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ABSTRACT

In mathematics and computer science, solving an optimization problem is to find the best
solution from all possible outcomes. In this dissertation work, two kinds of algorithms are
considered to address the problems in Microarray Analysis, Numerical Optimization and Wireless
Sensor Networks. In gene expression analysis and classification, feature selection is an important
process of selecting the optimal subset of relevant features or useful data for further study and
prediction. The main objective of feature selection is challenging due to the large search space,
computational time, imbalanced samples, and quality of the selected drivers. It is necessary to
construct a discriminative and stable feature selector that is robust to noises and outliers and able
to select highly informative gene sets.

To address the issue of the quality of the generated features, we first propose a rule based
feature selection and elimination approach, Top Discriminating Pairs (TDP), which aims to reveal
features that are highly ranked according to their discrimination power. Our experiment combines
the TDP methodology with various classifiers to achieve a significant feature set. To illustrate the
effectiveness of this approach, we compare the proposed ap- proach with the traditional Top
Scoring Pairs (TSP) method as the baseline on various artificial and real datasets. This work
provides a new effective method for feature selection and dimensionality reduction in machine
learning.

In order to reduce search space and improve computational capability, we next con- sider
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Swarm Intelligence based methods which mimic the social behaviors of natural insects or artificial
systems. These techniques have recently attracted researchers’ attention and have been adopted to
tackle complex feature selection problems. Biologically inspired computing has successfully been
used in many areas that need simplicity in computation, optimized intelligence search, and
machine learning techniques. We present a comprehensive study of the recent applications of
Swarm Intelligence (SI) for optimizing feature selection processes with respect to their
experimental settings and performance metrics. Then we introduce our Spider Monkey
Optimization (SMO) based feature selection approach using Microarray data for human cancer
classification and prediction. The results show that our SMO feature selector combining three
classifiers achieved the best accuracy scores on most of the test data sets.

Furthermore, we extend the abilities of SMO by solving other problems such as finding the
optimal routes in wireless communication among sensors. In this work, we aim to study the
mechanism of the SMO algorithm, formulating the mathematical model of its social behavior
patterns and to improve the traditional routing protocols in terms of low-energy consumption and
overall system quality of the network. The experimental results show that our approach is self-

organized, scalable and can be easily adapted to wireless sensor networks.
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CHAPTER 1
INTRODUCTION

Gene expression classification and feature selection are commonly used techniques to
diagnose diseases in Microarray analysis. In fact, numerous classifiers have been pursued for
correctly identifying cancerous patients based on numerical molecular information. Popular
techniques for solving the diagnosis problem include Support Vector Machine (SVM) [20],
Decision Tree (DT) [84], Random Forests (RF) [47, 13], Prediction Analysis of Microarray
(PAM) [96], and Top Scoring Pair (TSP) [37]. However, there is no classifier that always
outperforms the others. For example, Top Scoring Pairs does not extend to some difficult
datasets, such as those containing a small number of samples. Thus, the objective of this
study is to propose a general approach, combining dimensionality reduction and feature

elimination, based on the discriminating power of gene pairs.

1.1 Rule-based Learning

1.1.1 Top Scoring Pairs

In gene expression profiles, we consider G genes whose expression levels can be as-
signed as X = {X;, X5, ..., Xg}. Each profile X has a true class label in C' = {1, 2, ..., c}.
In our implementation, we only consider two classes, either class 1 or class 2. Geman et al.
summarized the general process of calculating expression values for each pair of genes — they
detected “marker gene pairs” (i, j) under the rule when X; < X from class 1 to class 2 [37].

The classification is based on the distinguished pairs and the quantities of interest are,



the score of each pair of genes is calculated as,
Aij = |pi; (1) > pi;(2)] (1.2)

Then the paired genes are ranked based on the A;; values in descending order and the TSP

classifier only selects the top scoring pairs.

1.1.2  k-Top Scoring Pairs

The Top Scoring Pairs (TSPs) may change when the training data are perturbed by
adding or deleting a few examples [37]. In Tan’s work, they introduced the k-TSP classifier
which increases the accuracy of the TSP classifier and generates a more stable classifier.
The motivations of using k-TSP classifier are: 1) there are many top scoring pairs with the
same informative ordering (same A score ); 2) it combines the discriminating power of many
‘weaker’ rules; 3) it achieves better combined scores [95]. The k-TSP algorithm is similar
to TSP method. In the prediction of TSP classifier (hrgp), we suppose p;;(1) > p;;(2) and

Xpew 1s @ new sample. Then the decision rule is,

C= 17 Xi,ncw > Xj,new
hTSP(Xnew) - (13)
C =2, otherwise

The k-TSP classifier selects k-top disjoint pairs of genes in prediction according to 1.3. It
simply chooses the class receiving the majority votes and consists of a list of ranked TSPs

genes from the largest scores to smallest scores in Eq. 1.4 and Eq. 1.5,

k
hk—TSP(Xnew) = arg maXZ I(hu(Xnew) - C) (14)

c=12 =

where

1, hy(Xpew) =C
I(hy(Xpew)) = ,C=(1,2) (1.5)

0, otherwise



Ties are broken by sorting the pairs that achieve the same score A using the secondary
ranking score I' (Gamma) [95], which is based on the ranking differences in each sample in

each class, defined to be I';; = |v;;(1) — 7,;(2)|, where

ZneN(Ri,n - ij)
C|

75(C) = (1.6)

where |C] denotes the number of samples. The k disjoint pairs of genes with the largest score
values I' are sclected from those pairs with the highest value A;; in TSP classifier (Eq. 1.2).
Both original TSP and k-TSP techniques are competitive with PAM and SVM classifiers.

However, the TSP-family classifiers are easier to interpret and involve many fewer genes.

1 Gl > G2 = TRUE or FALSE? TRUE Votes > 2
; Assign to C1

2 G > G8 = TRUEorFALSE?

TRUE Votes < 2

3 G5 > G7 = TRUEorFALSE? SR EL
Classification with # of TRUE Votes Classification
Individual TSPs Count Results

Figure 1.1. k-TSP Classifier

1.1.3 Association Rule Mining

Association rule mining (ARM) was proposed by George Piatetsky-Shapiro in 1991
and is commonly applied to market basket analysis [81]. For example, the parable of the
beer and diapers, the rule diapers = beer indicates that a customer who often buys diapers
is likely to also buy beer. Such information can be used as the basis for decision making
and can be applied to the discovery of frequent patterns from Microarray data as well. It is
very useful in the following: 1) to discover association rules, which can only reveal biological

3



relevant correlations between genes to identity gene regulation pathways and also help to
uncover gene networks [21], 2) to discover bi-clustering of gene expression [115]. Association

rule mining is defined as [2],

1. Let I = {iy,i2,...,7n} be a set of m distinct attributes, also called items. Let D =
{t1,ts,...,t,} be a database, a set of transactions. Each transaction in D has a unique
identifier and contains a set of items. An association rule is defined as an implication
of the form X = Y where X, Y C [ and X NY = . X is called antecedent (left hand

side) and Y is called consequent (right hand side).

2. The support of an itemset X is the ratio of the number of occurrences of transactions

in the dataset which contain the itemset to the number of total transactions.

3. The confidence of an association rule is the ratio of the support for occurrences of
transactions where X and Y both appear to the number of transactions that contain

just X.

1.2 Swarm Intelligence

Swarm Intelligence (SI) is a meta-heuristic and flexible optimization technique that
mimics the behavior of swarms of bees, ants, monkeys, birds or fish [16]. The swarms follow
very simple rules, and there is no centralized control structure. These properties make swarm
intelligence a successful design paradigm to deal with increasingly complex problems, such
as optimization problems. SI has been applied to and shown promising results in a variety
of fields, including Social Media [16], Robotic Systems [103], Computational Biology [114],
Wireless Sensor Networks [41], Power System [97], and Healthcare [50]. In this paper, we
focus on recent developments of SI in the area of Bioinformatics, especially introducing the
applications as optimizers for feature selection in gene expression analysis. Figure 1.2 shows
how popular the topic “Swarm Intelligence” is entered by web searchers in real-time across

different regions in the world.



In previous studies, Swarm Intelligence based algorithms have shown high potential
to achieve optimal solutions in complex structures and can be used to solve numerical op-
timization problems by simulating swarm behaviors found in nature [29]. These techniques
demonstrate the desirable properties of efficiency, interpretability, effectiveness, scalability,
and robustness. The most popular SI frameworks include Particle Swarm Optimization
(PSO) [56], Ant Colony Optimization (ACO) [27], Artificial Bee Colony (ABC) [53] and
other swarm optimizations [69, 68, 22, 12]. A full list of swarm intelligence based optimiza-
tion algorithms can be found in Table 1.1. Every successful swarm intelligence behavior

contains two fundamental, sufficient and necessary properties [40]:

1. self-organization: an essential component that no such a swarm is a central coordinator.
The interaction between the system and its local level components is not planned, nor

through a central authority.

2. division of labor: involving various kinds of division of labor. In a social group, many

circumscribed tasks are performed by particular individuals.



Figure 1.2. Google Trends Search Volume and Geographical Distribution on the Topic of
“Swarm Intelligence” in All Languages (Grayscale color is used to colorized the search volume
of a particular region, darker color means a higher proportion of all queries)



Table 1.1. Swarm Intelligence based Optimization Algorithm in Literature

ST Algorithm Year Reference
Ant Colony Optimization (ACO) 1991 [27]
Particle Swarm Optimization (PSO) 1995 [56]
Marriage in Honey Bees Optimization Algorithm 2001 1]
Artificial Fish-Swarm Algorithm 2003 [62]
Termite Algorithm 2005 [85]
Artificial Bee Colony (ABC) 2006 [14]
Wasp Swarm Algorithm 2007 [82]
Wolf Pack Search Algorithm 2007 [108]
Monkey Search 2007 [73]
Bee Collecting Pollen Algorithm 2008 [66]
Cuckoo Search 2009 [111]
Dolphin Partner Optimization 2009 [91]
Firefly Algorithm 2010 [109]
Bat-inspired Algorithm 2010 [110]
Hunting Search 2010 [77]
Bird Mating Optimizer 2012 [10]
Krill Herd 2012 [35]
Fruit Fly Optimization Algorithm 2012 [78]
Dolphin Echolocation 2013 [55]
Social Spider Optimization (SSO) 2013 [22]
Grey Wolf Optimization (GWO) 2014 [69]
Spider Monkey Optimization (SMO) 2014 [12]
Monarch Butterfly Optimization 2015 [100]
Whale Optimization Algorithm (WOA) 2016 [68]
Moth Search Algorithm 2016 [99]




1.2.1 Spider Monkey Algorithm (SMO)

Spider monkey optimization is inspired by the foraging behaviors of spider monkeys.
The proposed strategy follows self-organization and division of labor properties for obtain-
ing intelligent swarming behaviors of animals [12]. In the previous studies, the scientists

identified four important behaviors [60].
1. Each group selects a local leader in the 'planning’ stage and then starts food foraging.
2. Search agents’ positions according to the distance between itself to the food source.

3. During the food source searching phase, local leader modernizes its best location within

the group.

4. In the final phase, the global leader keeps posted with the so-far best position and in

case of inactivity, it splits the group into smaller, finite subgroups.



Algorithm 1 Spider Monkey Optimization
Initialize total Population, LocalLeaderLimit LLL, GlobalLeaderLimit GLL.

1: Calculate the fitness

2: Apply greedy selection on global leader and local leader

3: while termination criteria is not met do

4:  Generate new positions for all the monkeys

5:  Select the best position between existing and newly generated ones based on fitness

values

6:  Calculate the probability prob for all the monkeys

7:  Produce new position for all the monkeys

8:  Update the positions of local global leaders

9:  if local leader is not updating her position after a specified number of times LLL then
10: Update the positions of all the monkeys

11:  end if
12:  if global leader is not updating her position for a specified number of times GLL then
13: Divide into small groups and repeat previous steps

14:  end if

15: end while

1.2.2  Traditional Algorithms
1.2.2.1 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a population-based stochastic algorithm and
was first introduced by Kennedy and Eberhart in 1995 [56]. There are many advantages of
the traditional PSO algorithm including but not limited to easy interpretation, fast coverage,
and fewer adjustable parameters. The particle swarm concept originated as a simulation of
the behavior of bird flocking — all birds are randomly distributed and have fitness values that

are evaluated by the fitness function to be optimized. They also have velocities which direct



the flying of the particles [29]. After reaching the best fitness values, each particle updates

its position and velocity as follows,

x;i(t) = x; + v;(t) (1.7)

vi(t + 1) = wu;(t) + 1 CL(PHt) + 25) + 19Co (PI(t) — ;) (1.8)

where z; and v; are the positions of a particle and its associated velocity. w and r are the
inertia weight and number of U(1,0) , respectively. P! indicates the particle best pBest and
P9 is the global best gBest of the swarm. ] and C5 are constants and are selected by the
user in order to control the efficacy of the method. The procedure of the PSO approach is

presented in Algorithm 1.

10



Algorithm 2 Particle Swarm Optimization

Initialize food source, particle best pBest and global best gBest
1: for each particle do
2:  Initialize particle
3: end for
4: while termination criteria is not attained do

5. for each particle do

6: Calculate fitness value

7 if fitness value < pBest then
8: Set pBest = fitness value

9: end if

10: end for

11:  Choose the particle with pBest of all the particles as the gBest
12:  for each particle do

13: Calculate particle velocity according to Eq.1.8

14: Update particle position according to Eq.1.7

15:  end for

16: end while

1.2.2.2  Ant Colony Optimization (ACO)

Have you ever wondered how ants navigate from nest to food source? As we all know,
ants are incredibly capable creatures; here are several frightening facts that scientists have

discovered about ants,

e Ants are blind and each ant moves at random.
e The path from home to target is discovered through pheromone trails.

e More pheromones on a path increase the probability of being followed and the shortest
path is eventually finalized.

11



Ant Colony Optimization takes inspiration from the foraging behavior of ants for solving
computational problems by finding the optimal paths in a graph. The procedure can be

broken down into two sections: construct ant solutions and pheromone update [27].

1. Construct Ant Solutions: an ant moves from location i to location j with probability,

af
Tig'li g

P(i,j) = =1
D)= e

(1.9)

where 7;; and 7; ; are the amount of pheromone and the desirability on a given edge

(4,7). The influence of 7; ; and 7, ; are controlled by « and § .

2. Pheromone Update: the amount of pheromone is updated according to the equation,

(i, 5) = (1 = p)7(i,j) + A7, j) (1.10)

where p indicates the rate of pheromone evaporation. A7, j) represents the amount

of pheromone deposited and is given by,

At (i, j)* = b (1.11)

0 otherwise

where L; is the cost of the trip of the k' ant, if ant k travels on edge i,j. The pseudo-

code of ACO method is shown in Algorithm 2.

12



Algorithm 3 Ant Colony Optimization

Initialize population, pheromone trail
1: while termination criteria is not satisfied do
2:  for each ant do
3: Calculate fitness value
4: Determine its best position
5:  end for
6:  Determine the global best ant
7. Update the pheromone trail according to Eq.1.10 - 1.11

8: end while

1.2.2.3 Artificial Bee Colony (ABC)

In the Artificial Bee Colony (ABC) algorithm, there are three groups of bees: em-
ployed bees, onlookers and scouts [53]. An onlooker is a bee waiting at the dance area for
decision making to select a food source. An employed bee is a bee that going to the target
food source, and a scout is the bee randomly searching for food. Each cycle of the search

consists of three major phases:

1. sending the employed bees onto the food sources and then measuring their nectar

amounts;

2. selecting of the food sources by the onlookers after sharing the information of employed

bees and determining the nectar amount of the foods;

3. determining the scout bees and then sending them onto possible food sources.

13



Algorithm 4 Artificial Bee Colony

Initialize food source

1: while termination criteria is not met do

2:  for each employed bee do

3: Produce new solution

4: Calculate the fitness value

5: Apply greedy selection

6: Calculate the probability value

7. end for

8:  for each onlooker bee do

9: Select a solution

10: Produce new solution

11: Calculate the fitness value
12: Apply greedy selection

13:  end for

14:  if an abandoned solution for the scout exists then
15: Replace it with a new solution at random

16: end if

17:  Register the best solution

18: end while

1.2.3  Other Algorithms
1.2.3.1  Grey Wolf Optimization (GWO)

Grey wolf optimization (GWO) is first introduced by Mirjalili et al. [69], and it mimics
the leadership hierarchy and hunting mechanism of grey wolves in nature. Group hunting

is an interesting social behavior of grey wolves. The major phases of grey wolf hunting are

14



searching and chasing the prey, encircling and harassing the prey and attacking prey.

Do =|C % Xy — X|,Ds = |Cy % X5 — X|, Ds = |Cs % X5 — X| (1.12)

—

Xy = Xo — Ay % (Dg), Xy = X5 — Ay # (Dg), X5 = X5 — As * (Dy) (1.13)

Xy = S (1.14)

where ¢ indicates the current iteration and )?Hl indicates the position vector of a grey wolf.
The social hierarchy, searching, encircling, and attacking prey are mathematically modeled

by following the steps below:

15



Algorithm 5 Grey Wolf Optimization

Initialize the grey wolves population X;(i = 1,2,...,n)

Initialize a, A and C
1: Calculate the fitness of each search agent
2: X, = the best search agent
3: X3 = the second best search agent
4: Xs = the third best search agent
5: while ¢ < Max number of iterations do
6:  for each search agent do
7 Update the position of the current search agent by Eq.1.14
8: end for
9:  Update a, A, and C
10:  Calculate the fitness of all search agents
11:  Update X,, X3 and X
12: t=t+1
13: end while

14: return X,

1.2.3.2  Whale Optimization Algorithm (WOA)

Whale optimization algorithm (WOA) is a novel meta-heuristic optimization algo-
rithm that mimics the social behavior of humpback whales which are known as highly in-
telligent animals with emotion [68]. The unique hunting method of humpback whales is
called bubble-net feeding method, see Figure 1.3 [104], the whales dive around 12m down
and then start to create bubble in a spiral shape around the prey and swim up toward
the surface. The bubble-net feeding method is mathematically modeled below in order to

perform optimization. The WOA algorithm consists 3 major phases:

16



1. Encircling prey - this behavior is represented by the following equations:
D=1|CxX;—X| (1.15)
where t indicates the current iteration, C is the coefficient vector, X* is the position
vector of the best solution achieved so far and X is the position vector.
2. Bubble-net attacking method - as seen in Figure , this approach calculates the distance
between the whale and prey as follows:

Xig1 =D s e % cos2m + X} (1.16)

where D' indicates the distance of the whale to the prey which is the best solution
achieved so far. b and [ are constant number to define the shape of the logarithmic

spiral and a random number in [—1, 1], respectively.

3. Search for prey

D=1|CxX}—X| (1.17)
a (X*-AXY) X%Y) XY b
® x|
o
o)
: &Y
ooy 4_.‘——;—».
(X*-AX, Y XY & N Ny !
) A=02 ( ) 1 — (X*, y*):: Dl
A=04
A=0.5
A=0.8
A=1
(X*-AX, Y*-AY) (X*,Y*-AY) (X,Y*-AY) 0.5 -1 1 l

Figure 1.3. Bubble-net Search Mechanism of Humpback Whales [68].
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1.2.3.3 Social Spider Optimization (SSO)

Social spider optimization algorithm is based on the simulation of cooperative behav-
ior of social-spiders [22]. SSO considers two types of search agents: male and female spiders.
Each agent, according to its gender, cooperate in different activities such as building and
maintaining the communal web, prey capturing, mating and social contact [113]. Figure 1.4
shows the schematic representation of the SSO algorithm-data-flow of the female cooperative

and male cooperative operators; the mating operator modifies both individual types.

Initialization
2y N\ 7\
Female Male
cooperative operator cooperative operator
NV Y
-~y = -y ——
L~ ‘),, §_\ /;(Iw >
7 N\ , \
PN . /
Mating
operator Communication
Mechanism
> (i
/7 \

Figure 1.4. Schematic representation of the SSO algorithm-data-flow [22].
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Algorithm 6 Social Spider Optimization

Consider total N number of male N,, and female Ny spiders

Initialize the female and male spiders randomly

1:

2:

3:

4:

5:

6:

7

Calculate the radius of mating

while termination criteria is not satisfied do
Calculate the weight of every spider
Move female spiders according to the female cooperative operator
Move male spiders according to the male cooperative operator
Perform the mating operation

end while

1.3 Motivation, Goal and Contribution

Current methodologies in prediction and optimization are good, but because the

limitations we discussed, not easy to interpret or lack of robustness. Motivated by these

reasons we present a pair-wise feature selection approach, Top Discriminating Pairs, to handle

large dimension cancer classification/prediction problems. Moreover, we adopt the Swarm

Intelligence mechanism to In this subsection we briefly resume the major contributions of

this dissertation.

Specifically, in the following chapters we show,

1. Rule-based approaches are a good way of representing of knowledge or rich informa-
tion. We present a new method in machine learning that improves the prediction
accuracy with less number of features involved while still maintaining robustness and

interpretability.

2. We prove that swarm intelligence based algorithms are able to avoid local minimums

and search for global optimal solution more efficiently.

3. We construct spider monkey optimization based routing protocol that advances wireless

sensor networks mechanism in the direction of optimal solution.
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4. We adopt spider monkey optimization algorithm that advances feature space reduction

in classification and prediction.

5. We provide evidence from real-world applications that our methods provide significant

advantages in accuracy and interpretability.

1.4 Structure of the Dissertation

A chapter by chapter description of this dissertation is as follows.
Chapter 2: Introduces the rule-based feature selection approach, Top Discriminating Pairs,
to handle a high number of attributes in gene expression analysis and cancer classification
problems.
Chapter 3: Applies spider monkey optimization algorithm to address 11 numerical opti-
mization problems; and also carries out the analysis of performance with comparison to some
other well-established optimization algorithms.
Chapter 4: Constructs a spider monkey optimization based routing protocol in wireless
sensor networks to improve network performance and reduce energy consumption.
Chapter 5: Provides a real-world example of using spider monkey optimization algorithm
as a feature selector to elevate cancerous genes in Microarray analysis.
Chapter 6: Summarizes the main points and key messages of the paper and includes some

closing thoughts for future work.
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CHAPTER 2
TOP DISCRIMINATING PAIRS FOR FEATURE SELECTION

2.1 Design Challenges

Rule-based approaches are a good way of representing of knowledge or rich informa-
tion. Moreover, rule-based feature selection techniques or classifiers are popular in various of
machine learning applications due to their casy interpretability and robustness in handling
high number of attributes. However, major concerns in rule-based learning approaches are
expression of general knowledge, expression of specialized knowledge, naturalness, modu-
larity, knowledge acquisition, unexpected missing inputs, inference efficiency, maintenance,
updatability, provision of explanation, etc. [83]. A detailed explanation on some of these

factors is provided as below:

1. Maintenance: Complex validation methods are required to to maintain redundant and
conflicting rules. The maintenance process gets difficult as the size of the rule base

increases.

2. Modularity: Each rule is independent and can be inserted into or removed to the

knowledge base without affecting other rules.

3. Naturalness: Rules are a fundamental method for representing natural knowledge. It
can be applied in many application domain by emulating human expertise in greater

depth.

4. Knowledge Acquisition: acquiring rules or knowledge through experts is very time-
consuming. For certain domain area, the knowledge is very complicated and may
require a large number of rules.
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5. Interpretation: The general nature of rules may create problems in the interpretation
of their scope during reasoning. To effectively deal with a specific situation, rules may

sometimes need to be specialized [71].

6. Unexpected Missing Inputs: data quality is a major factor to draw conclusions from
rules. For a specific rule, a certain number of condition values must be known in order

to evaluate the logical function connecting its conditions.

2.2 Our Methodology

For generality, we describe the method in terms of marker pairs, which represent the
most informative paired genes. Consider a training dataset of M genes whose expression
levels can be assigned as {Xj.., X,,}, and total N samples {1,..., N}. The data can be
represented as a matrix of M x N dimension in which the expression value of the i** gene,
i = {1,.., M}, form the n'™ sample is denoted by X;,. Let (yi,...,y,) be the vector of
class labels, where y, € C and C = {C,...,C;}. In binary classification, we assume t =
2, where Cy refers to normal samples (good prognosis group) and Cs to cancerous samples

(poor prognosis group). The structure of paired genes are shown as below,

Xl,l X1,2 Tt Xl,n
Xl,l Xl,l ot XQ,n
Xm 1 Xm71 an

For each gene expression value, we define labeling rules based on two conditions first.
If the expression value of X, is less than or equal to the mean value of the i*" gene across

all samples, then we label X;, as Low, represented by symbol L. Otherwise, X;, is High,
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represented by symbol H, respectively. The comparison rules for the gene pair (i, j),

"
LL, Xy <xz; X, <7j
LH7 Xm S _i Xjn > _j
R = (2:2)
HL: Xm > _z Xjn S _j
HH; X'L"n/ > ‘fl Xjn > _J
\

the quantities of interest in class C are,

Prob(LL|Cy)

Prob(LH|Cy
pij(Rij, Cp) =
Prob(HL|C;

) t=(1,2) (2.3)
)
| Prob(HH|Cy)

these probabilities are estimated by the relative frequencies of occurrences of each
comparison rule within expression profiles and over samples. For selecting the highly ranked
gene pairs, we first compute by calculating the difference for every single rule among all

classes, C; and (%, across all samples. Hence, the ‘rule difference’ v;; in class Cy, defined as,
Yij(Rij) = [pij(Rij, Ci=1) — pij(Rij, Ci=2)] (2.4)

then eliminate the rules with less conditional probability. Let A;; denotes the ‘ranking
score’ for the gene pair (i, j),

Ayj = mazx(vyi;(Rij)) (2.5)

based on A;; scores, we are able to select the top discriminating pairs. These pair of

gene are viewed as a subset of relevant features for further use in classification.
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Gene X GeneY

X > X Y < Y
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Gene Pair - XY

X > X X > X X )={ X X )= X
Y > Y Y < Y Y > Y Y )<Y
vHH\_/ \_/HL\_/ \_/LH\/ \_/LL\/

Comparison Rules for the Gene Pair

Figure 2.1. Top Discriminating Pairs

2.3 Results and Discussion

2.3.1 Simulated Data

To illustrate how feature selection methods respond to different data structure, we
apply our method on a type of artificial data as follows: each sample contains 1000 genes,
of which 100 are signal genes. This type of data was first generated by [90], which the
signal gene follow the multivariate normal distribution N(u, F) and N(—pu, E) for class 1
and class 2, respectively. Here, u is a vector of 10 distinct values ranging in [-0.25, 0.25]
with an increment of 0.05 or 0.1. Each value is being the effect size of 10 differentially
expression genes [90]. The rest of 900 genes follow standard normal distribution with mean
0 and standard deviation 1. Total 150 independent samples were generated, and each class
consists of 75 samples.

First, we compare the performance of Random Forests, J48 and Naive Bayes on

simulated data, using TDP with the traditional TSP (without dimensionality reduction
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step) as feature ranking methods. We apply discretization methods on continuous model,
transferring continuous value to discrete representations. Based on our previous experiments,
three sigma edit rule approach achieved better performance to others. Hence, in the rest
of our simulation experiments, we will apply three sigma rule only in discretization step.
To better investigate the robustness of cach method, we start with dimensionality reduction
preprocessing step by removing the redundant features in each experiment; then we apply the
TDP feature selection algorithm, build Random Forests, J48 and Naive Bayes models with
each level of selected genes (k) on the training set. The training set contains 100 samples
(from the simulated data) and the remaining 50 samples are used as test set. The statistics
of simulated data are listed in Table 2.1.

Table 2.1. Statistics of Simulated Data

Genes Samples (+/-) Training size Test size Classes

1000 150 (75/75) 100 50 2

Note: positive sample (4), negative sample (-).

Table 2.2 shows the misclassification rate in simulated data at different level of selected
gene pairs using Random Forests classifiers, with correlation coefficients p at 0 and 0.45.
The performance illustrates that our TDP method seems to perform comparably to the
traditional TSP when the signal genes are independent. However, as the selection level
of gene pairs is low and the signal genes become more correlated, TDP turns out to be

increasingly advantageous over TSP.
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Table 2.2. Misclassification Rates of TSP and TDP Methods on Simulated Data

p=0 p =045

Selection Level

TSP TDP TSP TDP

1 047 039 032 0.31
10 043 041 038 0.36
20 043 042 034 0.35
30 0.38 0.35 0.20 0.30
40 0.41 039 024 0.29
20 035 032 027 033

Our TDP as a feature selection method is effective than TSP in response to the
progressively increased correlation among signal genes when selecting small number of gene
pairs (selection level = 10 or 20). This trend is illustrated in Table 2.2. Furthermore, we
exhibit the running time of the TSP and TDP methods to demonstrate the computational
efficiency, shown in Table 2.3. As can be seen, TDP outperforms the state-of-the-art TSP
algorithm in all conditions, in varies number of samples and features. Hence, our TDP
approach can be used to efficiently generate rules and eliminate features in a shorter execution

time than TSP in most of the cases.
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Table 2.3. Comparison of Various Feature Selection Methods on Running Time

p=0

Selection Level

TSP TDP
100x50 0.044 0.020
500x50 0.333  0.267
1000x50 2.069 0.414
100x150 0.051 0.031
500x150 0.622 0.337
1000x150 3.048 1.086

Note: each subset is extracted directly from our 1000 x 150 simulated data, when p = 0.

2.3.2  Microarray Data
2.3.2.1 Microarray Data Characteristics

In general, researchers are facing various types of challenges when dealing with Mi-
croarray data analysis. In our study, we mainly focus on binary microarray datasets which
consist of healthy patient samples and diseased samples. The three major characteristics of

the microarray data we used in our experiments are,

1. Small sample size: most of the DNA microarray data has less than 100 instances,
using a very small size of samples could increases the chance of assuming as positive

or negative class [32].

2. Class imbalance: this problem happens when data dominated by a major class which

contain more samples than the other classe [34].

3. Data complexity: some of the data are more complicated to separate because of over-
lapping among classes or the linearity of the decision boundaries. It is a commonly

seen issue in microarray data [48].
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2.3.2.2 Experimental Results

We applied the TDP and TSP methods to two cancer datasets, and the information
of these datasets is summarized in Table 2.4. The pre-processing procedure is similar to
the experiments in simulated data, which includes discretization using three sigma rule and
dimensionality reduction with closed BIMAX method. The first data set is breast cancer
dataset [101], obtained from Shi et al. [90], which is normalized by RMA procedures using
Bioconductor packages. The final expression data comprising 209 samples and 22283 genes.
The dataset consists of 71 patients who developed distant metastases or dies within 5 years
labeled as negative samples, and the rest 138 patients who remained healthy during the same
time frame classified as positive samples. Another cancer dataset is derived from Beer et al.
[15], obtained from the cancer dataset depository of the Broad Institute. This data contains
86 patients with primary lung adenocarcinoma, which 24 patients who had died and the

remaining 62 of them.

Table 2.4. Statistics of Data Sets

Data Genes Samples (+/-) Classes Source
Wang Breast Cancer 22283 209 (138/71) 2 [101]
Lung Adenocarcinoma 7129 86 (62/24) 2 [15]

Note: positive sample (+), negative sample (-).

The classification performance of TDP is compared with TSP as feature selection
methods in the two cancer datasets. We performed 10-fold cross-validation on breast cancer
data and 5-fold cross-validation on lung adenocarcinoma data, then average the results from
five experiments. The results summarized in Table 2.5 using different methods on the above
datasets. The three classification algorithms we selected are Random Forests (RF), J48 and
Naive Bayes (NB). Random Forests and J48 algorithms are tree-based methods. NB is a
simple yet powerful algorithm; it provides classification outcomes as well as the degree of

certainty [18]. Table 2.5 shows our proposed TDP method outperforms TSP in most of the

28



cases, especially when the feature selection level is small. However, the selection level is
not the only evaluation metric in feature selection, we also provide the clssification accuracy
details of each algorithm in this table. Overall, TDP approach has slightly better results on
both Wang Breast Cancer and Lung Adenocarcinoma data sets when 1) the sample size is
small and 2) the classes are imbalanced.

The Figure 2.2 illustrates the average accuracy of RF, J48 and NB classifiers on Wang
Breast Cancer data. The horizontal axis represents the number of gene pairs (selection level)
and the vertical axis represents the out-of-sample classification accuracy is obtained among
all the runs. Similarly Figure 2.3 shows the results on Lung Adenocarcinoma data with

various classifiers.
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Table 2.5. Accuracy of TSP and TDP Methods on Various Data Sets

Random Forests (%) J48 (%) Naive Bayes (%)

Selection Level

TSP TDP TSP TDP TSP TDP

Wang Breast Cancer

1 70.19 65.57 65.38 68.27  63.46 71.15
10 65.38 70.96 64.81 69.23 66.35 63.46
20 69.04 70.58 04.81 64.42 64.42 59.62
30 72.11 71.19 57.31 58.63 62.44 59.62
40 71.47 74.04 60.18  56.73  64.42 58.65
50 69.21 71.15 63.46 67.30 66.34 71.15

Average 69.57 70.58 60.99 64.10 64.57 63.94

Lung Adenocarcinoma

1 60.46 70.46 71.33  69.78  62.79 69.74
10 65.38 70.96 61.84 69.23 66.35 63.46
20 69.04 70.58 54.81 64.42 64.42 61.54
30 69.76 66.86 65.11 58.13 58.14 63.13
40 70.45 67.65 69.07 65.12 55.81 62.79
50 69.90 72.09 60.46 68.13 67.44 60.46

Average 67.50 69.77 63.77 65.80 6249  63.52
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CHAPTER 3
SPIDER MONKEY OPTIMIZATION IN NUMERICAL OPTIMIZATION

Spider monkey optimization (SMO) is a relative new addition to the family of swarm
intelligence algorithms by structuring the social foraging behavior of spider monkeys. To
illustrate the robustness of the introduced SI based algorithms, we tested them over well
known optimization test problems as well as some popular real world optimization problems.
We also carry out the Sensitivity analysis of different parameters, statistical analysis of results

with comparison to some other well established optimization algorithms.

3.1 Benchmark Function

The benchmark functions are also known as the test functions or artificial landscapes.
It’s used to evaluate characteristics of optimization algorithms such as overall performance,
robustness, precision and convergence rate [11]. In order to evaluate an algorithm, one must
be tested or identify the kind of problems where it outperforms the others. In general, a
wide variety of problems should be taken in to consideration, such as unimodal, multimodal,
separable, non-separable, regular, irregular and multi-dimensional problems [19]. In this
study, we only consider the test functions are formulated by unimodal, multimodal, separable

and non-separable problems.

3.2  Comparison Results

The numerical efficiency of the PSO, ABC, ACO, GWO, WOA, SSO and SMO algo-
rithms introduced in this study was tested by solving 11 mathematical optimization prob-
lems. Table 3.1 summarizes the test problems reporting the objective function, the number of
design variables, range of variation of optimization variables, function type and the optimum
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value quoted in literature. The experiment compares the convergence curves of various algo-
rithms proposed in the previous subsection. For each benchmark function, the algorithms ran
30 times starting from different populations randomly generated. The results are reported
in Table 3.2 considering the following performance metrics: the averaged best solution (AB)
and corresponding standard deviation (SD). In all comparisons, the swarm population has
been set to 30 individuals and the maximum iteration number is 100. According to this
table, GWO and SMO deliver better results than other algorithms. In particular, SMO
outperforms in f1, f4, f5, and fg which cover the multimodal-separable, unimodal-separable
and multimodal-non-separable types of benchmark functions.

The parameter setting for each algorithm in the comparison is described as follows:
1. PSO: the personal learning coefficient is 1.5 and the global learning coefficient is 2 [46].

2. ABC: the abandonment limit parameter is around 540 and the acceleration coefficient

upper bound is 1 [46].

3. ACO: the intensification factor (selection pressure) sets at 0.5 and the deviation-

distance ratio is 1 [46].
4. GWO: the vector a linearly decreases from 2 to 0.

5. WOA: the vector a linearly decreases from 2 to 0 and the vector asy linearly decreases

from -1 to -2.
6. SSO: the probability PF has been set to 0.7.

7. SMO: the parameters maximum group size, local leader limit and global leader limit

are 5, 50, and 150, respectively.

Evolutionary algorithms (EA) have been widely employed for solving complex optimi-
zation problems. These methods are found to be more powerful than conventional methods

based on formal logics or mathematical programming. PSO, ABC and ACO are the most

35



F1 - Ackley

F4 - Dixon and Price
257 200
20 H
3 B 150
=1 =4 .
s 8 :
Q I Qa -
815 8 :
o @ 100 1
5 vanay o H
S0t S, - 3 :
g e = *g :
.......... Lo 50 f=
@ B m \\‘
40 60 80 100 0 20 40 60 80 100
Iterations Iterations
F5 - Griewank F6 - Rastrigin
800 r
B 600 B
= :\ =
8 H g
Q ' Qo
(@] H| (e}
£ 400 %) o
[o] - []
8 |3 3
z |\ 5
@ 200 1" @
0 \'lm.uunun"‘z " "
0 20 40 60 80 100 20 40 60 80 100
Iterations lterations
F7 - Salomon F9 - Sphere
0.8 0.015 1
: PSO
H ABC
: ACO
E 0.6 E 2 o WO
8 ® 0.01 H — — WOA
2 8 o e SSO
0 04 o : SMo
3 g :
(2] %) E
g g 0.005 -
m 0.2 o ;
i N
20 40 60 80 100 0 20 40 60 80 100
Iterations Iterations

Figure 3.1. Comparison of Convergence Curves of the Proposed Algorithms Obtained in
some of the Benchmark Problems

36



6€1€°CE 1€G0Y 70010 (244 M} 9€4cc I19C°1¢ ve9eT  dS ry
60=T097'T LO988LY'G  TP=9LG8F 8G-9C6C0°6 109¥°0 8G00°€ ¢l0¢0 dVv
€€99°0 0800°0 861¢°0 gg00°0 0€40°0 €qrTo  v0-9E8€0°¢c dS oy
70-°9T10T0°¢C 80-9C9€6'€ SIOIG8L'C  60°0I€0°€ TTT0°0 €¢c0’0  G09¢99¢9 dV
¢0c0°0 70-°9T164L°€ ¢¥v00'0  ¥O-9pPas'l 70-90G98L°T 90-9L996°T  ¥0°68L0'T dS 6
80-2068L°T 60=070L°€  €POCL86'8 6S-90VIC € G0987LG°C  L096¢88T  G09CECT'E dV
6C18°0 L1€0°0 G926°6 76100 60+°L29¢'T  60+°GCIT'T L6VC' T  dS 8
VO+HOICICT $O+OIGICT  FOHOIGICT  F0+999S¢°T 80+9L986'F- 80+9S0V8 T~ F0+PICIZT dV
ge€900 8ETC0 81400 ¢8¢0°0 7€40°0 1¢eT0 ¢8¢l'0  dS L
G0-2070€"T G0-9¢409°¢c  T¢960GL°T 6C-9808C°'T 8L10°0 8¥¥0°0 10600 dV
¥0-90L98V L¥80°0 9€40'0  ¥0°¢990'8 9¥8T°0 G990°0 G9¢1’'0 dsS of
oT- 0t1- 0t1- 0r- €0L6°6- eV.L6°6- €L966- dV
861¢°0 GG80°L6 1260711 61T9€°0 GLy¢ 901 0646 70T 8€94°L9 dS of
L0-29968°F% 099¢°91 Gg6s0 €000 1968°G7¥ 1eeT°L6€E 65650y dV
0Sv1°0 Iveey €966°1¢ 9LV¥'C L8LETC 94e8'e 496L.6 dS v
0T-9€LV G C gro0'0  ¥O0°F¥69'T  FOP6LVC T G8YG'E ¢Gv9°0 veov'lT dv
¢100°0 66€0°0 G6¢1°0 166€°0 G0-9€C8EC 9G10°0 99100 dS £
70-9G€18°C 9020648°'T  LEPGOEL'C €979E6E6°S 90-2€00¢8 ¢€00°0 Geoo'o dv
79090 €r10°0 6€€0°0 90-966£6°¢ 79€0°0 T100°0 8100 dS d)
L09TLIEG LOCITI'T  CVo8Y8Y'Y  L¥V-9€CI8’1 72,0070 V0-9Ccr0LT Ly00'0 dVv
6T80°T €005°¢ 9149 €605°C L860°0 I8T7°0 aeyre dads i
60-°T668°V 18969  L0-98EI98'T L8cE0 LTvS 06 65¢E0¢ €€L6°01 dV
OIS OSS VoM oMd ooV odv OSd

suonouny yIewypuog Jo uostredwo)) z'¢ d9qr],

37



popular swarm algorithms for solving complex optimization problems. However, they present
serious flaws such as premature convergence and difficulty to overcome local minima [102].
Different to them, the newly invested nature-inspired algorithms such as SSO and SMO take
gender information into consideration, allows incorporating computational mechanisms to
avoid critical flaws such as premature convergence and incorrect exploration—exploitation

balance commonly present in PSO, ABC and ACO algorithms [22, 12].
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CHAPTER 4
SPIDER MONKEY OPTIMIZATION FOR FEATURE SELECTION

4.1 Design Challenges

Swarm Intelligence indicates a recent computational and behavioral metaphor for
solving distributed problems that originally took its inspiration from the biological examples
provided by social insects (ants, termites, bees, wasps) and by swarming, flocking, herding
behaviors in vertebrates. Some of the major factors of design challenges in swarm intel-
ligence are self-organization, collective intelligence, scalability, stability, data sources, etc..

We provide a detailed explanation on each factor in the following section:

1. Scalability: Large-scale gene expression data requires superior computing power. It
cannot be loaded directly into the memory and limits the usage of various feature

selection algorithms [61].

2. Stability: In the field of bioinformatics, the stability of a new feature selection algorithm
is important that a similar set of genes should be selected each time when obtaining

new samples in the small amount of perturbation [44].

3. Structured Feature: Most generic data contain the features that do not have explicit
correlation. Current feature selection algorithms may propose the same subset of the

features even though the features are shuffled [112].

4. Multi-Source Data: Traditional feature selections are designed to address the problems
with a single data source. However, the heterogencous data brings more extraordinary
insights, leverages their associations and characteristics, and finds more correlated
features [116].
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5. Multi-View Data: Many problems in data mining and machine learning involve datasets
with multiple views. Multi-view data represents different facets of data instances

through multiple feature spaces [67].

6. Global and Local Minimum: Feature selection often leads to non-convex optimization
problem and most of the existing approaches that address this issue can only guarantee

the convergence to a local minimum[92].

4.2 Related Work

4.2.1 PSO for Feature Selection

Xi et al. [107] propose a binary encoded quantum-behaved Particle Swarm Opti-
mization (BQPSO) method for gene selection combining support vector machine (SVM) for
human cancer classification. It is initially inspired by the quantum theory; it considers the
position of a particle as a binary string. For example, p1(1011001010) and p2(0010010110)
are two particles; the distance between these two particles is calculated based on Hamming
distance. This hybrid method for gene selection and cancer classification of high dimen-
sional Microarray data, five cancerous datasets outperforms genetic algorithm (GA) with
SVM and has shown great significance in robustness, efficiency and accuracy. The authors
of the method believe that the proposed BQPSO/SVM approach has an obvious advantage in
term of very few genes are involved in classification and it provides strong search capability.

Gao et al. [36] present a hybrid optimized classifier, PA-SVM, combing Particle
Swarm Optimization (PSO) and Artificial Bee Colony (ABC) algorithms on gene expression
data after filtering out redundant features using Fast Correlation-Based Feature Selection
(FCBF) method. This approach improves the quality of gene selection and human cancer
classification. It can be used in binary and multi-category classification; it is also able to
handle high dimensional Microarray datasets. By optimizing SVM, the proposed approach
achieves higher classification accuracy among other methods, PSO-SVM (employed PSO to
optimize the parameters of SVM) and ABC-SVM (utilized ABC to optimize parameters of
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SVM).

Cancer classification can be divided into two tasks: gene selection and classification.
Jin et al. [51] propose a Binary Improving Particle Swarm Optimization (BIPSO) algorithm
to select informative genes; then construct a variety of the tumor classifiers to enhance the
classification performance. Generally, using a single classifier is not an ideal strategy solving
complex problems. Hence, the authors introduce a boosting ensemble operation in order to
achieve lower misclassification rates and thorough performance. The main characteristic of
this work is that it can automatically determine the number of nominated genes. The exper-
imental results show that BIPSO approach has better performance than the original PSO
and improved PSO approaches in terms of high classification accuracy, less genes selected,

and effectiveness on multi-classes datasets.

4.2.2 ACO for Feature Selection

Tabakhi et al. [94] introduce an Ant Colony Optimization based unsupervised gene
selection method, MGSACQO, in order to enhance the classification accuracy. This approach
aims to minimize the irrelevant of genes and maximize the relevance among genes. To better
illustrate the usefulness of this method, it has been examined on 5 publicly available gene
expression datasets for human cancer. Furthermore, the proposed method is compared to
seven other well-known feature (gene) selection methods with respect to the classification
accuracy of three classifiers including SVM, Naive Bayes, and Decision Tree. According
to the manuscripts, MGSACO obtained superior performance over different classification
methods due to the population-based iterative improvement process. Within each iteration,
a subset of genes is selected by a group of agents and evaluated based on a fitness function
instead of using any learning model [94] .

Sharbaf et al. [89] propose a hybrid feature selection approach (CLACOFS) com-
bining Cellular Automata (CA) and Ant Colony Optimization (ACO), which is used to

model gene-gene interactions and learn the rules and structures of CA, respectively. The

41



main contribution of the proposed method is to remove irrelevant genes, minimize search
space and reduce computational complexity. CA is chosen due to its capability of parallel
computing. The authors incorporate ACO with CA to boost the overall performance effec-
tiveness in terms of greater convergence rate, less initial genes involved and higher influence
on separating different categories.

El Houby et al. [30] implement an Ant Colony Optimization approach for solving
the most challenging problem in feature selection, a large amount of less informative or
irrelevant features in the search space. The ants are divided into 2 subgroups and each

candidate feature is elevated according to different criteria [30] :

1. group 1: uses the nearest feature to the previously elected one based on its fitness

value.

2. group 2: uses the furthest feature to the previously elected one in according to the

fitness value.

This model uses both group 1 and 2 ants to elect different features that give the best heuristic
and pheromone values. The results show that eliminating redundant and irrelevant features

and the right nomination of features may minimize the classification error.

4.2.3 ABC for Feature Selection

Selecting highly informative genes is a challenging and interesting topic in Microar-
ray data analysis. Li et al. [63], propose a multi-objective ranking binary Artificial Bee
Colony algorithm (MORBABC/D) to discriminate immensely correlated genes from the orig-
inal complex gene expression data. By employing extreme learning machine, the proposed
method can intelligently select the most correlated features that can determine the smallest
subsets, ignore redundant features and improve classification sensitivity. The MORBABC/D
approach outperforms other algorithms, ELM (Linear-kernel), ELM (RBF-kernel), OS-ELM
WE, LM, SVM, KNN, NB, LDA, NSGAII, MOPSO, MODE, and MOEA /D. In the classifi-
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cation accuracy table, TABLE 4.1, we only consider the results of the most popular classifiers
such as SVM, KNN, NB and LDA.

Moosa et. al [72], presents a modified Artificial Bee Colony algorithm (mABC) to
select informative biomarkers for cancer classification and prediction. This enhanced version

consists of two steps: pre-sclection of genes and modified ABC algorithm for gene selection,

1. Pre-selection: irrelevant genes are removed according to some basic statistical method
such as Kruskal-Wallis and F-test. Then the authors determine the number of genes

to be nominated in the next stage.

2. Modified ABC: after the pre-selection step, only the top ranked genes are retained.
Then they are fed to the mABC model for the second filtration; and a smaller subset

of relevant genes is formed.

mABC provides more accurate and promising classification results among 10 publicly avail-
able cancer datasets with a smaller subset of genes selected. In order to find the best
parameter settings; mABC was tuned with full factorial combination [72], which includes
the criteria of performance, run-time and method selection.

Classifying gene expression data is always challenging due to its characteristics that
involve small sample size, imbalanced classes, and data complexity. Andaru et al. [6], be-
lieve fewer features/genes selected is equivalent to less computational time and space. In this
work, the authors introduce a similar strategy as [72], which also involves two steps: filter
and wrapper. In spite of evaluating the state-of-the-art ABC algorithm on a single classifier,
Andaru has applied the proposed approach (ABC-reduced) on multiple classification meth-
ods including Decision Tree, K-NN and Rule Induction. The results show that prediction

accuracy of ABC-reduced outperforms other algorithms such as GA and PSO.

4.2.4 GWO for Feature Selection

Grey wolf optimizer (GWO) is a new evolutionary computation technique to discover
the optimal subset of relevant features. It mimics the leadership hierarchy and hunting mech-
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anism of grey wolves in nature. Emary et al. [31] propose a binary grey wolf optimization
(bGWO) strategy applied in the feature selection domain for maximizing the classification
accuracy while reducing the number of selected features. The authors proposed two versions
of the binary grey wolf optimizers, known as bGWO1 and bGWO2. To ensure the stability
and statistical significance of the performance, the datasets are partitioned into 3 equal sets;
and this apportioning was repeated 20 times [31]. Multiple measurements are used in order

to illustrate the effectiveness and usefulness of the proposed approach such as:

1. Classification average accuracy: the correct predictions of a classifier with a given

feature set.

2. Statistical best: the most optimistic solution acquired of an optimization algorithm at

multiple operations.

3. Statistical worst: the pessimistic solution among the best solutions found for running

an optimizer multiple times.

4. Statistical mean: the average of the solutions generated from running an optimizer for

multiple runnings.

5. Standard deviation: the variation of the obtained best solutions originate for running

an optimizer many times.

6. Average selection size: the average size of the feature subsets to the total number of

features.

7. Average F-score: a measure of test’s accuracy, calculating for individual features given

the class labels [28].

8. Wilcoxon rank sum test: a nonparametric test that assigns rankings to all the scores

considered as one group; then sums the ranking orders of each group [105].
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The experimental results of the bGWO2 approach overcome the attained results for PSO and
GA optimizers on 18 standard benchmark datasets, addressing various kinds of classification

problems.

4.2.5 WOA for Feature Selection

Whale optimization algorithm (WOA) is a population-based stochastic algorithm
and a new addition to the Swarm Intelligence family. It has been widely used in solving
real-world problems such as economic dispatch [70], power system [3], neural network [17],
image processing [98] and wireless sensor networks [4]. Mafarja et al. [88] propose two
hybrid models, combining the whale optimization algorithm with a simulated annealing
(SA) algorithm. SA is embedded in WOA in the first model and used to improve the best
solution achieved after each iteration of WOA in the second model. The proposed approach

is named WOASA and consists of two phases:

1. Exploitation phase: during hunting phase, whales first encircle the prey. This hunting

strategy is known as the bubble-net attacking method.
2. Exploration phase: a random search agent is chosen to guide the search for prey.

The performance ensures the ability of the proposed hybridization models to effectively
in search the feature space and select the significant features for building classifiers. The
WOASAT2 (WOASA uses a tournament selection mechanism) and shows better performance
than PSO and GA approaches on 16 datasets except for two, Exactly2 [33] and WaveformEW

[117]. These two datasets contain a large number of samples but fewer features.

4.2.6 SSO for Feature Selection

Anter et al. [8] applied a new Social Spider Optimization algorithm (SSOA) to find
global optima in the search space. It mimics the behavior of social spiders that interact
with each other based on the biological law of the cooperative colony. In medical image
and cancer classification areas, the feature extraction is an important stage in the pattern
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recognition system. SSO based algorthims designed to obtain a subset of features that is

capable to present Region of Interest sufficiently [9].

4.2.7 MOA for Feature Selection

Monkey optimization algorithm (MOA) has been broadly engaged in many fields, for
example, satellite imagery [49], image processing [93], wireless sensor networks [39], antenna
wave [5], and power system [75]. Each evolutionary computation technique has its own

strength and weakness. The main advantages of MO based algorithms are listed below:

1. Provision to handle problems such as stagnation or premature convergence in its orig-

inal design [42].
2. Fewer parameters to adjust and low computational cost [76].
3. Easily handling of non-linear constraints [60].

4. The single structured group in the initiation stage that it’s easier to attract newly

generated food source towards the target [26].

5. Flexibility — MO can incorporate from other heuristics and optimization methods in a

unique way [52].

Hafez et al. [43] introduce a hybrid optimization approach combining the Monkey
Algorithm (MA) that mimics the social behavior of monkeys and the Krill Herd Algorithm
(KHA), which studies the herding of the krill swarms in response to specific biological and en-
vironmental processes [35]. This new method, MAKHA adaptively balance the exploration
and exploitation to quickly reach the optimal solution. The hybrid MAKHA algorithm in-
cludes 6 major steps: watch-jump process, the somersault process, foraging motion, physical
diffusion, applying foraging motion and the physical diffusion, and a genetic operator. The

experimental results show that MAKHA obtains better classification accuracy in comparison
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with the-state-of-art PSO and GA algorithm. All results obtained from the approaches men-
tioned above are reported in TABLE 4.1, which includes each individual methodology, the

datasets they used, classification accuracy and the development environment and settings.
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Table 4.1. Comparison of Data Source and Classification Accuracies obtained from Different
SI based Feature Selection Methods

Methods Datasets Classifiers (Accuracy %) Simulation
Leukemia BPSO/SVM (100) | BQPSO/SVM (100)
Prostate BPSO/SVM (99.02) | BQPSO/SVM (99.25) MATLAB
BQPSO/BPSO | Colon BPSO/SVM (91.94) | BQPSO/SVM (92.52) #Swarm (20)
Lung BPSO/SVM (99.96) | BQPSO/SVM (99.96) #lteration (100)
Lymphoma BPSO/SVM (99.74) | BQPSO/SVM (99.79)
Breast PSO-SVM (87.63) | ABC-SVM (88.66) | PA-SVM (88.66)
Lung PSO-SVM (79.49) | ABC-SVM (74.36) | PA-SVM (79.49)
NervSys PSO-SVM (90) ABC-SVM (91.67) | PA-SVM (91.67)
PSO Prostate PSO-SVM (100) ABC-SVM (100) PA-SVM (100) MATLAB
PA Colon PSO-SVM (90.32) | ABC-SVM (93.55) | PA-SVM (93.55) | #Swarm (30)
Leukemia PSO-SVM (100) | ABC-SVM (100) | PA-SVM (100) | #Iteration (100)
Ovarian PSO-SVM (100) | ABC-SVM (100) | PA-SVM (100)
DLBCL1 PSO-SVM (98.70) | ABC-SVM (98.70) | PA-SVM (100)
DLBCL2 PSO-SVM (82.76) | ABC-SVM (82.76) | PA-SVM (86.21)
Leukemia SVM (93.58) LDA (91.95) KNN (91.02)
Unknown
BIPSO Colon SVM (94.95) LDA (92.87) KNN (93.09) #Swarm ()
SRBCT SVM (99.76) LDA (97.71) KNN (96.67) ,
#Iteration (20)
Lymphoma SVM (97.84) LDA (96.53) KNN (96.04)
Colon NB (80.00) T (76.37) SVM (78.19)
SRBCT B (84.14) T (77.25) SVM (74.49) | MATLAB
MGSACO Leukemia B (92.31) T (76.93) SVM (82.06) | #Swarm (100)
Prostate B (62.86) T (70.29) SVM (73.15) #lteration (50)
Lung B (80.00) T (80.00) SVM (85.72)
o P B G040 EEE Eiéﬁiﬁ S|
CLACOFS - - #Swarm (6)
MLL-Leukemia B (99.30) KNN (97.55) SVM (-) YTteration
ALL-AML-4 NB (86.38) KNN (80.99) SVM (-)
Heart KNN_all (82.50) KNN_reduced (96.77) MATLAB
ACO Breast KNN_all (93.15) KNN _reduced (97.95) #Swarm (6)
Thyroid KNN_all (94.00) KNN_reduced (98.25) #lteration (100)
9_Tumors EPSO (75.00) mABC/SVM (98.65)
11_Tumors EPSO (95.40) mABC/SVM (99.50)
Brain_Tumorl EPSO (92.11) mABC/SVM (100)
Brain_Tumor2 EPSO (92.4) mABC/SVM (100)
DLBCL EPSO (100) mABC/SVM (100) MATLAB
ABC | mABC - #Swarm (25)
Leukemial EPSO (100) mABC/SVM (100) )
- #Iteration (30)
Leukemia2 EPSO (100) mABC/SVM (100)
Lung EPSO (95.67) mABC/SVM (100)
Prostate EPSO (97.84) mABC/SVM (100)
SRBCT EPSO (99.64) mABC/SVM (100)
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Methods Datasets Classifiers (Accuracy %) Simulation
Colon MORBABC/D (98.54) | SVM (85.65) B (63.55) | KNN (74.51)
ALL-AML MORBABC/D (100) | SVM (98.61) B (85.27) | KNN (85.41)
Breast MORBABC/D (92.16) | SVM (70.10) B (60.27) | KNN (50.89) | MATLAB
MORBABC/D | Lung MORBABC/D (100) | SVAIL (99.28) B (99.00) | KNN (95.30) | #Swarm (50)
Ovarian MORBABC/D (100) | SVM (99.29) B (88.49) | KNN (94.98) | #Iteration (100)
Prostate MORBABC/D (98.43) | SVM (92.74) B (61.96) | KNN (83.23)
ABC DLBCL MORBABC/L) (100) | SVM (97.40) B (78.31) | KNN (83.76)
CNS T (63.30) RI (63.30) KNN (63.30)
Leukemia T (84.70) RI (87.50) KNN (91.70)
Lung T (89.60) RI (89.20) KNN (90.10) MATLAB
ABC-reduced | Lymphoma T (87.90) RI (89.40) KNN (98.50) #Swarm (30)
MLL T (76.40) RI (69.40) KNN (81.90) #teration (40)
Ovarian T (96.40) RI (96.40) KNN (96.40)
SRBCT DT (81.90) RI (81.90) KNN (96.40)
Breast bGWOL (97.60) bGWO2 (97.50) | GA (96.80) | PSO (96.70)
Exactly bGWOL (70.80) HGWO2 (77.60) | GA (67.40) | PSO (68.80)
Exactly2 bGWOL (74.50) bGWO2 (75.00) | GA (74.60) | PSO (73.00)
Lymphography | bGWOL1 (74.40) bGWO2 (70.00) | GA (69.60) | PSO (74.40)
M-of-N HGWOL (90.80) HGWO2 (96.30) | GA (86.10) | PSO (92.10) | MATLAB
GWO | bGWO SpectEW bGWOL1 (82.00) bGWO2 (82.20) | GA (79.30) | PSO (82.20) | #Swarm (8)
SonarEW bGWOL (73.10) HGWO2 (72.90) | GA (75.40) | PSO (73.70) | #Iteration (70)
PenglungEW | bGWOL (60.00) bGWO2 (58.40) | GA (58.40) | PSO (58.40)
TonosphereEW | bGWO1 (80.70) bGWO?2 (83.40) | GA (81.40) | PSO (81.90)
HeartEW bGWOL (77.60) bGWO2 (77.60) | GA (78.00) | PSO (78.70)
BreastEW LGWOL (92.40) HGWO2 (93.50) | GA (93.20) | PSO (96.70)
Breast WOASAT2 (97.00) | PSO (95.00) | ALO (96.00) | GA (96.00)
BreastEW WOASAT?2 (98.00) | PSO (94.00) | ALO (93.00) | GA (94.00)
Exactly WOASAT2 (100) PSO (68.00) | ALO (66.00) | GA (67.00)
Exactly2 WOASAT2 (75.00) | PSO (75.00) | ALO (75.00) | GA (76.00) |
WO | WossAT HearlEW | WOASAT? (8500) | PSO (7800) | ALO (3.00) [ GA (8200) | w0
TonosphereEW | WOASAT2 (96.00) [ PSO (81.00) | ALO (357.00) [ GA (83.00) | o (100)
Lymphography | WOASAT2 (89.00) | PSO (69.00) | ALO (79.00) | GA (71.00)
M-of-N WOASAT2 (100) PSO (86.00) | ALO (86.00) | GA (93.00)
PenglungEW | WOASAT?2 (94.00) PSO (72.00) ALO (63.00) | GA (70.00)
SpectEW WOASAT2 (83.00) | PSO (77.00) | ALO (30.00) | GA (78.00)
Breast MAKHA (95.97) A (98.20) | PSO (98.28)
BreastEW MAKHA (95.16) A (71.60) | PSO (96.53)
Exactly MAKHA (31.38) A (78.26) | PSO (71.59)
Exactly2 MAKHA (74.05) A (76.58) | PSO (76.28) | MATLAB
MOA | MAKHA Heart EW MAKHA (78.22) A (86.22) | PSO (83.78) | #Swarm (10)
IonosphereEW | MAKHA (84.96) A (88.38) | PSO (87.35) | #lIteration (70)
Lymphography | MAKHA (74.00) A (87.20) | PSO (82.00)
M-of-N MAKHA (97.00) A (96.16) | PSO (91.59)
SpectEW MAKHA (30.00) A (87.19) | PSO (84.94)
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4.3 Our Methodology

Balancing exploration of the search space and exploitation of the optimal solutions
are the keys in designing Spider Monkey Optimization (SMO) algorithms. In this subsection,
we first initialize the food source positions. Secondly, we introduce the six main phases of
SMO algorithm and their functions. The algorithm is iterated for a maximum iteration times
which is a constant number set by user. Each iteration outputs a local best solution. Finally,
the solution with maximum fitness is our global best which contains the optimal subset of
features. In the literature, the most ideal case is that the algorithm could discover that a
subset contains only one feature with 100% accuracy [72].

In this work we focus on employing the Spider Monkey Optimization (SMO) technique
to minimize the number of features been used for classifying the cancer disease. The major

steps are,
1. process and insert the microarray gene expression data
2. each monkey is represented as a subset of features

3. calculate the fitness scores and select the optimal feature subsets using spider monkey

optimization
4. the model stops when the termination criterion is reached
5. the best subset of features evaluated using the predefined classifiers

The pseudo-code of the proposed SMO algorithm for feature selection is given in

Figure 4.1 and the model flowchart is described in Figure 4.2 .
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Figure 4.1. SMOFS Process for Optimal Gene Selection

Population Initialization Phase (PIP) In this phase, we set up the food source positions

for total N spider monkeys. The position of the 7;, spider monkey SM; is represented as

SM; = {SM},SM?,...,.SMF}, where P is the feature size or dimension of the input data.

Local Leader Phase (LLP) This phase is based on the local leader and individual group

members (SM;) experience to adjust the new location. Greedy selection is applied by com-

paring between new position and current position by a well-defined fitness function [39].
SMP (new) = SMP + ©1  (LL] — SMF) + 0« (SM]" — SM)

(4.1)
where ©; € [0,1] and O, € [—1, 1]

Global Leader Phase (GLP) This phase starts based on global leader and members of
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Figure 4.2. Spider Monkey Optimization based Feature Selection Flow
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local group’s experience [39]; the equation used to modify their positions is,

prob; = (0.9 x Fitness;/ Fitnessmqa) + 0.1 (4.2)

SM[ (new) = SM + ©1 % (GL” — SM") 4+ Oz (SM]” — SM]") w3
4.3
where ©; € [0,1] and ©5 € [—1,1]

Local Leader Learning (LLL) In this phase, the local leader position is updated by an
algorithmic paradigm, greedy selection, which is making the optimal solution in the popula-
tion at each stage. The LocalLimitCount value is incremented by 1 due to the comparison
of the updated position of the local leader with its previous position [39].

Global Leader Learning (GLL) In this phase, global leader is updated using same strat-
egy as LLL phase. Furthermore, the GlobalLimitCount threshold increases by 1 whether the
position of global leader is updated or not [39].

Local Leader Decision (LLD) During this phase, decision taken upon the updating of
any local leader position. If it is not updated up to the LocalLimitCount value, then all
members within the group modernize their positions according to the global leader and local

leader experience [39].

SMZP(’H,G’UJ) = SMrl)jm + O * (S]\[rliam - SA[V{Z’LH)
(4.4)

where © € [0, 1]
SMF (new) = SMF +© x (GLY — SMJ) + © « (SM] — LL}) -
4.5

where © € [0, 1]

Global Leader Decision (GLD) If the position of global leader is not updated up to a
specific iterations value, known as GlobalLimitCount, then the population is divided into
smaller groups based on global leader’s decision [39].

Once the expression data are generated, our SMOF'S algorithm obtains optimal sub-
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sets of representative genes that are offered to the biologist and specialist as the genes
responsible for the cause of cancer. In Figure 4.1, the process of selecting optimal subset of
genes is shown. The reported results by SMOFS are evaluated by means of their classifica-
tion accuracy using cross-validation and multiple classifiers. The main contribution of our
approach is notable, and it is easy to interpret. It offers an enhancement on existing state
of the art algorithms in terms of computational effort and classification accuracy. Further-
more, the gene ensembles found by this methodology can be biologically meaningful, not

just computationally.

4.4 Data and Experimental Settings

We collect 5 different data sets from the UCI data repository [101, 15, 106, 57, 7]
and the summary of data sets is shown in Table 4.2. In Table 4.2, we gather 3 data sets
that involve a fewer number of features but a fairly large number of patient samples. Two of
the data sets, Wisconsin Breast Cancer and SPECT Heart Data, have imbalanced classes.
For training, validation and testing purposes, we apply 5-fold cross-validation resampling
procedure, each data-set is equally splitted into 5 portions as training and test sets. The

experimental settings for the different feature selection methods are described in Table 4.3.

Table 4.2. Statistics of Data Sets

Data Features Samples (+/-) Classes Source
Wang Breast Cancer 22283 209 (138/71) 2 [101]
Lung Adenocarcinoma 7129 86 (62/24) 2 [15]
Wisconsin Breast Cancer 10 699 (458/241) 2 [106]
SPECT Heart Data 22 267 (212/55) 2 [57]
Diabetic Retinopathy Debrecen 20 1150 (611/539) 2 7]

Note: positive sample (+), negative sample (-).
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Table 4.3. Parameter Settings

No. Parameter Value

1 Number of agents 20

2 Number of iteration 100

3 Problem dimension number of features
4 Inertia factor of PSO 0.1

5 Acceleration factor of PSO 0.1

4.5 FEvaluation Criteria

All methods are examined by total of 10 runs on MATLAB R2018a environment to

test the convergence ability and the statistical significance. The detailed evaluation criteria

are listed below:

e (lassification accuracy: the correct predictions of a classifier with a given feature set,

]:
Accuracy =
M

DN

=l

Z True; — Pred;)? (4.6)
N

where M and N are the number of experimental runs and the number of test samples,

respectively. True; and Pred; indicate the true and predicted class labels for the i

data point.

e Standard deviation (std):

running an optimizer over many times,

Std—\/zz ll'z—ﬂf

e Precision: the measure of exactness or quality.

the variation of the obtained best solutions originate for

95

(4.7)

It refers to the percentage of the



outcomes which are relevant [38].

Precisi TruePositive (4.8)
recision = .
(T'ruePositive + FalsePositive)

e Recall: the measure of completeness or quantity. It refers to the percentage of relevant

outcomes correctly classified [38].

TruePositive

Recall = 4.9
cea (TruePositive + FalseNegative) (4.9)

e Fisher score (f1): a measure of test’s accuracy, calculating for individual features given

the class labels, as determined by the equation below [87],

Precision x Recall
F1=2 4.10
% Precision + Recall ( )

4.6 Results and Discussion

In this subsection, we apply the SMO algorithm adaptively to find the optimal fea-
ture subse, known as SMOFS, that maximizing the classification performance in terms of
accuracy, recall, precision, and fl1 score. We compare the performance criterion of various
classification methods involving Random Forests (RF), K-Nearest Neighbors (KNN) and
Support Vector Machine (SVM) to determine the best approach combining Swarm Intelli-
gence based feature selectors. One of the reasons for selecting KNN algorithm is because
it has the capacity to learn nonlinear relationships between genes/features [79]. These al-
gorithms are chosen because they are frequently applied in the disease classification and
have potential to yield promising results. We apply cross-validation resampling method to
avoid overfitting, measure the unbiased estimator, and compare the prediction models. Ta-
ble 4.4 and Table 4.5 show comparison between our SMOFS and PSOFS in literature for

the datasets Wang Breast Cancer, Lung Adenocarcinoma Data, Wisconsin Breast Cancer,
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SPECT Heart Data, and Diabetic Retinopathy Debrecen. Our SMOFS approach combining
all three classifiers achieved the best accuracy scores on most of the cancer data sets. The
stability are evaluated on the standard deviation of multiple experiments, f1 score and the
best number of features selected. For the Wang Breast Cancer data, the feature selection
level is 5 (genes) for the PSOFS approach and 25 (genes) for the SMOFS approach. With
slightly more genes chosen, our SMO based feature selector has achieved higher accuracy in
all cases (classifiers). Similarly, the Lung Adenocarcinoma data shows better results across
all classifiers with a feature selection level of 15 (genes) in SMOFS compare to the selec-
tion level of 10 (genes) using the PSOFS approach. In all other data sets considering both
the classification accuracy and the selected feature size, our SMOFS approach performed
comparatively better.

In Figure 4.3, we compute the misclassification probability for out-of-bag observations
in the training data of the Baseline, PSOFS and SMOFS approaches. The baseline approach
includes all the features from the input data sets. In the literature, the baseline accuracy level
of the Wisconsin Breast Cancer data is 96.84% with 9 out of 10 features; the SPECT Heart
data claims a slightly lower accuracy level of 74.0% with all the features; and the Diabetic
Retinopathy Debrecen data has a more comparative accuracy level of 98.90% including all the

features as well. For each estimator, we observe a total number of 50 trees in the ensemble.
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Table 4.4. Results on Various Data Sets

Evaluation Metrics
Methods
Accuracy (%) F1 Score Features Selected

Wang Breast Cancer

PSOFS  64.16 (0.20) 0.5905 5
Random Forests

SMOFS 68.49 (0.08)  0.4698 25

PSOFS  63.72 (0.12) 0.4023 5
K-Nearest Neighbors

SMOFS  67.81 (0.04) 0.3210 25

PSOFS  63.50 (0.10) 0.3279 5
Support Vector Machine

SMOFS  67.33 (0.02) 0.2766 25

Lung Adenocarcinoma Data

PSOFS  63.14 (0.94) 0.4188 10
Random Forests

SMOFS  65.38 (0.29) 0.4545 15

PSOFS  61.27 (0.63) 0.4176 10
K-Nearest Neighbors

SMOFS  67.19 (0.22) 0.5000 15

PSOFS  63.50 (0.48) 0.4234 10
Support Vector Machine

SMOFS 70.00 (0.28) 0.3970 15

Note: the numbers in parentheses are absolute standard deviations.
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Table 4.5. Results on Various Data Sets (Continue)

Evaluation Metrics
Methods
Accuracy (%) F1 Score Features Selected

Wisconsin Breast Cancer

PSOFS  94.33 (0.29) 0.9610 5
Random Forests

SMOFS 95.20 (0.15) 0.9631 5

PSOFS  94.46 (0.22) 0.9563 5
K-Nearest Neighbors

SMOFS  95.12 (0.35) 0.9609 5

PSOFS  94.51 (0.28) 0.9573 5
Support Vector Machine

SMOFS  94.60 (0.50) 0.9611 5

SPECT Heart Data

PSOFS  76.73 (1.53) 0.6890 6
Random Forests

SMOFS 78.38 (0.73) 0.7222 6

PSOFS  76.83 (1.50) 0.1167 6
K-Nearest Neighbors

SMOFS  78.29 (0.86) 0.2124 6

PSOFS  76.94 (1.50) 0.5584 6
Support Vector Machine

SMOFS  78.33 (0.97) 0.6084 6

Diabetic Retinopathy Debrecen

PSOFS  97.49 (0.39) 0.9340 15
Random Forests

SMOFS 98.30 (0.21) 0.9385 15

PSOFS  97.54 (0.14) 0.9762 15
K-Nearest Neighbors

SMOFS  97.36 (0.06) 0.9787 15

PSOFS  97.98 (0.06) 0.9781 15
Support Vector Machine

SMOFS  97.84 (0.01) 0.9811 15

Note: the numbers in parentheses are absolute standard deviations.
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The performance results of the SMOFS algorithm proves its capability to balance
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between the exploration and exploitation throughout iterations of the optimization. As
per the results obtained, the performance of the WOA algorithm is proved on the large
data sets as well as on the smaller size data sets. The two datasets - Wang Breast Cancer
and Lung Adenocarcinoma data sets are relatively large and the F1 scores of the proposed
approach is clearly higher than PSOFS approach. We can also see that our SMOFS algorithm

outperforms the PSOFS in terms of the best and worst obtained solution.
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CHAPTER 5
SPIDER MONKEY OPTIMIZATION IN WIRELESS SENSOR NETWORKS

In this section, we aim to extend the ability of SMO in the field of Wireless Sensor
Networks by finding the optimal route for sending information from the clusters to the base
station through sensors. The goal of our approach, cluster-based Spider Monkey Optimiza-
tion (SMO-C), is to improve the network performance and reduce energy consumption. By
designing a new protocol approach, it allows us to space out lifespan of the sensor node due
to its limited battery life and other resource constraints. In cluster-based protocol, cluster
head is assigned to collect data from its surrounding nodes and passes it on to the base

station as shown in Fig. 5.1.

()
Base Station
O Cluster Member

. Cluster Head

_______
- -

Figure 5.1. Cluster-based wireless sensor networks (WSNs)

5.1 Design Challenges

Saleem et al. [86] proposed a general list of essential factors for wireless sensor
network routing protocols like scalability, self-organization, memory requirements, sensor
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localization, fault tolerance, energy efficiency and security. Due to the large amount of
sensor nodes, unstable energy sources and unpredictable operating environment, these facts
present unique challenges on the architecutral design and application development of WSNs.
Particularly, major concerns in routing protocols developed by monkey-inspired optimization
are robustness, reachability, scalability, simplicity, coverage, routing strategies, flexibility and
quality of service. In this section, a detailed explanation on some of these factors is provided

below:

1. Scalability: it is a challenging problem in WSNs — large amount of sensor nodes are

expected to be heterogeneously deployed with long transmission path [86].

2. Self Organization: monkey inspired protocols must be flexible to predict variations, in

static and dynamic situations [80].

3. Multipath Routing: adopting a multiple path strategy can extend network lifetime. It

can be considered as a backup when the initial path fails [54].

4. Localized Interaction: full locality awareness, restrition of interactions to neighboring
sensor nodes, is a main charactertic of self-organization. Types of communication in

WSNs are aggregation, distribution, and broadcast [65].

5. Failure Detection: the communication among sensor nodes can be affected by battery

life, location, weather condition, obstacles, antenna and others [64].

6. Memory Requirements: Given limited on-board memory, the routing algorithms de-
veloped require minimal processing overhead in order to have an efficient execution of

functionalities [24].

7. Energy Efficiency: Due to limited battery life on sensor nodes, the power usage ef-
fectiveness is a critical challenge in WSNs to support longer network operational time

[24].
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8. Robustness: Each sensor node needs to be constructed to be as robust as possible in
case of battery life shortening. The robustness can be improved through the use of

multi-channel and multi-radio [23].

5.2 Our Methodology

5.2.1 Cluster Head Selection

In SMO-C, a cluster head is selected based on the residual energy of the sensor node.
This election approach can be visualized in a group of spider monkeys, containing both
females and males. In nature, the female monkey is always the leader; it ranks by its fitness
and fertility [58]. If the current leader dies, the authority will pass to the next female monkey.
For redundant cluster heads without any nodes attached to them, they will be automatically
assigned to the nearest cluster. This feature is inspired from the fission-fusion behavioral
structure of spider monkeys.

Cluster head (CH) selection process is dynamic because the duty of cluster-head

rotates. SMO-C protocol chooses cluster head by the user-specific threshold shown below,

CHpmb = B * PCH (51)

where P; and Poy are the probability of 44, solution for every group member and percentage
of cluster heads in each iteration, respectively. According to LEACH [45], some of nodes
cannot be nominated as cluster heads in the initialization stage. The SMO-C approach is
designed at selecting the cluster heads with better location to extend the overall network
performance in terms of energy loss and fewer dead nodes. The execution flow of the cluster

formation in SMO-C is shown in Fig. 5.2.
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Figure 5.2. Flowchart of SMO-C Cluster Formation [39]

In order to optimize the effectiveness, we present an improved cluster head selection
scheme (SMOCH) to maximize network lifetime and minimize energy dissipation of our

SMO-C protocol. Fig. 5.3 shows an illustration of how SMOCH works, where it updates the
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position of individuals based on their fitness scores to increase the convergence performance
and exploitation capability. In this way a better-positioned node can have a higher chance
to be chosen as cluster head. SMOCH extends the ability of the original Spider Monkey
Optimization algorithm and LEACH by nominating the cluster heads with better location
in order to improve overall network performance in terms of fewer dead nodes and energy
consumption. The procedure of position update process in SMOCH algorithm is shown

below:

Algorithm 7 cluster head selection for SMO based routing protocol

Initialize population with n spider monkeys SM, k random cluster centers and cluster head

probability C' H,op

1: while max number of iteration is not reached do

2:  for each SM do

3: Calculate Euclidean distance of SM with all cluster centroids

4: Assign SM to the cluster that has the nearest centrism

5. end for

6:  Calculate the fitness and C'Hp,qp

7. if Uniform(0,1) < CH,., then

8: Update the cluster centroids based on local best

9: end if

10: end while
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Figure 5.3. SMO: The Process of New Cluster Heads Election

5.2.2 First Order Radio Model

First order radio model is used to estimate energy consumption of the nodes. Assume
each sensor node does not consume any energy when it is not receiving or sending any packet.
We present the low-energy radio model, which was adapted in the original LEACH [45]
protocol as well as the EAMMH [74] cluster algorithm. Different protocols take advantage
of different assumptions of the radio model, such as energy dissipation in transmit and
receive modes. We assume a simple model where the radio dissipates ET, = 50 nJ/bit to
run the transmitter or receiver and the amplifier losses of the sending node is set as Fu,, =
100 pJ/bit/m2 . The energy consumed by the node to receive or send 1 bit packet is Feec.
When the condition satisfies the communication distance d and the energy consumed to send
a k bit packet, the radio expands.

The assumption that the radio channel is symmetric is made that the energy required
to transmit a data packet from node SN; to SN; is the same as the energy required to
transmit from SN; to SN;. Furthermore, all nodes are sensing the environment at a fixed

rate, which is a data-driven simulation.
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5.2.3 Energy Utilization

There are many network routing protocols proposed for wireless sensor networks.
We examine two of these protocols as our baseline approaches, LEACH [45] and EAMMH
[74]. In SMO-C, we consider a low energy routing protocol. There are several power aware
protocols, nodes route messages through intermediate nodes instead of direct communication
through the cluster head. In this case, the intermediate nodes are known as our local leaders
within a group of spider monkeys and the current cluster head is labeled as global leader. The
intermediate nodes are chosen such that the distance to the cluster head and the base station
achieve the best fitness scores. For future SMO-C versions, we will consider an event-driven
sensor activation scenario, where sensors only transmit data if some event occurs, as well as
a combination of minimum- transmission-energy (MTE) routing with our fitness-constraint

approach in determining the routes.

5.3 Baseline Protocols

LEACH [45] is a low-energy adaptive clustering hierarchy for wireless sensor networks.
The LEACH operation is divided into rounds. For each round, it consists of two phases,

Set-up Phase: selection of cluster head using Eq. 5.2 and cluster formation.

Pou
T(n) — 1*PCH><(rmod(P5}1[)) , €N (52)
0 , otherwise

where Popy denotes the user specific percentage of cluster heads, r denotes the number of
round in current, and NN is the set of nodes that has potential to be elected as cluster heads
in the future rounds. In each cluster, every individual sensor has equal chance to become
the cluster head.

Steady State: this phase includes data collection, data aggregation, and data transmission
to the sink. LEACH applies MTE transmission, which performances better than direct

transmission to the base station. The transmit route is selected if and only if both Eq. 5.3
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and 5.4 are true,

Eump(k, d(SN;, SN;)) + Eamp(k, d(SN;, SNY)) < Eapp(k, d(SN;, SNY)) (5.3)

d(SN;, SN;)* + d(SN;, SN;)?* < d(SN;, SN;)* (5.4)

EAMMH [74] is an energy aware multi-hop multi-path hierarchical protocol for WSNs.
In EAMMH, the cluster heads are elected using the initial energy level in order to equalize
the magnitude for energy consumption. Competing with the probabilistic distribution in
the LEACH protocol, the deployment of cluster heads in EAMMH is more consistent. The
intra-cluster multi-hop strategy is adapted due to the fact that some nodes may consume
larger amount of energy through long-distance transmission in terms of data volume and
node location [74]. The energy consumed for any cluster member node SN; to its cluster
head SN¢y is represented in Eq. 5.5. EAMMH adopts a free space propagation channel
model to deliver k-bit packets from node SN; to another node SN;, which can communicate

with the SN¢g as follows,

E(SN;, SN;) = Ery(k,d(SN;, SN;)) + Egg(k) + Epo(k,d(SN;, SNey))  (5.5)

thus the node with smallest value of energy cost, E(SN;, SN;), will act as the intermediate

node.

5.4 Evaluation Environment

In our evaluation environment, we simulated each monkey inspired optimization tech-
nique with MATLAB by randomly distributing all sensor nodes in an area of 100 x 100(m?).
The base station, which acts like a gateway between sensor nodes and the end user, is placed

in a permanent location in the sensing area. Experimental parameters are summarized in

TABLE 5.1
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Table 5.1. Experimental Settings

Parameter Symbol Value
Number of nodes n 100
Number of iterations r 500, 1000
Base station (x, ) (150, 50)
Distance threshold d ﬂE‘fS [ Eamp)m
Percentage of cluster heads P 20%
Transmitter electronics E,. 50 nJ/bit
Receiver electronics E,. 50 nJ/bit
Transmit Amplifier type 1 Eyg 10 pJ/bit/m?
Transmit Amplifier type 2 Eomp 0.0013 pJ/bit/m?
Data aggregation energy Eqa 5 nJ/bit
Initial energy E;.it (0.1, 0.25, 0.5, 1.0) J/node

5.5 Results and Discussion

70

5.5.1 Performance Comparison with LEACH and EAMMH Approaches

SMO-C is a self-organizing, easy to interpret and adaptive clustering protocol. The
associate cluster heads are the ones with best fitness scores and located within the organized
local clusters. In addition, SMO-C performs local data fusion and minimum energy trans-
mission to send data from the clusters to the base station with the optimal route, further
enhancing more alive nodes and reducing energy dissipation.

In a previous study, the cluster heads in LEACH are unevenly distributed. In some

areas, there is lack of cluster head coverage and some of the sensor nodes are placed far away



from the cluster heads. To achieve better routes, this situation has been considered in SMO-
C. During our selection of cluster heads, we can get better solutions compared with LEACH
and EAMMH. Our experimental results show that with better cluster-head locations we can
obviously increase the node’s lifetime in a larger number of rounds and decrease the energy
loss of communication. Figure 5.4(a)(c)(e) indicates the duration of most nodes is prolonged
in SMO-C; it has the lowest number of dead nodes in various initial energy settings. The
sensor nodes can last longer when given limited initial energy and prolonged overall network
lifetime. It also can be inferred from Figure 5.4(b)(d)(f) that the average energy of each node
remained in SMO-C is higher than LEACH and EAMMH after multiple iterations. In Spider
Monkey social behaviors, monkeys do not maintain fixed size of clusters throughout their
foraging process, which means the percentage of cluster heads (Popy) in routing protocols
will not affect the performance in SMO-C. Hence, our experiments carry a specific amount

(Pop = 10%) of cluster heads.

5.5.2 Performance Comparison with RMO Approach

In literature, Rhesus Macaque Optimization (RMO) is mainly designed based on
the LEACH strategy. In some sensing areas, the nodes are positioned at a great distance
from the cluster heads and cannot be replaced or recharged regularly. To improve the full
network performance such situations have been considered in SMOCH, where the sensor
nodes elevate themselves as cluster heads according to the state-of-the-art Spider Monkey
Optimization formulation. The associated cluster heads are located within the structured
local clusters with best fitness scores. SMOCH is a decentralized, self-organizing and inter-
pretable clustering protocol. Moreover, SMOCH performs local data fusion and minimum
energy transmission, further enhancing more alive nodes and reducing energy dissipation
(39].

Figure 5.5 indicates the average retained energy of each node in SMOCH is greater

than RMO in each round. It also can be inferred from Figure 5.6 that the duration of
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most sensor nodes is prolonged in the proposed SMOCH and it has the lowest number of
dead nodes in the long run. The sensor nodes can last longer when given limited initial
energy and extend the overall network lifetime. During the cluster head selection step, we
achieve better results compared with Rhesus Macaque Optimization (RMO). Our simulation
outcomes show that with improved cluster-head locations, we can observably decrease the
energy consumption for communication and increase the network lifetime in a larger number
of rounds. Contrasting with the other clustering protocols, SMOCH and RMO protocols
focus on decreasing the energy consumed at the set-up phase not the steady phase. The
experimental results show that the proposed SMOCH approach is self-organized, scalable
and can be easily adapted in wireless sensor networks.

The monkey-inspired optimization algorithms require less computation time than
conventional algorithms [25]. Our proposed SMOCH approach improves the exploration and
exploitation capabilities of the search space. We believe the SMO based routing protocol

will provide better performance due to the following reasons:

1. Easy to design and interpret: it is a non-parameteric optimization algorithm which

means no manual parameter setting required [59].

2. Capability in multi-path model: swarms are divided into multiple groups; all groups

exchange information and intelligence to optimize the routing solutions [26].

3. Self-organization behavior: all swarms act at the same time and there is no central

coordinator [40].
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CHAPTER 6

CONCLUSION

In cancer classification and prediction, feature selection is an important process — se-
lecting the optimal subset of relevant features or useful data for further study and prediction.
Biologically inspired computing has successfully been used in many tasks that need simplic-
ity in computation, optimized intelligent search and machine learning techniques. In this
dissertation, we first propose a rule based feature selection and elimination approach, Top
Discriminating Pairs (TDP); which aims to reveal which features are highly ranked accord-
ing to their discrimination power. We compare the proposed approach with the traditional
Top Scoring Pairs (TSP) method as the baseline on various artificial and real datasets. This
work provides a new effective method for feature selection and dimensionality reduction in
machine learning.

Next, we considered Swarm Intelligence based methods which mimic the social be-
haviors of natural insects or artificial systems. We presented a comprehensive study of the
recent applications of Swarm Intelligence (SI) for optimizing feature selection process in Mi-
croarray data for human cancer classification and prediction. Then we introduced our Spider
Monkey Optimization (SMO) based feature selection approach that has the advantages of
in reducing irrelevant genes and improving classification accuracy. The results show that
our SMO feature selector combining all three classifiers achieved the best accuracy scores on
most of the test data sets.

Furthermore, we extended the ability of SMO in other fields such as Wireless Sensor
Networks. WSN Our approach shows great potential and possibilities to provide optimization

strategies, handle large-scale networks and avoid resource constraints. In this study, we
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successfully formulated the mathematical model according to spider monkeys’ social behavior
patterns and improved the traditional routing protocols in term of low-energy consumption
and overall system quality of the network. The experimental results show that our approach
is self-organized, scalable and can be easily adapted to the wireless sensor networks.

Our main contributions are,

1. We present a new method in machine learning that improves the prediction accuracy
with less number of features involved while still maintaining robustness and inter-

pretability.

2. We prove that swarm intelligence based algorithms are able to avoid local minimums

and search for global optimal solution more efficiently.

3. We construct spider monkey optimization based routing protocol that advances wireless

sensor networks mechanism in the direction of optimal solution.

4. We adopt spider monkey optimization algorithm that advances feature space reduction

in classification and prediction.

5. We provide evidence from real-world applications that our methods provide significant

advantages in accuracy and interpretability.

To this end we believe that our methods presented in this dissertation would be
helpful in medical diagnosis as well as for further research. We hope that this work will
motivate algorithm developers and scientists to take various techniques into account when

working on solving optimization problems in different fields.
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