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ABSTRACT 

In recent years, research conducted by the Applied Acoustics group at the National 

Center for Physical Acoustics has involved the use of microphone arrays to study the 

propagation of sound through outdoor environments. In such research, there is need for data 

acquisition systems which can be reconfigured in both hardware and software. This work is an 

effort to develop a modular acoustic data acquisition framework which can be configured to 

accommodate a wide variety of acoustic array applications. In hardware, the framework provides 

modularity with a generic mainboard which uses a common interface to collect data from 

application-specific microphone boards. In software, a generic host-side USB driver allows 

various acoustic array systems to be integrated with signal processing algorithms through a 

simple API. Using this framework, a completely new array can be developed rapidly: the user 

simply designs the application-specific sensor boards and adjusts firmware parameters.  
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I. INTRODUCTION 

In recent years, research conducted by the Applied Acoustics group at the National 

Center for Physical Acoustics has involved the use of microphone arrays to study the 

propagation of sound through outdoor environments. In such research, there is need for data 

acquisition systems which can be reconfigured in both hardware and software. This work is an 

effort to develop a modular acoustic data acquisition framework which can be configured to 

accommodate a wide variety of acoustic array applications. 

A sensor array is a group of sensor elements, spaced in a known geometry, which collect 

signals. In the context of acoustics, the sensor elements are microphones, and the signals are 

sound waves. There are many applications of acoustic arrays, including beamforming, noise 

reduction, and source separation. Each of these applications leverage acoustic arrays by 

processing the data from the microphone elements and producing an output.  

One prevalent example of an acoustic array is a home assistant device, such as Amazon 

Alexa, Google Assistant, and others. These devices use microphones to listen for a prompt from 

a user in the room. They can then use array signal processing techniques to amplify the audio 

signal in the direction of the user, effectively “pointing” to where the sound is coming from1. 

This is known as beamforming. In this case, beamforming effectively increases the signal to 

noise ratio in the recorded audio to improve the performance of voice recognition algorithms. 

This beamforming can even be directly observed in some devices that use a ring of LEDs to 

 
1 Amazon, Alexa Developer Documentation 
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indicate the direction of the speaker in relation to the device. A seemingly simple device like this 

demonstrates several common applications of acoustic arrays: sound source direction of arrival 

and source separation, beamforming or beamsteering, and noise reduction.   

One might initially assume that developing an acoustic array would be simple: set up a 

few microphones in a known geometry, record some data, write a signal processing algorithm 

and it’s done, right? With this assumption, it might seem that the most difficult task would be the 

signal processing, but when designing an acoustic array system, the properties of the array 

hardware are just as important as the signal processing algorithms used. 

The most basic requirement of an acoustic array is that all channels are simultaneously 

sampled – that is, each data point from each microphone element is sampled at the exact same 

time. Many array processing algorithms operate under the assumption of simultaneous sampling, 

so this must be implemented by the hardware. Additionally, when deploying multiple arrays for 

the purpose of sound source localization, the arrays must be simultaneously sampled with 

relation to each other. This can be achieved by using a GPS module to provide a precise global 

time reference, without requiring that the arrays be physically connected.  

Parameters such as sample rate and array geometry are dependent on the frequencies of 

interest in the application at hand. Following the Nyquist sampling theorem, microphones should 

be sampled at least twice the rate of the highest frequency of interest to avoid temporal aliasing. 

Similarly, the spacing between microphone elements should be less than one half wavelength of 

the highest frequency of interest to avoid spatial aliasing2. The wavelength depends on the speed 

of sound, which varies depending on the characteristics of the propagation medium – especially 

 
2 Consider a 10kHz signal. With C = 340m/s, its wavelength is 34mm. Thus, elements should be spaced less than 
17mm apart to avoid spatial aliasing at 10kHz. 
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its temperature. In practice, a margin of error for the speed of sound should be considered when 

determining the element spacing. Naturally, elements should exist on all axes for which 

directions must be resolved – to give direction in three dimensions, the array must have elements 

placed in three dimensions. 

One parameter on which the number of required elements is dependent is the number of 

sound sources that the array should be able to resolve. Generally, there should be at least one 

more element than the maximum number of sources, though it is beneficial to use more elements 

when practical. 

With these hardware complexities in mind, it wouldn’t be unreasonable to look for an 

off-the-shelf acoustic array solution instead of developing one from the ground up. In fact, some 

inspiration has been taken from the Zylia ZM-1 microphone array, which includes 19 

microphone elements in a spherical arrangement3. This device is intended for use in a music 

recording environment, where several musicians can perform together at the same time and later, 

signal processing algorithms can be used on the recorded data to isolate each sound source into 

its own audio track. The ZM-1 array is simultaneously sampled with a sample rate of 48kHz, 

covering the audible range. From a music production perspective, the Zylia saves time and 

money since one does not have to set up, take down, and buy several microphones and an audio 

interface. Likewise, from a research perspective, one saves time and money by avoiding having 

to develop a system from scratch, with multiple custom hardware revisions and many hours of 

seemingly fruitless debugging. Using an off-the-shelf product such as the Zylia can be a good 

alternative to in-house development, as both the hardware and software are ready to use out of 

the box.  

 
3 Zylia, Technology White Paper [2] 
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Of course, the Zylia is not without its drawbacks. Firstly, its array geometry is fixed. 

Disassembly of the housing is possible, but the cabling built into the Zylia is quite restrictive, so 

any significant modification of the array geometry requires custom cables or adapter boards to be 

made. The user is also restricted to a maximum of 19 channels, and interfacing with sensors 

other than digital MEMS microphones is not possible. Additionally, the timing of the Zylia array 

is not referenced to a global GPS clock, thus multiple arrays could not perform precise 

localization of a sound source. Often, an acoustic array needs to be specifically tailored to each 

specific application, so hacking together off-the-shelf components is not always the most 

practical solution.  

Ideally, an acoustic array framework would be able to overcome the limitations of the 

Zylia. It would be able to accurately timestamp samples to a GPS clock reference, interface with 

a large number of microphone elements, and be easily extensible to other sensor types if desired. 

This work proposes and demonstrates an acoustic array framework that not only meets the 

minimum requirements of an acoustic array, but also adds functionality not available with 

commercial devices. It is also highly reconfigurable, reusable, and can be easily augmented to 

interface with sensors other than digital MEMS microphones. At the center of the framework is a 

data acquisition board containing the essential components for an array system and connectors 

for interfacing with microphone boards of varying shapes and sizes. A host computer powers the 

board over USB and receives data from the array over a custom USB endpoint. 

This framework is referred to as “xdaq” – where “x” refers to the XMOS microcontroller 

used, and “daq” meaning data acquisition. 



 5 

 

 

 

II. HARDWARE DEVELOPMENT 

1.   Modularity in Hardware 

 In order to provide a standardized hardware platform, and to reduce the amount of effort 

required to design and deploy a new array, it is necessary to make a distinction between the 

hardware elements that are common between different arrays, and those elements that are unique 

to each array. Designing and laying out a PCB which includes a microcontroller and a GPS 

module is not a trivial task: specifically, one must consider sensitive traces which require 

controlled impedance and length matching, such as USB differential pairs and antenna traces. 

These sensitive traces require careful consideration of the circuit board layer stack-up, which can 

vary depending on the PCB manufacturer, since the impedance of a trace is primarily affected by 

the trace width, its height above a reference plane, and the dielectric properties of the material 

between copper layers4. On the other hand, a PCB with only digital MEMS microphones and an 

aggregator IC is much more tolerant to variations in layer stack-up, as it does not require 

controlled-impedance traces5. 

With these considerations in mind, the xdaq framework defines two types of boards: 

i. The Mainboard – which includes a microcontroller, GPS module, power supply, and 

other supporting circuitry. 

 
4 Texas Instruments, High Speed Layout Guidelines. [3] 
5 Signal bandwidth of single-ended PDM and TDM signals is much lower than that of USB differential pairs. 
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ii. The Microphone Board – which includes digital MEMS microphones and a codec 

conversion IC. 

This distinction of boards allows the same mainboard to be used with many different 

microphone boards, so that a new array requires only microphone boards to be designed. Another 

advantage of this distinction is that the mainboard could interface with sensor boards other than 

digital MEMS, provided the appropriate firmware support. The firmware framework which 

complements this hardware modularity is described in Chapter III, Section 1.  

 
Figure 1: Renders of a Mainboard. 
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Figure 2: Close-up renders of a 15-channel linear microphone board. 

 

 

Figure 3: System Level Block Diagram. 
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2.   The Microphone Board 

 It is necessary to first understand the function of the microphone board before seeing how 

it interfaces with the mainboard. The digital MEMS microphone used in this design is the 

Infineon IM69D130. These microphones have a small footprint, low power consumption, and 

have a PDM output clocked between 1.536 and 3.072 MHz, depending on the desired audio rate. 

Additionally, two microphones can be configured to share a single data line, where one 

microphone outputs its data on the rising edge of the clock, and the other on the falling edge. 

Sharing a data line simplifies board layout. According to the datasheet, “the flat frequency 

response (28Hz low-frequency roll-off) and tight manufacturing tolerance result in close phase 

matching of the microphones, which is important for multi-microphone (array) applications.” 6 

Notably, the analog to digital conversion (ADC) is done on-chip – a distinct advantage to laying 

out ADC circuitry manually, which can be prone to error, increases power requirements, and 

increases board size and complexity.  

 The pulse-density-modulation, or PDM serial interface is relatively simple as it only 

requires two connections: clock and data. However, interpreting PDM data is not trivial. With a 

traditional audio format such as PCM, or pulse code modulation, a word of data is represented by 

a sequence of bits. For example, 24-bit PCM would have a word length of 24 bits, where the first 

bit is the most significant, and the last is the least significant. With PCM, a sample represents the 

sound pressure level directly as a word. In contrast, with PDM each individual bit is a word – 

that is, the word length is 1 bit. With PDM from a MEMS microphone, “positive pressure 

increases density of 1's, [and] negative pressure decreases density of 1's in data output.” 7 

Naturally, PDM has a very low bit depth (only 1 bit per sample), whereas PCM can have a much 

 
6 Infineon, IM69D130 Datasheet [4] 
7 Infineon, IM69D130 Datasheet [4] 
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higher bit depth (24 bits per sample in the previous example). On the other hand, PDM data from 

the MEMS microphone comes at a much higher sample rate of 3.072MHz as compared to 48kHz 

with PCM. The challenge is then to translate the high sample rate, low bit depth PDM format 

into low sample rate, high bit depth PCM format. This is done by applying a low pass filter and 

decimation, also known as down-sampling. While this process is generally well-understood, it 

can become computationally expensive in applications with many channels.  

 In order to reduce the number of data lines needed, and to reduce computational load on 

the microcontroller, the PDM outputs from the digital MEMS microphones are interfaced with a 

PDM to TDM (time division multiplexing) converter IC. The converter used here is the Tempo 

Semiconductor TSDP1808x. This IC is specifically designed for the task of aggregating PDM 

data from up to 8 microphones, converting to PCM format, and sending the converted samples 

over a TDM serial interface. Based on the clock frequencies given on the TDM bus, the 

TSDP1808 determines the PDM clock frequency and decimation factor. For the desired sample 

rate of 48kHz, the PDM clock will be 3.072MHz. 

The TDM serial interface is composed of at least 3 signals: bit clock (BCLK aka SCLK), 

frame-sync (FSYNC aka LRCLK), and data (SDOUT). The rising edge of the FSYNC signal 

indicates the start of a frame of data, where a frame is one sample from each channel. In this 

application, the sample rate is 48kHz, so FSYNC pulses at the same rate. Each sample in a frame 

is aligned on a 32-bit word with respect to BCLK.8 The IC is configured for 8-channel output, so 

there are 8 words in a frame. To determine the necessary BCLK frequency, the sample rate, bits-

per-word, and words-per-frame are multiplied, giving 12.288MHz for this example. Figure 4 

shows the signal timing of the TDM bus. 

 
8 It is worth noting that the effective bit depth is only 24 bits, so the least-significant 8 bits are discarded. This is 
done for simplicity in firmware.  
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Figure 4: TDM Audio Output of TSDP1808x.9 

 

Using the TSDP1808, data from 8 microphones can be carried by 3 conductors (BCLK, 

FSYNC, DATA), whereas 5 would be required with PDM (CLK, DATA1-2, DATA3-4, 

DATA5-6, DATA7-8). Another 8 microphones can be added to the same TDM bus with the 

addition of a second DATA signal. For improved signal integrity in the flat flex cables 

connecting the microphone board to the mainboard, there is an additional ground conductor 

adjacent to each signal conductor, giving the smallest possible loop area for the signal and its 

return path. The final 10-pin cable pinout is shown in figure 5, where DIN_F* represents DATA 

signals. 

 
9 Tempo Semiconductor, TSDP1808x Datasheet [5] 



 11 

 

Figure 5: Microphone board connector pin description. 
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3.   The Mainboard 

 The mainboard has three major responsibilities: powering and interfacing with the 

microphone boards, synchronizing data acquisition with the GPS clock, and sending data from 

the microphones and GPS to a host computer over USB. The board is powered over USB, and 

3v3 and 1v0 supplies are generated by a dual buck converter.10 

 At the center of the mainboard is the XMOS XE216, which is a 32-bit multi-core 

microcontroller capable of precisely timed and deterministic IO. In addition, it contains a built-in 

USB2.0 High-Speed physical layer. The architecture of this microcontroller is unique in several 

ways. To begin with, it is composed of two xCORE two tiles, each of which has between 5 to 8 

xCOREs. Each xCORE is capable of executing real-time computational and IO tasks11. The 

number of xCOREs on a tile can change based on the computational requirements of the tasks 

being run. Figure 6 shows the block diagram of the XMOS XE216 microcontroller. The left-

hand and right-hand sides of the figure show the two tiles, each with 8 xCOREs and input/output 

ports. The two tiles are connected via the xCONNECT switch, which facilitates data transfer 

between xCOREs on different tiles.   

 
10 Admittedly, the buck converter used is capable of providing much more current than is used by the mainboard 
itself, but the extra power budget could be used to supply other circuits. 
11 XMOS, XE216 Datasheet [6] 



 13 

 

Figure 6: XE216 Block Diagram.12 

 For synchronizing data acquisition to a global clock, a GPS module is used. The u-blox 

ZED-F9T was chosen for this task, as it has two phase-locked time pulse outputs, one of which is 

programmed as a pulse-per-second (PPS) and the other as the audio bit clock (12.288MHz). The 

rising edge of the PPS indicates the top of a second, accurate to 5ns13. These clock signals are 

buffered and connected to IO ports on both tiles of the microcontroller, which can then clock the 

TDM interfaces with reference to the precise PPS signal. The GPS also has a UART interface, 

which sends messages including timestamp and position to the microcontroller. The 

microcontroller is then able to accurately timestamp the samples received from the microphone 

boards. This GPS is capable of RTK (real-time kinematic) positioning which, when paired with a 

second on-board GPS module, allows orientation of the array to be calculated.  

 Figure 7 shows the resources required for a 32-channel TDM receiver task. A single 

TDMrx task runs on one xCORE. Each of these tasks use one 4-bit port for the data inputs, two 

1-bit ports for BCLK and FSYNC generation, and another 1-bit port which can be shared 

 
12 XMOS, XE216 Datasheet [6] 
13 U-blox, ZED-F9T Datasheet [7] 
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between multiple tasks for PPS synchronization. Generally in the xCORE architecture, ports 

cannot be shared by different tasks, but with careful locking this can be achieved. FSYNC is 

generated according to the common master clock signal provided by the GPS. BCLK and 

FSYNC are then buffered so that all microphone boards share the same clock signals.  

 

Figure 7: TDM RX task resources. 

  

It is worth mentioning the parallel 4-bit ports used for TDM aggregation. Four data input 

signals are connected to this port. As shown in figure 8, a read operation returns a 32-bit word, 

with the bits interleaved. Since it is a 4-bit port, a 32-bit read operation only reads 8-bits with 

respect to the bit clock. Thus, it takes 4 read operations to read a 32-bit word from each data 

input pin. Once 32 bytes have been read, or 4 bytes for each pin, they must be unzipped to form 
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8, 32-bit words. Figure 9 gives a simplified example where a 4-byte zipped word is unzipped into 

4, 1-byte words. This operation is repeated to accommodate 8 channels with 4-byte words.  

 

 

Figure 8: A 4-bit read operation. Colors represent data pins. First digit indicates channel index, second digit 
indicates bit index.   

 
 

 
Figure 9: Unzipping an interleaved word into four bytes.
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III. SOFTWARE DEVELOPMENT 

1.   Mainboard Firmware 

 The firmware that runs on the mainboard is split into two major parts. Code that is 

common to all array implementations is in the ‘module_xdaq’ directory. Application-specific 

code, such as data acquisition drivers, are in the application directory. Application directories are 

prefixed with ‘app_.’ The xdaq module contains the code which is responsible for decoupling the 

audio data rate from the USB data rate, embedding GPS metadata into USB packets, and queuing 

USB transfers to the host computer. In order to interface with the xdaq module, the application 

code must set the appropriate #defines, and send its audio data using the standard interface 

provided by module_xdaq. Code for acquiring the audio data is left up to the user to implement, 

but TDM firmware for digital MEMS microphones is implemented here. The basic structure of a 

TDM based application is shown in figure 10. Similar to the hardware, this structure allows for 

minimal effort required when writing firmware for a new array. Figures 12 and 13 describe the 

organization of tasks and data flow in an xdaq application.  
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Figure 10: File structure of an xdaq application. 

  

The most time-sensitive section of code is the audio ingestion task, implemented in 

audio.xc. This task must run in real-time with respect to the audio rate – that is, it must acquire, 

unzip, and send an audio frame to the decoupling task before another frame of data is available 

on the serial audio interface. For this reason, the acquisition and unzipping function is written in 

assembly to take full advantage of the dual-issue mode of the xCORE processors. See figure 11 

for an example of acquire and unzip in dual-issue mode.  
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Figure 11: Assembly code using dual issue mode. 

 

The audio task is also responsible for synchronizing the serial audio interface with the 

PPS signal from the GPS. This is done by taking a timestamp, with respect to BCLK, at the 

rising edge of the PPS signal. With this timestamp, the audio task is able to schedule future 

transfers with reference to the PPS. Then, each frame received is marked with a frame index 

variable, which ranges from 0 to SAMPLE_RATE-1. Here, a frame index of 0 represents the 

very first frame in a second, and that index is incremented for each successive frame until 

SAMPLE_RATE, when it is reset to 0. With this method, the samples are timestamped at the 

earliest possible stage in the data acquisition.  

 After data has been acquired, it is sent to the decoupler task, implemented in decouple.xc, 

via the fswap interface, which behaves as a simple double buffer. In the decoupler task, several 

audio frames are again buffered into a ring buffer, with size defined by DEC_MULT. As its 

name suggests, this task decouples the audio ingestion rate from the rest of the tasks involved in 

data transfer. Once again, the frame indices are preserved through this task. This is an important 

// tdm4b_loop1.S 
 
// Input two samples, retrieve two samples stored previously 
{ ldw    f, inp_array[1] ; in     d, res[inp_port] } 
{ ldw    e, inp_array[3] ; in     c, res[inp_port] } 
 
// Unzip the samples 
// aeim bfjn cgko dhlp -> (abcd) (efgh) (ijkl) (mnop) 
  unzip  e, f, 0 
  unzip  c, d, 0 
  unzip  d, f, 0 
  unzip  c, e, 0 
 
// Bit-reverse and store the recieved samples 
{                        ; bitrev f, f             } 
{ stw    f, inp_array[7] ; bitrev e, e             } 
{ stw    e, inp_array[5] ; bitrev d, d             } 
{ stw    d, inp_array[3] ; bitrev c, c             } 
{ stw    c, inp_array[1] ;                         } 
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step in the data transfer process, as timing requirements for both the audio task and the USB task 

must be met. 

 The packet filler task, implemented in packet_filler.xc, is responsible for packaging the 

data into structured packets to be sent over USB. Additionally, this is the step in which GPS 

metadata are combined with the audio data. Since the GPS timestamp message arrives on the 

UART interface before the PPS rising edge14, this data has already been received and parsed by 

the GPS task. In the packet filler, the GPS data is injected into the packet which contains the 

frame indexed 0. The packets will later be processed by the host USB driver, described in the 

next section. Once again, several packets are buffered before being sent to the USB task. This is 

done to take full advantage of the bandwidth available over USB 2.0 High-Speed. 

 As previously mentioned, samples received from the audio task are aligned to 32-bit 

words; however, the least significant 8-bits are simply padding – the true bit-depth of a sample is 

24-bits, or 3 bytes. To pack as many frames as possible into a packet, these samples can be 

rearranged such that the padding is removed, and words are aligned to 24-bits. Of course, this 

requires the host driver to unpack the samples before they can be used.  

 Finally, the USB device task, implemented in usb_device.xc, receives several packets 

from packet filler. This task has the sole responsibility of sending packets over the USB 

interface. The USB endpoint is implemented as a Bulk IN endpoint with a packet size of 512 

bytes. The first 128 bytes are reserved for metadata such as the number of channels, number of 

frames in a packet, sample rate, frame index, etc. The remaining 384 bytes are reserved for audio 

frames. Figure 15 gives the definitions of the data_packet and data_header structures.  

 

 
14 U-blox, ZED-F9T Integration Manual. [8] 
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Figure 12: Organization of tasks, data flow and interfaces provided by module_xdaq. 

 

 

 

Figure 13: Application with multiple TDM receiver tasks and an aggregator task. 
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Figure 14: Interfaces defined by module_xdaq used for transferring data between tasks. 

 

 

Figure 15: Packet and header structures. 

  

/* 
Interface used for double buffer WITHOUT frame index 
(packet_filler -> usb_device) 
*/ 
interface dbuf { 
 void swap(char * movable &x); 
}; 
 
/* 
Interface used for double buffer WITH frame index 
(audio -> decoupler) 
*/ 
interface fswap { 
 void swap(uint32_t f_idx, int32_t * movable &x); 
}; 
 
/* 
Interface used for ring buffer WITH frame index 
(decoupler -> packet_filler) 
*/ 
interface cbuf { 
 [[clears_notification]] 
 uint32_t get_buffer(int32_t buf[]); // returns frame index 
 
 [[notification]] slave void data_ready ( void ); 
}; 

struct data_header { 
 uint8_t n_chan;                // number of channels 
 uint8_t n_frame;               // number of frames in this packet 
 uint8_t prod_id;               // product ID (unique to array type) 
 uint32_t frm_idx;              // index of the first frame in this packet 
 uint8_t extra_len;             // length of used extra_data in bytes 
 unsigned char extra_data[119]; // extra space for other metadata (GPS) 
}; 
 
struct data_packet { 
 struct data_header header; 
 unsigned char samples[384]; 
}; 
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2.   Host-side USB Driver 

The host-side USB driver is responsible for receiving USB packets from the array 

hardware, buffering, and sending the data to a user application for further processing. This 

framework provides a driver, libxdaq, which has been implemented using the libusb library. 

Libusb is available for Linux, Windows, MacOS, and other operating systems. Libusb, and 

libxdaq by extension, runs in user-space, so it does not require root privileges to run, provided 

that the user has permission to the USB device itself. The current implementation of the host 

driver has been tested on MacOS (x86) and Linux (x86, ARM) operating systems. This driver is 

able to handle various types of arrays without requiring modifications or recompilation of the 

driver code. Thus, new arrays can be developed without having to rewrite the driver. 

Additionally, it is capable of running at a high speed to keep up with the data rate of the array, 

otherwise packets would be dropped.  

 Libxdaq is intended to allow a user to easily write programs that use the xdaq framework, 

without requiring extensive knowledge of the firmware itself. As such, the user code must only 

call a few functions from libxdaq to initialize, start, and read data from the device. Included with 

libxdaq is a program called xrecord, which serves as both a utility program for recording audio to 

the hard disk, and an example for users to follow when integrating libxdaq into a signal 

processing algorithm. The application first attempts to connect to a specific xdaq device using 

the unique product ID. Using different product IDs for different array types allows a host 

computer to receive data from multiple arrays simultaneously. Once libxdaq has successfully 

connected to a device, the user can begin data acquisition by calling the xdaq_start function. 

Internally, libxdaq will create one thread for handling libusb events, and another thread for 

decoupling libxdaq from the user program. When a packet arrives, libusb calls a callback 
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function which pushes the received packet to the tail of a linked list. The linked list is 

implemented as a simple FIFO, with push and pop operations taking O(1) time15 – allowing the 

callback function to return as soon as possible. The decoupling thread performs pop operations 

on the linked list, filling up a buffer of packets. Once the buffer is full, it is written to a Unix 

pipe, which is configured in non-blocking mode. Finally, the user application can call the 

xdaq_read function, which blocks until a buffer of packets is read from the pipe. The xrecord 

application simply writes the unprocessed data packets to a file to be used later. Other user 

applications could parse the data packets for use in a signal processing algorithm. Utility 

functions are available for the user to easily parse the packets into usable audio samples and 

metadata. The block diagram of libxdaq is shown in figure 16.  

 

Figure 16: libxdaq host-side USB driver block diagram. 

 
 Due to the structure of the data packets, there is extra space available in which metadata 

can be stored. The current implementation of GPS metadata does not use the entire extra space, 

so it is possible for the user to customize the firmware and user application to give additional 

 
15 Since the linked list is used by multiple threads, it uses a mutex lock to ensure thread safety. The decouple thread 
is busy waiting while attempting to pop a packet off the list. Therefore, opportunities for performance improvements 
do exist, such as back-off or lock-free techniques, but a functional implementation is prioritized first. 
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functionality. Even in this case, the underlying libxdaq driver need not be changed or 

recompiled.
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IV. FUTURE WORK & CONCLUSIONS 

 There do exist opportunities for improvement of this work. As previously mentioned, the 

USB implementation currently uses a bulk endpoint. A bulk endpoint was chosen for its 

simplicity, guaranteed delivery, and error checking of data packets; however bulk endpoints do 

not guarantee bandwidth. On the other hand, isochronous endpoints guarantee bandwidth, but 

delivery of packets is not guaranteed nor is error checking done16. Using a networking analogy, 

bulk is to isochronous as TCP is to UDP. It is possible that using isochronous transfers could 

yield better performance on a congested USB bus, but this was not explored due to the simplicity 

of bulk transfers. 

 There is also room for improvement within the host driver. Currently, the linked list 

implementation within libxdaq relies on mutex locks for thread safety. While this is functional, it 

is likely that a lock-free implementation would have much better performance. Additionally, 

there are some sections of code that use busy waiting until new data is available. Again, while 

functional, there are probably better ways to implement this. 

 Due to the many-core nature of the XMOS microcontroller, there is often unused 

processing power in arrays with less than 64 channels. In these cases, it is entirely possible to run 

some signal processing steps on the mainboard itself, such as decimation, filtering, and even 

FFT. One can imagine the potential benefits of running preprocessing steps on the XMOS before 

sending data to the host computer. It might even be possible to run a beamforming application 

 
16 Jan Axelson, USB Complete Developer’s Guide [9] 
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solely on the XMOS. These possibilities do not fall within the scope of this work, but there is 

clearly potential for improving the feature set of this framework.  

 While not discussed here, a separate data acquisition system using differential analog to 

digital converters instead of digital MEMS microphones was developed using the xdaq 

framework. In only a few days, new driver code interfacing with the ADCs over SPI was 

developed and integrated with the existing firmware module, proving the flexibility of the 

framework. Clearly, use of this framework saves a significant amount time and effort, making 

reconfigurable acoustic arrays easily accessible even to users with a beginner level of hardware 

and software experience. 

The xdaq framework sets out to provide users with a firm foundation on which to develop 

highly customizable acoustic array systems. Using this framework, a completely new array can 

be developed rapidly: the user simply designs the application-specific microphone boards and 

adjusts firmware parameters. Integrating an array signal processing algorithm with the array 

hardware is made simple by using the generic host-side driver library, and existing signal 

processing algorithms can be easily ported to a different array by changing only a few 

parameters.  
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