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ABSTRACT 

Remote sensing systems such as multispectral and radar imaging can provide detailed 

information about soil moisture levels, vegetation cover, and topography. These data can be used 

to identify areas of high soil moisture, monitor changes in soil moisture over time, and assess the 

impact of human activities on watersheds. A commonly used system in orbit for monitoring soil 

moisture is the Soil Moisture Active Passive Mission (SMAP). For SMAP and all spaceborne 

systems, one of the major limitations for users to implement satellite-based data is the coarse 

resolution of the pixels (~9 km). Downscaling approaches are introduced by many researchers to 

overcome the low resolution of the surface soil moisture data. In this project, the random forest 

approach is used to downscale surface soil moisture derived from SMAP level 4 root zone soil 

moisture geophysical (SPL4SMGP) data product to a 1-km spatial resolution for a region in 

northeastern Mississippi. Normalized difference vegetation index (NDVI), enhanced vegetation 

index (EVI), and diurnal temperature are used as independent variables for the random forest 

model. Due to the lack of fine-resolution surface soil moisture data in the study area, 9 km 

SPL4SMGP product is disaggregated to a 1km spatial resolution without altering original pixel 

values and used as the dependent variable for the model training. Field data were collected from 

25 locations within the study region for six days throughout the year to validate the downscaling 

output. While results of the downscaling showed poor correlation to the field-collected surface 

soil moisture data, land cover types and surface geology showed a good match to the downscaled 

data. According to the results, Croplands and Cropland/Natural Vegetation Mosaics show the 
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highest surface soil moisture values for any day considered. 
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I. INTRODUCTION 

1.1 Soil moisture 

Soil moisture controls many soil properties and sustains life within soil and is a main 

source of land evapotranspiration (Seneviratne et al., 2010), a very important portion of the water 

cycle. Soil moisture is also a key variable controlling the productivity of plants and partitioning 

rainfall into runoff and infiltration (Daly & Porporato, 2005). According to (Kerr, 2007), soil 

moisture is the total amount of water in the unsaturated zone. Soil moisture is divided into 

surface soil moisture (first 5 cm in general) and root zone soil moisture. 

1.2 Soil moisture measuring methods 

There are many examples in the literature introducing soil moisture measuring methods. 

These soil moisture measuring methods are broadly divided into two main categories; contact-

based and contact-free methods (Robinson et al., 2008; Vereecken et al., 2008). Contact-based 

methods include capacitance sensors, electrical resistivity methods, heat pulse sensors, fiber 

optic sensors, time domain reflectometry, and destructive sampling methods such as gravimetric 

methods. Contact-free methods include microwave remote sensing, synthetic aperture radars, 

scatterometers, and thermal methods (Dorigo et al., 2011; Vereecken et al., 2008). The spatial 

and temporal resolution of the data obtained by these methods vary based on the technique used 

(Figure 1). With contact-based methods, it is possible to obtain spatially finer resolution soil 

moisture data and control the temporal resolution of the data sets based on the need. However, 

with contact-based methods, it is difficult to obtain a continuous stream of data with a high 
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spatial resolution for a long period due to the amount of time and human hours needed. Another 

obstacle in obtaining spatially distributed soil moisture data is understanding the heterogeneity of 

the soil moisture.  

Figure 1. Sensor types and spatial resolution of different soil moisture measuring techniques 

(Vereecken et al., 2008) 

 

Soil moisture is influenced by many soil properties and climate interactions leading to 

heterogeneity in vertical and horizontal soil profiles (Seneviratne et al., 2010). With the 

heterogeneity of soil moisture, it becomes more difficult to prepare soil moisture maps using 

contact-based methods that provide point data. These difficulties associated with contact-based 

measuring methods bring forward the importance of soil moisture measuring using contact-free 

methods.  
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1.3 Remote sensing methods 

As shown in Figure 1, air-borne sensors and space-borne sensors have a wider spatial 

distribution of the soil moisture measurements. Added to that, it is possible to use these 

instruments for a longer period giving us the ability to continuously observe the soil moisture. 

These remote sensing methods are based on the backscatter of electromagnetic waves from the 

soil. According to Schmugge, (1978)  microwave brightness temperature and radar backscatter of 

the soil have a correlation of approximately 0.9 with the surface soil moisture. The emissivity for 

soil varies in a range of approximately 0.6 to greater than 0.9.  This variation in emissivity 

corresponds to a soil brightness temperature variation, which covers a range of soil wetness from 

40% to 5% moisture by volume. Furthermore, atmospheric effects are small and may be 

neglected in most cases for lower microwave frequencies (1–3 GHz) (Njoku & Entekhabi, 1996). 

This makes microwave remote sensing a favorable tool for soil moisture observation. 

There are several satellites orbiting Earth that are capable of providing geophysical data 

for measuring soil moisture. Some of these satellite missions provide soil moisture data as direct 

products. Soil Moisture Active Passive Mission (SMAP) and Soil Moisture Ocean Salinity 

(SMOS) are two such satellite missions. There are also open loop models (i.e., without data 

assimilation) and models with satellite data assimilation that provide soil moisture data (Beck et 

al., 2021).   
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1.4 Background to the research problem and project goals 

One of the major limiting factors for satellite soil moisture data is their coarse spatial 

resolution. The currently available satellite products have a spatial resolution ranging between 10 

km to 50 km (Beck et al., 2021). To overcome this issue, different methods have been utilized to 

spatially downscale satellite soil moisture data. Spatial downscaling is the procedure followed to 

bring a spatially coarse resolution image to a finer resolution. According to Peng et al., (2017), 

downscaling methods are divided into (1) satellite-based methods, (2) methods using 

geoinformation data, and (3) model-based methods.  

The goal of this project was to create a surface soil moisture data set with a spatial 

resolution of 1km using downscaling and evaluate the relationship of the downscaled data with 

the prevailing land cover types and surface geology of the terrain. We use a machine learning 

approach to downscale surface soil moisture data by fusing different satellite products for a study 

region in northeastern Mississippi, where there are no high-resolution surface soil moisture data 

for the study period selected. A secondary goal was to evaluate the applicability of a simple 

machine learning technique to downscale coarse resolution surface soil moisture data despite not 

having fine-scale target training data and explore how to evaluate the output of the same. 

1.5 Introduction to research approach 

In this current project, random forest model is used to achieve spatial downscaling of 

SMAP level 4 root zone soil moisture geophysical (SPL4SMGP) data. A study area in northeast 

Mississippi was selected for testing the models and collecting field data. The accuracy of 

downscaled results is measured using field soil moisture data collected using a field soil moisture 

sensor equipment. Additionally, statistics of the pixel values are analyzed and compared for both 
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coarse-resolution and fine-resolution images to give a quantitative assessment of the 

downscaling results.  Land cover types and surface geology of the terrain are also used to assess 

the patterns in surface soil moisture across coarse-resolution and downscaled results.  
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II. LITERATURE REVIEW 

2.1 Study area 

The study area for this research is a portion of the northeastern Mississippi. The Gulf of 

Mexico and the relatively flat plains of central North America cover the Southern and Northern 

boundaries of the state of Mississippi. Thus, Mississippi experiences warm moist air from the 

Gulf of Mexico and drier continental air masses flowing from the north, which are cold in the 

winter and warm during the summer. The climate in Mississippi is a combination of relatively 

mild winters, hot summers, and year round precipitation. Mississippi is also recognized as one of 

the few areas globally to experience little net warming. Since the beginning of the 20th century, 

Mississippi has experienced a temperature increase by a miniscule 0.05 °C (0.1 °F). The warmest 

consecutive years recorded so far for Mississippi are between 2016 and 2020. The statewide 

annual average (1991–2020) precipitation for Mississippi is 1,420 mm (55.9 inches), with an 

average of 1270 mm (50 inches) for northern Mississippi and 1651 mm (65 inches) for southern 

Mississippi. According to the records, the wettest period experienced by Mississippi is 2016-

2020, with an annual precipitation of 63.1 inches (Runkle et al., 2022). Rainfall is mainly 

received from January to April and November to December.  During the summer, agricultural 

droughts (inadequate soil moisture levels to meet crop water demands) can be observed in 

Mississippi (Tang et al., 2018). 
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The Mississippi River creates the western boundary for the state of Mississippi, around 

which the Mississippi River Valley alluvial aquifer is formed.  The Mississippi River Valley 

aquifer is the highest yielding aquifer in Mississippi and provides water for agricultural purposes 

via wells (Dalsin, 1978). Paleozoic, Gordo, Eutaw-McShan, Coffee Sand, Ripley, and Wilcox 

are the principal aquifers that are observed to outcrop in Northeastern Mississippi (Wasson, 

1986). 

  

Figure 2. Principal aquifer outcrop map of Mississippi (from Wasson, 1986). 
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2.2 Physiography 

Mississippi is within the Gulf Coastal Plain physiographic region and is characterized by 

very gradual elevation changes. The summit of Woodall Mountain in Tishomingo County is the 

highest elevation point in Mississippi, at 245.67 m (806 ft) above mean sea level.  The 

unconsolidated sediments that underlie the surface in Mississippi range in age from recent to 

Late Cretaceous. Out of the eleven physiographic provinces in the state of Mississippi, six are 

observed within the northeastern Mississippi: (1) Paleozoic Bottoms; (2) Tombigbee and 

Tennessee River Hills; (3) Black Prairie; (4) Pontotoc Ridge; (5) Flatwoods; (6) North Central 

Hills. The six provinces have characteristic vegetation patterns and underlying soil types. 

Unconsolidated Cretaceous sands, dark soils with high organic matter and smectite, sands of the 

McNairy Sand, Porters Creek Clay, and sandy units of the Eocene Claiborne Formation are some 

of the geologic units found in the six physiographic provinces of the northeastern Mississippi. At 

the level III resolution for the ecosystems, four ecoregions are recognized in Mississippi, with 

the “Southeastern Plains” ecoregion of the four covering most of the northeastern Mississippi. 

Southeastern Plains is further subdivided into ten different ecoregions according to level IV 

resolution for the ecosystems, where ecoregions represent the underlying physiographic units 

too. Overall the ecoregions in the northeastern Mississippi consist of oak, hickory, pine, pasture 

lands, mixed forests, prairies, and croplands (Chapman et al., 2004; Dockery & Thompson, 

2016).   
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Figure 3. The map showing the ecoregions of Mississippi with tributary networks superimposed 

(from Chapman et al., 2004). 
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2.3 Soil moisture remote sensing methods 

Remote sensing of soil moisture is a widely researched subject. Literature shows that the 

unique thermal and dielectric properties of soil moisture can be used to remotely sense soil 

moisture in the surface layer of the soil (Cihlar & Ulaby, n.d.; Curtis et al., 1995; Idso et al., 

1975; Patel et al., 2018; Quan et al., 2014; Reginato et al., 1976; Schmugge, 1982; J. R. Wang, 

1980). Thermal conductivity and the large heat capacity of the soil moisture allow soils to have a 

large thermal inertia. Thermal inertia is the square root of the product of thermal conductivity 

and heat capacity. The diurnal range of soil surface temperature is considered a function of both 

thermal inertia and external factors such as solar radiation, air temperature, relative humidity, 

wind, etc. An increase in soil moisture leads to an increase in thermal inertia and ultimately 

results in a decrease in the diurnal range of surface temperature. This relationship between the 

soil moisture and the diurnal range of surface temperature creates a proxy to measure surface soil 

moisture (Idso et al., 1975; Reginato et al., 1976). The experiments that have been conducted 

show that the relationship between soil moisture content and temperature changes are dependent 

on the soil type. However, the relationship between the pressure potential and the temperature 

changes is independent of the soil type (Idso et al., 1975). Thus, moisture values are expressed as 

a percentage of field capacity. While the method shows good results for the first few centimeters 

(0-4 cm) of the soil, this method is not applicable where there is a vegetation canopy (Idso et al., 

1975; Reginato et al., 1976; Schmugge, 1982). 

Microwave remote sensing depends on the large contrasting dielectric properties of the 

soil moisture for measuring soil moisture content. According to Rayleigh-Jeans approximation, 

thermal emission measured by microwave radiometers is proportional to the product of the 

temperature and emissivity of the surface. This product is referred to as the brightness 
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temperature (Schmugge, 1982; Schmugge et al., 1986).  The relationship between the brightness 

temperature and soil moisture is then used to measure the soil moisture based on the brightness 

temperature readings from microwave sensors (Njoku & Kong, 1977). Most microwave soil 

moisture sensors operate in low-frequency bands (f < 15 GHz) due to their lower sensitivity to 

solar effects and weak sensitivity to atmospheric effects. Advanced Microwave Scanning 

Radiometer-E (AMSR-E), Advanced Microwave Scanning Radiometer 2 (AMSR2), Advance 

Scatterometer (ASCAT), SMAP, and Microwave Imaging Radiometer using Aperture Synthesis 

(MIRAS) are several satellite instruments making surface soil moisture observations. 

Table 1. Satellites instruments observing surface soil moisture observations 

Acronym Operating band 
Spatial 

resolution 

Temporal 

resolution 

Temporal 

coverage 
Reference(s) 

AMSR2 X-band (10.7 GHz) ∼ 47 km 1–3 d 2012–present 

(Parinussa 

et al., 2015) 

AMSR-E C-band (6.9 GHz) ∼ 25 km 1–3 d 2002–2011 

 (Minnett, 

2019) 

ASCAT C-band (5.255 GHz) ∼ 30 km 1–2 d 2007–present 

(Wagner et 

al., 2013) 

SMAP L–band (1.4GHz) ∼ 35 km 1–3 d 2015–present 

(Entekhabi 

et al., 2010) 

MIRAS L–band (1.4GHz) ∼ 40 km 1–3 d 2010–present 

(Kerr et al., 

2012) 

 

 It is natural to come across strong vertical gradients of soil moisture and temperature in 

the soil. Because of this gradient, a mean value of the soil moisture is considered over a fixed 

soil thickness known as the sampling depth. Sampling depth is dependent on the frequency of the 

microwaves used (3 cm at 1.4 GHz, 1 cm at 5 GHz, 0.5 cm if f > 5 GHz). Literature also shows 

that passive microwave sensors are limited to coarse spatial resolutions of greater than 10 km 
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and more sensitive to soil moisture while being less affected by surface geometry, whereas the 

active sensors are capable of reaching meter scale resolution while being very sensitive to 

surface geometry (Wigneron et al., 1998).   

2.4 Soil Moisture Active Passive Mission (SMAP) 

Soil Moisture Active Passive Mission (SMAP) was launched in 2015 with the scientific 

goal of making direct observations of soil moisture and the freeze/thaw state of land surfaces. 

Weather and climate forecasting, drought monitoring, flood forecasting, identifying agricultural 

productivity, and national security are several key areas where SMAP data is applicable. SMAP 

was designed with a 6m diameter, conically scanning, deployable mesh reflector antenna. The 

antenna is shared by an L-band (1.41GHz) radiometer and an L-band (1.26GHz) radar. The 

design of SMAP microwave instruments, measurements, and algorithms was heavily influenced 

by previous L-band missions and experiments. NASA SkyLab missions from the 1970s, 

European Soil Moisture Ocean Salinity (SMOS) mission, and Aquarius/SAC-D mission, are 

several such works that contributed to the development of the SMAP design (Entekhabi et al., 

2010).  

The benefit of an L-band radar along with an L-band radiometer is to integrate the two 

instruments as a single observation system to produce enhanced soil moisture products. 

However, due to a technical failure that occurred on July 7, 2015, only the radiometric data is 

available (Das et al., 2018). The native L-band radiometer (1.41 GHz) produces data at a 40 km 

resolution (Entekhabi et al., 2010).  By using a lower frequency (L-band), the instruments are 

capable of penetrating up to 5 cm of topsoil, and the measurements are sensitive to soil moisture 

through the vegetation of up to 5 kg·m-2 water content. Whereas the instruments with higher 
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frequencies only correspond to a soil depth of about 1 cm and are sensitive to soil moisture 

through the vegetation of up to 3 kg·m-2  water content (e.g. C-band; AMSR-E, and WindSat) 

(Entekhabi et al., 2010).  

SMAP baseline data products are produced at four different levels. At each increasing 

level, data from previous levels are used to process and produce a different product.  In this study 

the Level 4 root zone soil moisture (L4_SM) data product is used. SMAP L4_SM is produced by 

assimilating SMAP radiometer readings with surface meteorological and precipitation 

observations (Reichle et al., 2019). The Goddard Earth Observing System Model-version 5 

(GEOS-5) land data assimilation system is the algorithm used in producing a 9 km gridded 

SMAP L4_SM data product (De Lannoy & Reichle, 2016).  SMAP science data is available to 

download from NASA National Snow and Ice Data Center Distributed Active Archive Center 

(NSIDC DAAC) (O’Neill et al., 2017).   

2.5 Moderate Resolution Imaging Spectrometer (MODIS) 

Moderate Resolution Imaging Spectrometer (MODIS) is a multi-band earth observing 

sensor designed as an Earth observing systems (EOS) satellite.  The first satellite to carry a 

MODIS instrument into space was Terra (previously named EOS AM-1). Terra was launched in 

December 1999 along with five instruments onboard, including MODIS. Terra moves from north 

to south on the daylight side of Earth in a circular sun-synchronous polar orbit. The second 

MODIS instrument is carried aboard Aqua (previously named EOS PM) which was launched in 

May 2002. Aqua moves from south to north on the daylight side of the earth in a circular sun-

synchronous orbit. Out of the six instruments originally launched aboard Aqua, only MODIS and 

three other instruments are in operational status as of 2023. Terra and Aqua, both having far 
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exceeded their original life span, have drifted from their initial orbits. However, the quality of the 

data from MODIS instruments remains intact and is good for science purposes. Native data from 

MODIS instruments are available in 250, 500, and 1000 m spatial resolution. MODIS land 

products have temporal resolutions of daily, 4-day, 8-day, 16-day, monthly, quarterly, and 

yearly. In this current project, we use MODIS land surface and daily reflectance version 6.1 

products by Aqua satellite. 

2.6 Downscaling 

Spatial downscaling is the approach by which a coarse spatial resolution data set is 

converted to a finer resolution. There is a large body of literature involving spatial downscaling 

of soil moisture data. The methods employed to downscale soil moisture data are broadly divided 

into three major categories: (1) methods using geo-information data, (2) model-based methods, 

and (3) satellite based methods (Peng et al., 2017). Methods using geo-information data rely on 

establishing a relationship between coarse-scale soil moisture data, geological attributes, and 

fine-scale soil moisture values. However, geo-information based methods require an extensive 

amount of in-situ data to build a downscaling relationship and lead to catchment specific results. 

Therefore, the applicability of geo-information based methods is limited to the spatial scales 

similar to catchments, while having the potential to further improve (Busch et al., 2012; Peng et 

al., 2017; Perry & Niemann, 2007).  

There are several model-based methods that were developed to downscale soil moisture 

data. Based on the complexity and approach used, these methods could be further divided into 

statistical models and land surface models. Statistical models make use of the insights brought 

from research done on spatial statistics of soil moisture and how statistics vary across scales 
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(Peng et al., 2017). Kaheil et al., (2008), describe such a statistical method of downscaling soil 

moisture, where the geostatistics from the spatial distribution of a coarse scale image is used to 

model soil moisture at a finer resolution. In situ soil moisture observations are used to improve 

the output of this model further. In land surface models, coarse-scale observations are used to 

obtain fine-scale soil moisture from a hydrological or land surface model.  

Satellite based methods are a means of achieving finer scale soil moisture data by fusing 

coarse spatial resolution passive microwave (radiometer) soil moisture data with fine resolution 

satellite data. Njoku et al., (2002), introduced the ability to combine radiometer soil moisture 

readings with radar soil moisture data through a change detection method to take advantage of 

the higher spatial resolution of radar observations. It is shown that while the absolute soil 

moisture observations from the radar are heavily affected by vegetation and surface geometry, 

the relative changes in soil moisture show similar patterns in both radar and radiometer 

observations. In addition, the authors show that the effects of vegetation and surface geometry 

are time-invariant. The relationship formed between radiometer and radar data based on this 

similarity in soil moisture change detection is introduced as a means of combining radar and 

radiometer data for improved spatial resolution. The change detection method was further tested 

and improved by (Narayan et al., 2006) to produce radar/radiometer soil moisture relative change 

data. Das et al., (2011), have further refined the previous work on change detection method to 

produce the baseline algorithm for SMAP to combine radar and radiometer data. According to 

this algorithm, uniform vegetation and surface characters are assumed for each coarse-resolution 

pixel. This assumption adds to the error in the final result. Authors of this algorithm also show 

that it is possible to use high-resolution vegetation index data to further improve this algorithm 

and account for the heterogeneity of the vegetation. 
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Montzka et al., (2016), presents results of three different approaches to combining radar 

and radiometer soil moisture data: (1) Using radiometer data to estimate soil moisture and 

subsequent disaggregation using radar backscatter data; (2) disaggregation of the radiometer 

brightness temperature data using radar backscatter and subsequent soil moisture estimation; (3) 

disaggregation of radiometer soil moisture using radar soil moisture residuals. A comparison 

between the three methods shows that the second method yields the best results in combining 

radar and radiometer data for higher spatial resolution. It was also shown that auxiliary data such 

as vegetation and soil characteristics could be used in the second method to improve accuracy. 

The first and the third method also show reasonable results while being less accurate compared 

to the second method. 

While much research has been carried out in support of radar-radiometer fusion 

techniques, the biggest challenge is the inconsistent observation times between these sensors. 

SMAP was designed to overcome this challenge by having both an active radar and a passive 

radiometer. As the SMAP active sensor is now not operational, the challenge of overcoming 

inconsistent observation times for radar-radiometer fusion remains. This brings out the 

importance of downscaling methods that do not involve direct radar-radiometer data fusion. 

Many methods introduced for downscaling satellite derived soil moisture data involve the 

use of land surface parameters that have a correlation and causation to soil moisture. The use of 

such parameters derived by optical and thermal remote sensing is very popular due to their high 

spatial resolution and wide availability. Although, there still remains the disadvantage of 

interference from cloud cover when it comes to optical and thermal remote sensing (Peng et al., 

2017). The triangle method for estimating soil moisture is one such method that uses land surface 

parameters. This method is based on the relationship between the normalized difference 

https://www.zotero.org/google-docs/?WRVecF
https://www.zotero.org/google-docs/?WRVecF
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vegetation index (NDVI) and surface radiant temperature. The triangular shape made by the 

scatter plot of NDVI and surface radiant temperature of an area can be used to calculate 

fractional vegetation (Fr) and the scaled surface radiant temperature (T*) (Chauhan et al., 2003). 

A polynomial relationship can be then written to find the surface soil moisture (Mo) and 

evapotranspiration fraction (EF), as shown in Equation 1 (T. Carlson, 2007; T. N. Carlson et al., 

1994). 

          (𝑀𝑜, 𝐸𝐹) = ∑ ∑ 𝑎𝑖𝑗
3
𝑗=0 𝑇∗𝑖3

𝑖=0  𝐹𝑟𝑗                   (1) 

Where 𝑎𝑖𝑗 represents the regression coefficient, which can be determined using coarse resolution 

of the original data. Once the regression coefficient is determined, fine-scale soil moisture data 

can be generated using the polynomial function and fine-scale ancillary data. This approach has 

been adapted in other research and has modified the polynomial relationship in some instances 

(Piles et al., 2011). 

        Merlin et al., (2008), introduced a deterministic approach to downscale soil moisture 

data. This approach has three general steps: (1) estimating soil evaporative efficiency (2) link 

soil evaporative efficiency to near surface soil moisture; (3) building a downscaling relationship 

to link high resolution soil moisture with coarse-resolution soil moisture data and soil 

evaporative efficiency. Here the soil evaporative efficiency is calculated using vegetation 

fraction and feature space for land surface temperature (LST).  

While traditional methods have shown promising results in many studies, some authors 

suggest that the use of machine learning techniques to capture the non-linear nature of predictors 

such as LST, soil moisture, and NDVI is beneficial (Bartkowiak et al., 2019; Hutengs & 

Vohland, 2016). Random Forests, boosted regression trees, deep learning, and support vector 



18 
 

regression are a few such methods. Im et al., (2016), present a comparison between the results 

from downscaling AMSR-E soil moisture (25 × 25 km) data using random forest, boosted 

regression trees, and cubist methods. Random forest is a method of creating an ensemble of 

decision trees and deriving the most voted class by the decision trees (Breiman, 2001). Boosted 

regression trees is also a method very similar to random forest, where both rely on an ensemble 

of decision trees. However, boosted regression trees tend to overfit due to the re-weighted 

scheme that it uses to select training samples. Cubist is also a regression tree-based model that 

produces rule-based regression models. Vegetation indices, LST, albedo, and evapotranspiration 

were used to downscale AMSR-E soil moisture data in all three methods. The comparison of the 

results shows that the random forest method outperforms the other two methods (Im et al., 2016). 

Similar results were observed in (Liu et al., 2017), where the random forest method shows 

superior performance over Classification and Regression Trees (CART), K-nearest neighbors 

(KNN), and the Bayesian method for soil moisture downscaling. Based on the study region, 

scale, and period, the importance of the independent variables used in random forest models has 

shown varying results. In most cases, LST, NDVI, topography, albedo, and enhanced vegetation 

index (EVI) are seen as the most important independent variables (not in order) (Chen et al., 

2020a; Im et al., 2016; Liu et al., 2017; Zhang et al., 2022; Zhao et al., 2018).  
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III. METHODS AND DATA 

3.1 Field data collection 

Field surface soil moisture data were collected for the purpose of validating and 

estimating errors in downscaled soil moisture products. Twenty-five 25 field locations were 

picked in northeastern Mississippi to collect soil moisture data (Figure 4). Field locations were 

picked to have a wide spatial distribution and include different land cover types. When selecting 

the locations for field work, it was also taken into consideration the ability to cover all 25 

locations within a single day.  

On April 2023, one day was spent in a field site (approximately 1 km2 area) within the 

study area to collect surface soil moisture with a closer spacing between the sample points. 

Twenty-three surface soil moisture readings were taken while maintaining a gap of 

approximately 250 m between the sample locations. Due to the rough terrain, the distance 

between the points was changed in some locations for easy access. The site itself was mainly 

covered by non-vegetated cropland with a forest patch and a nearby creek. Figure 5 shows the 

locations marked within this study area. This specific field work was carried out to identify the 

heterogeneity of surface soil moisture in a smaller spatial extent. 

The Fieldscout® soil sensor reader and a portable Waterscout™ SM100 sensor were used 

to obtain surface soil moisture data. Waterscout™ SM100 sensor is a capacitive sensor that 

gauges the soil moisture based on the amount of electric charge that can be stored within an 
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electric potential. The L-band microwave sensing is sensitive to the soil moisture in top the 4 to 5 

centimeters of the soil (Kerr, 2007). Therefore, the upper 2–3 cm of soil is removed to expose the 

soil surface, and the sensor is pressed into the side wall of the dug hole at a 2–3 cm depth to 

represent the average. In soil where the electrical conductivity is smaller than 

8 millisiemens·cm-1, the instrument has a nominal accuracy of 0.03 m3·m-3 (Spectrum 

Technologies, 2022).  

Considering the temporal overlap of the satellite images and the least cloud cover, surface 

soil moisture was measured at each location in northeastern Mississippi on six different days. 

This surface soil moisture field data was collected to create validation layers for downscaled 

surface soil moisture data. In addition to collecting surface soil moisture data using the soil 

moisture probe, soil samples were collected on the first two field visits to ensure the accuracy of 

the soil moisture probe data. Soil samples were collected into tin containers and sealed at the 

field to avoid loss of soil moisture.  
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Figure 4. Field locations used for surface soil moisture data collection Field locations used for 

surface soil moisture data collection. 
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Figure 5. Surface soil moisture collection locations within the 1 km2 study site. 

Samples brought to the laboratory were measured for the soil moisture content following 

ASTM D2216-19 standard procedure. As per the standard, soil samples were dried at a 

temperature of 90 oC for a time period of 12 hours. The samples were weighed before and after 

drying to calculate the gravimetric soil moisture. The formula used for calculating gravimetric 

soil moisture is given in Equation 2.   

 𝑤 =  
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑖𝑛 𝑠𝑜𝑖𝑙

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑜𝑙𝑖𝑑𝑠 𝑖𝑛 𝑠𝑜𝑖𝑙
× 100 (2) 
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Figure 6. Soil moisture data collecting using the field soil moisture sensor. (LEFT) in closeup of 

the instrument interface along with a handheld GPS unit, and (RIGHT) showing position of 

probe in prepared test excavation. 

 

3.2 Selecting input data 

It is important to select parameters that have a correlation with surface soil moisture 

when using machine learning to downscale satellite derived surface soil moisture data. Based on 

previous research work and considering the spatial extent of the study region, NDVI, EVI, and 

diurnal land surface temperature was selected to be used as ancillary data for the downscaling 

approach (Bai et al., 2019; Chen et al., 2020a; Mao et al., 2022; Peng et al., 2017). As we 

considered days where there was no precipitation within a window of about 5 to seven days 

before the field visits, precipitation data were not considered for the downscaling model. Table 2 

shows the dates considered for downloading the data products. 
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Table 2. Study dates considered for downloading satellite data. 

Day 

Number 
Field visit date MODIS LST MODIS  NDVI/EVI SMAP 

1 2/7/2022 2/6/2022 2/2/2022- 2/20/2022 2/7/2022 

2 3/4/2022 3/4/2022 2/18/2022-3/7/2022 3/4/2022 

3 5/11 2022 5/10/2022 5/9/2022-5/26/2022 5/11/2022 

4 7/28/2022 - - 7/28/2022 

5 9/28/2022 9/28/2022 9/14/2022-10/1/2022 9/28/2022 

6 10/21/2022 10/21/2022 10/16/2022-11/3/2022 10/21/2022 

  

 

Figure 7. Parameters affecting the spatial variability of surface soil moisture as a function of the 

spatial extent of the study region considered (from (Crow et al., 2012) 

 



25 
 

3.3 Satellite derived surface soil moisture 

Surface soil moisture data used for downscaling were downloaded from the National 

Snow and Ice Data Center SMAP data repository. Version 7 of the SMAP level four root zone 

soil moisture geophysical data product (SPL4SMGP) was used in this study. The level four 

product is produced by assimilating L-band radiometer brightness temperature data into a land 

surface model  (Reichle et al., 2022).  Data in this product is gridded into a global cylindrical 9 

km equal-area scalable Earth grid (EASE-Grid 2.0). Data granules covering the time period 

starting at noon and ending at the 15th hour of the day were downloaded for each day considered 

in the downscaling. Surface soil moisture (0–5 cm vertical average) data from this product were 

used in this study. 

3.4 Land surface temperature (LST) 

“MODIS/ Aqua Land Surface Temperature/ Emissivity Daily L3 Global 1km SIN Grid 

V061 '' data product (MYD11A1) downloaded from NASA Earthdata search web portal was 

used to derive land surface temperature values for the study area. The product contains both 

night time and daytime land surface temperature values at a spatial resolution of 1km (Wan, 

2006). Depending on the cloud cover of the data acquisition time, the pixels may or may not 

contain LST values for the pixels. As the project makes use of diurnal temperature for the 

downscaling, it was important to select pixels with both night and daytime LST values for the 

processing. When data was obscured due to cloud cover, the day before or after the collection of 

field soil moisture data was considered for downloading LST data products. When there is no 

precipitation, the diurnal temperature is assumed to be similar for consecutive days.  
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3.5 NDVI and EVI 

“MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid V061 '' data product 

(MOD13A2) downloaded from NASA Earthdata Search web portal was utilized in deriving 

NDVI and EVI data. This product provides the average NDVI and EVI values for a period of 16 

days. NDVI and EVI are two standard vegetation indices that are calculated as shown in equation 

3 and 4 respectively. The EVI equation given here is a modified version of the usual EVI 

equation, where the blue band is not used for the calculation. This was done in order to avoid 

erratic behavior of the conventional EVI equation over bright targets (heavy clouds and 

snow/ice). This erratic behavior in the original EVI equation is a result of blue band saturation 

over bright targets. Thus the blue band is removed to maintain the advantages of the EVI while 

avoiding insensitivity to bright targets (Didan et al., 2015).   

 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 (3) 

 𝐸𝑉𝐼 = 2.5
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+2.4𝑅𝑒𝑑+1
 (4) 

Where NIR is the near infrared band value. 

3.6 Land cover types 

One of the goals of this project is to compare surface soil moisture data with the land 

cover types of the study area. For this purpose, the MODIS land cover types product made by 

combining Terra and Aqua observations is used. This product has a 500m spatial resolution and 

provides data at a yearly intervals. This product contains 5 different land cover type 

classifications; (1) International Geosphere-Biosphere Programme (IGBP), (2) University of 



27 
 

Maryland classification, (3) Leaf Area Index (LAI), (4) BIOME-Biogeochemical cycles (BGC), 

and (5) Plant Functional Types (PFT). Based on the thick vegetation and it is variations in the 

study region, IGBP classification is used. IGBP classification consists of 17 different land cover 

types (Table 3).   
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Table 3. International Geosphere-Biosphere Programme (IGBP) classification (Sulla-Menashe & 

Friedl, 2018). 

 

 

 

 

Name Description

Water Bodies At least 60% of area is covered by permanent water bodies.

Evergreen Needleleaf Forests Dominated by evergreen conifer trees (canopy >2m). Tree cover >60%.

Evergreen Broadleaf Forests

Dominated by evergreen broadleaf and palmate trees (canopy >2m). 

Tree cover >60%.

Deciduous Needleleaf Forests

Dominated by deciduous needleleaf (larch) trees (canopy >2m). Tree 

cover >60%.

Deciduous Broadleaf Forests

Dominated by deciduous broadleaf trees (canopy >2m). Tree cover 

>60%.

Mixed Forests

Dominated by neither deciduous nor evergreen (40-60% of each) tree 

type (canopy >2m). Tree cover >60%.

Closed Shrublands Dominated by woody perennials (1-2m height) >60% cover.

Open Shrublands Dominated by woody perennials (1-2m height) 10-60% cover.

Woody Savannas Tree cover 30-60% (canopy >2m).

Savannas Tree cover 10-30% (canopy >2m).

Grasslands Dominated by herbaceous annuals (<2m).

Permanent Wetlands

Permanently inundated lands with 30-60% water cover and >10% 

vegetated cover.

Croplands At least 60% of area is cultivated cropland.

Urban and Built-up Lands

At least 30% impervious surface area including building materials, 

asphalt, and vehicles.

Cropland/Natural Vegetation 

Mosaics

Mosaics of small-scale cultivation 40-60% with natural tree, shrub, or 

herbaceous vegetation.

Permanent Snow and Ice

At least 60% of area is covered by snow and ice for at least 10 months 

of the year.

Barren

At least 60% of area is non-vegetated barren (sand, rock, soil) areas 

with less than 10% vegetation.

Water Bodies At least 60% of area is covered by permanent water bodies.

Unclassified Has not received a map label because of missing inputs.
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3.7 Data preparation 

Data preparation for the machine learning models was done in the ArcGIS Pro software. 

In order to bring all the data into a comparable coordinate system, data products used in the study 

were clipped to the study area and projected to the Mississippi Transverse Mercator (MSTM) 

reference coordinate system. For land surface temperature (LST), pixel values were multiplied 

by a factor of 0.0001 to get the LST value into degrees Kelvin. The diurnal temperature was 

calculated by subtracting night-time LST values in the data set from daytime LST values.  For 

NDVI and EVI, a scaling factor of 0.0001 was used to obtain proper values. This is because the 

NASA science team has the original vegetation indices data product scaled to save space and 

precision during file compression. SMAP soil moisture data were disaggregated into a 1km 

spatial resolution to match the finest resolution used for the independent variables of the machine 

learning model. The nearest neighbor method was used in this disaggregation to avoid altering 

the pixel values (Figure 8). In the next step, all raster datasets were converted to point data to 

prepare them for spatial joining. A fishnet having polygons of 1 km2 was made covering the 

study area so that point data for NDVI, diurnal temperature, and surface soil moisture could be 

spatially joined to the polygons of the fishnet. As a final step, pixels with null values for the 

variables considered for downscaling were removed from the final data set before running the 

data in the machine learning model. 
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Figure 8.  Figure representation of disaggregating a 9 km cell to 1 km cells using the nearest 

neighbor method 

3.8 Random Forest Model 

Random forest is a method of creating an ensemble of decision trees and deriving the 

most voted class by the decision trees (Breiman, 2001). The method is inspired by the previous 

work done on randomized trees and is introduced as a competitor to boosting method (Cutler et 

al., 2012). Cutler et al. (2012) also describe random forest as an extension of Breiman’s bagging 

idea. 

 Data required for random forests have predictors and dependent variables. A data set 

consisting of vectors for both of these variables is randomly sampled when developing the forest 

of regression trees (ensemble of decision trees). This is what gives this method the name 

“Random Forest”. The randomly selected data set for the regression tree is known as the 

bootstrap sample. As the data for growing trees are sampled with replacement, each tree gets to 

use the complete range of the original training data set for random sampling for training. 

Repeated bootstrap sampling with replacement in the random forest is done through a procedure 
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named “bootstrap aggregation”, which is given the acronym bagging (Breiman, 1996). Thus the 

training sets used for tree growth are known as the in-bag data. 

 For an M number of input variables, the model decides a number m<< M, which is the 

number of variables picked for splitting at each node of the decision tree. Value for the m 

number is kept constant throughout the decision tree growing process. Ultimately predictions are 

calculated for each decision tree, and an arithmetic average of the predictions is given as a final 

forecast by the random forest (Bartkowiak et al., 2019). Equation 5 represents how random forest 

predicts final results based on regression trees.  

 𝐹(𝑥) =  
∑ 𝑇𝑗(𝑥)𝑁

𝑗=1

𝑁
 (5) 

where N indicates the number of regression trees, Tj represents each tree, and F is a prediction 

for a point x (Bartkowiak et al., 2019). 

According to (Breiman, 2001), there are two things that control the forest error rate. The 

first is introduced as the correlation between any two trees of the random forest. Higher the 

correlation between the regression trees, the higher the error rate. The second contributor to the 

error rate is the individual tree error rate. Both of these errors are influenced by the m number of 

variables selected for splitting at each node. While reducing m reduces the correlation between 

the trees, it also increases the individual tree error. Therefore, the model should maintain an 

optimum number to balance the error contributors. The model does this by analyzing the error 

for the out-of-bag data set. Out-of-bag data is the data left out when in-bag data is selected for 

model training, meaning the out-of-bag data can give an unbiased estimate of the classification 

error by the trees. 
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 The random forest also calculates variable importance using the out-of-bag data set. To 

give variable importance, the model uses a method of comparing the number of votes cast by the 

trees for the correct class when out-of-bag data is used, against the number of votes cast by the 

trees for the correct class when randomly permuted out-of-bag data is used. 

The random forest classification tool from ArcGIS Pro was used to downscale surface 

soil moisture data. This tool uses the same basic concepts of the random forest technique put 

forward by (Breiman, 2001). Disaggregated surface soil moisture values from SMAP level four 

products were used as the variable to predict, while NDVI, EVI, and diurnal temperature values 

were used as predictors. Due to the cloud cover, a good LST image covering the study area was 

not found within a window of seven days before and after July 28, 2022. For this reason, the 

month of July was not considered during the downscaling process.   

3.9 Validating results 

The accuracy of the model output was measured using several approaches. The first 

approach to validate the model accuracy was to compare the output with the data collected in the 

field. Correlation coefficient values were obtained for the relationship between field data and 

coarse resolution/downscaled data for the study dates considered. Furthermore, mean, median, 

mode, and several other statistics were calculated for the pixels of coarse resolution and 

downscaled surface soil moisture datasets. These general statistics were used to analyze the key 

changes between the downscaled and coarse resolution data sets. A visual comparison of the 

coarse-resolution surface soil moisture, fine-resolution surface soil moisture, surface geology, 

and land cover types were made by overlaying maps to see if any matching patterns exist 

between the different data types. As a final step, both the coarse resolution and fine resolution 
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data sets were clipped based on the land cover types from IGBP, and statistics were calculated 

for each land cover type. Statistics over different vegetation types were used to show the 

relationship of the surface soil moisture to different land cover types. Figure 9 is a summary of 

the entire workflow followed for the downscaling of the coarse resolution surface soil moisture 

data. 

 

Figure 9. Flow chart summarizing workflow followed for the downscaling of the coarse 

resolution surface soil moisture.  
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IV. RESULTS 

4.1 Soil sample testing and field collected data 

The values of soil moisture measured in the laboratory were compared with the soil moisture 

probe readings of the same locations from where the soil samples were collected (Figure 10).  

 

Figure 10. Scatter plot showing the comparison of soil moisture data from the field and 

laboratory tested samples. 

Field surface soil moisture data collected on April 18, 2023, are plotted on the map to 

demonstrate the variations in the surface soil moisture values. Minimum, maximum, mean, and 
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standard deviation were calculated for this data and are shown in  

 

Figure 11. Field surface soil moisture measurements in an area of approximately 1 km2 and 

statistics for the measurements. Soil moisture values are reported as volume/volume. 

4.2 Results from the downscaling 

Both coarse resolution and downscaled data are created over the study region and 

presented in Figure 12 through Figure 15. Images for October are chosen to present as single 

large images due to contrasting differences in the surface soil moisture values across the mapped 

area. All the images are mapped using the same color ramp normalized between the minimum 

and maximum for the respective image. Scatter plots showing the correlation of field-collected 
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surface soil moisture data to coarse resolution and downscale model predictions are presented in 

Figure 16 through Figure 19.  Table 4 provides a summary of the correlation values obtained in 

graphs from Figure 16-Figure 19. Table 5 provides an overview of the importance of the 

independent variables in the downscaling model. General statistics for the pixel values of field 

collected, coarse resolution, and downscaled surface soil moisture data are presented in Table 6.   
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Figure 12. 9 km spatial resolution surface soil moisture data from SPL4SMGP product, clipped 

to the study area for the months of (A) February, (B) March, (C) May, and (D) September. Soil 

moisture values shown are volume/volume. 
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Figure 13. 9 km spatial resolution surface soil moisture data from SPL4SMGP product, clipped 

to the study area for the month of October. The soil moisture values shown are volume/volume. 
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Figure 14. Surface soil moisture downscaling results for the months of (A) February, (B) March, 

(C) May, and (D) September. Spatial resolution is 1km, and soil moisture values shown are 

volume/volume. 
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Figure 15. Surface soil moisture downscaling results for the month of October. Spatial 

resolution is 1 km, and soil moisture values shown are volume/volume. 
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Figure 16. Remotely sensed soil moisture vs. field soil moisture readings for the month of 

February. 

 

Figure 17. Remotely sensed soil moisture vs. field soil moisture readings for the month of 

March. 
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Figure 18.  Remotely sensed soil moisture vs. field soil moisture readings for the month of May. 

 

Figure 19. Remotely sensed soil moisture vs. field soil moisture readings for the month of 

September. 
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Figure 20. Remotely sensed soil moisture vs. field soil moisture readings for the images from 

the month of October. 

Table 4. Summary of correlation coefficient values for the comparison of field collected surface 

soil moisture data and remotely sensed surface soil moisture data (values from Figure 16-Figure 

19). 

  Correlation of Coefficient 

  February March May September October 

Coarse 
resolution 0.35 0.13 0.54 0 0.36 

Fine 
resolution 0.47 0.12 0.39 0.21 0.32 

 

Table 5.  Parameter importance for the downscaling models constructed for each month. 

Importance Percentage 

Parameter February March May September October 

EVI 0.26 0.26 0.28 0.16 0.17 

LST 0.32 0.26 0.35 0.25 0.25 

NDVI 0.42 0.48 0.36 0.59 0.57 
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Figure 21. Land cover classification data downloaded from MODIS for the period 2021–2022 

visualized over the study area as per IGBP classification. 
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V. DISCUSSION 

5.1 Soil sample testing  

As shown in the graph from Figure 10, the laboratory measured soil moisture and field 

measured soil moisture has a coefficient of determination of 0.62 with the best fit line closely 

aligning to the y = x line. Ideally, a correlation of determination of 1 along with a best fit line 

aligning with y = x would indicate the best performance of the soil moisture probe. However, the 

readings made in the field using the soil moisture probe could contain an error. One of the most 

common errors collecting soil moisture with an electronic sensor is poor contact between the 

sensor and the soil. This is a common error when the soil is loose or very low density. To avoid 

this, several measurements were taken during the fieldwork, and multiple readings were taken at 

each site. Added to this, the instrument could contribute a possible error of ±0.03 m3·m-3 when 

the soil electrical conductivity is smaller than 8 millisiemens·cm-1 (Spectrum Technologies, 

2022; Susha Lekshmi et al., 2014). Similarly, an error margin can be expected from laboratory 

measured soil moisture values, especially when comparing gravimetric and volumetric moisture 

content. In the field, the volumetric moisture content was estimated using conductivity while in 

the laboratory the gravimetric was measured. To compare the density of soil must be assumed. 

Every sample is likely to be different and was assumed to be the same. Hence a source of error.  
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5.2 Visual comparison of pixel patterns in coarse resolution and downscaled images 

The coarse-resolution SPL4SMGP images visualized over the study region provide a 

very interesting observation (Figure 12, Figure 13). Despite the dates considered in the five 

different months, the images have an extremely similar pattern that is only differentiated by the 

surface soil moisture value. Which means the controls on the distribution of surface soil moisture 

are spatial. (T. Wang et al., 2020) explains the soil texture is one such spatial control on soil 

moisture. Since we avoided precipitation events when downloading soil moisture data, we cannot 

comment on the influence of precipitation on the spatial patterns of surface soil moisture.   

As observed in Figure 22, surface geology of the terrain presents several geologic units 

that range from north to south as irregular bands. These irregular bands fit with the pattern 

observed in the coarse-resolution surface soil moisture images. Through a visual comparison, it 

is evident that a major portion of the coarse resolution pixels with the highest surface soil 

moisture coincide with the Demopolis Chalk, Mooreville Chalk, Porters Creek, Ripley, and 

Coffee Sand. Data presented in Figure B 1 through Figure B 5, and Table B 1 through Table B 

5 in Appendix B support this observation. The highest values for the maximum and mean surface 

soil moisture are observed within the same surface geologic units. A similar match between land 

cover types and surface soil moisture was identified when the images are compared. The highest 

soil moisture values are observed within the cropland vegetation area as classified by the IGBP. 

It could be observed that the original pixel pattern observed in the coarse resolution surface soil 

moisture data has been more refined to match the surface geology and land cover pattern after 

the downscaling.  

 



48 
 

 

Figure 22. Surface geology of the study region. 

Within the downscaled image, most of the high surface soil moisture pixels coincide with 

the Demopolis Chalk, Porters Creek Formations, and Mooreville. This could also be observed in 

Figure B 1 through Figure B 5, and Table B 1 through Table B 5 presented in Appendix B. 

Added to this, the highest surface soil moisture values fit well with the areas covered by 



49 
 

croplands according to the IGBP classification. These similar pixel patterns observed in both 

coarse-resolution and fine-resolution images verify the accuracy of the results.  

5.3 Quantitative analysis of the downscaling model 

Downscaling was achieved using the random forest technique in this project. In a usual 

machine learning approach, a data set representing the dependent variable is used as the target 

data for the model training (Chen et al., 2020b; Im et al., 2016; Liu et al., 2017; Zhao et al., 

2018).. In this project, high resolution surface soil moisture data becomes the dependent variable. 

However, the only available fine scale (1 km) surface soil moisture data for this region for the 

time period considered were the field collected surface soil moisture data during this project’s 

fieldwork. Since that data set was not big enough to train a machine learning model, coarse-

resolution data (SPL4SMGP) was disaggregated and used in training the machine learning 

model. As a result, the model is led to believe the disaggregated coarse-resolution data to be fine-

scale data (target data set) and ends up comparing the predicted values with the coarse-resolution 

data itself (target data set) to produce statistics for the model accuracy. The purpose of 

downscaling the coarse-resolution data is to alter the coarse-resolution values to match a finer 

spatial resolution, this approach leads to a lower correlation of coefficient between the predicted 

values and the target data set. Therefore, we cannot use the model correlation coefficient value 

output to quantify the prediction capability of the model. However, having similar correlation 

coefficient values for both validation and training confirms that the model is stable and 

overfitting has not occurred. During the training, we were able to observe a maximum correlation 

of determination of 20 percent with lowest values at 9 percent. Similar values were observed for 

the validation data set with differences of approximately 1–2 percent from training. The random 

forest model is also capable of providing the data to show the importance of each independent 
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variable used for downscaling. In all cases considered, NDVI was observed to be the most 

important parameter for the downscaling, with diurnal temperature the second and EVI the third 

most important parameter (Table 5). 

Graphs shown in Figure 16 through Figure 20 represent the relationship observed 

between the surface soil moisture data collected in the field and the surface soil moisture data 

derived from coarse resolution (SPL4SMGP) and downscaled data. A very low correlation 

coefficient was observed for all the months considered, for both coarse resolution and 

downscaled surface soil moisture data.  Also, satellite-based data was observed to be 

overestimating the surface soil moisture data compared to the field-collected surface soil 

moisture data.  Thus, we are unable to validate the model performance or the accuracy of the 

coarse-resolution surface soil moisture data based on the field collected surface soil moisture 

data. It should also be noted despite having field data collected from 25 different locations, for 

certain months, only a portion of this data could be used due to missing pixels as a result of cloud 

cover.  

There are several reasons that may have led to the poor relationship between surface soil 

moisture data collected in the field and coarse resolution/downscaled surface soil moisture data. 

The very fact that we are comparing point data to pixel values that are supposed to represent the 

average surface soil moisture for a larger spatial extent could be one of them. The heterogeneous 

nature of the surface soil moisture in the study region may have caused the point data to be 

poorly correlated to the satellite data. This assumption is supported by the field data collected in 

a very short time frame (less than 3 hours) for a smaller study area (approximately 1 km2). 

Values observed in the smaller field site have a range of 3% to 39% volumetric surface soil 

moisture (Figure 11).This is evidence that field-collected surface soil moisture data can have a 



51 
 

large variation even within a smaller area closer to 1 km2. Impure pixels could be another reason 

for the poor correlation (having spectrally different materials within the area of a pixel). The land 

cover and land use of the study area is highly heterogeneous. Being a highly vegetated terrain 

with many streams and water bodies, the pixels covering the study region may come across 

different surface soil moisture values for each pixel. Ultimately, this could add to the poor 

correlation between field data and satellite data. Ideally, collecting surface soil moisture data 

from several locations within an area similar to that of a pixel (1 km2) to come up with an 

average value for each location would be preferable. However, that was not practical within the 

context of this project, considering the resources available.  

Table 6 provides an overview of the statistics obtained for the downscaled surface soil 

moisture data and coarse-resolution surface soil moisture data. It is noticed that despite having 

different values for minimum, maximum, median, and mode, the Sum and Mean values are the 

same for both the coarse resolution and downscaled images. This indicates that the random forest 

model has redistributed and normalized the surface soil moisture data from the coarse-resolution 

image between a new maximum and minimum for the downscaled image. Furthermore, seeing 

that the downscaled data matches the patterns of land cover types and surface geology, the model 

has normalized the data to match the patterns of NDVI, EVI, and diurnal temperature used for 

the modeling. Since the coarse-resolution data also fits the same pixel patterns with similar 

relative pixel value differences across the image for all the months (based on visual observation), 

this normalization achieved by the random forest model could be said to be a good fit for surface 

soil moisture data downscaling.  
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5.4 Relationship between the land cover types and surface soil moisture 

Tables in Appendix A present the statistics of the downscaled and coarse resolution 

surface soil moisture data over different land cover types observed by IGBP classification. As 

per the data from these tables, land cover classes can be put into three categories based on mean 

surface soil moisture. Land cover classes of croplands and cropland/natural vegetation Mosaics 

have the highest mean surface soil moisture values. Similarly highest values for the mode were 

observed for Croplands and Cropland/Natural Vegetation Mosaics. The second highest mean 

surface soil moisture values were observed for savannas, grasslands, and urban and built-up 

lands. Whereas, third highest surface soil moisture values were observed for the woody 

savannas, deciduous broadleaf forests, and mixed forests. This is true for both coarse resolution 

and downscaled data except in the case of urban and urban built-up land cover types. Urban and 

built-up lands have lowest surface soil moisture in coarse resolution image while having high 

mean surface soil moisture values similar to grass lands and savannas in the downscaled images. 

Considering the amount of concrete structures and roads covering the soil, this can be considered 

an over estimation. These statistics match the visual observations explained in previous sections. 

 Wang et al., (2013) present very similar results where they put the mean soil moisture for 

five different land cover types in the order of crop> grass> subshrub> tree> shrub. This 

relationship of relative soil moisture difference shown in Wang et al., (2013) is described to be 

stable over time. Yuan et al., (2022) also confirms this relationship where the land cover types 

based on soil moisture is put in the order of arable land (e.g. crop lands)> grasslands> 

shrubland> forestland.  

Considering that the order of relative differences of mean and mode surface soil moisture 
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across different land cover types are the same for both coarse-resolution and downscaled data, 

and the observed relationship matches with literature, we can assume that the random forest 

model has worked well in predicting fine-resolution surface soil moisture data.  
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VI. CONCLUSIONS 

From the study results, it is evident that the point surface soil moisture data collected 

through fieldwork was not sufficient for evaluating the accuracy of downscaled data that has a 

comparatively much larger spatial resolution of 1 km. The poor correlation seen between the 

point surface soil moisture data and coarse resolution/fine resolution maps could be attributed to 

the heterogeneous nature of the surface soil moisture.   

The surface geology and the land cover types follow a very similar spatial distribution 

pattern, which could be observed in both the coarse resolution SPL4SMGP data and downscaled 

surface soil moisture data set. While using land cover types and surface geology could also 

improve the downscaling, we decided not to use them for the downscaling to avoid output being 

biased towards them. Thus we were able to use land cover types and surface geology in 

evaluating the downscaling results. In the region considered for the study, the highest surface soil 

moisture values were observed in Demopolis Chalk and Porters Creek geologic formations. 

When compared to the vegetation types, Croplands, and Cropland/Natural Vegetation Mosaics 

showed the highest surface soil moisture values. With these results, we can come to the 

conclusion that it is possible to use the patterns of surface geology and land cover types to 

evaluate downscaling results when a secondary fine-resolution dataset is not available. 

Statistics computed for the pixels of coarse resolution and downscaled surface soil 

moisture data reveal that during the downscaling process, the random forest model has 

normalized the surface soil moisture data extracted from coarse-resolution images over the study 
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region. The random forest model has used NDVI, EVI, and diurnal temperature to do this 

normalization. Ultimately the results demonstrate the ability to use random forest machine 

learning technique to downscale surface soil moisture data for a smaller localized area.   
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Table A 1. Statistics for different land cover types in the study region according to IGBP for the 

study date in February. Soil moisture values are given as volume/volume. 

 

 

 

 

 

 

 

 

 

February Field Name Minimum Maximum Mean Median Count Mode Sum

SM 9km 0.241 0.500 0.348 0.346 25816 0.346 8990.622

SM 1km 0.324 0.378 0.349 0.350 25816 0.340 9022.596

SM 9km 0.241 0.500 0.335 0.325 10539 0.309 3527.903

SM 1km 0.327 0.375 0.345 0.346 10539 0.340 3632.258

SM 9km 0.241 0.500 0.354 0.350 41705 0.358 14772.225

SM 1km 0.324 0.381 0.354 0.354 41705 Multiple 14753.413

SM 9km 0.241 0.500 0.368 0.364 7655 0.367 2816.940

SM 1km 0.328 0.381 0.361 0.363 7655 0.363 2766.477

SM 9km 0.253 0.485 0.362 0.356 1704 0.277 616.489

SM 1km 0.324 0.381 0.361 0.363 1704 Multiple 615.177

SM 9km 0.259 0.482 0.383 0.392 3004 0.415 1151.368

SM 1km 0.331 0.381 0.364 0.364 3004 0.360 1094.326

SM 9km 0.241 0.471 0.333 0.329 589 0.329 195.928

SM 1km 0.328 0.376 0.359 0.361 589 0.352 211.438

SM 9km 0.273 0.485 0.383 0.392 1941 0.401 743.479

SM 1km 0.331 0.380 0.364 0.365 1941 0.360 706.636

Grasslands

Croplands

Urban and Built-up 

Lands

Cropland/Natural 

Vegetation Mosaics

Deciduous Broadleaf 

Forests

Mixed Forests

Woody Savannas

Savannas
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Table A 2. Statistics for different land cover types in the study region according to IGBP for the 

study date in March. Soil moisture values are given as volume/volume. 

 

 

 

 

 

 

 

 

 

March Field Name Minimum Maximum Mean Median Count Mode Sum

SM 9km 0.272 0.502 0.367 0.360 28124 0.356 10311.782

SM 1km 0.353 0.396 0.372 0.371 28124 0.355 10473.318

SM 9km 0.272 0.502 0.363 0.352 11717 0.333 4255.474

SM 1km 0.352 0.397 0.368 0.368 11717 0.368 4316.212

SM 9km 0.272 0.502 0.375 0.363 48109 0.333 18053.470

SM 1km 0.353 0.400 0.376 0.375 48109 0.355 18082.089

SM 9km 0.272 0.502 0.389 0.389 9679 0.391 3763.641

SM 1km 0.354 0.397 0.381 0.382 9679 0.382 3689.393

SM 9km 0.284 0.496 0.385 0.381 2102 0.403 808.827

SM 1km 0.354 0.400 0.380 0.383 2102 0.355 799.717

SM 9km 0.284 0.494 0.406 0.416 4432 0.439 1801.576

SM 1km 0.354 0.400 0.384 0.386 4432 0.382 1702.986

SM 9km 0.272 0.491 0.358 0.347 627 0.347 224.602

SM 1km 0.355 0.395 0.380 0.381 627 0.365 238.421

SM 9km 0.284 0.496 0.408 0.414 2692 0.442 1098.061

SM 1km 0.357 0.397 0.384 0.385 2692 0.386 1032.462

Grasslands

Croplands

Urban and Built-up 

Lands

Cropland/Natural 

Vegetation Mosaics

Deciduous Broadleaf 

Forests

Mixed Forests

Woody Savannas

Savannas
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Table A 3. Statistics for different land cover types in the study region according to IGBP for the 

study date in May. Soil moisture values are given as volume/volume. 

 

 

 

 

 

 

 

 

 

May Field Name Minimum Maximum Mean Median Count Mode Sum

SM 9km 0.151 0.446 0.295 0.290 16929 0.280 4999.402

SM 1km 0.286 0.325 0.298 0.296 16929 0.292 5050.663

SM 9km 0.171 0.446 0.293 0.286 5152 0.266 1511.568

SM 1km 0.288 0.324 0.301 0.299 5152 0.297 1548.753

SM 9km 0.151 0.446 0.305 0.295 26198 0.289 7993.558

SM 1km 0.288 0.325 0.303 0.303 26198 0.291 7947.283

SM 9km 0.167 0.446 0.316 0.317 5465 0.328 1729.598

SM 1km 0.288 0.325 0.309 0.311 5465 Multiple 1688.731

SM 9km 0.167 0.437 0.320 0.314 936 0.431 299.841

SM 1km 0.289 0.324 0.313 0.314 936 Multiple 292.510

SM 9km 0.167 0.437 0.324 0.341 2193 0.356 710.050

SM 1km 0.291 0.327 0.316 0.318 2193 0.320 692.702

SM 9km 0.151 0.425 0.267 0.277 366 0.226 97.828

SM 1km 0.289 0.322 0.310 0.312 366 0.306 113.613

SM 9km 0.167 0.437 0.317 0.326 1627 0.167 515.951

SM 1km 0.290 0.325 0.312 0.313 1627 Multiple 508.132

Urban and Built-up 

Lands

Cropland/Natural 

Vegetation Mosaics

Deciduous Broadleaf 

Forests

Mixed Forests

Woody Savannas

Savannas

Grasslands

Croplands
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Table A 4. Statistics for different land cover types in the study region according to IGBP for the 

study date in September. Soil moisture values are given as volume/volume. 

 

 

 

 

 

 

 

 

 

September Field Name Minimum Maximum Mean Median Count Mode Sum

SM 9km 0.068 0.254 0.131 0.034 26598 0.099 3488.435

SM 1km 0.127 0.162 0.137 0.006 26598 0.129 3635.428

SM 9km 0.076 0.254 0.147 0.035 11015 0.161 1619.966

SM 1km 0.127 0.160 0.140 0.006 11015 0.134 1538.758

SM 9km 0.068 0.254 0.142 0.039 47306 0.131 6703.173

SM 1km 0.127 0.169 0.142 0.005 47306 0.135 6724.350

SM 9km 0.068 0.254 0.145 0.045 9678 0.211 1403.074

SM 1km 0.128 0.170 0.145 0.004 9678 0.145 1408.041

SM 9km 0.068 0.251 0.148 0.043 2073 0.182 307.391

SM 1km 0.128 0.168 0.146 0.005 2073 0.139 302.822

SM 9km 0.068 0.251 0.163 0.043 4426 0.198 721.151

SM 1km 0.130 0.172 0.149 0.006 4426 0.149 658.741

SM 9km 0.077 0.220 0.125 0.043 625 0.082 78.092

SM 1km 0.135 0.150 0.146 0.002 625 0.144 90.941

SM 9km 0.068 0.233 0.157 0.048 2694 0.200 422.220

SM 1km 0.130 0.170 0.149 0.005 2694 0.145 400.208

Woody Savannas

Savannas

Grasslands

Croplands

Urban and Built-up 

Lands

Cropland/Natural 

Vegetation Mosaics

Deciduous Broadleaf 

Forests

Mixed Forests
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Table A 5. Statistics for different land cover types in the study region according to IGBP for the 

study date in October. Soil moisture values are given as volume/volume. 

 

 

 

 

 

 

 

  

October Field Name Minimum Maximum Mean Median Count Mode Sum

SM 9km 0.076 0.263 0.142 0.140 27238 0.147 3878.385
SM 1km 0.136 0.176 0.142 0.141 27238 Multiple 3863.085

SM 9km 0.078 0.258 0.135 0.121 11554 0.105 1556.046
SM 1km 0.136 0.176 0.140 0.139 11554 0.137 1620.586

SM 9km 0.076 0.263 0.147 0.144 46496 0.112 6833.569

SM 1km 0.136 0.179 0.147 0.146 46496 0.137 6838.579

SM 9km 0.076 0.263 0.157 0.150 9171 0.200 1441.330
SM 1km 0.136 0.179 0.154 0.153 9171 0.168 1411.865

SM 9km 0.080 0.263 0.152 0.149 1941 0.194 294.575
SM 1km 0.136 0.179 0.158 0.156 1941 0.179 305.829

SM 9km 0.080 0.258 0.169 0.175 3615 0.201 610.330
SM 1km 0.136 0.179 0.165 0.166 3615 0.179 595.366

SM 9km 0.076 0.251 0.131 0.116 576 0.116 75.248
SM 1km 0.138 0.172 0.153 0.154 576 0.155 88.206

SM 9km 0.080 0.263 0.171 0.172 2259 0.209 386.005

SM 1km 0.137 0.179 0.161 0.158 2259 0.176 363.597

Urban and Built-up 

Lands

Cropland/Natural 

Vegetation Mosaics

Deciduous Broadleaf 

Forests

Mixed Forests

Woody Savannas

Savannas

Grasslands

Croplands
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APPENDIX B: STATISTICS OF SURFACE SOIL MOISTURE VALUES FOR DIFFERENT 

SURFACE GEOLOGIC UNITS IN THE STUDY REGION  
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Table B 1. Statistics for different surface geologic units in the study region for the study date in 

February. Soil moisture values are given as volume/volume. 

 

 

Figure B 1. Bar chart showing the variations of surface soil moisture across different surface 

geologic units for the study date in February. 

February FORMATION

max_sm9k

m

mean_sm9k

m

max_sm1km

_predicted

mean_sm1km_

predicted

sum_Area_SQUA

REKILOMETERS

1 CHATTANOOGA SHALE 0.112 0.092 0.109 0.090 0.4

2 CHESTER GROUP 0.355 0.271 0.365 0.272 35.7

3 CLAYTON 0.458 0.317 0.380 0.304 671.6

4 COFFEE SAND 0.500 0.360 0.380 0.336 1223.2

5 DEMOPOLIS CHALK 0.485 0.362 0.380 0.340 1765.3

6 EUTAW 0.472 0.314 0.379 0.330 2443.3

7 EUTAW (TOMBIGBEE SAND) 0.472 0.319 0.377 0.306 713.9

8 KOSCIUSKO 0.382 0.275 0.371 0.274 109.8

9 MERAMAC, OSAGE 0.357 0.262 0.357 0.267 27.3

10 MOOREVILLE CHALK 0.476 0.368 0.381 0.328 546.5

11 NAHEOLA 0.418 0.324 0.380 0.322 504.7

12 PORTERS CREEK 0.458 0.356 0.380 0.329 1217.8

13 PRAIRIE BLUFF/OWL CREEK 0.453 0.251 0.376 0.259 468.6

14 RIPLEY 0.485 0.291 0.375 0.311 1245.7

15 RIPLEY (MCNAIRY SAND) 0.391 0.297 0.379 0.311 406.7

16 TALLAHATTA/NESHOBA SAND 0.414 0.322 0.379 0.333 2212.0

17 TUSCALOOSA 0.364 0.276 0.372 0.298 686.0

18 WILCOX 0.454 0.329 0.380 0.332 3139.8

19 ZILPHA/WINONA 0.324 0.266 0.354 0.302 21.8
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Table B 2. Statistics for different surface geologic units in the study region for the study date in 

March. Soil moisture values are given as volume/volume. 

 

 

Figure B 2. Bar chart showing the variations of surface soil moisture across different surface 

geologic units for the study date in February. 

 

March FORMATION max_sm9kmmean_sm9km

max_sm1km

_predicted

mean_sm1km_

predicted

sum_Area_SQUA

REKILOMETERS

1 CHATTANOOGA SHALE 0.113 0.093 0.114 0.094 0.4

2 CHESTER GROUP 0.362 0.278 0.387 0.291 36.6

3 CLAYTON 0.466 0.336 0.394 0.324 805.4

4 COFFEE SAND 0.502 0.370 0.396 0.355 1293.3

5 DEMOPOLIS CHALK 0.496 0.392 0.397 0.365 2490.1

6 EUTAW 0.494 0.337 0.397 0.354 2711.9

7 EUTAW (TOMBIGBEE SAND) 0.494 0.339 0.397 0.327 779.2

8 KOSCIUSKO 0.399 0.300 0.390 0.301 149.1

9 MERAMAC, OSAGE 0.362 0.263 0.374 0.283 27.3

10 MOOREVILLE CHALK 0.494 0.400 0.400 0.353 709.0

11 NAHEOLA 0.429 0.358 0.397 0.345 714.3

12 PORTERS CREEK 0.466 0.376 0.397 0.352 1640.1

13 PRAIRIE BLUFF/OWL CREEK 0.461 0.271 0.392 0.282 546.9

14 RIPLEY 0.496 0.306 0.393 0.329 1321.2

15 RIPLEY (MCNAIRY SAND) 0.409 0.309 0.387 0.330 414.0

16 TALLAHATTA/NESHOBA SAND 0.425 0.341 0.393 0.357 2973.6

17 TUSCALOOSA 0.388 0.300 0.393 0.320 770.0

18 WILCOX 0.465 0.351 0.396 0.354 4013.9

19 ZILPHA/WINONA 0.352 0.302 0.383 0.331 38.2
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Table B 3. Statistics for different surface geologic units in the study region for the study date in 

May. Soil moisture values are given as volume/volume. 

 

 

Figure B 3. Bar chart showing the variations of surface soil moisture across different surface 

geologic units for the study date in May. 

May FORMATION max_sm9kmmean_sm9km

max_sm1km

_predicted

mean_sm1km_

predicted

sum_Area_SQUA

REKILOMETERS

1 CHATTANOOGA SHALE 0.083 0.068 0.092 0.076 0.4

2 CHESTER GROUP 0.292 0.220 0.310 0.229 36.6

3 CLAYTON 0.405 0.281 0.323 0.264 448.2

4 COFFEE SAND 0.446 0.288 0.323 0.280 665.7

5 DEMOPOLIS CHALK 0.437 0.292 0.325 0.292 1192.3

6 EUTAW 0.435 0.266 0.325 0.283 2053.6

7 EUTAW (TOMBIGBEE SAND) 0.435 0.280 0.323 0.260 564.3

8 KOSCIUSKO 0.331 0.263 0.321 0.255 74.0

9 MERAMAC, OSAGE 0.282 0.201 0.319 0.227 27.3

10 MOOREVILLE CHALK 0.435 0.326 0.327 0.287 566.0

11 NAHEOLA 0.381 0.309 0.323 0.288 130.8

12 PORTERS CREEK 0.413 0.328 0.324 0.288 721.5

13 PRAIRIE BLUFF/OWL CREEK 0.404 0.213 0.316 0.212 258.5

14 RIPLEY 0.437 0.238 0.323 0.269 852.9

15 RIPLEY (MCNAIRY SAND) 0.340 0.245 0.318 0.269 304.6

16 TALLAHATTA/NESHOBA SAND 0.380 0.294 0.323 0.291 1308.3

17 TUSCALOOSA 0.314 0.231 0.318 0.247 470.1

18 WILCOX 0.400 0.300 0.325 0.285 987.3

19 ZILPHA/WINONA 0.0
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Table B 4. Statistics for different surface geologic units in the study region for the study date in 

September. Soil moisture values are given as volume/volume. 

 

 

Figure B 4. Bar chart showing the variations of surface soil moisture across different surface 

geologic units for the study date in September. 

September FORMATION max_sm9kmmean_sm9km

max_sm1km

_predicted

mean_sm1km_

predicted

sum_Area_SQUA

REKILOMETERS

1 CHATTANOOGA SHALE 0.041 0.034 0.041 0.033 0.4

2 CHESTER GROUP 0.137 0.105 0.146 0.106 33.5

3 CLAYTON 0.218 0.131 0.154 0.125 802.9

4 COFFEE SAND 0.254 0.122 0.167 0.135 1191.5

5 DEMOPOLIS CHALK 0.251 0.154 0.172 0.139 2467.3

6 EUTAW 0.236 0.121 0.162 0.134 2351.1

7 EUTAW (TOMBIGBEE SAND) 0.236 0.133 0.157 0.125 698.9

8 KOSCIUSKO 0.134 0.091 0.151 0.113 149.8

9 MERAMAC, OSAGE 0.133 0.097 0.146 0.105 27.3

10 MOOREVILLE CHALK 0.251 0.173 0.168 0.135 704.0

11 NAHEOLA 0.209 0.161 0.160 0.132 674.6

12 PORTERS CREEK 0.218 0.149 0.169 0.135 1616.9

13 PRAIRIE BLUFF/OWL CREEK 0.218 0.101 0.156 0.107 541.0

14 RIPLEY 0.225 0.098 0.154 0.123 1307.9

15 RIPLEY (MCNAIRY SAND) 0.164 0.100 0.147 0.121 384.2

16 TALLAHATTA/NESHOBA SAND 0.196 0.115 0.165 0.132 2953.7

17 TUSCALOOSA 0.146 0.107 0.153 0.119 631.7

18 WILCOX 0.220 0.143 0.165 0.133 3921.4

19 ZILPHA/WINONA 0.169 0.146 0.147 0.123 38.2
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Table B 5. Statistics for different surface geologic units in the study region for the study date in 

October. Soil moisture values are given as volume/volume. 

 

 

Figure B 5. Bar chart showing the variations of surface soil moisture across different surface 

geologic units for the study date in October. 

October FORMATION max_sm9kmmean_sm9km

max_sm1km

_predicted

mean_sm1km_

predicted

sum_Area_SQUA

REKILOMETERS

1 CHATTANOOGA SHALE 0.0

2 CHESTER GROUP 0.144 0.110 0.154 0.113 36.6

3 CLAYTON 0.240 0.141 0.179 0.131 769.9

4 COFFEE SAND 0.256 0.153 0.176 0.140 949.3

5 DEMOPOLIS CHALK 0.263 0.166 0.179 0.149 2181.6

6 EUTAW 0.246 0.125 0.174 0.136 2581.0

7 EUTAW (TOMBIGBEE SAND) 0.246 0.143 0.168 0.128 693.9

8 KOSCIUSKO 0.150 0.108 0.174 0.115 140.9

9 MERAMAC, OSAGE 0.140 0.090 0.151 0.104 14.8

10 MOOREVILLE CHALK 0.251 0.176 0.179 0.141 626.7

11 NAHEOLA 0.184 0.141 0.179 0.135 686.0

12 PORTERS CREEK 0.240 0.157 0.179 0.141 1445.4

13 PRAIRIE BLUFF/OWL CREEK 0.240 0.106 0.179 0.111 527.9

14 RIPLEY 0.263 0.118 0.178 0.127 1299.7

15 RIPLEY (MCNAIRY SAND) 0.178 0.123 0.161 0.126 414.0

16 TALLAHATTA/NESHOBA SAND 0.194 0.126 0.176 0.137 2956.8

17 TUSCALOOSA 0.159 0.106 0.171 0.123 761.2

18 WILCOX 0.231 0.132 0.179 0.137 3952.3

19 ZILPHA/WINONA 0.129 0.105 0.165 0.125 38.2
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