hard threshold coefficient for unknown noise 

level and 𝒚𝒎𝒆𝒅 is the median singular value, where  

     𝛚(β) ≈ 0.56β3 – 0.95β2 + 1.82β + 1.43.      (3.3) 

β is m/n for a m by n matrix. 

It is good to note that the EOFs are the rows of the right orthogonal matrix. The truncated SVD 

can be seen below. 
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Figure 3.3:  The Truncated SVD 

In the truncated SVD, which we get from the economy and full SVD, the left orthogonal matrix 

contains the r-leading columns of  U. The singular matrix contains the leading r by r sub-block of 

𝛴, and the right orthogonal matrix contains the r-leading columns of  V. Uex, Σex, Vex correspond 

to the left orthogonal matrix, matrix of singular values, and right orthogonal matrix, respectively, 

considered less important, as they cover little variance of the data. Hence the matrix reconstructed 

from truncated SVD can effectively represent the original matrix X; this is shown in Figure 3.4 

and Figure 3.5. These figures show that there is almost no difference between the original data and 

those reconstructed with the first r left singular vectors, or EOFs, as we will prove soon. 
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Figure 3.4:   Effective sound speeds and average effective sound speed vector profiles. 

 

Figure 3.5:   Reconstructed effective sound speeds and average effective sound speed vector 

profiles. 
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In this thesis, there is a need to understand how the SVD relates to eigendecomposition. 

This is because we represent the effective sound speed as a vector, and the EOFs serve as its basis 

vectors. The basis vector coefficients are the product of the right orthogonal vectors and the 

singular values. The way we use the SVD is that a vector is anything that transforms. A vector, in 

our case, the effective sound speed, can be written as a linear combination of basis vectors. We 

can prove that these basis vectors are the V*. 

Let A be X*X so that we can solve an eigenvalue problem. In solving an eigenvalue 

problem, we have that       

AF = FL         (3.4) 

Where columns of F are the eigenvectors, F is unitary, and the leading diagonal of L are the 

eigenvalues.  

Also recall that SVD of X gives U𝛴V*. And we can have 

      A = FLF∗         (3.5) 

Since F is unitary and F-1 = F* 

From A = X*X, expressing X in a singular value decomposed form, we can have  

     A = (UΣV∗)∗(UΣV∗)         (3.6) 

Hence we can have  

A = VΣ∗U∗UΣV∗         (3.7) 

We know that for unitary matrices, which U is, U*U = 1 
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     A = VΣ∗ΣV∗          (3.8) 

comparing the (3.8) and (3.5) 

we see that 𝛴*𝛴 = L and V = F 

This proves that the right orthogonal vectors, the EOFs, can serve as a basis of a matrix we 

construct for our effective sound speed. If we have a matrix of our effective sound speed and 

subtract an average effective sound speed vector from it and call it X, the coefficients of EOFs of 

X are statistically independent. We can expand X in terms of its EOFs to get 

 X =  ∑ Ci
r
i=1 Vi

∗          (3.9) 

It is good to note that Ci = UiΣi, the product of a left singular vector, and its corresponding singular 

value, is gotten from the SVD of X. Also, we use the truncated SVD, that is, the SVD with r 

singular values, r EOFs, and r right singular vectors. 

Let the difference between an effective sound speed vector and the average effective sound speed 

vector be ∆Ceff
j

, delta effective sound speed vector, and be given as 

∆Ceff
j

=  Ceff
j

−< Ceff >      (3.10) 

< Ceff > is just 

     < Ceff > =  
1

n
∑ Ceff

jn
j=1       (3.11) 

 ∆Ceff
j

 can be expanded in terms of its EOFs to give us 

∆Ceff
j

=  ∑ Ci
j
Ei

r
i=1        (3.12) 
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and Ci
j
 can be written as 

Ci
j

=  Ei. ∆Ceff
j

         (3.13) 

also, the average coefficient of an EOF is given by 

< Ci > =  
1

n
∑ Ci

jn
j=1        (3.14) 

from (3.14) we have 

     < Ci > =  
1

n
∑ (Ei. ∆Ceff

j
)n

j=1       (3.15) 

Also we can write the average delta effective sound speed vector 

     <∆Ceff > =  
1

n
∑ ∆Ceff

jn
j=1       (3.16) 

From (3.15) and (3.16) we have 

     < Ci > =  Ei.<∆Ceff >.      (3.17) 

Now to prove that the coefficients of the EOFs are statistically independent, the following must 

show that 

    〈 (Ci−<  Ci >)(Ci′−<  Ci′ >) 〉 = 0      (3.18) 

That is the variance of the two coefficients of EOFs must give 0 

    
1

n
∑  (Ci

j
−<  Ci >)(C

i′
j

−<  Ci′ >)n
j=1  = 0     (3.19) 

However, <  Ci > can be proved to be 0 
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From (3.17) we have that 

     < Ci > =  Ei.<∆Ceff > 

Substituting (3.10) in (3.17) we have 

     < Ci > = Ei. 〈 (Ceff
j

−< Ceff >) 〉     (3.20) 

this can be written as  

     < Ci > =  Ei. (
1

n
∑ (Ceff

j
−< Ceff >)n

j=1 )    (3.21) 

Further, we can write (3.21) as 

     < Ci > =  Ei. (
1

n
∑ Ceff

jn
j=1 −  

1

n
∑ < ∆Ceff >n

j=1 )   (3.22) 

However, from (3.16) we have that 

     < Ci > =  Ei. (< ∆Ceff > − 
1

n
∑ < ∆Ceff >n

j=1 )   (3.23) 

also, because < ∆Ceff > is the average effective sound speed vector we have, 

 
1

n
∑ < ∆Ceff >n

j=1 = < ∆Ceff > 

that is you cannot sum over j, thus (3.23) will give 0. 

Now (3.19) can be written as 

     
1

n
∑  (Ci

j
)(C

i′
j

)n
j=1  = 0       (3.24) 
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Using (3.13) we have that 

     
1

n
∑  (Ei. ∆Ceff

j
)(Ei′ . ∆Ceff

j
)n

j=1       (3.25) 

It can be proved that ∑  (Ei. ∆Ceff
j

)(Ei′ . ∆Ceff
j

)n
j=1  = Ei. (XXTEi′)       (3.26) 

To prove this recall that X is a matrix of the delta effective sound speed vectors. 

(
∆Ceff

1 (z1) ⋯ ∆Ceff
n (z1)

⋮ ⋱ ⋮
∆Ceff

1 (zm) ⋯ ∆Ceff
n (zm)

)     (3.27) 

and XT can be written as 

     (
∆Ceff

1 (z1) ⋯ ∆Ceff
1 (zm)

⋮ ⋱ ⋮
∆Ceff

n (z1) ⋯ ∆Ceff
n (zm)

)     (3.28) 

In proving (3.26), we can write XTEi′ as 

    (
∆Ceff

1 (z1) ⋯ ∆Ceff
1 (zm)

⋮ ⋱ ⋮
∆Ceff

n (z1) ⋯ ∆Ceff
n (zm)

) (
Ei′(z1)

⋮
Ei′(zm)

)      (3.29) 

and it gives us 

(
∆Ceff

1 . Ei′

⋮
∆Ceff

n . Ei′

)        (3.30) 

further in proving 3.26, using (3.27) and (3.30) 

   XXTEi′ =  (
∆Ceff

1 (z1) ⋯ ∆Ceff
n (z1)

⋮ ⋱ ⋮
∆Ceff

1 (zm) ⋯ ∆Ceff
n (zm)

) (
∆Ceff

1 . Ei′

⋮
∆Ceff

n . Ei′

) 
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and multiplying the matrices, we have 

XXTEi′ =  (
∆Ceff

1 (z1)∆Ceff
1 . Ei′   + ⋯ ∆Ceff

n (z1)∆Ceff
n . Ei′

⋮ ⋱ ⋮
∆Ceff

1 (zm)∆Ceff
1 . Ei′  + ⋯ ∆Ceff

n (zm)∆Ceff
n . Ei′

)    (3.31) 

(3.31) can be written as  

    ∑ (

∆Ceff
j

(z1)∆Ceff
j

. Ei′

⋮

∆Ceff
j

(zm)∆Ceff
j

. Ei′

)n
𝑗=1        (3.32) 

finally, Ei. (XXTEi′) will give us 

Ei. ∑ (

∆Ceff
j

(z1)∆Ceff
j

. Ei′

⋮

∆Ceff
j

(zm)∆Ceff
j

. Ei′

)n
j=1       (3.33) 

(3.33) can be written as 

∑ Ei.
n
j=1 ∆Ceff

j
∆Ceff

j
. Ei′       (3.34) 

Since ∆Ceff
j

 and Ei are column vectors, we can apply the commutative property of dot product to 

give us 

       ∑ Ei.
n
j=1 ∆Ceff

j
Ei′ . ∆Ceff

j
      (3.35) 

Thus we see that (3.26) is proved. 

Now (3.25) can be written as  

       
1

n
Ei. (XXTEi′)        (3.36) 
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However, since XXT is a square matrix and Ei′ is a basis vector, (3.36) can be written in terms of 

eigenvalues and eigenvectors to give 

      
1

n
Ei. (λEi′)       (3.37) 

λ is an eigenvalue. 

We can rewrite (3.37) as  

      
λ

n
Ei. Ei′        (3.38) 

and further have it as 

      δii′
λ

n
        (3.39) 

Also, 

 λ =  Si′
2        (3.40) 

where Si′ is the i′th singular value. 

Thus (3.39) gives us 

      δii′
S

i′
2

n
        (3.41) 

For Ei ≠ Ei′ (3.41) gives 0. 

Now (3.18) is proved; the coefficients of EOFs are statistically independent. 

This allows us to use inverse transform sampling and reconstruct by taking an inner product 

with the EOFs, to get the desired number of samples we want, as we will see in the next chapter. 
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3.2    Kernel Density Estimate 

 

The kernel density estimate (KDE) is a density estimator for an unknown probability 

distribution. The KDE is like the histogram but with a smooth function. The smooth function is 

called the kernel, hence the name kernel density estimate. We have different kernels; some are 

gaussian, epanechnikov, exponential, cosine etc.  

In this thesis, we will be using the gaussian kernel. This is because most real-life random 

processes have a distribution that is close to the normal distribution. The KDE works by using a 

gaussian distribution function centralized at the data point. The overlapping estimates from the 

gaussian distributions centralized at data points are then summed at all overlapping points to give 

the main KDE curve. 

Like a histogram, binning is a major consideration for KDE as small bins give noisy data 

and too large bins obscure information. Hence choosing a good bin size is pivotal for the kernel 

density estimate. A rule for binning used in this project is from the Improved Sheather-Jones 

algorithm. It is good for multimodal data.  

The KDE is a non-parametric method of assigning a probability distribution curve to data 

whose probability distribution is unknown. The probability function is the sum of the kernel 

functions at each data point. Mathematically, we have it as 

1

nh
∑ K (

x−xi

h
)n

i=1        (3.42) 

Where K is the kernel, xi are the locations of the kernels and, x is a sample from data, h is 

the bandwidth, n is the number of data points   
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      CHAPTER 4 

SAMPLING THEORY 

 

Sampling is simply the process of taking a subset from a population. As mentioned earlier 

in this thesis, we sample using inverse transform sampling and EOF analysis. The motivation for 

using the EOF analysis is based on its underlying algorithm, the SVD. Furthermore, the motivation 

for considering a method that uses the SVD is because the SVD generalizes an eigendecomposition 

for non-square matrices. And the motivation for eigendecomposition is because we know that the 

coefficients of the EOFs (basis vectors) are statistically independent. 

4.1   Inverse Transform Sampling 

 

Inverse transform sampling is a method of sampling in statistics in which samples are 

generated from a given probability distribution given that we have its cumulative distribution 

function (CDF). This works by using uniform samples, samples from a uniform distribution, 

between 0 and 1, which are used as independent variables of an inverse cumulative distribution 

function. The uniform samples, in this case, serve as probabilities the associated probability 

distribution. 

This method is also used as a means of sampling from an arbitrary probability distribution, 

given the CDF is known, and it can be inverted to get an inverse function. It is good to know that 

this works for a discrete and continuous distribution.



 

26 

Mathematically, given that the cumulative distribution function is 

G(x) = P(X ≤ x)         (4.1) 

This gives the probability of getting a random variable x or less.  

We can invert it to get an inverse function 

G−1            (4.2) 

Uniform samples (U) can be used in the inverse function as independent variables to give us 

samples with the probability distribution of the CDF. Mathematically, we have 

G−1(U) = X          (4.3) 

The samples we want are X. 

The inverse transform sampling method is used to get the desired number of samples. It 

works because the coefficients of the EOFs are statistically independent; hence we can have a 

probability distribution for each set of coefficients, and from it, we get the cumulative distribution 

function. We invert the cumulative distribution function to get the inverse cumulative distribution, 

and we sample using a random number generator. The sampled coefficients are reconstructed with 

the EOFs to get a sample effective sound speed. The sample effective sound speed we got is passed 

into ePape, to simulate transmission loss values. We construct a KDE for these transmission loss 

values, repeat the process, and accumulate the transmission loss values with the first one. We get 

a KDE for it, which would differ from the KDE of the first transmission loss values only. We 

repeat this process until the KDE converges; it stops changing. This convergence criterion is the 

convergence criteria of a sequence. In this case, we use the Cauchy criterion, and the sequence is 
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the sequence of KDE obtained from the sampling method. As we keep increasing the number of 

samples, the KDE should eventually converge to the correct KDE. 

           

   

   

   

  Figure 4.1:   Transmission loss KDE convergence. 
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In mathematics, the Cauchy criterion is satisfied when, for all a, there is a fixed number N 

such that |Sj −  Si|< ϵ for all i, j > N. In our case, Sj and Si are the accumulated transmission values 

we get KDEs for. This convergence criterion helps us get the optimal sample size. 
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CHAPTER 5 

RESULTS 

 

This session presents the KDE plots for transmission loss at particular hours -5th, 11th, 17th, 

and 23rd - on all days in the second week of January, April, August, and October. Atmospheric 

profiles for 12 years (2010 – 2021 A.D.) were used. We simulated transmission loss for ranges 20 

km, 40 km, 60 km, and 80 km. This result reveals that the sample data from the statistical model 

represents the original data. We prove this by using data for particular times we are sure of the 

nature of the duct. These times are midnight when the ground, a good conductor, will have loosed 

heat and the speed of sound on the ground is lower than that above the ground, and in the evening 

when the ground is still hot due to the heat of the day. The midnight will have a good ground duct 

while the evening will have a bad ground duct. In the periods where we had a good ground duct, 

the KDEs peaked at about -70dB to -80dB, and a high probability is around this interval.  

 

                                          (i)       (ii) 
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   (iii)          (iv) 

Figure 5.1:   Probability distribution for January 5th hour (UTC). This is for all days in the 

second week in the 0º propagation angle for maximum ranges of (i) 20 km, (ii) 40 km, (iii) 60 

km, and (iv) 80 km. 

 

            (i)                                                                         (ii) 

 

                         (iii)                                                                  (iv) 

Figure 5.2:   Probability distribution for April 5th hour (UTC). This is for all days in the second 

week in the 0º propagation angle for maximum ranges of (i) 20 km, (ii) 40 km, (iii) 60 km and (iv) 

80 km  
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(i)                                                                         (ii) 

 

(iii)           (iv) 

Figure 5.3:   Probability distribution for August 5th hour (UTC). This is for all days in the second 

week in the 0º propagation angle for maximum ranges of (i) 20 km, (ii) 40 km, (iii) 60 km and 

(iv) 80 km. 

 

   (i)           (ii) 
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                        (iii)                                                                       (iv) 

Figure 5.4:   Probability distribution for October 5th hour (UTC). This is for all days in the 

second week in the 0º propagation angle for maximum ranges of (i) 20 km, (ii) 40 km, (iii) 60 km 

and (iv) 80 km. 

 

This was consistent for all months, even during the summer, when the tropospheric jet is less strong 

than in other seasons.  The distance from the source of propagation doesn’t really affect the days 

in which the ground ducts are good. But have effects on periods when ground ducts were very bad. 

This is obvious from the probability distributions. 

Periods with a very bad ground duct showed a high probability for high transmission loss 

values compared to periods with a good ground duct. The probability of getting low transmission 

loss on these days when the ground duct was very bad, at greater distances than 20 km, is 

because of how the propagation model produces the transfer functions. It does this by 
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considering all the kilometers till we get to the range. That is for a range of 40 km; it outputs 

transfer functions for 1 km, 2 km, 3 km, and so on till 40 km. The following figures show these:

 

                        (i)                                                                         (ii) 

 

                        (iii)                                                                       (iv) 

Figure 5.5:   Probability distribution for January, 23rd hour (UTC). This is for all days in the 

second week in the 270º propagation angle for maximum ranges of (i) 20 km, (ii) 40 km, (iii) 60 

km and (iv) 80 km. 

 

 

 

 

 

              

 (i)         (ii)  
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(iii)                                                                       (iv) 

Figure 5.6:   Probability distribution for April, 23rd hour (UTC). This is for all days in the second 

week in the 270º propagation angle for maximum ranges of (i) 20 km, (ii) 40 km, (iii) 60 km and 

(iv) 80 km. 

 

                                    (i)                                                                         (ii) 

 

(iii)                                                                       (iv) 

Figure 5.7:   Probability distribution for August, 23rd hour (UTC). This is for all days in the 

second week in the 270º propagation angle for maximum ranges of (i) 20 km, (ii) 40 km, (iii) 60 

km and (iv) 80 km. 
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(i)                                                                                 (ii) 

 

(iii)                                                                       (iv) 

Figure 5.8:   Probability distribution for October, 23rd hour (UTC). This is for all days in the 

second week in the 270º propagation angle for maximum ranges of (i) 20 km, (ii) 40 km, (iii) 60 

km and (iv) 80 km. 
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           CHAPTER 6 

FORMALISM FOR SIGNAL DETECTION 

 

This session presents a formalism for signal detection using the signal-to-noise ratio. The 

signal-to-noise ratio is expressed in decibels. An example noise model developed by Maxwell 

Willis is seen in Figure 6.1. All months considered in the result chapter is considered here except 

August, replaced by July. 

 

Figure 6. 1:   Probability distribution for noise pressure for a sensor. This is in the frequency 

band of 0.4-4Hz for January, April, July, and October.  
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The signal-to-noise ratio (SNR) in decibels (dB) is given as 

 SNRdB =  SdB +  TLdB −  NdB        (6.1) 

the threshold for SNR is usually taken to be one; that is for us to have detection we should have  

SNR ≥ 1          (6.2) 

but in dB, we will have 

SNRdB  ≥ 0          (6.3) 

Hence the detection criterion is given as 

SdB + TLdB −  NdB  ≥ 0        (6.4) 

Furthermore, we can have 

SdB  ≥  NdB −  TLdB         (6.5) 

Let 

NdB −  TLdB = Q         (6.6) 

Hence, 

SdB  ≥ Q          (6.7) 

This is a criterion for detection that states that the source pressure has to be greater than or equal 

to the difference between noise level at the sensor and the transmission loss given as Q. Since we 

are studying this probabilistically, we have to use the probability distributions we have developed 

to get a criterion. To get the criterion, we get the expectation value for Q and standard deviation. 
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The standard deviation gives us a measure for our confidence in the expectation value gotten. A 

small deviation means we can trust the expected value, plus or minus the deviation. A large 

deviation means we cannot. The expectation value for Q is given as  

< Q > =  ∫ Q P(TL, N)dTL dN
∞

−∞
        (6.8) 

P(TL, N) is the joint probability density function of the transmission loss and noise. Taking a 

reasonable guess that these are independent, as what is happening to the signal propagating is quite 

different from the noise at the sensor, although in nature they have a relationship; we will have 

that the joint probability density function give us the product of the individual probability density 

functions 

P(TL, N) =  γ(TL)β(N)         (6.9) 

Hence < Q > gives us 

∫ Q γ(TL)β(N) dTL dN
∞

−∞
       (6.10) 

Substituting the value of Q and ignoring the dB subscripts in NdB and TLdB, as our probability 

distribution is in terms of dB, we have  

< Q > = ∫ (N − TL) β(N) γ(TL) dTL dN
∞

−∞
     (6.11) 

Given that 

∫ β(N) dN = 1
∞

−∞
       (6.12) 

and 

∫ γ(TL) dTL = 1
∞

−∞
       (6.13) 
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(6.11) will give us 

< Q > = ∫ N  β(N) dN − 
∞

−∞
∫ TL  γ(TL) dTL

∞

−∞
    (6.14) 

Thus, we have 

< Q > = < N >  − < TL >       (6.15) 

This gives us that the expectation value for the difference between noise and transmission 

loss is the difference between the expectation value of noise and the expectation value of 

transmission loss. 

To measure the confidence in this average, we find the standard deviation of the joint 

probability distribution. This is just the square root of the variance of the distribution. 

The variance is given as 

   ∫ (N − TL−< N > +< TL >)2 P(TL, N) dTL dN
∞

−∞
                           (6.16) 

After some simplification, we have 

   < (N−< N >)2 > +< (TL−< TL >)2 >       (6.17) 

 This gives us that the variance of the joint distribution is the sum of the variance of noise and 

variance of transmission loss. 

Standard deviation will hence give us 

(< (N−< N >)2 > +< (TL−< TL >)2 > )
1

2     (6.18)
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The standard deviation in (6.18), as discussed earlier, gives us a measure of confidence in the 

expectation value of Q, the detection criterion. A small deviation tells us we can trust the expected 

value, plus or minus the deviation. A large deviation means we cannot trust the expectation value.
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CHAPTER 7 

                                                     CONCLUSION 

 

This thesis presents a way to sample using EOF analysis and inverse transform. This works 

for cases where we have coefficients of the EOFs which are statistically independent, and we can 

see that this works from the probability distributions displayed in the result session. The periods 

with good duct showed a high probability for low transmission loss values and vice versa. 

Also, from the previous chapter, we can see that we can develop a detection criterion using 

the signal-to-noise ratio. Further, we find a formalism to get an expectation value to use in the 

detection criterion, given we have the noise model. Also, we find a way to measure our confidence 

in the expectation value. 

In real-life applications, this project can be used to predict if a sensor at a region at some 

particular time will detect signal given that we have a noise model for the sensor and we know 

what the source pressure is. Also, it is useful in knowing what the pressure level of the source 

should be so we can detect signals at a sensor placed at a particular location. 
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