Ceremony on the Frontier: An Analysis of a Thirteenth and Fourteenth Century Multi-Phase Mississippian Structure at the Carter Robinson Site, Lee County, Virginia

Taylor Greene

Follow this and additional works at: https://egrove.olemiss.edu/etd

Recommended Citation

This Thesis is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact egrove@olemiss.edu.
CEREMONY ON THE FRONTIER:
AN ANALYSIS OF A THIRTEENTH AND FOURTEENTH CENTURY
MULTI-PHASE MISSISSIPPIAN STRUCTURE AT THE
CARTER ROBINSON SITE, LEE COUNTY, VIRGINIA

A Thesis
presented in partial fulfillment of requirements
for a degree of Master of Arts
in the Department of Sociology and Anthropology
The University of Mississippi

By
TAYLOR GREENE
May 2023
ABSTRACT

Carter Robinson (44LE10, occupied from ca. A.D. 1200-1400) is a Mississippian mound site located on the frontier between the edge of the Mississippian world and the beginning of the Radford culture area in southwestern Virginia. Although several structures have been identified and studied in the past, only one structure has been featured intentional burning and reconstruction throughout the occupation of the site, and is designated as Structure 2. This structure is also unique due to its location at the site, on a small rise about 80-meters east of the mound, a construction area typically reserved for the homes of minor political elites. Previous interpretations describe this structure as being a multi-phase domestic structure. At the start of research reported in this thesis, I hypothesize that Structure 2 was a ceremonial or ritual space rather than a domestic structure. I then explore whether that space was gendered (male/female) or gender-neutral by analyzing various kinds of data recovered from Structure 2 in 2017. Data from the structure include artifacts, macrobotanical remains, and radiocarbon dates. The data from Structure 2 are then compared to similar sites in the region and throughout the Mississippian world, and through the lenses of household archaeological theory and frontier theory. Analysis of the artifact assemblage, macrobotanical remains, and radiocarbon dates from Structure 2 and comparative research indicate that the structure was a multi-phase domestic building as previously interpreted but that it also had a ceremonial aspect.
DEDICATION

For my parents, who encouraged me to make the leaps I needed.
ACKNOWLEDGEMENTS

I would like to begin by acknowledging all my professors at the University of Mississippi, all of whom have worked to make me into both a better archaeologist and academic than I was when I first entered the program in 2019. I am indebted to the Graduate School for their financial support during my time at the University. I would like to particularly thank the Archaeological Society of Virginia, whose financial support funded the macrobotanical remains analysis and the carbon dating of remains from Structure 2B; and I would like to recognize the Black Trowel Collective, whose financial support greatly benefited me one month during the pandemic.

Academically, I would like to specifically recognize and thank Dr. Maureen Meyers, whose research and support gave me the foundations for this work; Dr. Tony Boudreaux, who offered priceless advice during our time at the University of Mississippi; Dr. Robbie Ethridge, who expected only the excellence I had to offer; Dr. Matthew Murray, for his support and willingness to assist in me when needed; Dr. Carolyn Freiwald for presenting me with both new opportunities as a student and for pushing me across the finish line; Dr. Matthew Davidson, for giving me my first opportunity in archaeology, and his willingness to talk archaeological theory over lunch in the middle of the Daniel Boone National Forest; Dr. Carl Drexler of the Arkansas Archeological Survey, for all his support in the completion of this thesis; and finally the rest of the staff of the Arkansas Archeological Survey, as well as many members of the Arkansas Archeological Society, all of whom have been deeply interested and supportive of the work in this thesis. I would also like to give my thanks to Emily Warner, Dalton Capps, and the entire
field crew of the 2017 University of Mississippi field school, whose work on Carter Robinson
made this thesis possible.

I would like to thank and offer my deep gratitude to the Cherokee, Yuchi, Shawnee,
Chickasaw, and Caddo Nations. I have lived on Chickasaw and Caddo land while completing
this thesis; and this thesis studies the people who lived on the land of the Cherokee, Yuchi, and
Shawnee in Southwestern Virginia.

I want to thank my parents, Mary and Patrick Greene, for everything they have done for
me. Not only during this thesis and my time at Mississippi, but also for always giving me the
space I needed to figure out the direction in which I needed to take myself. I also want to thank
them for their support in 2016 when I decided to pursue a career in archaeology, their support
when that didn’t always go well, their shared excitement when I told them I was accepted into
the program at the University of Mississippi, and their continued love throughout my entire time
there. Without them, this quite literally would be impossible. My brother, Clay Greene, deserves
my gratitude as well, for all his efforts keeping my head on my shoulders by being willing to talk
endlessly about whatever interests we may both have at the time.

I would also like to thank my friends for everything they have done to support me,
whether knowingly or not. Regular movie nights with Bryce Krumcke helped keep me going
throughout our two years in Oxford. Sam Taylor for keeping Bryce and I well fed. Sarah Knox
for being an overwhelmingly positive archaeological force in my life, even when thousands of
miles away in Germany. My long conversations with Flavia Napoleoni discussing our theses
inspired me be a better academic (despite the fact that I often do not understand the linguistic work they do).

This thesis would have been impossible without the support of everyone mentioned here. I do not have the words to adequately express the love, gratitude, and appreciation I have for you all.

Figure 1.3 originally published in “Political Economy of Exotic Trade on the Mississippian Frontier: A Case Study of a Fourteenth Century Chieftdom in Southwestern Virginia”, by Maureen Meyers, © 2011, reprinted by permission of Maureen Meyers.

Tables 5.2, 5.3, and 5.4; and Figure 5.7 originally published in *Macrobotanical Analysis; Structure 2, 44LE10, Lee County, Virginia*, by Elizabeth T. Horton, © 2021, reprinted by permission of Elizabeth T. Horton, Rattlesnake Master LLC, https://rattlesnakemaster.org/.

 Portions of Table 6.2 originally published in “Social Integration at a Frontier and the Creation of Mississippian Social Identity in Southwestern Virginia”, by Maureen Meyers, *Southeastern Archaeology*, © 2017, reprinted by permission of Maureen Meyers, and permission of Informa UK Limited, trading as Taylor & Francis group, http://www.tandfonline.com.
Table of Contents

Abstract ... ii
Dedication .. iii
Acknowledgements .. iv
List of Abbreviations and Symbols .. ix
List of Tables .. x
List of Figures .. xi
1. INTRODUCTION .. 1
2. BACKGROUND: MISSISSIPPIAN AND RADFORD, FRONTIERS, HOUSES 7
 Mississippian Society .. 7
 Mississippian Hierarchies and Chiefdoms ... 8
 Mississippian Settlement Placement ... 10
 Agriculture .. 11
 Religious Beliefs .. 12
 Architectural Grammar ... 14
 Domestic Structures in the Mississippian World .. 18
 Special Use Structures and (Potential) Gendered Spaces .. 24
 Fire Symbolism in Households .. 27
 Radford Culture and Circle Villages ... 28
 Frontiers and Frontier Theory .. 30
 Housing and Households ... 36
 Conclusion ... 40
3. HYPOTHESIS AND RESEARCH QUESTIONS ... 42
4. METHODS ... 48
 Overview of Block 3 .. 48
 Methodology for This Thesis .. 49
 Prior Work ... 51
 Site Components .. 56
 Structure 2 .. 58
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Work</td>
<td>60</td>
</tr>
<tr>
<td>5. ANALYSIS AND RESULTS</td>
<td>61</td>
</tr>
<tr>
<td>Introduction</td>
<td>61</td>
</tr>
<tr>
<td>Spatial Analysis</td>
<td>61</td>
</tr>
<tr>
<td>Architectural Analysis</td>
<td>64</td>
</tr>
<tr>
<td>Radiocarbon Dating</td>
<td>69</td>
</tr>
<tr>
<td>Macrobotanical Remains</td>
<td>71</td>
</tr>
<tr>
<td>Artifact Assemblage</td>
<td>76</td>
</tr>
<tr>
<td>Conclusion</td>
<td>86</td>
</tr>
<tr>
<td>6. DISCUSSION AND CONCLUSION</td>
<td>88</td>
</tr>
<tr>
<td>Ritual Items</td>
<td>91</td>
</tr>
<tr>
<td>Chunky Stones</td>
<td>92</td>
</tr>
<tr>
<td>Mica</td>
<td>94</td>
</tr>
<tr>
<td>Copper</td>
<td>96</td>
</tr>
<tr>
<td>Tobacco</td>
<td>98</td>
</tr>
<tr>
<td>… Ritual Space?</td>
<td>101</td>
</tr>
<tr>
<td>Conclusion</td>
<td>105</td>
</tr>
<tr>
<td>Future Research</td>
<td>106</td>
</tr>
<tr>
<td>List of References</td>
<td>108</td>
</tr>
<tr>
<td>Appendix A: Test Unit Descriptions</td>
<td>125</td>
</tr>
<tr>
<td>Appendix B: Additional Artifact Table</td>
<td>176</td>
</tr>
<tr>
<td>VITA</td>
<td>178</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS AND SYMBOLS

g—grams
L—Liters
cm—centimeters
m—meters
PZ (or pz)—Plow zone
LIST OF TABLES

Table 3.1: Elements Expected within Different Ceremonial Structure Types 47
Table 4.1: Carter Robinson Occupational Periods and Associated Structures.........................57
Table 5.1: Radiocarbon Dates from Structure 2b, 44LE10...70
Table 5.2: Aggregated data for thirteen samples from Structure 2 (Horton 2021: Table 1)73
Table 5.3: Density by weight and count for Structure 2 (totals/soil volume) by provenience (Horton 2021: Table 2) ... 73
Table 5.4: Ubiquity scores for aggregated data (n = 13 samples) (Horton 2021: Table 3)74
Table 5.5: Artifact Totals from the 2017 Block 3 Excavation at 44LE10..................................78
Table 5.6: Totals from the 2017 Block 3 Excavation at 44LE10, Within the Plow zone, Level 4, and Zone 46.. 80
Table 5.7: Totals from the 2017 Block 3 Excavation at 44LE10, Within Features 221, 223, 225, & 226.. 82
Table 5.8: Artifacts divided by Excavated Test Unit in Zone 46..84
Table 5.9: Ceramic Artifacts in Zone 46..85
Table 5.10: Rims and Vessel Forms found in Zone 46...85
Table 6.1: Presence of Hypothesized Material in Structure 2b..91
Table 6.2: Radiocarbon dates, this thesis compared to Meyers (2017: Table 4)103
Table B.1: Artifacts divided by Excavated Test Unit and Level...176
LIST OF FIGURES

Figure 1.1: The Mississippian Southeast, AD 900-1550; with sites mentioned in this thesis (after Pauketat 2007: Fig. 1.1) ..2

Figure 1.2: 44LE10 and the Surrounding Landscape ..4

Figure 1.3: Pre-2013 Investigations at 44LE10, Oriented to Relative North (Meyers 2011: Fig. 5.2) ..5

Figure 2.1: A Wall-Trench House (after Alt and Pauketat 2011: Figure 7)20

Figure 2.2: A Single-Set Post House (after Steere 2017: Figures 3.6 and 4.3)21

Figure 4.1: Plan View of Block 3, Floor of Structure 2b ...49

Figure 4.2: Relevant and Contemporaneous Sites with 44LE1052

Figure 4.3: Effective Survey Extent of Shovel Tests, with Block 353

Figure 4.4: Current Excavations at 44LE10 (after Meyers 2011: Fig. 5.2)55

Figure 5.1: Excavation Maps of Block 3 Oriented to True North62

Figure 5.2: Features as Presented from Total Station Data65

Figure 5.3: Comparison of Architectural Elements Represented in Total Station and Excavation Maps ..66

Figure 5.4: Identifiable Architectural Elements of Structure 2b68

Figure 5.5: Radiocarbon Dates from Structure 2b, Carter Robinson70

Figure 5.6: Radiocarbon Dates from Carter Robinson ..71

Figure 5.7: Plant taxa by inferred role (excludes wood and cane) (Horton 2021: Chart 7)75

Figure 5.8: Percentage of Artifacts (count & mass) by Level, excluding Features79
Figure 5.9: Percentage of Artifacts (count & mass) by Feature alone

Figure 6.1: Shell Gorget Featuring Chunky Player (not to scale, MacCurdy 1913: Figure 70)

Figure 6.2: Line Drawing of Rogan Plate 1, from the Etowah Mounds, Georgia

Figure A.1: Plan View of Unit N1049/E1059, Level 4, 30 cm below surface

Figure A.2: Plan View of Unit N1049/E1059, Zone 46

Figure A.3: Plan View of Unit N1049/E1060, Zone 46

Figure A.4: Plan View of Unit N1049/E1061, Top of Level 4, 31 cm below surface

Figure A.5: Plan View of Unit N1049/E1061, Zone 46

Figure A.6: Profile View of Feature 222, South Wall

Figure A.7: Plan View of Unit N1049/E1062

Figure A.8: Profile View of N1050/E1059, West Profile

Figure A.9: Profile View of N1050/E1059, North Profile

Figure A.10: Profile View of Unit N1050/E1060, South Profile

Figure A.11: Profile of N1050/E1060, East Wall Profile

Figure A.12: Plan View of Unit N1050/E1061

Figure A.13: Profile View of Feature 223, East Profile

Figure A.14: Plan View of Unit N1050/E1062

Figure A.15: Profile View of Feature 224, South Wall Profile

Figure A.16: Profile View of Feature 227, North/East Wall Profile

Figure A.17: Plan View of Unit N1051/E1059

Figure A.18: Plan View of Unit N1051/E1060
Figure A.19: Plan View of Unit N1051/E1061, Top of Level 4, 30 cm below surface154
Figure A.20: Plan View of Unit N1051/E1061, Zone 46 ...155
Figure A.21: Plan View of Unit N1051/E1062, Level 4, 33 cm below surface156
Figure A.22: Plan View of Unit N1051/E1062, Zone 46 ...157
Figure A.23: Plan View of Unit N1051/E1063, Top of Level 4, 30 cm below surface158
Figure A.24: Plan View of Unit N1051/E1063, Zone 46 ...160
Figure A.25: East Profile of Feature 221 ..161
Figure A.26: Plan View of Unit N1052/E1059 ...163
Figure A.27: Plan View of Unit N1052/E1060 ...164
Figure A.28: Plan View of Unit N1052/E1061, Level 4 ...166
Figure A.29: Plan View of Unit N1052/E1061, Zone 46 ...167
Figure A.30: Profile View of Feature 225, North Wall Profile168
Figure A.31: Plan View of Unit N1052/E1062 ...169
Figure A.32: Plan View of Unit N1052/E1063, 30 cm below surface170
Figure A.33: Plan View of Unit N1052/E1063, 40 cm below surface171
Figure A.34: Plan View of Unit N1052/E1063, Zone 46 ...172
Figure A.35: Profile View of Feature 226 facing the East Wall173
Figure A.36: Plan View of Unit N1053/E1062 ...175
1. INTRODUCTION

The invocation of “ceremony” in the title of this thesis is not done lightly. When studying the identity-making activities within Mississippian society (A.D. 1000-1500, Figure 1.1), ceremony and ritual are on the forefront of consideration, especially with regards to how these activities relate to some of the most dramatic architectural elements easily seen at Mississippian archaeological sites—mounds (for example Blitz and Bodoh 2021; King 2010; Knight 2006 [1989]; Pauketat 2007; Trubitt 2000). These ceremonies are often well-documented, and their use by Mississippians are generally considered to be twofold. First, they help to establish and reestablish identity and hierarchal power within their own culturally homogenous communities (King 2007; Pauketat and Emerson 1997). Second, because Mississippians are well-known to travel and establish communities on the frontiers of the Mississippian world, they work as an integration technique for people entering the community from the non-Mississippian populations that new communities and polities are building new economic and political relationships with (Butler 2021; Herr 2001; Meyers 2011). One such dramatic example of this in the Native South is the Macon Plateau (9BI1) site in Georgia. In the 11th century a Mississippian community moved into the area, built a ceremonial and cultural center with several mounds, and integrated with the local Woodlands populations. The community then experienced a decline and ultimately dissolved around the beginning of the 13th century (Birch, Lulewicz, and Rowe 2016).
Carter Robinson (44LE10) is a similar example (Figure 1.2). Sometime in the late 13th century, Mississippian from the Norris Basin region of east Tennessee moved into present-day southwest Virginia and established a village a short distance from the Cumberland Gap (Figure 1.2). These Mississippian built a mound and several other structures, and during the first quarter of the 13th century added to the mound and formally established a plaza area in their village. During this period, they were accepting members of the local Radford community (most likely women), and integrating them into their own Mississippian community. Around the end of the 14th century, Carter Robinson was abandoned by the people living there, and they moved to the Ely Mounds nearby (Meyers 2011, 2015, 2017; Wooten 2021). One of the structures identified
by previous archaeological surveys and excavations from 2006 to 2008 is designated Structure 2. Sitting approximately 80 m due east of the mound on a natural rise, this structure presents an interesting topic of study, not only because of its location—normally reserved for minor political elites in Mississippian societies—but because it is the only structure at the site that features multiple construction phases (Lewis, Stout, and Wesson 1998; Meyers 2011, 2017) (Figure 1.3). Structure 2 had three occupational periods (designated Structures 2a, 2b, and 2c from earliest to latest), the first and second were burned and then capped with a sterile clay; the final occupation was burned and not covered with soil, presumably because this burning coincides with the abandonment of the site by the occupants (Meyers 2011, 2017).
Figure 1.2: 44LE10 and the Surrounding Landscape
The second occupation of this structure, Structure 2b, is the focus of this thesis. In particular, I will be examining the structure through its previous interpretation as a domestic occupation and offering an opposing hypothesis that the structure represents a ritual space. Other questions that I will attempt to answer include: What was the use of this structure? If it is not a public structure and a ritual space, then who lived there? What role did this structure and/or its inhabitants have in community integration?

In Chapter 2, I review the current understanding of topics of interest in the study of Carter Robinson and Structure 2b, primarily household archaeology, frontier theory in archaeology, Mississippian society, Radford society, and the architectural grammar of towns and structures associated with both cultures. In Chapter 3, I present my hypothesis and the constraints
of it: that Structure 2b represents a gendered ritual or ceremonial space for the residents of Carter Robinson. This represents an opposing hypothesis to previous interpretations of the structure as a domestic space (Meyers 2011; Warner 2018). In Chapter 4, I review the methodology used in this study and the results of the 2017 University of Mississippi field school at Carter Robinson. Methods I preform include architectural analysis, bucket flotation of soil to extract macrobotanical remains, and artifact analysis. Chapter 5 presents the results of the spatial, architectural, radiocarbon, macrobotanical, and artifact analyses. In the final chapter, I discuss these results and conclude the thesis with a rejection of my hypothesis in favor of an interpretation of Structure 2b as a domestic occupation with inhabitants who participated or led ceremony in the community.
2. BACKGROUND: MISSISSIPPIAN AND RADFORD, FRONTIERS, HOUSES

This thesis examines houses and households in a Mississippian frontier culture. This chapter explores houses and households generally, and specifically within Mississippian cultures. Carter Robinson is located on the edge of Mississippian society as a frontier settlement, where Mississippian Natives who migrated to the Cumberland Gap area of Southwestern Virginia interacted with the local Radford culture population. Therefore, frontier processes, including how different cultures interact and influence each other, is a second area of concern. Finally, to understand this specific frontier, Mississippian and Radford cultures and their settlements and structures are described.

Mississippian Society

Mississippian culture was a hierarchal society that occupied the American Southeast (and portions of the American Midwest) from approximately A.D. 900 to 1550. This culture was different from other native groups in North America because of the institutionalization of its hierarchy, as expressed through the presence of an elite group headed by a chief (sometimes referred to as *mico*) who often had an associated group of kin-related elites (Beck 2013:27; Ethridge 2010). Cahokia is the largest and earliest Mississippian mound site and includes several mounds and mound complexes, the largest being Monk’s Mound. The upper estimates of the population at Cahokia’s peak are as high as 50,000 individuals (Pauketat 2007), but more likely
are closer to 25,000. By all accounts, Cahokia was the epicenter for the Mississippianization of the modern southeastern United States. Cahokia itself only lasted for about 200 years, declining during the thirteenth century. Other significant polities, including Moundville (central Alabama), Etowah (north Georgia) and Spiro (northeastern Oklahoma), among others, appeared somewhat later. These polities ultimately also collapsed, as Mississippian society eventually became the smaller systems of polities that the de Soto expedition (A.D. 1539-1543) encountered as they traveled through the American South (Hally and Chamblee 2019; Hudson 1998).

Mississippian Hierarchies and Chiefdoms

These hierarchies were reflected in the architecture of the sites themselves. This shared ideology and political structure that takes its physical form in the square platform mounds that are a common marker of Mississippian occupations—a reminder to the commoners of the sites that they are physically and metaphorically beneath the heads of society (Mississippian architecture will be discussed in more detail below) (Knight 2010:364). These societies were also well-connected politically within certain spheres of influence, as some of the chiefdoms encountered by de Soto were often well known to chiefdoms far outside their immediate control. One example is Coosa—today understood to be the Little Egypt site in Northeastern Georgia—known as far north as eastern Tennessee and as far south as middle Alabama (Anderson 1997; Hudson 1998).

Three types of Mississippian chiefdoms have been defined (1) simple chiefdoms, consisting of a single administrative center with one mound; (2) complex chiefdoms, which have multiple mound sites; and (3) paramount chiefdoms, where multiple complex chiefdoms had a

1 Defined by Pauketat (2007:85) as “an uneven historical process in which people politicized maize-based agricultural landscapes and cosmologies in ways contingent on their pasts and each other.”
single administrative center (Anderson 1994:8-9; Ethridge 2010). Chiefdoms are inherently volatile and last about 100 years, although there are some instances of Middle and Late Mississippian culture phases lasting twice that time period (Hally 1999:112-113). This instability tendency was described in depth by Anderson (1994) as part of his cycling chiefdom theory, in which he also acknowledges the tendency for chiefdoms to re-form from the remnants of the previous ones. He defines cycling as “competition for prestige and power between rival elites” (Anderson 1994:50) that leads to an increased complexity in the organizational structure of the chiefdoms (hence, the three levels of management mentioned above), which in turn leads to their collapse. The causes of this rise, fragmentation, and reformation are varied; but Anderson (1994) identifies many causes of the cycle (including environment, competition for economic control, population movement, and warfare).

Of course, cycling chiefdom theory is not the only model that can be applied to understanding how and why these chiefdoms changed over time. Blitz (1999) suggested a fission-fusion process as an explanation for chiefdom instability. He builds this theory around Hally’s (1994) 40-km-diameter for polity boundaries in the Southern Appalachians, historic precedence within the ethnohistorical record of how Southeastern groups would interact with each other, and archaeology focused on twin Mississippian mound centers (Blitz 1999). He suggests that chiefdoms would have split (or fissured) along political divides when major events took place (such as the order of succession to the chiefdom being challenged) and fused into larger polities when it might have been politically and economically advantageous to do so. Beck (2003) develops a third theory which he calls the apical-constituent model. In this model he rejects the traditional typology of “complex vs. simple” chiefdoms often associated with Mississippian polities, and instead suggests that hierarchal power can flow either from a regional
center to its client chiefdoms by the region chief appointing leaders within the administrative roles of those smaller chiefdoms or in the inverse (an *apical hierarchy*), where the many smaller chiefdoms maintain power over the regional center by ceding some authority through acknowledgement of the regional chief (a *constituent hierarchy*) (Beck 2003:645-646).

Mississippian Settlement Placement

Mississippian settlements of all sizes were often built on the floodplains of rivers and tributaries (Smith 1978), although it is not uncommon to find them further upland in Appalachia (Dickens 1978:132). Smith, in particular, was interested in defining a mathematical model to describe where centers were more likely to be settled and developed in the Mississippian world that could be applied elsewhere, but summarizes it in three parts without using any equations: (1) major centers (what Anderson [1994] would later describe as paramount chiefdoms) would not be regularly spaced within the Mississippian economic system due to competition of resources, (2) the second order chiefdoms (or complex chiefdoms) would tend to be built closer to the paramountcy rather than the center of their administrative area, and (3) in areas with high levels of political centralization the location of the paramountcy is more likely determined by its spatial efficiency to the its client chiefdom (Smith 1978:436-437). Ultimately, using this model while looking at examples within the Moundville and Black Warrior Valley areas, he found that was a tendency for high spatial efficiency for sites built to and connected to the paramountcy by the river than by land, as all as a tendency for cites to be built on waterways (Smith 1978:443).

There also exists a tendency in the Southern Appalachians for large sites to be located shortly down river from the divide between Piedmont and the Coastal Plain physiographic regions, known as the “fall line,” that somewhat contradicts previous thought of the tendency for
sites to be located within the meander-belt zone of rivers (Hally 1994; Smith 1978). This floodplain location would have provided inhabitants with access to both active fish populations and good farmland for maize agriculture. Above the fall line, within the Piedmont proper, the distribution of river shoals and alluvial plains are not as advantageous, leading some settlements to specialize in either agricultural or aquatic resource management as well as sites to generally be more spaced further apart from each other (Hally 1994; Shapiro 1983). There is also a noted tendency for Mississippian occupations with mounds to be built on and around the areas with particularly fertile soil (Hally 1994).

Agriculture

Another shared aspect of Mississippian communities was their reliance on maize agriculture as a primary food crop (Beck 2013; Hudson 1976). So strong was this reliance that Pauketat (2007) claimed it was one of the major factors in the Mississippianization process. Maize (*Zea mays*) is not the only food they cultivated and consumed, Mississippians commonly made use of squash (*Curcubita sp.*) and beans (*Phaseolus vulgaris*), as well as other plants that form portions of the Eastern Agricultural Complex, such as goosefoot (*Chenopodium* sp.), sunflower (*Helianthus annuus*), and maygrass (*Phalaris caroliniana*) (Bonzani 2010; Horton 2021; Hudson 1976). Cultivated plants were not the only plants found in their diet, as they commonly gathered nuts such as hickory (*Carya* sp.) and walnut (*Juglans* sp.) and fleshy fruits such as bramble fruits (*Rubus* sp.) (Bonzani 2010; Horton 2021; Hudson 1976). Although Mississippians did not participate in animal husbandry, they supplemented plant foods in their diet with meat by hunting and fishing. White-tailed deer (*Odocoileus virginianus*), rabbits (*Sylvilagus* sp.), raccoons (*Procyon lotor*), turkey (*Meleagris gallopavo*) and a variety of turtle
species are common animals represented within Mississippian assemblages (Hudson 1976). Fish and other aquatic food sources vary greatly by region, but it is common to find freshwater shells within in-land contexts (Hally 1994; Hudson 1976). Tobacco (Nicotinia sp.) was another common crop within Mississippian villages, however its use was strictly ceremonial, often smoked in clay and stone pipes within various different smoking rituals that had different aims, such as cleansing or purification at the beginning of a more intensive ritual (Blanton 2015; Hudson 1976; Parker and Simon 2018). Tobacco was also occasionally mixed with other plants used in ceremonial contexts, such as jimson weed (Datura stramonium), night shade (Solanum sp.), and morning glory (Ipomoca sp.); and each of these have properties that were important to both medicinal and spiritual healing, as well as ritual practices throughout North America (Parker and Simon 2018).

Religious Beliefs

Mississippian culture is also marked by a shared ideology, from the mythological iconography often associated with Mississippian sites, to the aforementioned physical manifestation of this in the architecture and landscape, with some regional variations in each (King 2007; Pauketat 1997, 2006). Although there is some debate on the exact definition of the Southeaster Ceremonial Complex (SECC) (and even the use of this term, as some archaeologists find Mississippian Ideological Interaction Sphere [MIIS] more accurate) (see King 2007; Muller 2007; Reilly and Garber 2007), I am going to use King’s (2007) description of the SECC as a style (or a shared set of rules about what imagery is depicted in art and how it is depicted) that was proliferated across the Mississippian world as the culture spread throughout the southeast (King 2007:253). The reflection of their ideology and mythology is often apparent in material
remains recovered from grave contexts, such as shell gorgets that feature a wide variety of iconography from depictions of mythical figures and animals to abstract motifs that are commonly associated with Mississippian cosmology, discussed further below (Hally 2007). The gorgets are also an excellent example of how these designs are often confined to a regional and temporal space as these designs are often used during specific period in very specific places, but maintain some aspect of communicability of use across both as all of the gorgets used in Hally’s (2007) study come from burials, suggesting that these are status indicators.

This shared ideology is often also extrapolated into a shared cosmology, largely based on the ethnohistorical record from the Historic Southeast and from shared design motifs seen on material culture from both Historic groups in the Native Southeast and from their Mississippian ancestors (Ethridge 2010; Fundaburk and Foreman 2001 [1957]; Hudson 1976; King 2010; King, Thornock, and Stephenson 2017; Reilly 2004; Wesson 2008). In general, the Mississippian viewed the world as being divided into three main parts: This World, the Upper World, and the Under World. This World was the material plane, the one in which humans resided and lived; the Upper and Under Worlds were immaterial, where spirits of order and chaos (respectfully) resided (Ethridge 2010:18-19; Reilly 2004:127; Wesson 2008:46). These three worlds were connected through their center by an axis mundi, often depicted as a world tree and sometimes represented as an actual wooden pole (Ethridge 2010:19; Wesson 2008:53); although it was not uncommon for the axis mundi to be represented in the context of ritual by something more ethereal, such as a sacred fire and the smoke it produces (Hally 2008; King 2010:62; King et al. 2017). The Upper World is associated with the sky, various birds, and often order and purification; while the Under World is associated with bodies of water, fish and other water animals, and chaos. It should be noted that in neither case are these like the Christian heaven or hell, nor were these places of the
afterlife, but rather planes of existence for the animals and spirits that inhabited them (Ethridge 2010, Hudson 1976). In addition, there was sometimes great importance placed upon the cardinal directions (particularly in the Cherokee tradition), with each direction having a different symbolic difference:

“East—red, blood, life, and success
West—souls of the dead, black, and death
North—cold, blue, trouble, defeat
South—warmth, white, peace, happiness” (Ethridge 2010:20).

And there are numbers that have been included to be important as a part of the representation of the Mississippian religion, in particular four and seven. These numbers appear throughout the iconography of the Mississippians (Hally 2008; Hudson 1976; Steere 2015), and Hudson (1976:134) explains that, to Indigenous people living in the Historic South, the number four was a representation of the entirety of the world and the number seven was associated with ritual purity.

Architectural Grammar

Just as many Mississippian had consistent ideas about the cosmic and symbolic world they lived in, so did they reflect these structured ideals on the space they inhabited. As people occupy spaces they assign meanings to them, thereby transforming them into places (Tilley 1994:14-15). The designs people give their architecture when creating places can inform us of other aspects of their daily existence (such as belief systems, kinship systems, and economic systems). The complexity of architectural work and the amount of labor needed to create it reflect the importance of that structure in a community and the amount of power over labor a given chief might have controlled (Knight 2010). The principals of design and construction that are most commonly associated with a given cultural group can be considered that culture’s
architectural grammar, or “the rules by which elements [are] combined in architectural style” (Lewis, Stout, and Wesson 1998:2) and how these rules inform the style, use, and implementation of these elements across a culture group.

Lewis, Stout, and Wesson (1998) assign the following qualities to Mississippian architectural grammar: a centralized plaza that acts as a public area” (Lewis et al. 1998:11); one or several mounds (and occasionally other earthworks); boundaries or other defensive measures; entrances; and the utilization of the natural terrain to create defensive measures. Some Mississippian communities may have all these features present (such as the Etowah Mounds in north Georgia) or only one or two (such as Carter Robinson, which lacks any defensive construction and only has a single mound).

Mississippian mounds were important for ceremonial purposes and as political spaces used by the elites of Mississippian society, and they often acted as physical representations of the political power held by a chief, although height likely was not necessarily important to this representation (e.g. Alt, Kruchten, and Pauketat 2010; Boudreaux 2007; Lewis et al. 1998; Flannery and Marcus 2012; Gougeon 2015; Hudson 1976; Kassabaum and Nelson 2016; Smith 2007; Steere 2017). Lewis et al. (1998:17) note the literal elevation of the mounds “may have served to elevate the status of an individual, a family, a lineage, a god, or some combination of these.” Mississippian cultures would build their earthworks in either multiple stages or a single stage, sometimes building smaller additional platforms attached to one side of the mound (Lewis et al. 1998). These mounds were often accessed by ramps or stairs. During de Soto’s travels through the Southeast his chroniclers even claimed that the ramps were wide enough to ride horses to the top of the mounds (Hudson 1976:78). Mounds were deeply important to the descendants of the Mississippians as well, playing a large part in both the cosmology and
political life of historic Native peoples, acting as a cosmogram, political stage, and ceremonial center (Knight 2006 [1989]; Wesson 2008). The Chickasaw, Choctaw, Cherokee, Muskogee and many other Native groups all place importance to mounds within their mythologies, several of which not only treating mounds as icons representing the entire world, but also as the very source of humanity (Knight 2006 [1989]; Swanton 1928 in Wesson 2008:48). In one case (an origin story of the Muskogee) the original humans emerged from a hollow chamber that existed within the center of the mound (Swanton 1928 in Wesson 2008:48). This central chamber motif is repeated in mounds elsewhere through the Historic Southeast, appearing in Choctaw mythology as the birthing place of humanity (where the first Choctaws crawled out of the mound hollow through a small cave), and again in another Choctaw myth as the place where the ancestral dead rest (Lincecum 1904 in Knight 2006 [1989]:424; Schoolcraft 1851-1857 in Knight 2006 [1989]:423).

The importance of mounds in mythologies, and even some of these cosmological ideas, have helped to inform research into Pre-Contact Mississippian sites, such as Etowah and the Hollywood site (King 2010; King, Thorncock, and Stephenson 2017). Mound C at Etowah (in northern Georgia) features a large number of burials that possibly constitute a single burial event that was intended to redefine the use of the mound for the community living at Etowah at the time, more specifically “to recast or transform Mound C into a sacred center… the sacred center of the Etowah polity” (King 2010:72, emphasis in original). This transformation likely would have occurred through the reinforcing of the cosmology of the Mississippians onto the physicality of the pre-existing Mound, King (2010:70-71) notes that this is performed by the burials being placed along each side of the existing mound structure with those burials having (in some cases) grave goods unique to those on a given cardinal direction, as well as having one
individual (noted as Burial 57) seemingly dressed as the Birdman, or “hawk dancer”, that is common to Mississippian religious iconography in this area (see Chapter 6, Fig. 6.2, this thesis). At the Hollywood site (in eastern Georgia, along the Savannah River), a similar recreation of the cosmos occurs at Mound B, a burial mound at the site that spans from a Woodland occupation to a Mississippian occupation (King et al. 2017). In this particular case, ethnographic sources are linking the hearths shown at the multi-phase structure that is within the mound as a form of the axis mundi, linking this world to the worlds above and below it (King et al. 2017:245).

Also important, according to Lewis et al. (1998) were the boundaries of the sites. They recognize boundaries both within the towns themselves and as the edge of the sites, and note that “Mississippian towns were constructed with barriers between public, private, and ceremonial spaces” (Lewis et al. 1998:18). To this end they note boundaries were constructed with the intention of limiting spaces to certain members of the population, with the features acting as “locks” (Rapoport 1977). These boundaries are recognized as features such as ditches, fences, or natural terrain barriers. They identify other common features within Mississippian towns that may have acted as gates and barriers, such as the stairways on mounds which they suggest would draw an individual to focus on a certain controlled location, when ascending the mound and even the mounds themselves which would act as barriers separating the living space from the public space.

Plazas were an important part of Mississippian architectural grammar. The importance given to the space comes from the fact that there are almost never any structures found within plazas, and the lack of artifacts in them suggests they were swept clean regularly (Lewis et al. 1998). The use of plazas, apart from being one of the public within a Mississippian villages, has been given multiple suggestions, such as ethnographic records suggest that the ballgame (the
southeastern ancestor of modern lacrosse) was played in the plaza (Hudson 1976; Wesson 2008); others have suggested that the plaza may have served as a community marketplace (Kowalewski and Thompson 2020); and there is the common interpretation of the plaza as a place with strong religious and cosmological significance, where it is not uncommon to find circular constructions (commonly dubbed “woodhenges”) and central poles within them (e.g. Pauketat and Emerson 1997:14, Boudreaux 2007:55). Mississippian plazas varied in shape and size (e.g. round, rectangular, and square) and were often flanked by mounds and other important structures.

It is common for these Mississippian town sites to be missing elements of the architectural grammar, as is the case at the King site in northwestern Georgia which lacks a mound. Gougeon (2015) suggests a different approach, rather than looking for hard and fast rules for describing Mississippian architecture, Gougeon follows Christopher Alexander et al. (1979)’s lead in pattern language, which “allows for the creation of an infinite combination of elements but in meaningful ways” (Gougeon 2015:85-86). This differs from Lewis et alia’s linguistic analogy of architecture in that it is more akin to selecting from a group of accepted patterns within a cultural group that represent solutions to environmental problems. Although it can be said under either model that there is a “Mississippian mode” of architecture, the second is much more loosely defined. However, there are certain elements of design that simply cannot be tested using archaeological methods—for example, perhaps an open plaza would be chosen as a result of people enjoying homes adjoining an open space (Gougeon 2015:87).

Domestic Structures in the Mississippian World

Far more than a mere architectural setting for human activities, the household is both a cosmogram and sociogram writ large, constructed of wood and flesh. (Wesson 2008:9)
There have been two primary styles of domestic construction identified within the Mississippian world: wall trench and single-set post (Lacquement 2007b:4). The wall trench design was common during the Early Mississippian period (A.D. 1000 - A.D. 1250) (Steere 2017:14). In this style a trench was dug, and a likely “curtain wall” was set into the open trench that was then filled in to give the wall more strength (Alt and Pauketat 2011:117-118). The wall-trench structures were likely a flexed-pole style roof construction, as they lacked corner posts, and could not support hipped or gabled roofs. Flexed-pole roofs were constructed by bending the poles that constructed the walls into shape above the floor plan, and would not have required the support posts that heavier roof construction would have (such as with single-set homes, below) (Lacquement 2007b:4-6) (Figure 2.1). Experimental archaeology (Blanton and Gresham 2007) (albeit with modern tools) demonstrated that it would be possible for a small group of builders to construct a wall-trench house in a short amount of time, but also that this style of house is quite resource intensive in its maintenance (a figure supported by calculations that it would have taken 210,000 flexible wooded poles to house Moundsville I during entire phase) (Lacquement 2007c:71). There is also a noted reduction in labor cost in this construction as compared to earlier Woodland-style construction, and Pauketat and Alt (2005:220-225) hypothesized that many of these foundations could have been constructed in a single day by a dedicated work crew.
Single-set post homes were prevalent throughout the rest of the Mississippian occupational periods (Steere 2017). These houses were much larger than the previous wall-trench homes, perhaps suggesting an increase in the size of the kinship unit occupying the dwellings, and/or a difference in the number and organization of people needed to build this house style. Generally, these structures were constructed in square or rectangular designs, with large posts supporting the walls and roof, with additional interior support posts for the roof structure, suggesting a roof with a heavier construction than the previous wall-trench structures (Figure 2.2) (Lacquement 2007c). Additionally, starting during this time burials were placed under the floors of these houses (Boudreaux 2007; Hally 2008; Steere 2017).
Lacquement (2007c:70-71) suggests that this change in architectural style occurred because of two reasons. First, citing Polhemus (1985), the stronger larger poles needed to make the single-set post homes were more durable over long periods of time as compared to the smaller posts for wall-trench structures. Second, resource scarcity was a factor, pointing out that with the advent of the Little Ice Age during the thirteenth century the long, slender, and flexible trees required to construct wall-trench houses became scarce.

There are several architectural elements that are commonly associated with these single-set post structures. Gougeon (2015:89) and Hally (2008:54-67) identify these as: house basin,
four roof support posts, a centralized hearth, seven posts on each exterior wall, internal partitions, and symbolic spaces. Some researchers believe these elements are tied to or represent various spiritual and religious beliefs (Hally 2008; Hudson 1976; Steere 2017). Steere notes that use of these elements is standard across the Southern Appalachian region; any variation of it is seen outside of the region. Hally (2008:85) found that most of the houses at the King site have either 28 or 32 posts, and number either seven or eight posts along each wall. The adherence to this specific number, Hally (2008) suggests, is related to the sacred nature of the number seven to the Cherokee people (and much of the Mississippian Southeast as well), as it represents the number of levels in the Upper World and “the four cardinal directions plus up, down, and center” (Hally 2008; Hudson 1976; Steere 2017:130). The use of the house as a cosmogram, similar to how mounds are used in the same manner, is documented into the Historical period as well. Just as the mound is used as a physical representation of the world, domestic structures are as well, with their four sides and axis mundi at the hearth, the fire that centers the structure (Knight 2006 [1989]; Wesson 2008). The primary difference here is the intended use of each, where the mounds act as a public facing reinforcement and representation of the cosmos, the domestic structure behaves as a private one, for members of the household community.

Hally (2008:114-120) identified three types of structures built during the later Mississippian Dallas period (AD 1300-1600): winter houses, summer houses, and corn cribs. Hally refers to ethnohistoric accounts of Spanish explorers in the Southern Appalachian region that describe the homes (Priestly 1928 and Robertson 1993 in Hally 2008:115). Unfortunately, they do not speak at length at all about the appearance of the summer houses, but Hally (2008:115) says that they described the winter houses “as being subterranean, of wattle-and-daub construction, and earth covered.” He also notes that Natives carried over housing habits from
their Mississippian ancestors, such as the construction of two different living spaces for the cold and hot seasons and the third space to act as a food storage facility (Hally 2008:118). It should be noted, however, that Hally does not have a third type of structure at the King site, and suggests instead that the smaller domestic structures at the site acted as both the summer house and the food storage facility (Hally 2008:118-120). Hally concludes that the structure described by the ethnohistoric record as winter houses are likely the same square structures present at the King site and are single-set pole construction houses typical of the Middle and Late Mississippian periods (Hally 2008; Steere 2017). The sunken floor style domestic structures as well as the smaller “summer homes” are also present in many Pisgah and Qualla phase domestic structures in the Appalachian summit (Dickens 1978:119-126). This sunken floor is a defining feature in many of the European accounts. Biedma of the de Soto expedition even described them like “caves beneath the earth” (Worth 1993:228). Hally’s (2008:68-73) archaeology at the King site corroborated this account, finding floors that were on average one foot deep (30.48 cm), and that with the wattle-and-daub construction of these houses and the earth embankments built around them, would have surely created this cave-like atmosphere.

Mississippian chiefdoms of East Tennessee, which are potentially politically related to the Carter Robinson site, also feature many of these attributes found in the wider Mississippian world (Lewis and Kneberg 1992 [1946]; Meyers 2011; Polhemus 1985). At the Hiwassee Island site (AD 600 - 1550) (Lewis and Kneberg 1992 [1946]; Lyle 2017; Sullivan 2016, 2018) there are three major components present: Hamilton (AD 600 - 1000), Mississippian, (AD 1000 - 1550) and Historic (AD 1550 into the 18th C.). The Mississippian occupation includes the Hiwassee Island (AD 1000 - 1300) and Dallas (AD 1300 - 1550) components. Hiwassee Island also includes a plaza, mounds, domestic structures surrounding the plaza, and a palisade which
acted as a defensive structure for the village during its earlier occupation (Lewis and Kneberg 1992 [1946]:37-38). Wall trench construction was identified at the site prior to the Dallas Phase component—primarily identified as a flex poled construction—and later single-set pole construction was also present (Lewis and Kneberg 1992 [1946]). At the multi-occupational Toqua site (AD 1200-1700) (Eastern Tennessee), there are also two Mississippian components (Hiwassee Island and Dallas) (Polhemus 1985). The earliest Mississippian structures at the site are wall trench and associated with the Hiwassee Island phase and the later Mississippian structures are similar to what Hally (2008) calls winter houses, and are associated with the Dallas phase.

Special Use Structures and (Potential) Gendered Spaces

Despite the general regularity of household structures within Mississippian occupations, there do exist some structures with special uses or residents. The most prominent within this category would be the residences of chiefs and other political elites, due to the fact these are often placed on top of the platform mounds that are typically associated with the site (Boudreaux 2007; Steere 2017) (further supported by ethnographic evidence from the de Soto expedition, see Hudson [1998]), although this is not always the case as Hally (2008) demonstrates at the moundless King Site, where the houses of political elites are noted by continual occupations across reconstruction periods and an greater accumulation of shell-wealth within floor burials as compared with other occupations. Steere (2017:152-153) additionally notes that mound-top households in Mississippian contexts were often at least twice as large as compared to houses throughout the village, and required both more resources and labor to construct and maintain. Beyond size alone, artifact assemblages are potentially useful in determining the importance of
these structures, such as looking at the type and quantity of vessels, where the presence of more serving vessels than cooking or storage may indicate a location for feasting and other public activities (Boudreaux 2007:103-104).

The use of menstrual lodges is widely recognized as a practice in the Southeast and represent an additional form of atypical structure, where women would isolate themselves away from men during menstruation and childbirth (Hudson 1976:320-322; Galloway 1997). Identifying this space within the archaeological record, however, has proven somewhat challenging as, unlike structures typically associated with chiefs and other political elites, they do not necessarily occupy a position in the layout of a village with pointed significance. However, Galloway (1997) identifies three primary aspects that would be associated with menstrual huts: (1) that they would be built as well as any other structure on site, (2) that, due to the adverseness that menstruating women were treated with by the village, they likely would have been built on the edge of the occupation, and (3) that the artifact assemblage found within the structure would likely be uniquely associated with women. Borrowing these criteria, Bengston (2017) adds an additional emphasis on infant care within the structures, in particular with a focus in the artifact assemblage within them and the presence of infant burials. The suggested artifacts that are associated with this structure include material such as nursing vessels, vessels associated with purification rituals, figurines depicting women, hooded bottles, artifacts with cross-in-circle or triskele motifs, turtle faunal remains, red ochre, and *Datura stramonium* (Bengston 2017; Galloway 1997). Life within menstrual huts would have been, likely, very similar to life outside of them, with the exception of some restrictions. Galloway (1997) suggests that certain activities (such as crafting and cooking for the community) where items might be polluted (see Footnote 2) by menstruating women, and so any crafting done within the space...
would have been for people within the space alone. This space might have been used as the primary space for activities, rituals, and ceremonies focused on female reproduction and menstruation. It also would have simply been a place in which menstruating women lived: cooking, making things for themselves, and telling each other stories to pass the time (Galloway 1997:56-58).

The use of men’s structures is another topic that has not received the attention it deserves throughout the American Southeast, although there are ethnohistorical accounts that corroborate their existence. These spaces are briefly touched upon by Rodning (2015:83) and Hally (2008:144-145), where they suggest that the smaller structures sometimes seen adjacent to the townhouses are potentially men’s structures, acting more specifically as a space for elders and other political leaders of the community to convene, or as a space to house spiritually important materials to the community, such as sacred fire (further discussed below). In Cherokee contexts, these houses were situated near the townhouse because the elders who lived within them were not associated with any particular lineage within the community, but instead had a duty to the religious needs of the community as a whole (Gearing 1962; Rodning 2015). Other accounts point to the function of men’s spaces as a place where masculine identity is formed and confirmed within a community, and as a political space (Moody 2010:11-17). Within this latter definition, we find that these masculine structures are often described as being more central and larger than other buildings found within these communities, perhaps more closely resembling the structures recognized as council houses in the ethnohistorical and archaeological record (Webster 1909 in Moody 2010). The suggested archaeology associated with men’s structures includes a central location to the structure, as well as it being larger than other structures at the site, the use of red cedar as a building material and the presence of pokeweed (used as a red pigment), the
presence of tobacco, a large and often rebuilt hearth for tending to sacred fires, a possible lack of evidence for food production, evidence for point and pipe production, and the periodic destruction and rebuilding of the building (following Moody 2010:18-20).

Fire Symbolism in Households

The importance of households is emphasized elsewhere in the Mississippian world, such as the King site where certain households were determined to belong to the founders of the community based on structure location, rebuilding episodes, and grave goods found within the house themselves (Hally 2008:532). Furthermore, the motivations of burning and rebuilding a structure are even vaguer. Cherokee townhouses were regularly burned and rebuilt in the same location (as often as every 15 to 25 years), which Rodning (2015) suggests was part of a community purification ritual. This action could also be a part of community mythmaking and tradition building as an aspect of community integration (see Herr 2001) or as an aspect of building ideological control within a community (see Pauketat 2007). Fire was deeply symbolic in the Mississippian world, and this included the likely presence of a sacred fire for an entire village that would burn continuously and be taken from a village to help start a new one (Hally 2008; Hudson 1976). This practice is well documented as being part of the ritual and sacred lives of many people throughout the Southeast, such as the Cherokee and Natchez, and it is probable that the Mississippians likely kept a sacred flame (Hally 2008; Hudson 1976; Rodning 2015).

With the importance of fire as a symbolic force in mind, it is helpful to provide some additional context for why houses were burned. Obviously, some of the simpler answers always remain within contention and refer to a functional reason—either accidental fires or intentional burns to clear away decayed homes; indeed, at some point all structures would have required
some sort of maintenance or reconstruction and structures that feature evidence of rebuilding were likely occupied for longer periods (Hally 2008). However, there are documented cases of intentional house burnings within the historical record in the Southeast, such as the Choctaw burning houses of deceased individuals and the burning of Tattooed Serpent’s house at his passing for the Natchez, and with these in mind, Hally (2008:67) suggests that some houses may have been intentionally burned or otherwise destroyed after the passing of important family members within the household and then rebuilt as a “renewing” ritual. Interestingly, Galloway (1997:60-61) suggests that the burning of menstrual structures occurred as well, but associated with notions of pollution rather than purification. When rebuilding homes at the King site, they were often built on top of (sometimes quite precisely) the locations of the previous house, suggesting a form of household identity and continuity through time for single congenial families (Hally 2008; Hally and Kelly 1998). It is also interesting to note that Hally (2008:526) finds that there tends to be more grave goods and shell wealth with burials located within multi-component homes as compared to the burials within single component.

Radford Culture and Circle Villages

The Radford culture is the Late Woodland culture located in southwest Virginia that dates from A.D. 900-1600. MacCord (1989:96) suggests Radford is part of a larger more generalized “Intermontane Culture” that carries six main attributes: limestone-tempered pottery; circular domestic structures; circular villages with open plazas that are surrounded by a palisade;

2 As an added dimension of complexity, it can be noted that the symbolic use of menstrual huts can be broken down into two classes: (1) as a way of protecting the community from the pollution of menstruation, and (2) to protect those who are menstruating from the pollution of the community (Buckley and Gottlieb 1988). The primary difference between the two being who is considered vulnerable during menstruation: (1) sees non-menstruators as at-risk to pollution from menstruation, and (2) sees the menstruating individual as at-risk to the pollution of the wider world. If the latter is true in Mississippian contexts, then this burning might be rather be associated with the protection of women in the village, although it is difficult to tell these two apart in the archaeological record.
burials outside of the villages (contra Egloff 1992), trade from the Atlantic Coast for marine shell; and maize horticulture supplemented by hunting (Jefferies 2018; Trimble 1996). As stated, Radford ceramics are typically limestone-tempered, with cord-marked surface treatments (Egloff 1987:11; Holland 1970:64-67). Radford village sites follow architectural patterns common to the Late Woodland period in southwest Virginia and middle Appalachian region, such as the Monongahela tradition of southwest Pennsylvania (Means 2007) and the Wall Site in the Eno River Valley of North Carolina (Jones 2018:75). These villages were built with an open plaza/public space, encircled by a ring of circular post houses and public structures that was surrounded, in turn, by a palisade (Egloff 1992; Jefferies 2018). Burials were typically placed outside the houses, between the structures and the palisade (Egloff 1992:210). Circular village settlement patterns in southwestern Virginia were based on a number of factors such as village functionality, cultural affiliations, travel times between nearby villages, and resource competition with other villages (Bott 1981:45). The Radford villages were distinct from their Mississippian neighbors in the egalitarian nature of their community planning. These villages are constructed in such a way that they offer the same access to the resources throughout the village (typically by building in a circular or ovular shape around a central plaza), and the variation in structure size can be interpreted as larger social units inhabiting it (Jefferies 2018:184). These villages were occupied for a short amount of time, sometimes as little as 10 to 15 years (Jefferies 2018).

The structures within these villages are different from Mississippian structures. They were typically circular or oval in shape, somewhere between 4-8 meters in diameter, constructed using small saplings set into individual post holes and potentially flexed to shape the walls and ceilings, and larger structures sometimes have internal posts partitioning the structures’ use areas. There is some evidence of smaller storage structures occasionally being identified to one
side of the primary residences. (Jefferies 2018:148; MacCord 1989:98-100). Egloff (1992:207) additionally identifies that the entrances faced the village plaza and there were larger roof support posts placed randomly around central hearths within the structures. Additionally, the ritualistic rebuilding of household structures in the Southeast appears to be a very strongly Mississippian phenome, and is uncommon in Woodland sites (Pluckhahn 2010).

A couple of noteworthy Radford sites are the Trigg site (44MY3) in Radford (Montgomery County), Virginia, and the Crab Orchard site (44TZ1) in Tazewell County, Virginia. The Trigg site was a large palisaded circle village that was occupied from the fifteenth through the seventeenth centuries and had both a large number of households (29) and burials (311). The grave goods included a wide variety of artifacts and materials, including some European goods and metals (Sternheimer 1983 in Meyers 2002). The Crab Orchard site featured a similar layout, with households in a circular pattern surrounded by a palisade, and was occupied in the fifteenth century (MacCord and Buchanan 1980). The village was excavated over several field seasons in the 1970s as a part of a Virginia Department of Highways and Transportation project. A large number of burials were excavated there as well (168), but there were a smaller number of households as compared to the Trigg site (12) (MacCord and Buchanan 1980).

Frontiers and Frontier Theory

Lying on the margins or interstices of cultural networks, frontiers are the quintessential matrices of change. Here it is possible to both escape from the cultural conventions of one’s own society and to make contact with people carrying other conventions, other ways of living, thinking, and organizing social groups. (Rodseth and Parker 2005:9)

The frontier is a space where change occurs and where multiple cultures meet (Alt 2006;
Frontier theory includes the study of the processes that occur when either a single cultural group sets out to occupy previously unoccupied space, or a group elects to move into a space that is already occupied by one or more cultural groups (Rodseth and Parker 2005). Parker (2006) considers this physical space, the processes that define and redefine cultural identity and the nature of the relationship between core and peripheral groups, and these cultural groups themselves are all considered contributing aspects of a frontier. Meyers (2011:82) also focuses on the aspect of frontiers as processes and relationships, explicitly focusing on the “dialectical nature of cores and frontiers,” taking after Wallerstein (2011 [1974]). The study of the frontier and how it changes the culture of those living within it is important because it can better our understanding of what forces may actually bring about change within a culture and our knowledge of how communities living on the edges of their cultural influence either adapt to maintain their cultural identity or how their cultural identity changes in adapting to their environment.

The topics of focus within frontier theory range from the variety of ways in which frontiers function to the changes that occur from interactions at specific frontiers. Rodseth and Parker (2005) attempt to find some consensus, but address it as a multifaceted and complex physical space that has many cultural and human processes working within it, such as contact between groups, politics, and ideology. They discuss the frontier within the context of Eric Wolf’s *Europe and the People Without History* (1982), acknowledging his ideas of an interconnected world and his concept of culture as a series of processes.

As previously mentioned, Meyers (2011) builds on Wallerstein’s (2011 [1974]) core-periphery model when discussing frontiers. She is not alone in that, as Rice (1998), Rodseth and Parker (2005), and Parker (2006) all borrow from this concept as well. Initially developed as an
aspect of Wallerstein’s (2011 [1974]) world-systems theory, he used the core-periphery model to describe the nature between capitalist centers (or cores/nexuses) and the peripheries and semi-peripheries that the centers exploit within capitalist economic systems. This model, although developed for capitalist systems, maps well to non-capitalist societies, especially when considering the relationships of frontiers to their cores. Although not a perfect match, when recontextualizing the power and economic dynamics from the capitalist mode of production to the exchange of prestige goods and the tributary mode of production, this model can be adapted to the economics and power dynamics of non-capitalist societies (and the Mississippian South) (Meyers 2011; Wolf 1982).

Rice (1998) discusses central concepts of center-periphery models and world system models, defining center-periphery as a system of thought where there is a central core that is the “nexus of political and economic centralization of a world system” (Rice 1998: 45). She also describes the various situations in which frontiers and boundaries have been researched and makes a point of discussing how archaeologists have studied borderlands, providing three key issues in the field: (1) studying how frontiers and cores differ, (2) establishing how and by what measures the frontiers are different, and (3) identifying the catalysts of any change (Rice 1998: 51-52). Most notably in this discussion, she recognizes that the general models of change on the frontier are driven by the environment or by contact with other groups.

Herr (2001) discusses frontiers and integration. Herr’s concept of frontier theory for the Mogollon Rim frontier discusses the migration and integration of people into the frontier society. Herr (2001:13) asserts that “integration is enacted in every production, exchange, and ideological activity.” She differentiates between two different forms of integration: household integration (agriculture, craft production, physical reproduction) and community integration (feast, trading
events, competitions, rituals) to build a general theory for frontier integration (Herr 2001:13). This concept of integration as a force of cross-cultural interaction is also present in the study of the Macon Plateau site in central Georgia, as the Mississippian groups potentially used high-level integration activities to create a unique “form” of Mississippian culture (Birch et al. 2016:128).

Parker (2006) makes great efforts to define various terminologies typically associated with frontier studies and research. He notes that terms like *boundaries, borders, frontiers,* and *borderlands* have been used interchangeably and defines them more concretely for his purposes. The two most important definitions he provides are likely that of *boundary processes,* “the finite, if complex, set of interactions that take place in contact zones” (Parker 2006:78), and *frontier.* Borrowing a definition from Thompson and Lamar (1981), Parker (2006:79) defines it as “a zone of interpenetration between two previously distinct peoples” (this particular definition is also used by Rice [1998]), and adds “such a zone could separate various types of political or cultural units and that such zones may also be made up of empty areas where no such units exist or where they do not come into contact.” He also acknowledges the frontier as a complex set of boundaries and forces that interact with each other, and presents a model for understanding the frontier he calls the Borderland Matrix. Within this matrix, Parker acknowledges that various boundaries—geographic, political, demographical, cultural, and economic—all interact with and change each other over time, and he makes the claim that this interaction is the essence of borderlands processes (Parker 2006:90).

Other uses of frontier theory in Mississippian contexts includes Alt (2006) who discusses the role migration played in the formation of Cahokia. Her discussion of hybridity and “third places” echo Parker’s (2006) model of the borderlands process with a focus on demographic change and integrations. A similar example of an indirect interaction with frontier theory is seen
in Pollack, Henderson, and Begley’s (2002) discussion of Fort Ancient and Mississippian interactions, where they explain the known history of interaction between the two cultures, noting a design shift of more precious shell goods occurring towards the later period of Fort Ancient occupation in central Kentucky and southern Ohio. Here, they suggest a hybridization of Fort Ancient and Mississippian ceremonial and ritual beliefs occurred. A more direct example of these theories in practice is Blitz and Lorenz’s (2002) paper discussing the multiple population movements into the Chattahoochee-Apalachicola River valley, where they suggest the area is a frontier of the Mississippian world, and use the material cultural available across several sites to determine the settlement pattern of the fission settlements.

An additional attempt to model the processes of interaction at the frontier comes in the form of Green and Costion’s (2018) Cross-Cultural Interaction Model (CCIM). Green and Costion (2018) developed the CCIM to show both the varying types and intensity of cultural exchange between cultures who share a frontier. In this model, three levels of interaction, represented by concentric nested circles, are divided from the center out into culture groups. The outermost circle represents where the least amount of cultural exchange occurs, such as the exchange of unprocessed material goods like copper, obsidian, or mica. The middle circle represents a higher level of cultural exchange where certain goods or practices are introduced into one or both cultures, like the exchange of pottery from one culture as a prestige good in the other. The final, innermost, circle represents the most intense level of cultural exchange, which can bring about completely new cultural practices and often involves the exchange of members from the different groups (Green and Costion 2018:5-6). The CCIM is used by Buchanan (2018:114): who suggests the third dimension serves as a visual representation of a physical location’s closeness to the Mississippian Upper World and Under World, and that some areas
interacted at differing levels of intensity (Buchanan 2018:118-121). She uses this model to show that places within the Ouachita and Ohio River Valleys were deeply associated with sacred places, and that the exchange of material from them to Early Mississippians represents a cultural exchange and the intensity of ties from these communities to the Upper and Lower Worlds (Buchanan 2018).

Meyers’ approach to frontier theory at Carter Robinson differs slightly as it is specifically focused on chiefly power, although she explicitly states that she does use the core-periphery model in her theory (Meyers 2011). In this example, the frontier exists in the Mississippian world as “places where Mississippian societies were in the process of forming, or where they were in the process of becoming something else” (King and Meyers 2002:114). However, she does critique the core-periphery model as it is intended for capitalist societies rather than the pre-capitalist society being studied in her research, in such that previous research within the model identifies cores as being further “developed” than their peripheries, and that is not always the case for pre-capitalist societies (Meyers 2011). Meyers (2011, 2015) identifies a frontier established via the fission of kinship chiefdoms in which one lineage is, for one reason or another, forced from a core to the periphery. She also approaches the identification of the frontier in a different manner than Parker and Rice, stating:

[Mississippian frontier sites] at the edge of that archaeological definition are different because they are interacting with, at varying degrees, very different cultures. Because of this, frontiers of the archaeologically defined Mississippian world are a different entity; their resulting hybridity is also different, and as such, the analysis of such frontiers needs to be explicitly cognizant of these differences.” (Meyers 2015:227-228)

Additionally, within her examination of frontier theory there is a strong focus on the economy of the site, and the economic power that frontier settlements can hold, specifically as a
part of the analysis and identification of frontier sites (Meyers 2011, 2015). Meyers (2017, 2021) identifies borderland processes occurring via the recognition of the site becoming a multicraft production center. Multicrafting in a community is when many artisans are working side-by-side, often using the same tools and resources, to produce many different crafts (Shimada 2007, Meyers 2021). This multicraft production acts as a method of integration for non-Mississippian members of the population, following the model presented by Herr (2001). Meyers shows borderland processes in action in the presence of a diversification of temper and surface decorations at the site that are not typically associated with Mississippian core sites. She suggests this reflects the expansion of the trade network at Carter Robinson and in turn a more sustained contact with the inhabitants of the site and the local Radford peoples. (Meyers 2015:234). She further suggests that the act of multicrafting—and through the very act of creation—items are given social meaning and an increased value (Meyers 2021).

In sum, frontier theory suggests that the frontier exists as both a physical space and as a set of processes; that the people who live (and lived) within the frontier established a cultural identity there; and that the material culture they left behind is able to inform us of their integrating and integration into new environments.

Housing and Households

Thus, the deep significance of housing lies in its intimate connection to dwelling, dignity, and the cultural design of physical intimacy. Housing provides the link between kinship, reproduction, dignity, and shelter. (Appadurai 2013:117)

Households (structures where individuals and kinship units inhabited long-term) have been a focus in anthropology since the very beginning of the discipline, with reports from early anthropologists such as *Houses and House-Life of the American Aborigines* (1965 [1881]) by
Lewis Henry Morgan. Although the work in Morgan’s volume is largely considered outdated by contemporary standards—in terms of how he collected data, his biases, and his conclusions—this is one of the foundational works in the anthropological study of households and Indigenous Americans, and many of the assumptions made by Morgan within the volume still ring true. Of course, studying households is important simply because they act as shelter, space for activities, and often are able to reveal the status of their inhabitants (Gougeon 2007:136). However, it is important to understand that households reflect the inhabitants’ roles within their society (status-based or not), how a particular culture’s ideas are expressed architecturally, and how space is given importance within a culture (Blanton 1994; Gougeon 2007; Steere 2017; Wesson 2008). The study of space and the data retrieved from it can be used to understand the multifaceted nature of housing as a social formation; the connection between material culture, people, and the grand narratives of cultural change; the focus of non-elites; and as one of the easiest archaeological aspects to which researchers can build a personal connection (Pluckhahn 2010).

Much work has been done in developing an understanding of the lives of the inhabitants of archaeological households within particular contexts (e.g. Flannery and Winter 2009 [1976]; Hally 2008; Lacquement 2007a; Rodning 2015). However, it often is difficult to analyze this particular measure cross-culturally, although attempts have been made (e.g. Blanton 1994). The processual model, for example, uses modern “peasant” populations to build generalizations about household structure that can be applied to archaeological contexts; however, its utility is limited within some contexts (Blanton 1994). Blanton’s methods focus on how space within a structure is partitioned, the size of the structure, and the presence or absence of architectural features that express wealth or adherence to cultural norms. Blanton’s methodology trends toward larger households having more wealth, which is not always the case when studying some cultures.
where status was represented through prestige goods rather than structure size (Pluckhahn 2010). Flannery and Winter (2009 [1976]) focus on the use patterns of individual households to identify generalities that can be used to draw comparisons on a larger scale within the same culture. Other household studies are more focused on construction techniques that can be learned from the environments people inhabited and from archaeological evidence (i.e. Blanton and Gresham 2007; Hudson 1998; Lacquement 2007c). Cultural construction techniques are important to study, as they inform us of the logistics of household construction and maintenance, and the choices made in architectural design and material choice within given contexts (Blanton and Gresham 2007). In addition, research about construction techniques paired with paradigms emphasizing the agency of the builders themselves can give insight into how people viewed themselves in relation to their larger cultural and political climate (i.e. Pauketat and Alt 2005).

Although monumental architecture is an important source for understanding spiritual and political mechanics within a cultural context, there are many cases where the study of households is the primary or only source for reconstructing the minutiae of everyday life for commoners. Earlier Mississippian-period literature focused on the mounds and those who lived on them (e.g. the Clarence Bloomfield Moore [1998, 2004] expeditions). As the archaeological understanding of Mississippian society broadened, the focus shifted to non-elite housing, which informed us of not only about the daily lives of the Mississippian commoner, but also the relationships between them and those who lived on top of the mounds (Lacquement 2007b; Pauketat 2007; Pluckhahn 2010).

Defining what traits are cultural within archaeological architectural remains has been an ongoing discussion. First, all architectural elements can be considered culturally specific, as
Bourdieu’s (1990 [1980]) *habitus*\(^3\) might be used to understand the nature of household construction. There is also the argument that many, if not all, of these elements are cultural, but more deliberate than *habitus* would suggest (Alt and Pauketat 2011; Pauketat and Alt 2005). Some apply this idea more specificity to cultural elements. Blanton (1994) considers the presence of religious elements as one aspect of his calculations comparing household wealth between cultures, but does not consider particular construction techniques; however, architectural form may represent spiritual importance. This aspect is thought to be a common contribution in household architecture by Mississippian archaeologists (Hally 2008; Hudson 1976; Steere 2017). For example, the construction of many households in the Middle and Late Mississippian periods follows a particular pattern, such as the number of wall poles used on each side of the house, the orientation of the entrance to the structures, and a floorplan in a square or rectangular shape (e.g. Hally 2008; Steere 2017).

The use of space within households—and the importance of objects within that space—is also significant. A key point here is that the lives people maintain within spaces, how houses are constructed, and the meanings imposed upon the construction and the space all come together to form meaning within a space (Baudrillard 2020 [1968]; Bourdieu 1977 [1972]; Rodning 2015; Rodning and Sullivan 2020; Steere 2017). There should be an understanding that the object and artifacts within a given space had some meaning imposed upon them by their owners and creators, and that they likely had a purpose for being within that space (although, there is an assumption in that statement that within archaeological contexts we are observing households as they would have been the last time they were inhabited, which is clearly a flawed perspective).

\(^3\) Defined here as a subconscious structure of practice that informs a person’s actions, but is able to recursively restructure itself in the advent of new stimuli. Additionally, it has the aspect of being deeply historical, with an individual’s habitus being informed by the habitus of those sounding them (Bourdieu 1990 [1980]).
and that by studying households we are studying a space that has been constructed with intention and meaning (Baudrillard 2020 [1968]:25-29; Bourdieu 1977 [1972]:89). This view has changed our understanding of the importance of space within households, such as use-areas, and has resulted in the recognition of differences in the purpose of space within various households. This has been useful in interpreting both how different structures would have been used and the societal rank of people inhabiting different structures. For example, Cherokee houses and townhouses (large centrally placed structures used for religious and political purposes) feature centrally placed hearths that are interpreted as spiritual connections between the houses and the townhouse (Rodning 2015:109). Not only were the hearths themselves part of this connection, but so were the four large interior support posts constructed around them, reflecting Cherokee religious tradition (Rodning 2015). Flannery and Marcus (2012) use households and space to show rank within many societies. Although Flannery and Marcus (2012) generally take a more macro look at cultures, with a focus on public architecture and temple complexes, they also consider the use of space and construction within ritual houses. They identify differing construction and use patterns within these houses as evidence of their importance (Flannery and Marcus 2012:127).

Conclusion

The study of the use of space is an important aspect of household archaeology. The recognition of the frontier existing as both a physical location and an immaterial process that works to change existing cultures into something new—and that this transformation is reflected in the material culture of archaeological sites located on frontiers—is relevant to a discussion of space. Third, Mississippian structures have a strong amount of uniformity across sites (although
there exists some variation), generally that Mississippians have a seemingly uniform cultural practice across the entire Southeast, and there is a precedence for the ritual replacing of houses both in Mississippian communities and their Historic descendants. Finally, Radford communities share some similarities with Mississippian architectural grammar in the presence of a plaza and circular arrangement around the plaza. Their lack of mound building suggests a lack of institutionalized hierarchy and associated control of labor and religious beliefs.
3. HYPOTHESIS AND RESEARCH QUESTIONS

Carter Robinson is a Mississippian frontier site with archaeological evidence of integration of local Radford people into the Mississippian community. As previously discussed, both Meyers (2011, 2015, 2017) and Warner (2018) explored and confirmed this aspect of the site through careful study of the pottery recovered from the structures. In particular, Warner (2018) identifies in Structure 6 evidence of combined pottery attributes in pottery styles not seen to this degree elsewhere at the site and indicating this hybridity. Meyers (2021) further shows that multicrafting, or several different artisans and crafting industries working side by side, was an important to the economics and the integrative techniques of the community.

However, the architecture at the site does not show evidence of such hybridity. All of the structures at the site are Mississippian in style, even throughout time (such as Structures 3, 4, and 6), although some of these structures do reflect the mixing of cultures and the introduction of non-Mississippian individuals into the community as seen in their material culture. Structures 5 and 6 especially so in the tempers being introduced to the pottery associated with these structures (Meyers 2011; Warner 2018) Earlier households, represented by Structure 3, are wall-trench construction following the Early Mississippian period, and later households in Structures 4 and 6 are constructed in the single-set posts style typical of Middle and Late Mississippian periods. Another common element across these structures is the artifact assemblages, in particular the assemblages focused on pottery and chipped-stone tool making. As discussed elsewhere (Meyers 2011; Warner 2018) the temper used in pottery across the site reflects the introduction of non-
Mississippians into this Mississippian community, and tempers across the site stay fairly consistent (shell, grit, and grog), whereas surface decoration strongly reflects the introduction of the local Radford elements into the frontier Mississippian town. Primarily, the use of brushing as a decorative technique overtop cord-marking and appliques associated with Mississippian pottery (Meyers 2017:10; Warner 2018:91). The morphology of vessels within these structures is also strikingly similar. Structures 3, 4, and 6 all feature bowls, jars, and one plate (Meyers 2017:6-8; Warner 2018:91-95). Structure 5 did not yield any diagnostic rim sherds (Meyers 2011).

Structures 3, 4, and 6 also share evidence of chipped-stone tool production, which is particularly pronounced in Structure 6 (Capps 2018). Cannel coal\(^4\) craft production was undertaken in Structure 3, which produced a large number of chipped-stone tools (n = 96, as compared n = 20 in both Structures 4 and 6), and material evidence of cannel coal working (Capps 2018). Later structures at the site share this aspect of craft production, albeit with a different material (specifically shell crafts, see below). All of the structures have previously been interpreted as domestic structures. This is in part due to their construction as single-set post structures and wall-trench structures typically associated with domestic contexts (Alt and Pauketat 2011; Steere 2015). Additionally, because of the morphology of the pottery assemblages: jars and bowls are commonly associated with domestic contexts as well, as storage containers and vessels meant for individual servings or cooking vessels (Boudreaux 2007; Meyers 2011).

Structures 1 and 2 are atypical of Mississippian style domestic structures. Structure 1 is notable within both its architecture and its material assemblage, as it is the only structure at that site that features one open side (as in, the structure only has three constructed walls). In addition, it has been identified as the center of shell craft production, as well as one of the public spaces at

\(^4\) A form of bituminous coal that is notably easy to shape and polish, and represents a common crafting material for beads and pendants in the region at this time (Cowin 1999).
the site, alongside the mound and plaza. Vessel forms that are more commonly associated with public spaces, with bowls and pans that are commonly associated with feasting contexts, were recovered from Structure 1 (Boudreaux 2007; Meyers 2011; Warner 2018). The current interpretation is that Structure 1 was used as the community center for production of shell goods and crafts that were exported as a commodity outside of Carter Robinson (Meyers 2017). Structure 2 is an anomaly within the context of Carter Robinson as it is the only structure that was burned, buried, and rebuilt multiple times. This process happened twice within the occupational history of the site, and the structure was burned a final time, likely coinciding with the abandonment of the site. The three different structures are designated Structure 2a, 2b, and 2c from earliest to latest. In addition, through each subsequent occupation of Structure 2 there is a noted increase in material associated with shell bead production. Finally, Structure 2 is unique in its placement within the site: a small rise located nearly due east of the mound, across the plaza. This location is noted elsewhere in the Mississippian World as being reserved for minor political elites; however, in those contexts these households are typically constructed on top of secondary mounds (Lewis et al. 1998). Previous analysis of ceramics from this structure identified only jars (Meyers 2017; Warner 2018), and, like Structure 1, the latter two occupations of Structure 2 participated in shell craft production (Capps 2018; Meyers 2017). These combined aspects suggest a different status for the residents of Structure 2 not seen in other households within the community throughout Carter Robinson’s occupation, although this different status has still previously been interpreted this structure as a domestic one.

The question I am exploring within this thesis is: what is the nature of Structure 2 and can it be identified through an examination of its architecture and material remains of Structure 2b, the second occupation period? The data collected in 2017, which focused on the second
occupation of the structure (Structure 2b), will be used to answer this question and will be the focus of the remainder of this thesis. Macrobotanical analyses of selected contexts from the structure will be used to identify differences in plant use and consumption during this occupation. Radiocarbon dating from selected contexts of Structure 2, combined with radiocarbon dates done in 2008 from the same structure, will further confirm the timeline of occupation of the structure. I hypothesize that this structure acted as a ceremonial structure for the residents of Carter Robinson. If this is the case, then we can expect to see an assemblage that is associated with these kinds of activities, perhaps such as the presence of tobacco, smoking artifacts, or other special-use flora (per Blanton 2015; Parker and Simon 2018), faunal and floral evidence towards feasting, or even the presence of serving vessels in the pottery assemblage (per Boudreaux 2007).

For the purpose of this thesis I am distinguishing between public and domestic ritual and ceremonial contexts. Public rituals and ceremonies would be those that involve most of the community, or that are otherwise not practiced within the confines of a single domestic occupation. Public ceremonies and rituals take place in public spaces (such as the mound, the plaza, or temples), and sometimes will coincide with community-wide events such as monumental building and feasting (Herr 2001; Hudson 1976). Domestic ritual and ceremony would be, as the name suggests, activities that focus on, or take place, within the home. These would be much smaller in scale, only involving the inhabitants of the domestic structure. As previously discussed, the house was also a site for religious and cosmological discussion in the Native South, and this significance carried over into the ritual life of the inhabitants of any given domestic structure (Hally 2008; Steere 2017; Wesson 2008). This distinction is made within this thesis, as I believe Structure 2b (and the other occupations of Structure 2) represents a public
ceremonial and ritual space, rather than a domestic occupation that features the expected evidence of ritual practice that would be a part of the daily life of Mississippians. It is important, however, to recognize that the artifact assemblages that indicate a space being used for public or domestic ritual have a large overlap, and that the primary distinction between public and domestic is whether or not the structures the rituals and ceremonies were taking place in were public or domestic structures.

Otherwise, it is possible that the structure served as a special-use structure within the community, such as the residence of a rising chief, menstrual hut, or a men’s hut. If it was the residence of a rising chief, then I largely expect to see many aspects similar to public ceremonial contexts. However, in addition the structure itself should be larger than other households at the site (per Steere 2017), possibly contain a higher concentration of shell wealth (per Hally 2008) and potentially exhibit the presence of exotic trade materials such as copper (Jackson, Scott, and Schambach 2012; King 2010). Although, this is very conditional given that Hally (2008) located shell wealth within floor burials, which Structure 2 does not feature. If it was a menstrual hut, the architecture of the structure should largely resemble households throughout the rest of the site, but the artifact assemblage itself should reflect a tendency towards artifacts associated with women in Mississippian communities, such as nursing vessels, pendants with iconography associated with women, and floral remains such as Datura sp. (per Bengston 2017; Galloway 1997). Another possibility is that the structure represents a space that was exclusive to men within the community; if this were the case, we would expect to see an archaeological assemblage that contains tobacco (not unlike a generalized space), an absence of food production, an increased presence of chipped-stone tool production, and evidence for periodic
destruction and rebuilding of the structure (per Moody 2010). These elements are presented in Table 4.1 below.

In sum, this thesis will investigate the use of Structure 2, a unique structure in the Mississippian cultural landscape of Carter Robinson, by looking at spatial data, architectural elements, radiocarbon dating, macrobotanical remains, and artifact assemblages. The goal of this investigation will be to answer the question: How were the inhabitants of Carter Robinson using Structure 2, and was this use—and therefore the space—gendered?

<table>
<thead>
<tr>
<th>Structure</th>
<th>Flora</th>
<th>Pottery</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-specialized</td>
<td>Nicotiana sp.</td>
<td>Serving vessels, such as wide plates</td>
<td>Shell wealth, such as gorgets or other objects</td>
</tr>
<tr>
<td></td>
<td>Datura sp.</td>
<td></td>
<td>Exotic trade materials, such as copper</td>
</tr>
<tr>
<td></td>
<td>Solamun sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ipomoca sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Food species, such as maize</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women’s Space</td>
<td>Datura sp. (Or presence of other “magical plants” with Nicotiana sp. excluded)</td>
<td>Bottles, possibly associated with childcare Cookware</td>
<td>Artifacts with motifs associated with women</td>
</tr>
<tr>
<td>Men’s Space</td>
<td>Nicotiana sp.</td>
<td>Pottery not designated for cookware</td>
<td>High concentration of lithic debris Building and rebuilding of structure</td>
</tr>
</tbody>
</table>
4. METHODS

This chapter presents an overview of the methods used in excavations of Structure 2, and it is divided into four discussions. First, I present an overview of the results of the 2017 excavation of Block 3 at 44LE10, which is the focus of this thesis. Second, the methods used in the analyses of the data collected will be presented. Third, I will present a summary of the site’s occupational periods and specifically discuss the occupational history of each structure at the site. Finally, I will describe the 2017 excavation methods.

Overview of Block 3

At the end of the 2017 field season, a total of 17 1-x-1-m test units had been excavated, or 44% of the total area designated as Block 3 at 44LE10 (Figure 4.1). It was determined in the field that the cultural layer defined as Zone 46 was the midden overlaying the burned floor of Structure 2b. This determination was based upon the high number of artifacts as compared to the soil above and the fact that in some test units the elements (such as burned logs and charcoal deposits) of the burned floor of Structure 2b were visible within Zone 46. The plan view map of this block showing the base of Zone 46 is presented in Figure 4.1. Four additional units had been opened in 2007 and 2008, but they are not included in the scope of this analysis as they were excavated to subsoil or below level 4 at that time. Level 4 is the arbitrary 10 cm level determined to contain the floor of Structure 2b. Three additional units have been previously excavated to the floor of Structure 2c in the 2007 and 2008 field seasons, but were not opened in 2017 at all.
These seven units are not included in the scope of this analysis as they have previously been discussed (Meyers 2011).

![Plan View of Block 3, Floor of Structure 2b](image)

Methodology for This Thesis

The methods to be used in the analysis of the 2017 excavation are fivefold. First, using points collected from Total Station survey work in the field. These points were collected on an arbitrary grid, and in ArcMap were realigned to true north in the NAD 83 UTM 17S grid. Using the Total Station points, an accurate map of the architectural elements identified within the Block
3 excavation and the floor of Structure 2b was created. The results of the Total Station survey are presented in Chapter 5.

Second, these architectural elements will be examined to determine what, if any, visible elements of the house were uncovered in this field season, and furthermore to determine what form the building likely took as it was being used. This determination will be drawn from previous scholarship of Mississippian households, such as Steere (2017) and Hally (2008).

Third, soil collected from five features excavated in 2017 season were processed using bucket flotation procedures developed by the Texas Archeological Society to retrieve macrobotanical remains (Bush 2014). Seed samples were selected by Horton (2021) to be used for radiocarbon dating (Hester 2009). Radiocarbon dating was performed by DirectAMS and then calibrated using OxCal 4.4. The results of radiocarbon dating will be compared to prior results to help build a stronger understanding of the chronology of 44LE10 and the place of Structure 2b within that chronology.

Fourth, macrobotanical remains recovered through floatation were hand-identified by Dr. Elizabeth Horton (2021). Macrobotanical samples were processed by Horton (2021) by first running them through geological sieves to separate by size, and then comparing the samples against botanical databases. Results of the macrobotanical analysis are discussed in Chapter 5, and help to provide a picture of what plants were being used and consumed by the occupants of Structure 2b.

Finally, an analysis of the artifacts recovered in the 2017 field season is also presented in Chapter 5. The initial artifact sorting was completed after the 2017 field season by students at the University of Mississippi working with the Center for Archaeological Research and Dr. Maureen Meyers. Ceramic analysis of pottery recovered from this excavation was performed by Dr.
Maureen Meyers and Emily Warner at the University of Mississippi, the data collected from this analysis is discussed as a part of the larger artifact analysis. The goal of the artifact analysis is to gain an understanding of what material was being left behind by the inhabitants of Structure 2b before its occupants burned it. The presence of special use artifacts is noted in the analysis, and their roles in Mississippian society are further discussed in the final chapter. These five spaces of analysis are fit together to help further the understanding of the use of Structure 2b, and potentially the use of all three occupations of Structure 2.

Prior Work

Carter Robinson (44LE10) is a Mississippian village site featuring a mound that was occupied from the mid-thirteenth century to the end of the fourteenth century (Meyers 2011). The site is located in Lee County, Virginia, a short distance from the Cumberland, and within the interactional spheres of other Mississippian sites such as the Norris Basin cultures, Hiwassee Island, and Toqua (Figure 4.2). Archaeological exploration of the site began in the early 1960s as part of a general survey of the archaeological landscape of Southwestern Virginia (Holland 1970:v, 18), but did not begin in earnest until 2006 (Meyers 2011). Beginning in this field season, and the five field seasons following, the surveys and excavations of the site were led by Dr. Maureen Meyers.
Figure 4.2: Relevant and Contemporaneous Sites with 44LE10

This more recent work included geophysical testing, shovel testing, and block excavation. Shovel tests were placed in selected transects at 10-meter (m) intervals, were 30 centimeters (cm) wide, excavated at natural levels, and soil was screened through quarter-inch mesh (Figure 4.3). During the 2006 and 2007 field seasons these transects were arbitrarily placed, and were referenced using the arbitrary grid assigned with the Total Station system (where the primary datum, located on the mound, was given the Northing and Easting of 1000N, 1000E). Excavation based on zones was the preferred method, but until cultural zones could be identified, units were excavated in 10-cm levels (with some exceptions). These are identified by numbered Zones and Levels, respectfully. After the plow zone was identified, it was removed in most cases by shovel,
or rarely by backhoe under careful monitoring. The plow zone was removed to reveal and identify features, which were then excavated by trowel. In most cases, a 1-x-1-m test unit was excavated, but in some rare cases 1-x-2-m trenches were excavated instead. Each test unit was photographed after excavation, and Total Station points were collected of the southwest corner.

Figure 4.3: Effective Survey Extent of Shovel Tests, with Block 3 (Image via Google Earth)
The results of these first three field seasons (2006 to 2008) are discussed in detail in Meyers (2011), and are largely focused on three excavation blocks (Figure 4.4). Block 1, located about 20 m due north of the mound, was the most extensively excavated block during these field seasons with a total of 117 1-x-1-m test units excavated and recorded (Meyers 2011:169). Excavation identified multiple features, including a large burned area and a hearth, as well as the remains of two structures: a later-occupied domestic structure designated Structure 4 (Meyers 2011:197), and a public structure focused on craft production with an open wall called Structure 1 (Meyers 2011:188, Meyers 2017). Block 2, about 10 m east of Block 1, was examined by eight test units of various sizes in 2006 and 2007, which uncovered an early occupation wall-trench structure, designated Structure 3 that is noteworthy because of the apparent abandonment of the structure (Meyers 2011:151, 167). In addition, two test units (designated TU 18 and TU 19) were excavated near the western and southern edges of the base of the mound, which identified an early structure built at the site (designated Structure 5), as well as two major mound building phases that occurred during the occupation (Meyers 2011:147-150).
Figure 4.4: Current Excavations at 44LE10 (after Meyers 2011: Fig. 5.2)

Block 3, located about 80 m away from the mound on top of a natural rise that made the eastern edge of the plaza, contained the remains of Structure 2. This block was identified and excavated during the three initial field seasons. In 2006, it was originally identified by a shovel test that contained five or more cultural strata, including a probable feature as evidenced by large amounts of charcoal and ash and more than 300 artifacts. Geophysical conductivity survey in 2007 identified a large burned area in the same location, and ten 1-x-1-m test units were excavated here. In 2008, 36 more 1-x-1-m test units were opened, two of which were excavated to subsoil (TU 8W1/s and 9), one was excavated to the layer above Structure 2a (TU 163E), and
one was excavated just below the hearth of Structure 2c. The excavations at the time confirmed that there were multiple occupations of this structure. Radiocarbon dates from the uppermost occupation placed its occupation toward the end of site occupation. Notably, there are ash lenses and clay caps present between the earliest structure and the middle occupation, and between the middle occupation and the late occupation. The final structure also appears to have been burned, but was not capped—suggesting that this burning might have coincided with the abandonment of the site (Meyers 2011:198-227).

Site Components

Carter Robinson has been recognized as a frontier town that resides on the edge of the Mississippian World, a place where significant cross-cultural interaction and integration was occurring between the Mississippian inhabitants of the site and the nearby Radford people who lived in the area; it was also an area of intensive shell bead craft production during the later occupation of the site (Meyers 2011, 2015, 2017; Warner 2018). The frontier aspect of the village is important to recognize to better identify and understand the results of integrative activities at the site (see Herr 2001), as well as how the Mississippian occupants of the village worked to establish their identity within the greater context of the non-Mississippian community they lived in. Both Meyers (2017:153) and Warner (2018:102) identify the mixing of Radford and Mississippian elements in pottery during the middle and late occupations of the site, and suggest this might have been a result of integration activities that merged Radford peoples into the Mississippian community. Meyers (2017) also suggests that the bead production occurring at Carter Robinson might have acted as both an integrational activity and as well as an indicator of elite activities and/or power at the site.
Within the Carter Robinson site, six structures have thus far been identified and excavated (Table 4.1). Five of these structures have previously been identified as housing structures, and one as an open public structure with evidence of craft activities (Meyers 2017). These structures span the occupation periods at Carter Robinson and they all reflect typical Mississippian construction. Two structures (Structures 3 and 5) were built in the early period of the site, likely coinciding with the first mound-building event (approximately A.D. 1250-1300). Structure 3 is a wall trench style house that was swept clean before abandonment (Meyers 2011, 2017). Structure 5 was located beneath the mound marking it as existing prior to the construction of the mound. Although the 2008 excavation identified a hearth and three post molds, little else is known about it and it is assumed to be a household (Meyers 2011). Two more structures were built during the middle occupational period (approximately AD 1300-1350), Structures 1 and 6. Structure 1 is open on one side, lacks a hearth, and was the center of multicraft production during the later periods at the site; radiocarbon work from this structure indicates that its construction was contemporaneous with the second and final mound building even at the site (Meyers 2011, 2017, 2021). Structure 6 is a Middle or Late Mississippian domestic household located 90 meters south of the mound, and has evidence of integration with Radford cultures, based primarily on pottery from the structure (Warner 2018:90-92). One other building, Structure 4, represents the later occupation at the site (AD 1350-1400). This household is adjacent to Structure 1, and was a typical single set post structure with a central hearth.

| Table 4.1: Carter Robinson Occupational Periods and Associated Structures |
|---|-----------------|-----------------|-----------------|
| Dates | Early, A.D. 1250-1300 | Middle, A.D. 1300-1350 | Late, A.D. 1350-1400 |
| Structures | First Mound Phase | Second Mound Phase | Structure 2c |
| Structure 2a | Structure 3 | Structure 1 | Structure 4 |
| Structure 5 | Structure 2b | Structure 2b | |
| | Structure 6 | Structure 6 | |
Structure 2

Structure 2 is the primary focus of this study. This structure was located approximately 80 m east of the mound and is the only structure at the site with multiple occupations. The structure was occupied during all three periods of site occupation. The first two occupations appear to have been deliberately burned and then capped in sterile clay soil by the occupants of Carter Robinson (Meyers 2011). The earliest level, 2a, was a wall-trench structure built prior to the second mound-building event at the site. It was burned and capped by a layer of ash and a sterile clay (Meyers 2011). The ceramics recovered from this layer consist primarily of grit- and grog-tempered sherds; some rims had nodes present, indicative of a Mississippian presence during the early occupation of the site (Meyers 2011; Warner 2018). Structure 2a was probably a domestic structure, based on the presence of a wall trench feature and several post holes (Meyers 2011:208). Structure 2b was occupied during the second occupational period of the site, making it contemporaneous with Structures 1 and 6. Zone 46 was recognized during the 2017 field season as the midden layer associated with this occupation, and as the layer above the burned floor of Structure 2b. Zone 46 was described in the field as a dark brown (10YR3/3) loamy clay with charcoal inclusions.

Meyers (2011) discusses the architectural data for this layer from the 2007 and 2008 field excavations, citing the strongest architectural evidence for this occupation based on several post holes from a single test unit. The 2007 and 2008 excavations also provided evidence of structure burning during this occupation, with a similar clay cap to the one present in Structure 2a. The artifact assemblage for this occupation includes domestic artifacts (ceramics, beads, chunky stone fragments) and evidence of shell manufacturing (cut shell, chipped-stone tools, drills). This occupation was determined to likely be domestic in nature, although Meyers (2017:152) and
Capps (2018:96) point to evidence of the beginnings of craft production intensification during this occupation due to the number of gravers found in this occupation alongside an increased number and diversity of chipped-stone tools. The last occupation of the structure, Structure 2c, contained remains of several posts and a hearth, and it was overlain by a midden. Meyers (2011:219) suggests these posts represent interior support posts common in Middle and Late Mississippian style house construction, and also that the structure was rebuilt or repaired at least one time during this period based on the presence of overlapping post hole features. Burned log remains found in association with this occupation returned dates of 533 ± 37 (AA 80786; wood charcoal; $\sigma^{13}C = 24.3\%$), cal A.D. 1400-1429 1σ (TU 14), and 512 ± 37 (AA 80785; wood charcoal) cal A.D. 1408-1436 1σ (TU N1050/E1060 aka TU 8W1/2) (Calibrated using OxCal [Ramsey and Lee 2013] calibration) (Meyers 2011:227, 2017:147-148). These dates, along with evidence of burning, suggest that this occupation coincides with the abandonment of the site.

The artifact assemblage of this occupation was varied and included an array of chipped-stone tool fragments, chert cores and flakes, fire cracked rock, cut shell, and daub fragments. This assemblage, with its greater concentration of chipped-stone tools, as well as the more even distribution throughout the structure as compared to Structure 2b’s concentrated distribution, suggests an intensification of craft production occurred between this occupation and the prior one (Capps 2018:96). The ceramic assemblage included sherds with multiple tempers, including combinations of shell, grit, and grog tempers; which are indicative of typical Mississippian ceramics in the region, and the combination of tempers may suggest a lack of access to the crafter’s preferred temper (Meyers 2011:296). Structure 2c was also likely domestic in nature (Meyers 2011; Warner 2018).
Field Work

The 2017 field season focused on expanding Block 3 for a more in-depth exploration of Structure 2. During these excavations, Levels 1 – 3 of these test units were considered to be plow zone through shovel skimming, and that trowel excavation would begin at Level 4, or approximately 31 cm below surface (cmbs), or 10 cm below the test unit datum (cmbd). After this level, units were dug to the base of Zone 46, a recognized cultural layer that represents the midden above the burned floor of Structure 2b. Levels 1 – 3 were designated plow zone, and were undifferentiated in the excavation and screening. Work began by removing the midden to the top of Level 4, and then identifying the test units that were previously excavated, and removing the backfill from these units so they could be recorded alongside the new excavations. Old test units were assigned unit designations aligned with the datum (that is, test units were no longer numbered sequentially as they had been in earlier excavations). During the initial cleaning of the block, it was recognized that the structure’s location had varied over time, and that the second occupation was not in the same exact location as the later or earlier ones. New test units were opened to reflect this change of location, and ideally excavate a majority of the floorplan of Structure 2b. A total of 17 1-x-1-m test units were excavated, and seven of ten observed features were excavated. Detailed unit descriptions of these 17 test units can be found in Appendix A.
5. ANALYSIS AND RESULTS

Introduction

Four primary kinds of data were collected and analyzed for this thesis:

1. Spatial Analysis from hand-drawn maps and GPS points captured by Total Station
2. Architectural data from the same sources as the spatial data.
3. Radiocarbon dates
4. Macrobotanical remains
5. Artifact assemblages

As touched on in previous chapters in this volume, all data were collected in the course of the 2017 field school at Carter Robinson. I undertook the architectural analysis for this thesis. Carbon dating was performed by DirectAMS with funding from a grant provided by the Archaeological Society of Virginia (ASV), the macrobotanical remains were analyzed by Dr. Elizabeth Horton (2021) with funding from the same ASV grant. Artifact sorting and ceramic analysis was overseen by Dr. Maureen Meyers.

This chapter will provide an overview and presentation of these data sets, with interpretation about what each data set means within the context of Structure 2b.

Spatial Analysis

Data for spatial architectural analysis were drawn from two sources: the use of a Total Station in the field during the final days of the field school in 2017, and the excavation maps
made by the excavators as they completed excavating levels and units. A compiled version of the excavation maps is presented in Chapter 4 (Fig. 4.1) and here (Figure 5.1), it includes Munsell colors assigned in the field. Points collected with the Total Station were more focused than the hand-drawn maps. Whereas the excavation maps drawn in the field were used to create a more complete picture of what each unit looked like at each level, the Total Station was focused on collecting points for the corners of test units, the boundaries of log deposits, the boundaries of clay deposits, and the edges of features identified during the course of excavation. To this end, points were collected and noted within field notes, and these points were in turn converted into data that could be used by ArcGIS. I then created several maps to help visualize the place Carter Robinson has within the landscape, and that Structure 2 has within the site itself.
The first map (see Figure 3.1) shows the site as it relates to other significant sites in the Southern Appalachians. Figure 4.1 records the extent of Carter Robinson within the local landscape. Figure 4.2 places Block 3 (the excavation block where Structure 2 was located) within the established site boundaries of Carter Robinson. These maps together help provide geospatial context for the site and the features observed in the field.

Beginning with Figure 1.2, the topography of the map clearly shows that 44LE10 lies within a drainage system, that might have represented a floodplain of the several nearby waterways (most significantly Indian Creek), and that is very clearly fed by water running down from the nearby mountain ridge that marks the Kentucky-Virginia border. Following Smith (1984) and Hally (1999), this would be an ideal location for a Mississippian site in general, and following Meyers (2011) and Chamblee and Williams (2015) this would be an even more ideal site for a Mississippian village on the frontier, given the location of the nearby waterway that was likely a waterway used by travelers, both those who would be going to and from this village, and those who were in the area prior to settlement.

Figure 4.3 shows the bounds of previous investigations, the effective search area (or a 10 m buffer around each shovel test) and the bounds of the excavation block during the 2017 field season against a background of aerial photography showing what the site looks like today. Primarily, beyond showing where Block 3 sits in relation to the rest of the known site, it also shows some constraints of previous surveys, most notably where it has not been surveyed. This map shows that there were constraints placed upon previous archaeological investigations in the area, most notably: the fence lines. When taken in comparison to previous maps showing similar data it helps to orient the relationship of Block 3 to the rest of the block excavations, and highlights that Structure 2 existed across a clearly defined plaza, bordered on the southwestern
end by the mound, the northwestern edge by Structures 1, 3, and 4, and on the northeastern end by Structure 2.

Architectural Analysis

Using the same spatial data collected for the spatial analysis is possible to analyze the architectural features present in the excavation block. Figure 5.1 is best represented in conversation with Figures 5.2 and 5.3. Figure 5.1 is simply an alteration of Figure 4.1 turned to face true north rather than the relative north used in the field records and Figure 5.3 is the same map, but only with architectural elements included that were being recorded by the Total Station in the field. This map is useful in two ways, first it provides a more accurate depiction of the shape of these elements as they were seen in the field at the time of excavation, and second it helps to tie in the location data collected with the field records. A significant feature of this final map is the inclusion of elements not recorded by GPS in the field (bordered in red). I chose to include these elements despite a lack of data tying them to the UTM 17S coordinate system, as it helps with interpretation of the excavation.
Figure 5.2: Features as Presented from Total Station Data
As stated elsewhere in this thesis (see Chapter 2), some elements we should expect to see in single-set post Mississippian structures are clay and daub build-up in walls, postholes themselves, both arranged in a rectangular or square shape. Knowing this, there is a strong suggestion of a wall that extends south from TU N1052/E1060 to TU N1051/E1063; and that Features 223, 224, 227, 228, 229, and 230 may possibly represent wall posts. Feature 225, although in this line, has been dated to later than the construction of Structure 2b (see Radiocarbon Analysis, this Chapter). If this is the case, then Feature 222 may represent an interior post that were used to hold the roof of the structure when it was still standing, or the first post in the southeastern-facing wall. Feature 226 remains somewhat ambiguous in its role here, given that this post has two distinct levels in it, suggesting it was used on two different
occasions, and that it is possible the wall of Structure 2b could have led in that direction and integrated it within this eastern wall. This upper level could have, alternatively, been an element in Structure 2c, the last occupation of this structure. Radiocarbon dating suggests that this feature is, at least in part, associated with Structure 2c.

This leaves a single wall (Figure 5.4) as the only well-defined architectural feature present excavated during the 2017 field season. Aside from the previously discussed archaeological features that support this analysis, there is a large amount of burned wood and charcoal deposits along the line of Features. Previous analysis has indicated that the first two occupations of Structure 2 have been burned and then capped in sterile clay soil (Meyers 2011). The large amount of burned wood is likely the remains of the load-bearing wall poles and the various smaller poles used to construct Structure 2b’s eastern wall. Although this wall alone is not enough to determine the size of the structure for comparative purposes, it is enough to definitely determine the style of building. This structure was likely a single-set post building, common to the Mississippian period after A.D. 1200 (Hally 2008; Steere 2017). It would have been constructed using load bearing poles collected from trees in the area, and walls would have been built with a mixture of smaller poles weaved between the upright poles, and daub along the base for further support (Hally 2008; Lacquement 2007a; Steere 2017). This analysis concurs with Meyer’s (2011) previous interpretation of the architecture of Structure 2b.
In addition to this analysis, previous scholarship (Hally 2008; Steere 2017), indicates that it was common for Mississippian buildings to be built with consideration of the cardinal directions. Given that this wall appears to run in a northwest-southeast direction (Figure 5.4), it is possible that the corners of Structure 2b are built to be facing the cardinal directions. This form of construction is seen elsewhere in the Mississippian world (Polhemus 1985). Further excavation of Structure 2b would be required to determine the exact shape of the building, and any intentional directionality in its construction.

When considering nearby Mississippian communities, such as Hiwassee Island and Toqua, this structure appears to coincide with architectural elements of single-post structures.
excavated at those sites. Notably, that the walls of single-set post structures are represented archaeologically by series of postholes and by the botanical and wood remains sometimes recovered by archaeologists (Lewis and Kneberg 1992 [1946]; Polhemus 1985). When considering other architectural features commonly found at these sites, there is a noticeable absence of an identifiable hearth associated with Structure 2b. Both Hiwassee Island and Toqua feature clay hearths within the homes and structures excavated, as do the structures at the King site (Hally 2008; Lewis and Kneberg 1992 [1946]; Polhemus 1985). This particular architectural feature would be good to have identified, as it would represent both the physical and metaphorical center of the structure, and would have further aided in the excavations of the rest of the architectural features of Structure 2b.

Radiocarbon Dating

Samples for radiocarbon dating were selected by Horton (2021) during her macrobotanical analysis. All of the samples chosen were seeds and came from Features 225, 226, and 227; and were dated by DirectAMS in Bothell, Washington, all with unreported δ¹³C values. Radiocarbon dates were then calibrated using OxCal v4.4 (Ramsey and Lee 2013) (see Table 5.1). After calibration, dates for the samples range from cal A.D. 1313 to 1417 (Feature 225), cal A.D. 1310 to 1406 (Feat. 226), and cal A.D. 1285 to 1394 (Feat. 227) (calibrated at σ2 using OxCal 4.4.4, [Ramsey and Lee 2013; Reimer et al. 2020]) (Table 5.1, Figure 5.5). This in particular is interesting because it means the material recovered from Feats. 225 and 226 are contemporaneous with Structure 6 and the third occupation of Structure 2 (a.k.a. Structure 2c); while the material recovered fromFeat. 227 makes it contemporaneous with dates recovered from Test Unit 18 Levels 7 and 9 (the west end of the mound) and Structure 1 (Figure 5.6;
What this suggests is that Feature 227 is not from the same occupation as Features 225 and 226, and is also contemporaneous with the second mound-building event that occurred at the site (Meyers 2011, 2017).

Table 5.1: Radiocarbon Dates from Structure 2b, 44LE10

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Type</th>
<th>Locations</th>
<th>% Modern Carbon</th>
<th>Date BP (uncalibrated)</th>
<th>Calibrated (A.D.)</th>
<th>σ1 (cal A.D.)</th>
<th>σ2 (cal A.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-AMS 041263</td>
<td>Seed</td>
<td>Feat. 225</td>
<td>93.09 ± 0.27</td>
<td>575 ± 23</td>
<td>1301-1425</td>
<td>1325-1405</td>
<td>1313-1417</td>
</tr>
<tr>
<td>D-AMS 041264</td>
<td>Seed</td>
<td>Feat. 226</td>
<td>92.93 ± 0.22</td>
<td>589 ± 19</td>
<td>1301-1416</td>
<td>1324-1398</td>
<td>1310-1406</td>
</tr>
<tr>
<td>D-AMS 041265</td>
<td>Seed</td>
<td>Feat. 227</td>
<td>92.25 ± 0.25</td>
<td>684 ± 22</td>
<td>1280-1398</td>
<td>1297-1387</td>
<td>1285-1394</td>
</tr>
</tbody>
</table>

Figure 5.5: Radiocarbon Dates from Structure 2b, Carter Robinson
Macrobotanical Remains

Macrobotanical remains were collected from Features 223 (2.05 L of soil), 224 (1.0 L), 225 (8.25 L), 226 (4.75 L), and 227 (6.8 L). These remains were recovered by performing a flotation analysis of soil set aside from each feature during the 2017 field school, and then by separating light and heavy fraction before shipping the samples for analysis by Dr. Elizabeth Horton (2021), of Rattlesnake Master LLC. Alongside the 22.85 L of soil processed by flotation from the 2017 field season, an additional 49.40 L of soil from the 2008 field season was also floated and sent for lab analysis. These latter samples were collected from TU N1049/E1062 (or TU 163E) and TU N1050/E1060 (or TU 8W1/2), they represent soil collected from Zones 33, 34, 35, 36, 40, and 41 (from TU N1049/E1062) and Zones 7 and 10 (from TU N1050/E1060). All samples were processed using the manual floating procedures as outlined by the Texas Archeological Society (Bush 2014). As the rest of this section will primarily be a summary of the
report and findings by Horton (2021), all of these samples will be discussed together, but with a focus on the samples from Features 223 through 227.

After receiving the samples, Horton sorted them via size grading through four geological sieves, and each size category was massed and then sorted, and each size category was identified to different levels of completion (>2 mm, 100% identified; >1 mm, <0.5 mm scanned for seed and some smaller botanical remains; <0.5 mm not typically scanned, an exception made for the material from Feat. 223 as a tobacco seed was found in the next largest size category). Specimens were “identified to the lowest possible taxonomic level” (Horton 2021:1) using a light microscope at 7x magnification (with a variable magnification of 10x – 15 x for smaller specimens) and using in-lab comparative references, Horton’s own botanical library, and online botanical databases.

Wood fragments are the single largest subdivision found within the soil samples, at 22.8 g total, and a mass ratio of 10.36 of wood to nutshell (Table 5.2). Horton (2021:3) agrees with Bonzani’s (2010) prior macrobotanical analysis performed for samples from Carter Robinson, that this represents a lower amount of wood charcoal than what would normally be expected at a Mississippian site. Following wood, the remains of maize and nutshell (respectfully) are the next two largest categories of macrobotanical remains recovered. The aggregated count is 20.3 for the entire sample size and the aggregated seed density across the entire sample is 2.4, maize density by count is 5.23 and nutshell (all taxa) is 3.4 (Table 5.3).
Table 5.2: Aggregated data for thirteen samples from Structure 2 (Horton 2021: Table 1)

<table>
<thead>
<tr>
<th>Structure 2 n = 13 samples</th>
<th>Count</th>
<th>Density</th>
<th>Weight (g)</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume = 72.25 L</td>
<td>1467</td>
<td>20.3</td>
<td>198.06</td>
<td>3.2</td>
</tr>
<tr>
<td>Wood</td>
<td>N/A</td>
<td>N/A</td>
<td>22.8</td>
<td>0.32</td>
</tr>
<tr>
<td>Nutshell</td>
<td>248</td>
<td>3.4</td>
<td>2.2</td>
<td>0.03</td>
</tr>
<tr>
<td>Seeds/Fruits</td>
<td>174</td>
<td>2.4</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Maize Kernels, cupules,</td>
<td>378</td>
<td>5.2</td>
<td>2.29</td>
<td>0.03</td>
</tr>
<tr>
<td>and glumes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood to Nutshell Ratio wt.</td>
<td>10.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutshell to Maize Ratio ct.</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cob (cupule) to Kernel Part Ratios</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diversity Index (all taxa excluding wood)</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.3: Density by weight and count for Structure 2 (totals/soil volume) by provenience (Horton 2021: Table 2)

<table>
<thead>
<tr>
<th>Provenience</th>
<th>All macrobotanical (g)</th>
<th>Wood (g)</th>
<th>Nutshell – all taxa (g)</th>
<th>Maize (g)</th>
<th>All macrobotanical count</th>
<th>Nutshell – all taxa (count)</th>
<th>Maize (count)</th>
<th>Seeds (count)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. 223</td>
<td>1.71</td>
<td>0.12</td>
<td>0.14</td>
<td>0.02</td>
<td>22.9</td>
<td>9.3</td>
<td>3.4</td>
<td>4.9</td>
</tr>
<tr>
<td>F. 224</td>
<td>4.38</td>
<td>0.54</td>
<td>0.09</td>
<td>0.08</td>
<td>17.0</td>
<td>4.0</td>
<td>4.0</td>
<td>6.0</td>
</tr>
<tr>
<td>F. 225</td>
<td>2.92</td>
<td>0.00</td>
<td>0.04</td>
<td>0.03</td>
<td>15.5</td>
<td>4.0</td>
<td>5.1</td>
<td>2.9</td>
</tr>
<tr>
<td>F. 226</td>
<td>2.96</td>
<td>0.48</td>
<td>0.03</td>
<td>0.04</td>
<td>24.0</td>
<td>3.6</td>
<td>7.4</td>
<td>3.8</td>
</tr>
<tr>
<td>F. 227</td>
<td>3.11</td>
<td>0.45</td>
<td>0.03</td>
<td>0.10</td>
<td>17.6</td>
<td>3.2</td>
<td>3.2</td>
<td>2.5</td>
</tr>
<tr>
<td>163E Z33</td>
<td>7.09</td>
<td>0.44</td>
<td>0.02</td>
<td>0.03</td>
<td>19.7</td>
<td>3.3</td>
<td>7.9</td>
<td>3.3</td>
</tr>
<tr>
<td>163E Z34</td>
<td>0.41</td>
<td>0.11</td>
<td>0.01</td>
<td>0.00</td>
<td>4.3</td>
<td>2.3</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>163E Z35</td>
<td>4.57</td>
<td>0.33</td>
<td>0.03</td>
<td>0.02</td>
<td>20.0</td>
<td>2.7</td>
<td>5.0</td>
<td>2.0</td>
</tr>
<tr>
<td>163E Z36</td>
<td>2.92</td>
<td>0.27</td>
<td>0.04</td>
<td>0.00</td>
<td>21.0</td>
<td>5.0</td>
<td>3.3</td>
<td>1.7</td>
</tr>
<tr>
<td>163E Z40</td>
<td>1.88</td>
<td>0.05</td>
<td>0.03</td>
<td>0.01</td>
<td>17.5</td>
<td>4.0</td>
<td>4.8</td>
<td>2.4</td>
</tr>
<tr>
<td>163E Z41</td>
<td>5.70</td>
<td>0.64</td>
<td>0.01</td>
<td>0.02</td>
<td>70.0</td>
<td>30.0</td>
<td>10.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8W1/2 Z7</td>
<td>0.77</td>
<td>0.14</td>
<td>0.05</td>
<td>0.03</td>
<td>20.6</td>
<td>4.5</td>
<td>5.2</td>
<td>1.2</td>
</tr>
<tr>
<td>8W1/2 Z10</td>
<td>2.76</td>
<td>0.48</td>
<td>0.02</td>
<td>0.03</td>
<td>25.7</td>
<td>2.2</td>
<td>5.7</td>
<td>1.8</td>
</tr>
<tr>
<td>All</td>
<td>3.2</td>
<td>0.32</td>
<td>0.03</td>
<td>0.03</td>
<td>20.3</td>
<td>3.4</td>
<td>5.2</td>
<td>2.4</td>
</tr>
</tbody>
</table>

There were 15 families and 21 genera included in the ubiquity value generation. Only two samples (nutshell and maize) are ubiquitous, although wood charcoal is present in nearly every sample. Horton (2021:4) points out that there are “key economic” genera found within the samples (*Arundinaria, Cucurbita, Zea Mays, Carya, Quercus, and Juglans*) and that many of the other represented genera are important aspects to the archaeological record (*Phalris,*
Echinochloa, cf Setaria, Rubus, Vitis, Passiflora, Nicotiana, Portulaca, Amaranthus, and Chenopodium (Table 5.4).

Table 5.4: Ubiquity scores for aggregated data (n = 13 samples) (Horton 2021: Table 3)

<table>
<thead>
<tr>
<th>Scientific Identification</th>
<th>Common Name</th>
<th>Structure 2 Ubiquity Scores %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood Charcoal</td>
<td>-</td>
<td>92%</td>
</tr>
<tr>
<td>cf Amaranthaceae</td>
<td>Cheno/Am</td>
<td>15%</td>
</tr>
<tr>
<td>Amaranthaceae Amaranthus sp.</td>
<td>Pigweed</td>
<td>38%</td>
</tr>
<tr>
<td>Amaranthaceae Chenopodium sp.</td>
<td>Goosefoot</td>
<td>23%</td>
</tr>
<tr>
<td>Cucurbitaceae Cucurbita sp. – rind</td>
<td>Squash</td>
<td>46%</td>
</tr>
<tr>
<td>Cucurbitaceae Lagenaria sp. – rind</td>
<td>Gourd</td>
<td>8%</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Spurge</td>
<td>23%</td>
</tr>
<tr>
<td>Fabaceae – Quercus sp.</td>
<td>Acorn nutshell/nut meat</td>
<td>46%</td>
</tr>
<tr>
<td>cf Juglandaceae</td>
<td>Hickory/walnut</td>
<td>100%</td>
</tr>
<tr>
<td>Juglandaceae – Carya sp.</td>
<td>Hickory nutshell</td>
<td>46%</td>
</tr>
<tr>
<td>Juglandaceae – Juglans sp.</td>
<td>Walnut nutshell</td>
<td>46%</td>
</tr>
<tr>
<td>Leguminosae cf Phaseolus vulgaris</td>
<td>Common bean</td>
<td>8%</td>
</tr>
<tr>
<td>Leguminosae Desmodium sp.</td>
<td>Tick clover</td>
<td>8%</td>
</tr>
<tr>
<td>Linaceae cf Linum sp.</td>
<td>Flax</td>
<td>8%</td>
</tr>
<tr>
<td>Passifloraceae Passiflora incarnata</td>
<td>Maypop</td>
<td>15%</td>
</tr>
<tr>
<td>cf Poaceae</td>
<td>Grass family</td>
<td>23%</td>
</tr>
<tr>
<td>Poaceae Phalaris caroliniana</td>
<td>Maygrass</td>
<td>15%</td>
</tr>
<tr>
<td>Poaceae Echinochloa murcata</td>
<td>Barnyard grass</td>
<td>62%</td>
</tr>
<tr>
<td>Poaceae cf Setaria sp.</td>
<td>Panic grass</td>
<td>62%</td>
</tr>
<tr>
<td>Poaceae Zea mays</td>
<td>Maize</td>
<td>100%</td>
</tr>
<tr>
<td>Poaceae Arundinaria sp.</td>
<td>Cane (culm)</td>
<td>69%</td>
</tr>
<tr>
<td>Polygonaceae cf Persicaria sp.</td>
<td>Smartweed</td>
<td>15%</td>
</tr>
<tr>
<td>Polygonaceae Rumex sp.</td>
<td>Dock</td>
<td>8%</td>
</tr>
<tr>
<td>Portulacaceae Portulaca sp.</td>
<td>Purslane</td>
<td>54%</td>
</tr>
<tr>
<td>Rosaceae Rubus sp.</td>
<td>Brambles</td>
<td>46%</td>
</tr>
<tr>
<td>Rubiaceae Galium sp.</td>
<td>Bedstraw</td>
<td>15%</td>
</tr>
<tr>
<td>cf Solanaceae</td>
<td>Nightshade family</td>
<td>23%</td>
</tr>
<tr>
<td>Solanaceae Nicotiana sp.</td>
<td>Tobacco</td>
<td>8%</td>
</tr>
<tr>
<td>Vitaceae Vitis sp.</td>
<td>Grape</td>
<td>8%</td>
</tr>
</tbody>
</table>

Although the diversity index for this assemblage was higher than the previous study (0.71 vs. 0.48 [Bonzani 2010:3]), Horton (2021) still concurs with Bonzani’s (2010) previous conclusions about the foodways of the inhabitants of Carter Robinson: that they were mixing agricultural sustenance techniques with foraging. Dietary taxa found within the assemblage is divided into two categories: intensively cultivated crops as part of multi-crop agriculture that would have been a primary part of the plant diet consumed by the residents (such as maize,

5 “cf” designates a tentative classification.
tobacco, squash, and gourds) and casually cultivated crops that would have been supplemental to the primary diet. This latter case includes plants such as goosefoot, smartweed, amaranth, and dock that would have acted as greens and pseudocereals, and this category also includes “garden weeds” (Horton 2021:15) such as purslane, wood sorrel, pokeweed, and peppergrass (Bonzani 2010; Horton 2021). However, the presence of greens is very minor compared to maize and mast (or nut) resources recovered, which together make up 81% of the total plant taxa included (Figure 5.7). These mast resources may indicate a practice of land management by the inhabitants of Carter Robinson, as using fire to intentionally thin forests to promote the growth of mast producing plants (such as oak, hickory, and walnut) (Horton 2021). Maygrass has a place within the history of agriculturalism (alongside several of the previously mentioned casually cultivated crops) in Eastern North America as being an element of the Eastern Agricultural Complex, which acted as a cereal in the deep past of agriculture throughout the continent and into the Mississippian period (Mueller et al. 2017; Horton 2021).

Figure 5.7: Plant taxa by inferred role (excludes wood and cane) (Horton 2021: Chart 7)
Several plants featured have an ambiguous use, such as barnyard grass and foxtail, as Horton (2021) points out that there are ethnographic examples of the uses of these plants as food (Austin 2006 in Horton 2021), but that “their role in the Southeastern United States is not well understood” (Horton 2021:16). The use of these plants features at a different frequency throughout the deep history of the Southeast, and indicates that elsewhere in the South there is strong evidence for its use as roof thatch (Fritz 2016 in Horton 2021:16). An issue arises with this interpretation because of the lack of silica froth in the flotation, which typically is formed by “the fusion of silica rich grass phytoliths at high temperatures” (Horton 2021:16) and can be used to identify the present of thatched roofs when the remains of the roof are not present, which archaeological excavations did not find in any significant amount (Jurney and Bergstrom 2001 in Horton 2021). This does not necessarily mean that the houses constructed at Carter Robinson were not using thatched roofs, just that, at the present, it is not possible to concretely determine the use of these grasses by the inhabitants of Carter Robinson.

Technological plant use at Carter Robinson is mostly dominated by wood, such as oak and walnut, for the construction of buildings and for other uses such as fuel; and the use of cane for other architectural needs as well as fabric production and fuel (as well) (Horton 2021:17). Horton (2021) also points out the use of several present plants as dyes, such as cleavers (Galium spp., or bedstraw in Table 5.4) for orange and red dyes; walnut hulls for black; hickory hulls and bark for dark brown; and brambles and grape for red-purple.

Artifact Assemblage

A narrative discussion of artifacts found in each test unit and by level can be found in Appendix A, this discussion of artifacts will focus on the totality of all artifacts, artifacts by
level, artifacts by level per unit, and a focus of lithics in combination with shell, as well as a brief discussion of vessel morphology present in Structure 2b and a discussion of the likelihood of craft production in this area.

Of the artifact assemblage from the 2017 field season, there are a total of 364 ceramic sherds, 1538 lithics (including 747 chipped-stone tool fragments), 216.3 g of botanical remains, 586 animal bones, 73.7 g of shell, 562.9 g of daub (Table 5.5). Artifacts included in this count are from all contexts excavated during the 2017 field season – including some that are not considered in the later analysis of the artifacts from this site, such as a small number of lithics from the mound excavated when searching for the permanent datum in a 5-cm-x-5-cm excavation block, or artifacts from balk removal that are not differentiated by level. Included in these counts are also several units that were opened and not excavated, including 5 test units from the N 1047 transect, 4 along N 1048, 1 along N 1049, and 1 along N 1053 (for a total of 11).
Table 5.5: Artifact Totals from the 2017 Block 3 Excavation at 44LE10

<table>
<thead>
<tr>
<th>Artifacts</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramics</td>
<td></td>
</tr>
<tr>
<td>Grit & Grog</td>
<td></td>
</tr>
<tr>
<td>Cord Marked</td>
<td>17</td>
</tr>
<tr>
<td>Incised</td>
<td>1</td>
</tr>
<tr>
<td>Residual</td>
<td>11</td>
</tr>
<tr>
<td>Plain</td>
<td>11</td>
</tr>
<tr>
<td>Smoothed</td>
<td>1</td>
</tr>
<tr>
<td>Grit & Mica</td>
<td></td>
</tr>
<tr>
<td>Cord Marked</td>
<td>2</td>
</tr>
<tr>
<td>Residual</td>
<td>1</td>
</tr>
<tr>
<td>Smoothed</td>
<td>1</td>
</tr>
<tr>
<td>Grit, Grog, & Mica</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>1</td>
</tr>
<tr>
<td>Grog</td>
<td></td>
</tr>
<tr>
<td>Smoothed</td>
<td>1</td>
</tr>
<tr>
<td>Grog & Mica</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>1</td>
</tr>
<tr>
<td>Sand & Grog</td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>1</td>
</tr>
<tr>
<td>Sand, Grit, & Grog</td>
<td></td>
</tr>
<tr>
<td>Cane Impressed</td>
<td>1</td>
</tr>
<tr>
<td>Sand, Quartz, & Grog</td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>1</td>
</tr>
<tr>
<td>Sand, Quartz, & Mica</td>
<td></td>
</tr>
<tr>
<td>Punctated</td>
<td>1</td>
</tr>
<tr>
<td>Shell & Grit</td>
<td></td>
</tr>
<tr>
<td>Cord Marked</td>
<td>1</td>
</tr>
<tr>
<td>Residual</td>
<td>1</td>
</tr>
<tr>
<td>Plain</td>
<td>3</td>
</tr>
<tr>
<td>Shell & Grog</td>
<td></td>
</tr>
<tr>
<td>Cord Marked</td>
<td>11</td>
</tr>
<tr>
<td>Residual</td>
<td>10</td>
</tr>
<tr>
<td>Plain</td>
<td>28</td>
</tr>
<tr>
<td>Shell, Grit, & Grog</td>
<td></td>
</tr>
<tr>
<td>Cord Marked</td>
<td>80</td>
</tr>
<tr>
<td>Cord Marked/Smoothed</td>
<td>1</td>
</tr>
<tr>
<td>Residual</td>
<td>20</td>
</tr>
<tr>
<td>Plain</td>
<td>119</td>
</tr>
<tr>
<td>Smoothed</td>
<td>23</td>
</tr>
<tr>
<td>Shell, Grog, & Mica</td>
<td></td>
</tr>
<tr>
<td>Cord Marked</td>
<td>5</td>
</tr>
<tr>
<td>Residual</td>
<td>1</td>
</tr>
<tr>
<td>Plain</td>
<td>4</td>
</tr>
<tr>
<td>Shell, Grog, & Quartz</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>1</td>
</tr>
<tr>
<td>Plain</td>
<td>1</td>
</tr>
<tr>
<td>Shell, Grit, Grog, & Mica</td>
<td></td>
</tr>
<tr>
<td>Cord Marked</td>
<td>1</td>
</tr>
<tr>
<td>Smoothed</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>364</td>
</tr>
</tbody>
</table>

Lithics	
Shatter	351
Flaked Stone	340
Projectile Point	3
Core & Core Fragments	7
Biface	1
Flake tools	3
Drill	3
Tool Fragments	747
Modified Stones	57
Poss. Chunky Stones	2
Pipe Bowl	1
Total	1538

Animal Bone	
Botanical	216.3 g
Shell	73.7 g
Daub	562.9 g
Other	
Fire Cracked Rock	247
Pebbles	172
Table 5.6 shows the artifact assemblage by designated level, specifically plow zone (or backfill), Level 4, and Zone 46 (excluding artifacts recovered from Features during the excavation). The artifacts recovered from excavating the backfill are included as a part of the plow zone in these counts, as during excavation this was considered part of the plow zone but was not screened by unit as it was mostly backfilling from the 2007 and 2008 excavations. The majority of artifacts were recovered from Zone 46 (51.1%, Figure 5.8), determined in the field to be a midden of Structure 2b, and was to be expected given the interpretation of this zone as midden from the active inhabitation of the structure during this time. The high number of chipped-stone tools present in Zone 46 (n = 377, 61.6% of all chipped-stone tool fragments excavated in this season, Table 5.6) suggest that there was a heavy presence of craft production in the Structure during this occupation.

Figure 5.8: Percentage of Artifacts (count & mass) by Level, excluding Features
<table>
<thead>
<tr>
<th>Artifacts</th>
<th>Temper</th>
<th>Decoration</th>
<th>Plow zone</th>
<th>Level 4</th>
<th>Zone 46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grit & Grog</td>
<td>Cord Marked</td>
<td>1</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incised</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residual</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plain</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smoothed</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Grit & Mica</td>
<td>Cord Marked</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residual</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smoothed</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Grit, Grog, & Mica</td>
<td>Residual</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Grog</td>
<td>Smoothed</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Grog & Mica</td>
<td>Residual</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Sand & Grog</td>
<td>Plain</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Sand, Grit, & Grog</td>
<td>Cane Impressed</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Sand, Quartz, & Grog</td>
<td>Plain</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sand, Quartz, & Mica</td>
<td>Punctated</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Shell & Grit</td>
<td></td>
<td>Cord Marked</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residual</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plain</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Shell & Grog</td>
<td></td>
<td>Cord Marked</td>
<td>-</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residual</td>
<td>2</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plain</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Shell, Grit, & Grog</td>
<td></td>
<td>Cord Marked</td>
<td>4</td>
<td>13</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cord Marked/Smoothed</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residual</td>
<td>9</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plain</td>
<td>7</td>
<td>25</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smoothed</td>
<td>-</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Shell, Grog, & Mica</td>
<td></td>
<td>Cord Marked</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residual</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plain</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Shell, Grog, & Quartz</td>
<td></td>
<td>Residual</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plain</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>30</td>
<td>79</td>
<td>199</td>
</tr>
<tr>
<td>Lithics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shatter</td>
<td></td>
<td>33</td>
<td>93</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Flaked Stone</td>
<td></td>
<td>142</td>
<td>77</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Projectile Point</td>
<td></td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Core & Core Fragments</td>
<td></td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Biface</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Flake tools</td>
<td></td>
<td>2</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Drill</td>
<td></td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Tool Fragments</td>
<td></td>
<td>36</td>
<td>199</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>Modified Stones</td>
<td></td>
<td>12</td>
<td>31</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Poss. Chunky Stones</td>
<td></td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pipe Bowl</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>235</td>
<td>401</td>
<td>677</td>
</tr>
<tr>
<td>Animal Bone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>87</td>
<td>162</td>
<td>281</td>
</tr>
<tr>
<td>Botanical</td>
<td></td>
<td></td>
<td>5.9</td>
<td>20.6</td>
<td>178.9</td>
</tr>
<tr>
<td>Shell</td>
<td></td>
<td></td>
<td>7.9</td>
<td>10.9</td>
<td>48.2</td>
</tr>
<tr>
<td>Daub</td>
<td></td>
<td></td>
<td>45.3</td>
<td>145.7</td>
<td>291.7</td>
</tr>
<tr>
<td>Other</td>
<td>Fire Cracked Rock</td>
<td></td>
<td>18</td>
<td>47</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>Pebbles</td>
<td></td>
<td>6</td>
<td>38</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 5.7 displays the artifacts found in Features 221, 222, 225, and 226 during this field season. There are several interesting things to note within this assemblage. First with the acknowledgement from the radiocarbon dating that Features 225 & 226 likely post-date Features 221 and 222, which additionally can show to some degree how the later occupation differed from the occupation of Structure 2b. It is of note that the only ceramics tempered with shell, grit, grog, and mica were recovered from Feature 221. Although mica itself is not unheard of as a temper in ceramics at Carter Robinson (both Meyers [2011] and Warner [2018] report a small number of sherds tempered with mica as a part of previous assemblages at the site), these are the only two sherds at the site where shell, grit, and grog were supplemented with a mica temper. As compared to the n = 243 sherds that are just tempered with shell, grit, and grog (Table 5.5) from this field season. Next, the distinct increase of chipped-stone tool fragments found in 225 and 226 as compared to the earlier two post holes (n = 34 and 49 as compared to n = 15 and 1, respectfully) does suggest an increase in chipped-stone tool use, but interestingly Features 225 and 226 feature no shell at all. The increase in chipped-stone tool fragments agrees with Capps’ (2018:65) analysis and conclusions about chipped-stone tool use at Structure 2. This increase is also reflected in the total mass of daub recovered from each context. A final interesting aspect of this specific element of the assemblage is that, by percentage of total artifacts recovered, Features 221, 225, and 226 are approximately equal to each other, and dwarf the number of artifacts recovered from Feature 222 (Figure 5.9).
When artifact counts are divided by Test Unit, there are a couple aspects of the data that draw the eye (Table 5.8, for all artifact counts divided by Test Unit and Level, please see Table B.1). First is the noticeable absence of shell throughout most (9 of 17 test units) of the excavation area, and then second is the how the highest count of lithic tool fragments appears where the shell is absent. Additionally, there were only a small number of identified chipped-
stone tools recovered Zone 46 at this time (1 projectile point/knife, 1 core fragment, 1 pre-fabricated flake tool, and 1 broken drill). These data are almost entirely in line with data Capps (2018:93-96) observed and appear to support his conclusion about the role of chipped-stone tools in Structure 2b: craft production was occurring within the structure but not as intensively as in Structure 2c or elsewhere in the site. Other lithics of note are two possible chunky stones in Zone 46, several pieces of mica, and hematite. In the plow zone (excavated by backhoe), there was also a partial stone pipe bowl recovered from the backhoe screening, which unfortunately, cannot be reliably associated with Structure 2b. It is interesting to note as well the correlations between the presence of shell and the highest concentration of animal bone in the southern excavation units. This correlation perhaps suggests the area acted as a midden during occupation, and that the shell remains found were treated in the same manner as animal bone. Further, shell found during this occupation might represent the remains of food consumption as well as the remains of shell craft or multicraft production. The botanical remains throughout the Zone 46 assemblage are generally very small (>2.0 g) save for large mass located in N1052/E1059. This large mass represents a large wood sample recovered from the Test Unit.
<table>
<thead>
<tr>
<th>TU</th>
<th>Ceramics (Total)</th>
<th>Lithics (Total)</th>
<th>Lithics (Tool Frag)</th>
<th>Animal Bone</th>
<th>Botanical (g)</th>
<th>Shell (g)</th>
<th>Daub (g)</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1049 E1059</td>
<td>9</td>
<td>18</td>
<td>18</td>
<td>7</td>
<td>-</td>
<td>0.1</td>
<td>2.7</td>
<td>-</td>
</tr>
<tr>
<td>N1049 E1060</td>
<td>26</td>
<td>38</td>
<td>-</td>
<td>49</td>
<td>-</td>
<td>2.2</td>
<td>1.7</td>
<td>11</td>
</tr>
<tr>
<td>N1049 E1061</td>
<td>29</td>
<td>39</td>
<td>1</td>
<td>61</td>
<td>-</td>
<td>23.6</td>
<td>18.6</td>
<td>7</td>
</tr>
<tr>
<td>N1049 E1062</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>0.2</td>
<td>2.4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>N1050 E1061</td>
<td>14</td>
<td>19</td>
<td>5</td>
<td>13</td>
<td>-</td>
<td>7.3</td>
<td>5.7</td>
<td>-</td>
</tr>
<tr>
<td>N1050 E1062</td>
<td>32</td>
<td>110</td>
<td>70</td>
<td>55</td>
<td>0.3</td>
<td>12.3</td>
<td>56.7</td>
<td>43</td>
</tr>
<tr>
<td>N1051 E1059</td>
<td>7</td>
<td>49</td>
<td>35</td>
<td>14</td>
<td>0.3</td>
<td>-</td>
<td>26.9</td>
<td>53</td>
</tr>
<tr>
<td>N1051 E1060</td>
<td>1</td>
<td>40</td>
<td>30</td>
<td>3</td>
<td>0.6</td>
<td>-</td>
<td>10.9</td>
<td>14</td>
</tr>
<tr>
<td>N1051 E1061</td>
<td>10</td>
<td>30</td>
<td>10</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>10.5</td>
<td>8</td>
</tr>
<tr>
<td>N1051 E1062</td>
<td>13</td>
<td>25</td>
<td>16</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>21.0</td>
<td>10</td>
</tr>
<tr>
<td>N1051 E1063</td>
<td>15</td>
<td>19</td>
<td>15</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>13.0</td>
<td>7</td>
</tr>
<tr>
<td>N1052 E1059</td>
<td>3</td>
<td>40</td>
<td>32</td>
<td>1</td>
<td>175.2</td>
<td>-</td>
<td>7.7</td>
<td>11</td>
</tr>
<tr>
<td>N1052 E1060</td>
<td>7</td>
<td>37</td>
<td>27</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>17.6</td>
<td>9</td>
</tr>
<tr>
<td>N1052 E1061</td>
<td>9</td>
<td>83</td>
<td>60</td>
<td>21</td>
<td>0.3</td>
<td>-</td>
<td>42.2</td>
<td>25</td>
</tr>
<tr>
<td>N1052 E1062</td>
<td>7</td>
<td>29</td>
<td>14</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>6.5</td>
<td>4</td>
</tr>
<tr>
<td>N1052 E1063</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N1053 E1062</td>
<td>12</td>
<td>60</td>
<td>38</td>
<td>5</td>
<td>2.0</td>
<td>0.3</td>
<td>49.6</td>
<td>25</td>
</tr>
<tr>
<td>TOTAL</td>
<td>199</td>
<td>647</td>
<td>377</td>
<td>281</td>
<td>178.9</td>
<td>48.6</td>
<td>291.3</td>
<td>231</td>
</tr>
</tbody>
</table>

Ceramics at this level were quite varied in temper, but overall were dominated by shell as a tempering material (86.4% of all sherds in Zone 46 feature shell, Table 5.9). The most dominant temper combination by far is shell, grit, and grog (67.8% of all sherds), followed by shell and grog (15.1%), and grit and grog (10.6%). There are also several more sherds here that feature mica as a temper material, similar to the sherds recovered from Feature 221 (n=9). The most common location on a vessel for sherds to be from are the body of vessels (59.3%), followed by residual sherds (36.2%), rims (4.0%), and one lug (0.5%). The largest percentage of sherds are plain (49.8%), followed by cord marked decorated (35.6%), and all other decorations (10%). Of the 199 total ceramic artifacts excavated from Zone 46, eight are rims discovered during excavation and one additional rim was found during cleaning of the floor of Block 3. The majority of these sherds are shell, grit, and grog tempered, (n=6) and shell and grog tempered (n=3), one of these sherds is too badly damaged to determine temper or form. Five of these
sherds come from vessels of indeterminate morphology, four of them come from simple jar forms, and two of them come from bowls (Table 5.10).

Table 5.9: Ceramic Artifacts in Zone 46

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grit & Grog</td>
<td>Cord Marked</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>6.0%</td>
<td>21</td>
<td>10.6%</td>
</tr>
<tr>
<td></td>
<td>Incised</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>2.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plain</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>2.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grit & Mica</td>
<td>Cord Marked</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1.0%</td>
<td>4</td>
<td>2.0%</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smoothed</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, Quartz, & Grog</td>
<td>Plain</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0.5%</td>
<td>1</td>
<td>0.5%</td>
</tr>
<tr>
<td>Sand, Quartz, & Mica</td>
<td>Punctated</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell & Grit</td>
<td>Cord Marked</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0.5%</td>
<td>3</td>
<td>1.5%</td>
</tr>
<tr>
<td></td>
<td>Plain</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>1.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell & Grog</td>
<td>Cord Marked</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>3.5%</td>
<td>30</td>
<td>15.1%</td>
</tr>
<tr>
<td></td>
<td>Plain</td>
<td>9</td>
<td>4</td>
<td>10</td>
<td>-</td>
<td>23</td>
<td>11.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell, Grit, & Grog</td>
<td>Cord Marked</td>
<td>49</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>49</td>
<td>24.6%</td>
<td>135</td>
<td>67.8%</td>
</tr>
<tr>
<td></td>
<td>Cord Marked/Smoothed</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>1.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plain</td>
<td>19</td>
<td>1</td>
<td>49</td>
<td>-</td>
<td>69</td>
<td>34.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smoothed</td>
<td>10</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>14</td>
<td>7.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotals</td>
<td></td>
<td>118</td>
<td>8</td>
<td>72</td>
<td>1</td>
<td>199</td>
<td>59.3%</td>
<td>4.0%</td>
<td>36.2%</td>
</tr>
</tbody>
</table>

Table 5.10: Rims and Vessel Forms found in Zone 46

<table>
<thead>
<tr>
<th>Test Unit</th>
<th>Level</th>
<th>Zone</th>
<th>Temper</th>
<th>Form</th>
<th>Decoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1049 E1059</td>
<td>4</td>
<td>46</td>
<td>Shell, Grit, & Grog</td>
<td>Simple Jar</td>
<td>Plain</td>
</tr>
<tr>
<td>N1049 E1060</td>
<td>4</td>
<td>46</td>
<td>Burned</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N1050 E1061</td>
<td>4</td>
<td>46</td>
<td>Shell, Grit, & Grog</td>
<td>Simple Jar</td>
<td>Plain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shell & Grog</td>
<td>Indeterminate</td>
<td>Eroded body</td>
</tr>
<tr>
<td>N1050 E1062</td>
<td>4</td>
<td>46</td>
<td>Shell, Grit, & Grog</td>
<td>Simple Jar</td>
<td>Plain</td>
</tr>
<tr>
<td>N1051 E1061</td>
<td>4</td>
<td>46</td>
<td>Shell & Grog</td>
<td>Indeterminate</td>
<td>Eroded, three parts of same rim</td>
</tr>
<tr>
<td>N1051 E1062</td>
<td>4</td>
<td>46</td>
<td>Shell, Grit, & Grog</td>
<td>Bowl</td>
<td>Plain/Eroded</td>
</tr>
<tr>
<td>N1051 E1063</td>
<td>4</td>
<td>46</td>
<td>Shell, Grit, & Grog</td>
<td>Indeterminate</td>
<td>Plain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shell, Grit, & Grog</td>
<td>Indeterminate</td>
<td>Punctated rim, plain body</td>
</tr>
<tr>
<td>N1052 E1061</td>
<td>4</td>
<td>46</td>
<td>Shell & Grog</td>
<td>Bowl</td>
<td>Lineated and smoothed design</td>
</tr>
<tr>
<td>Floor clean of Block</td>
<td>4</td>
<td>46</td>
<td>Shell, Grit, & Grog</td>
<td>Simple Jar</td>
<td>Plain</td>
</tr>
</tbody>
</table>

85
These forms correspond almost directly with Meyers’ (2011) and Warner’s (2018) observations about vessel forms in Structure 2b, where previous analysis of vessel morphology only identified jars and bowls in Structure 2b as well as Structure 2c. The dominating presence of shell as a temper material also corresponds with the previous ceramic analyses performed of ceramics from this structure, indicating its deeply Mississippian connections.

Conclusion

In conclusion, architecture of Structure 2b seems to follow what would be expected of a Mississippian household structure elsewhere in this time period. However, at least two of the features originally interpreted as possibly a part of Structure 2b are (from the radio carbon dating) actually from the later Structure 2c, which also was in this location (Meyers 2011). Radiocarbon dating also provides an estimated date for Structure 2b (A.D. 1287-1397, 1σ), which likely predates all other carbon dates thus far gathered for the whole of Structure 2c. Macrobotanical analysis results show that the plant diet of the inhabitants of Structure 2b was both consistent with previous analyses of Carter Robinson, and not at all out of the ordinary for Mississippian people living in this area; although, with regards to technological plant use, there was a distinct lack of evidence associated with thatched roofs that would be expected from a burned building (Horton 2021). Additionally, the macrobotanical analysis proved the presence of sacred plants within the context of the Structure, with a single tobacco seed found in Feature 223 (Horton 2021:18). Artifacts from this excavation largely were from Zone 46 (51.1%), and lithics from this context are largely tool fragments, located in every Test Unit of Zone 46, but primarily in the northeastern portion of the excavation block. Shell fragments, on the other hand, are only located in the southern portion of the block, where chipped-stone tool fragment density is low. It
does not appear as though there is a strong correlation between the location of shell and the location of chipped-stone tool fragments in the site. Ceramics during this occupation largely seem to correspond with previous analyses performed on this structure (Meyers 2011), and do not seem to suggest anything apart from a typical Mississippian assemblage. There were some unique sherds, however, such as the two sherds from Feature 221 that are only two samples from 44LE10 that are tempered with shell, grit, grog and mica. There were only a small number of diagnostic rim sherds recovered, but they indicate that the vessel forms at the structure are simple jars and bowls, similar to the previous vessel morphology analysis performed of Structure 2b (Meyers 2011).
6. DISCUSSION AND CONCLUSION

Carter Robinson (44LE10) is a Mississippian village site located on the frontier of the Mississippian world, and previous studies (Meyers 2011; Warner 2018) have identified evidence of the local Radford communities entering into the Mississippian community at the site. The economy at Carter Robinson was focused primarily on the production of crafts. Earlier on in the occupation this production was primarily on cannel coal production and then later shifted to shell craft production during the 14th Century AD (Capps 2018; Meyers 2011, 2017). There are several major architectural elements at the site that have been identified through archaeological survey and excavation going back to the 1960s (Holland 1970); these elements include a prominent mound, a plaza, four structures strongly identified as households, one structure identified as building with three walls and an open wall facing into the plaza (also identified as the center of shell craft production at the site), and another structure located on top of a small rise approximately 80 m to the east of the mound. This final structure, identified as Structure 2, was the focus of this thesis. The structure is unique among all the structures at the site, since it was apparently the only household that had been burned, capped with sterile clay, and rebuilt three times. The final occupation was not capped with sterile clay (Meyers 2011). Through analysis of architectural elements, it was previously determined that Structure 2a (the earliest iteration of Structure 2) was built during the early occupation of the site, and it was likely a wall-trench house common in the Early Mississippian (about AD 1000 to AD 1200) period across the Native Southeast (Alt and Pauketat 2011; Meyers 2011; Steere 2017). The later two iterations of the
structure (called Structure 2b and 2c) are single-set post houses, which are more commonly associated with the Middle and Late Mississippian Periods (AD 1200 to AD 1600s). The second iteration of this structure, Structure 2b, was the focus of this study.

Due to the structure’s location on the site, as well as the fact it is unique in its element of destruction and reconstruction, it has been suggested elsewhere (and as I have hypothesized in this thesis) that this structure may represent either a public ritual or ceremonial space (Meyers 2011). If it were to represent a space with this kind of significance to the inhabitants of Carter Robinson, then I believe it would either be as a specialized gendered6 space or as a generalized ceremonial space. A full discussion and checklist can be found in Chapters 2 and 3, the discussion here will repeat in brief, and the checklist will be presented again here (Table 6.1, below). In short, if Structure 2b was a feminine space (such as a menstrual hut) then it should be expected to see elements such as bottles associated with childcare, plants with abortive properties as *Datura* sp., and potentially even infant burials interred within the floor (Bengston 2017; Galloway 1997). If this structure was a masculine space, then the assemblage would more likely contain a high concentration of debris associated with activities that are masculine exclusive (such as the growing and use of tobacco) or that have been identified as being masculine-focused (such as tool making) (Moody 2010). If this represents a more generalized ceremonial structure, then instead we could expect to see ceramic forms associated with feasting (such as plates and wide bowls), but still the presence of specialized plants (most importantly: tobacco) (Blanton

6 In this thesis I have, at several points, mentioned gender. Although my hypothesis relies upon an understanding of gender roles in Mississippian society as informed by previous archaeology and ethnohistorical accounts, I have thus far failed to discuss what is gender, and for good reason: such a question is both outside the scope of this study, and unable to be answered with data collected here. The definition I use, however, is: Gender is the expression within material culture of an individual based upon societal expectations of their sex and how the individual wishes to be perceived within or outside those expectations. This does not come from any one source, but has been synthesized after thorough reading and discussion with peers (such as Butler 1990; Galloway 1997; Joyce and Claasen 1997; Flavia Napoleoni, personal communication 2022; Nelson 2004; Rae 2022).
When comparing this list to what has actually been recovered from Structure 2b in 2017 (Table 6.1), there are three conclusions that could be made: one hard conclusion, two soft conclusions. The hard conclusion is that *Structure 2b is not a women’s space at Carter Robinson*. The lack of bottles, artifacts with motifs associated with women elsewhere, and special use plants such as *Datura* sp. strongly indicates that this was not a space exclusively for women. The other two conclusions are only softly supported. Although there is a high concentration of lithics, which is not necessarily unique at Carter Robinson, other structures at the site also feature a high concentration of lithics and are more strongly associated with the community-wide practice of multicraft production (Capps 2018; Meyers 2011, 2017, 2021), additionally the lack of chert cores found within the assemblage suggests that chipped-stone tools were not a focus of production in Structure 2b at this time. Although the space had been burned and rebuilt several times, which is not a characteristic associated with structures unique to men’s spaces in the Native Southeast, there are many examples of domestic and public spaces undergoing similar treatment during their respective occupations elsewhere in the Mississippian (and Mississippian-descendant) world (Hally 2008; Rodning 2015). Despite the evidence of meat and shellfish consumption (Table 5.8), without the presence of vessel forms that specifically suggest serving or feasting (see Table 5.11), or the strong presence of exotic materials that would have suggested that the inhabitants of the structure were strongly associated with public ritual contexts, then it is difficult to strongly suggest that this is a non-specialized public ritual space, either. Thus, I must conclude that *Structure 2b is not likely a men’s space, or generalized public ritual space.*
Table 6.1: Presence of Hypothesized Material in Structure 2b

<table>
<thead>
<tr>
<th>Structure</th>
<th>Flora</th>
<th>Present</th>
<th>Pottery</th>
<th>Present</th>
<th>Other</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-specialized</td>
<td>Nicotiana sp. Datura sp.</td>
<td>Yes</td>
<td>Serving vessels, such as wide plates</td>
<td>No</td>
<td>Shell wealth, such as gorgets or other objects</td>
<td>Soft Yes</td>
</tr>
<tr>
<td></td>
<td>Solamun sp. Ipomoca sp.</td>
<td></td>
<td></td>
<td></td>
<td>Exotic trade materials, such as copper</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Food species, such as maize</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women’s Space</td>
<td>Datura sp. (Or presence of other “magical plants” with Nicotiana sp. excluded)</td>
<td>No</td>
<td>Bottles, possibly associated with childcare Cookware</td>
<td>No</td>
<td>Artifacts with motifs associated with women</td>
<td>No</td>
</tr>
<tr>
<td>Men’s Space</td>
<td>Nicotiana sp.</td>
<td>Yes</td>
<td>Pottery not designated for cookware</td>
<td>No</td>
<td>High concentration of lithic debris Building and rebuilding of structure</td>
<td>Soft Yes</td>
</tr>
</tbody>
</table>

Then, in the case of a null hypothesis, what was Structure 2b used for?

Ritual Items...

Within the data there are several artifacts that can give a key insight into how the inhabitants of Structure 2b were using the space. The most important artifacts, with regards to understanding what Structure 2b was used for, are the rim sherds that indicate vessel forms. These sherds are also the artifacts that render all cases of the hypothesis null (this thesis, Table 5.11). The vessels found from this occupation are primarily jars and bowls, which elsewhere at the site indicate cookware and domestic occupation, this interpretation of a domestic function for the structure is further reinforced by the heavy presence of dietary plant remains in the macrobotanical analysis (Warner 2018; Horton 2021). The relatively heavy presence of chipped-stone tool fragments (albeit without the strong presence of raw crafting material) further suggests that this was a space used frequently for some sort of craft production, and further suggests a
space that was quite literally lived in (Capps 2018; Meyers 2017). So, instead of being a public ritual space, I conclude that *Structure 2b is likely a domestic space.*

However, this is an incomplete conclusion as there are still artifacts within the assemblage that can be considered ritual. An outright declaration of the space as domestic does not afford room for ritual material culture. These ritual artifacts include: two possible chunky stones, two pieces of raw mica, a bone tool that features a green coloration, and one *Nicotiana* sp. specimen recovered from Feature 223. To contextualize these artifacts within Carter Robinson and the Mississippian world, I will provide a brief overview here.

Chunky Stones

At Carter Robinson, chunky stones have been discovered in three different contexts: at the south edge of the mound, on the edge of the plaza in the same excavation block as Structure 3 (nearly adjacent to the mound) and Structure 1, and in the second and third occupations of Structure 2 (Meyers 2011). Meyers (2011) even suggests that the area containing Structures 1 and 3 may have been a location for chunky stone production.

Chunky stones (also spelled “chunkey” and sometimes called discoidals) are a common artifact found across the Mississippian world, they’re associated with a game commonly called by the same name (“chunky”) in which players (apparently exclusively men, although Alt and Pauketat [2010] challenge this) would roll the stone discs across designated play areas while other players would throw sticks and wooden rods at the disc, trying to knock it over or land their stick closest to where the stone disc stopped, gambling on the results of the game (DeBoer 1993; Hudson 1976:221). The contexts in which chunky stones are found date from the beginnings of the Mississippian world in Cahokia, to 19th Century ethnographic accounts of the
Muskogee Nation, from which we have an understanding and description of how this game is played (Hudson 1976; Pauketat 2007; Wesson 2008). Chunky likely had a cosmological significance to many Mississippians as it did have this significance to their historic ancestors. Wesson’s (2008:53) describes Muskogee towns and houses as cosmograms, reflecting both Muskogee physical and spiritual realities. It follows that historical Muskogee people did not incidentally refer to the central plaza of their villages as a chunky yard, considering this is the same space where many of the most important public rituals were performed (Wesson 2008:53; see also Hudson 1976:221). The game not only features cosmologically in the construction of Historic villages, but also the mythology of Mississippian ancestors. One such examples is within Cherokee mythology, where a legendary figure named Wild Boy uses a chunky stone for divination (Mooney 1900 in Hudson 1976:153).

In Mississippian art chunky stones are typically associated with elites in both burials and prestige goods such as shell gorgets (MacCurdy 1913:405; McGimsey 1964:129; Figure 6.1). Chunky stones are commonly found outside of burial contexts (such as the ones found in Structure 2b of Carter Robinson), with a few notable exceptions, such as within several burials at Mound 72 of Cahokia, Mound E at Etowah, and the King site in Georgia (Hally 2008; Pauketat 2010). In such cases, Hally (2008) suggests that the chunky stones were buried with men who were exceptionally good at the game. Many archaeologists (Alt and Pauketat 2010; Anderson 1994; DeBoer 1993; Hally 2008) also agree that the game was one primarily played by the political elite of Mississippian society; although DeBoer (1993) and Alt and Pauketat (2010) are also careful to note that this was not always the case at Cahokia, but by the time the Mississippians who founded Carter Robinson entered southwestern Virginia, it most definitely was a game for the political elites of Mississippian society.
Mica

Excavations prior to 2017 at Carter Robinson have only recovered a very small amount of mica fragments, and none of these have been worked into ornaments, and prior research at the site suggests that the mica found specifically at Structure 2 might indicate individual trade networks between the inhabitants of the structure and those who have access to mica in the western Carolinas rather than community-wide networks of trade (Meyers 2011).

Mica is a raw material type found throughout the Mississippian world, and it is largely considered an exotic trade good (Boudreaux 2007, 2010; Kimball, Whyte, and Crites 2010; Meyers 2011; Quinn, Walker, and Write 2021; Rodning 2012; Trubitt 2000). Its use in the Southern Appalachians long predates the Mississippian period, such as at the Biltmore Mound outside of Asheville, North Carolina, occupied from approximately AD 400 to AD 600. The
Biltmore Mound represents a Hopewellian7 aspect in the region and establishes the early use of mica in the Southern Appalachians, as it was collected in this area as a trade good within the Hopewell interaction network (Kimball et al. 2010). This site also demonstrates an early use of mica as a ritual good in the form of worked mica objects such as cutouts (Kimball et al. 2010).

In the Mississippian period, this region would possibly still be used as a source for mica for the Mississippian communities in the Southern Appalachians and further (Meyers 2011; Quinn et al. 2021). Throughout the Mississippian world, mica was a material used for artifacts that would have had significance as either ritual objects or objects belonging to high-status individuals, or perhaps both, depending upon the context in which they are found (Boudreaux 2007, Boudreaux and Armour 2021, Trubitt 2000). At the Town Creek site, a Mississippian mound complex in North Carolina, several mica ornaments were recovered across the site, but primarily within burials that were a part of public spaces such as the mound summit and a space adjacent to the plaza distinguished by the presence of an enclosure (Boudreaux 2007, 2010; Boudreaux and Armour 2021). Two of the mica ornaments are cut in the shape of a cross-and-circle motif, a common design element in Mississippian art that acts as a metaphor for the cardinal directions (see Chapter 2 of this thesis; Boudreaux and Armour 2021; Ethridge 2010). At Town Creek, the fragments of mica and the completed mica ornaments are interpreted as possibly a part of the regalia worn by individuals who were interred within their graves, as they are also often found with copper artifacts and bone rattles that might indicate such a treatment in death (Boudreaux 2007, 2010; Boudreaux and Amour 2021). After the Mississippian period, we still see mica being used as an important raw material in the Southern Appalachians, particularly

7 The Hopewell were a Woodland period mound-building culture extant through much of the Eastern United States between 50 BC and AD 600 (Buikstra 1976; Kimball et al. 2010). In particular, they are known for the building of effigy mounds and burial mounds, their unique crafts, and their trade network which extended across most of North America (Buikstra 1976; Kimball et al. 2010; Pauketat 2007).
among the Cherokee, who were using the material to make mica discs with iconography on them similar to shell gorgets that they were producing at the same time (Rodning 2012).

Copper

With regards to copper, the Carter Robinson site could be considered in a strong location to both procure it and work it. Copper deposits are relatively nearby, although the largest are south of the Norris Basin in Tennessee (called the Ducktown Copper Deposit), but native copper is present throughout much of Southwestern Virginia, and copper artifacts are a commonly found throughout many of the non-Mississippian sites in the area (Meyers 2011). The most common of these Radford and non-Mississippian copper artifacts are probably ornaments commonly called “tinklers” which are worn in such a way that they clink against each other as the wearer moves, or just simple copper beads (MacCord 1980). Despite the advantageous location and active copper use in communities surrounding it, no copper artifacts have ever been recovered from Carter Robinson and Meyers (2011:345) has previously interpreted that it is possible copper has been worked there, but with “the available evidence… no manufacture of copper artifacts occurred at the site.” The 2017 excavations did recover one artifact that might suggest the presence of copper at the site: a single animal bone tool with a green stain. Copper can stain bone green (Jackson et al. 2012; Meyers, personal communication 2022), but without chemical analysis, the evidence is inconclusive.

Copper is one of the few metals actively worked by Indigenous people in the Southeast prior to the historic period, and represent some of the most striking examples of Mississippian religious iconography (Bloch 2021, Jones 1982, Trubitt 2000). Native copper artisans in the Southeast didn’t use metallurgic techniques that are associated with copper production elsewhere.
in the world at the same time, but instead used a technique commonly referred to as “cold hammering” where ore was extracted directly from local sources throughout the Appalachians and then hammered into sheets before undergoing craft production (Goad 1976:65). The most well-known form of copper artifacts found in the Mississippian world are likely the copper plates that feature figures commonly interpreted to be mythological or religious figures, and the most common among these are the “hawk dancers” – individuals in elaborate regalia dancing or jumping, with a large pair of wings spread from behind their back (Bloch 2021, Jones 1982). These depictions are usually very intricate and detailed with many very clear design elements, and are often depicted holding weapons and war trophies (such as in Figure 6.2), and other times are often being depicted with some natural elements either as a mask or a part of the individual’s body (Fig. 6.2, Bloch 2021, Jones 1982, Roberts Thomson and Williams 2015). The Figure on the Chauga Plate has been interpreted to be holding a chunky stone, and is the only known copper plate to feature a figure doing so (Roberts Thomson and Williams 2015:149). The most common version of this natural motif may be the hark beak (as seen in Fig. 6.2) although some examples feature what has been interpreted as the proboscis of a tobacco hornworm moth (Bloch 2021). Other examples of copper in the Mississippian Southern Appalachians are not so dramatic. At Town Creek, for instance, there were several instances of copper axe blades that were interred with individuals buried in public spaces, but also there were many copper ornaments as well (Boudreaux 2007, 2010; Boudreaux and Armour 2021). Elsewhere in the Mississippian world copper ornaments in the shape of various instruments of war were given out as symbols of station within the community or as prestige goods intended to be worn in both life and death (Buchanan and Bonney 2019). Trubitt (2000) identifies copper as a common element of Mississippian prestige goods, often as a part of regalia. In the Caddo world, copper was also
used as a part of the regalia of religious officials, sometimes even interred with them, as, at the Crenshaw Mounds, green-stains on human remains have been interpreted to be copper stains (Jackson et al. 2012). Into the Late Mississippian and Historic periods, copper was still being actively used by Indigenous people encountered by Europeans. The de Soto expedition encountered several instances where they would be directed towards copper after asking after gold, and it was a common account among later European settlers that they would be directly lied to or deliberately lead astray by Indigenous people when asking about where they could find copper (Goad 1976; Hudson 1998).

Figure 6.2: Line Drawing of Rogan Plate 1, from the Etowah Mounds, Georgia.

Tobacco

Carter Robinson does feature signs that the inhabitants were partaking in smoking rituals. Prior to the 2017 field season, ten pipe bowl fragments had been recovered from the site (four of
which were associated with all occupations of Structure 2), and during the excavation in 2017 an additional one was found (although, unfortunately, while screening through plow zone that had previously been backfill for past excavations). However, the only physical proof of tobacco found on site was during macrobotanical analysis performed by Horton (2021). The one tobacco seed from Feature 223 is the corresponding proof of smoking ritual taking place within Structure 2b, as well as the cultivation of tobacco occurring at Carter Robinson during the inhabitation of the site.

Tobacco and smoking practice were discussed in Chapter 2, so here I would like to present a brief overview, with some expansion on other special-used plants. As previously stated, tobacco (Nicotiana sp.) was a widely proliferated species of special-use plant across the American Southeast, and featured heavily in ritual practices for many Indigenous people from its introduction and into the Historic period (Blanton 2015, Hudson 1976, Simon and Parker 2018). Occasionally other plants were mixed into tobacco and smoked along it, such as datura (Datura stramonium), black nightshade (Solanum sp.), or morning glory (Ipomoea sp.), all of which are considered “magical plants” by Parker and Simon (2018) and have properties that can induce mind-altering affects. Tobacco, and smoking ritual at large, is often strongly tied to the ritual proceedings of different Historical Native groups (Hudson 1976). In the Mississippian period, tobacco is most often strongly tied to both ritual contexts and political and spiritual elites, pipes are commonly found within the burials of individuals who are clearly high-status members of this communities, either through the amount of wealth interred with them or through the location of the burials within the community (Hally 2008; Boudreaux 2007, 2010). There are even cases in which ceremonial pipes are found within context of mound building events or the remains of other ceremonial practices (Blitz and Bodoh 2021; King 2010). Pipes come in a wide variety in
the Mississippian period, from simple ceramic bowls to complex effigy pipes that are potentially representative of mythical figures, but both complex and plain styles would have been seen as prestige objects in the Mississippian world with the association that tobacco has to ceremony and ritual (Anderson 1994; Boudreaux 2007; Lankford, Reilly, and Garber 2011). The use of tobacco as a sacred object did not just extend to the pipe and plant themselves, but also to artwork about them. One interpretation of the mace held by the “hawk dancer” from Etowah (Fig. 6.2, center) is that it represents a tobacco flower in profile; and the imagery of the tobacco hornworm moth, who acts as a pollinator for tobacco, does not just extend to the “hawk dancer” from the Jackson Lake site (Fig 6.2, left), but elements representing a very visually similar moth can be found on painted jars, shell gorgets, and a slate disc at sites from northern Georgia all the way to Missouri (Bloch 2021; King and Reilly 2011).

There are four kinds of artifacts found in the 2017 field season that may point to a ritual context for Structure 2b: two possible chunky stones, two fragments of mica, one green-stained animal bone tool, and a tobacco seed. Chunky stones are game pieces belonging to a game that has deep significance to political elite as well as the mythology and cosmology of some Mississippian descendants. Mica is a raw material that is used in the Southern Appalachians to make objects that may have been a part of regalia or have held ritual or ceremonial significance on their own, and this tradition both pre- and post-dates the Mississippians themselves. Copper is another raw material that Mississippians held in high value for ritual and political purposes, and that was accessible to the inhabitants of Carter Robinson. Tobacco has an extremely well documented history of importance to the people of the Indigenous South.

The question I now have to answer is: Do a limited number of ritual artifacts indicate a space was ritual? I am personally inclined to err on the side of caution, and say that they are not
enough to strictly define Structure 2b as a ritual space. Although the game of chunky was significant to Mississippians, chunky stones are found throughout the occupation at Carter Robinson. Even though mica, as a raw material, has been found within the context of Structure 2b, no finished mica artifacts have yet to be recovered from Carter Robinson. Copper has yet to be found at Carter Robinson, and it would be irresponsible to claim that the green-stained bone tool is enough to declare its presence within the assemblage. Tobacco and pipes are the only ritual objects found within this assemblage that are enough to declare a presence at Structure 2b, and the only pipe bowl found during the 2017 field season is not even from this context.

However, there is one important aspect I have yet to touch on in review: the structure itself.

… Ritual Space?

Architecturally speaking, it is difficult to define Structure 2b as being anything other than a single-set post Mississippian structure (Hally 2008; Meyers 2011; Steere 2017). There does not seem to be enough of the Structure’s architectural elements excavated to be able to accurately determine the site of the building, as it appears as though only one corner of the building has been exposed in the 2017 field season. However, that does not mean that there isn’t enough data to examine the structure spatially.

I will return to what is perhaps the most dramatic, as well as the most defining feature, of Structure 2b: the fact that this structure has been built, burned, and then rebuilt three times (the first two of these the burned buildings were then covered with a cap of sterile yellow clay) (Meyers 2011, 2017). Previously in Chapter 2 of this thesis, I expanded upon the significance of fire in Mississippian contexts, particularly as a metaphor for the Upper World, order, and
purification (Ethridge 2010; Hally 2008). When public structures are burned, we usually expect that accompanies some sort of ritual or ceremony, such as when Tattooed Serpent, the war chief of the Natchez, passed and the accompanying funeral procession and events, and there is no reason to suggest that ceremony would not accompany the burning of domestic residences either (Hally 2008). When commemorating new, rebuilding, or beginning new construction phases of public structures there are many instances across the Mississippian world of explicit ceremonial activity, such as at the Walling II site in Alabama where a low mound was built over the remains of a small building and then had a single burial (with special burial items such as a human effigy pipe, interred in it as part of a ceremony to build a new mound; or Mound C at Etowah, which features a mass internment (almost exclusively of very richly interred individuals) that has been interpreted to be part of a ceremony that was literally remaking the world while building a new phase of the mound on top of these burials and the old mound surface (Blitz and Bodoh 2021; King 2010). When looking at the context of Structure 2 alone, it more closely reflects the destruction and rebuilding phases of public structures that are observed in Historic Cherokee sites in western North Carolina, where townhouses were burned and rebuilt on a 15-to-20-year basis and often capped with sterile soil much in the same way this structure was (Rodning 2015). However, Structure 2 was not an island at Carter Robinson, and the structure itself and its inhabitants were obviously tied to the community.

Radiocarbon dating for material from Carter Robinson has previously been performed on material from Structure 2c (the most recent occupation) twice, Structure 1, from the west side of the mound (twice), and the south side of the mound (Meyers 2011, 2017). Three radiocarbon dates from Structure 2 have been performed for this thesis, results from those tests have previously been discussed here (Chapter 5: Table 5.4, Figures 5.8 and 5.9) and have been
presented again here (Table 6.1). Previously I have indicated that it appears as though, based on this radiocarbon dating, Features 225 and 226 are contemporaneous with the dates analyzed previously for Structure 2c, and likely represent postmolds from that occupation of the structure. The radiocarbon sample from Feature 227 predates these two, and furthermore appears to be contemporaneous with the radiocarbon dates from Structure 1, as well as with radiocarbon dates previously associated the second mound building event at the site (Table 6.2). I would then like to propose that the burning and capping of Structure 2a and the subsequent construction of Structure 2b represents a possible site-wide event associated with the second mound phase and the construction of Structure 1.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Type</th>
<th>Locations</th>
<th>Date BP</th>
<th>Calibrated (A.D.)</th>
<th>σ1 (A.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-AMS 041263</td>
<td>Seed</td>
<td>Feat. 225</td>
<td>575 ± 23</td>
<td>1301-1425</td>
<td>1325-1405</td>
</tr>
<tr>
<td>D-AMS 041264</td>
<td>Seed</td>
<td>Feat. 226</td>
<td>589 ± 19</td>
<td>1301-1416</td>
<td>1324-1398</td>
</tr>
<tr>
<td>D-AMS 041265</td>
<td>Seed</td>
<td>Feat. 227</td>
<td>684 ± 22</td>
<td>1280-1398</td>
<td>1297-1387</td>
</tr>
<tr>
<td>AA80784</td>
<td>Wood charcoal</td>
<td>Structure 1</td>
<td>641 ± 38</td>
<td>1279-1404</td>
<td>1288-1320</td>
</tr>
<tr>
<td>AA80785</td>
<td>Wood charcoal</td>
<td>Structure 2c</td>
<td>512 ± 37</td>
<td>1325-1345</td>
<td>1408-1436</td>
</tr>
<tr>
<td>AA80786</td>
<td>Wood charcoal</td>
<td>Structure 2c</td>
<td>533 ± 37</td>
<td>1316-1355</td>
<td>1400-1426</td>
</tr>
<tr>
<td>AA80787</td>
<td>Wood charcoal</td>
<td>West side of mound</td>
<td>638 ± 36</td>
<td>1282-1407</td>
<td>1293-1325</td>
</tr>
<tr>
<td>AA80788</td>
<td>Wood charcoal</td>
<td>West side of mound</td>
<td>722 ± 36</td>
<td>1254-1299</td>
<td>1268-1287</td>
</tr>
<tr>
<td>AA80789</td>
<td>Wood charcoal</td>
<td>South side of mound</td>
<td>649 ± 36</td>
<td>1278-1400</td>
<td>1287-1315</td>
</tr>
</tbody>
</table>

If this were the case, then it would strongly suggest that Structure 2, and the inhabitants of the structure, were important to the community. Mississippian would build platform mounds as physical metaphors for the importance and power of the inhabitants of the structures built on top of them (Knight 2006 [1989]). Structure 2 is not built on a mound, but it is built on a natural rise in the site across the plaza from the mound itself (Meyers 2011). This position for a structure is recognized elsewhere in the Mississippian world as being reserved for high ranking individuals in community, but who rank below the mound inhabitants themselves. These minor political elites have elsewhere been recognized by the construction of smaller mounds, however,
which does not exist in the case of Carter Robinson (Lewis et al. 1998). This also indicates (alongside the ritual and ceremonial artifacts recovered from this occupation) the inhabitants’ active participation in community integration as described by Herr (2001). If these construction events actually do represent a single site-wide effort, it may also indicate a more formal and intentional effort to establish the Mississippian identity of the community in the cultural landscape of the area, as well as Mississippianizing the Radford people entering the community.

It should be noted that, despite the inclusion of Bourdieu’s *habitus* in the background chapter of this thesis, there is very little discussion that relies directly upon it. Bourdieu himself related *habitus* to the use of space within structures, and the construction of these building themselves, and further emphasized the idea that these structures act as a physical metaphor for how their inhabitants would have viewed the world (Bourdieu 1970, 1977 [1972]:89). However, within this thesis, *habitus* was not heavily explored within the context of the construction of Structure 2b. This aspect of the structure, and the people who built it, was part of an early research question that began this thesis: Did the Radford populations entering the community affect the architecture of the structures being built? This question was not explored as it became clear that only a single was available to study, making study of the architecture at this particular scale unfeasible. Despite this, *habitus* was a concept used extensively throughout the analysis and discussion, as without an understanding of the (assumed) *habitus* of the inhabitants of Structure 2b, the Mississippian *habitus* associated with domestic structures, and further the Mississippian *habitus* of domestic and public ritual spaces, this research would not have been possible. It is only because we understand that all of these elements act within certain creative individual structures that it is possible to study parts of the building and come to understand the whole occupation.
Conclusion

Structure 2 at the Carter Robinson site (44LE10) was located across the plaza from the mound nearly due east, a position elsewhere noted as being reserved for the domestic residents of minor political elites. Previous interpretations suggest that this structure was originally built as a wall-trench structure around the same time as the original mound in the late 13th Century, and that it was one of the few original structures at the site (Meyers 2011). Sometime around the first quarter of the 14th Century the second phase of mound construction began. Around this same time the special-use Structure 1 was constructed adjacent to both the mound and the plaza; and the first iteration of Structure 2 (designated Structure 2a) appears to have burned and capped in sterile clay, and the second iteration of Structure 2 (designated Structure 2b) was constructed. This represents an intensification of shell craft production at the site, which is not reflected in the artifact assemblage of Structure 2b. Sometime closer to the end of the 14th Century, Structure 2b was burned and capped in the same way, and Structure 2c was built on top of it and occupied until the site was abandoned about the start of the 15th Century, at which time the inhabitants apparently relocated to the Ely Mound (44LE12) a short distance away (Wooten 2021).

While occupying Structure 2b, the residents did participate in craft production, although not as intensely as elsewhere on the site (concurring with Capps’ [2018] analysis of this occupation), and the rim sherds recovered from the 2017 excavation are from vessel forms that indicate domestic occupation (reinforcing Warner’s [2018] designation of the structure as a domestic structure). Several items have been found in this occupation indicating a level of ritual or political status for the occupants, chiefly several possible chunky stones, raw mica, pipe
fragments, and evidence of tobacco cultivation. I believe that, contrary to my hypothesis,

Structure 2b represents a domestic occupation, but of minor political elites or spiritual leaders.

The caveat presented above is important, as it does not make this strictly a private space, as political elites were heavily involved in ceremonial and spiritual matters in the Native Southeast and Mississippian world, but it does mean that this was a space people lived in, rather than one that was used strictly for performing rituals or other religious matters. Given this interpretation, I think it is important to recognize Hally’s (2008) interpretation of similar multi-phase domestic occupations at the King site, mainly that these multiple occupations were maintained by the same familial lineage through time. Although that cannot be confirmed at this time for the inhabitants of Structure 2b, I believe that it is a strong interpretation of what is being observed through the entire occupation of this structure.

Structure 2b, and likely the entire occupation of Structure 2, represents the occupation and presence of secondary elites at Carter Robinson, further indicating that, despite its location on the Mississippian frontier and the introduction of non-Mississippian people to the community, common aspects of Mississippian political structure were being maintained over long time periods at the site. Further, the structure’s apparent involvement with the second mound building phase at the site indicate the inhabitants’ participation in the community integration efforts through ceremony (*per* Herr 2001) and the Mississippianization of the Radford people who moved into the community.

Future Research

There are several things future research at Structure 2b could focus on to expand the understanding of its multiple generations of inhabitants. Primarily, it would be ideal to excavate
the floorplan of the entirety of Structure 2b to get a better understanding of both the size and shape of the building. As of right now only one wall (and a potential corner) of the building has been exposed. Several features were noted in the 2017 excavation, but were not excavated at the time. Excavating these features, along with flotation and macrobotanical analyses, would provide an even clearer picture to the flora and fauna use of the site and structure, in addition to the previous analyses performed (Bonzani 2010; Horton 2021; Lapham 2011). Further radiocarbon dating from these features and from Structures 3, 6, and the yet-unexcavated structures identified through shovel testing and geophysical analysis would help to confirm or disprove the interpretation of a site-wide construction event in the early 14th Century that I have offered here (Meyers 2011, 2017; Wesson and Lennen 2013). I also concur with Horton’s (2021) call for further research into textile crafting during the Mississippian period in the Southern Appalachians. Although there was a concentration of lithic tool fragments identified as a part of the artifact assemblage from the 2017 field season (which does indicate craft production occurring within during this occupation), the concentration of shell was rather small (48.6 g total, of which 11.2 g is mussel shell and 37.4 is gastropod) and cannel coal was not found at all. Further research into textile production methods during this time period could help clarify if these tools were associated with that production. Meyers (2021) has already begun to explore the question of textile crafting at the site in conjunction with reexamining the use of various artifacts and resources within the context of textiles.
List of References
Alexander, Christopher, Sara Ishikawa, and Murray Silverstein

Alt, Susan M.

Alt, Susan M., Jeffery D. Kruchten, and Timothy R. Pauketat

Alt, Susan M., and Timothy R. Pauketat

Anderson, David G.
1994 *The Savannah River Chiefdoms: Political Change in the Late Prehistoric Southeast*. The University of Alabama Press, Tuscaloosa.

Appadurai, Arjun

Austin, Daniel F.

Baudrillard, Jean

Beck, Robin

Bengston, Jennifer D.

Birch, Jennifer, Jacob Lulewicz, and Abigail Rowe

Blanton, Dennis B.

Blanton, Dennis B., and Thomas H. Gresham

Blanton, Richard E.

Blitz, John H.

Blitz, John H. and Dominique Bodoh

Blitz, John H., and Karl G. Lorenz

Bloch, L. June

Bonzani, Renée M.

Bott, Keith Edward
Boudreaux, Edmond A.
2007 *The Archaeology of Town Creek*. The University of Alabama Press, Tuscaloosa.

Boudreaux, Edmond A. and Daryl W. Armour.

Bourdieu, Pierre

Buchanan, Meghan E.

Buchanan, Meghan E. and Rob Bonney

Buckley, Thomas and Alma Gottlieb

Buikstra, Jane

Bush, Leslie L.

Butler, Amanda Jo

Butler, Judith

Capps, Robert Dalton

Chamblee, John, F. and Mark Williams

Cowin, Verna L.

DeBoer, Warren R.

Dickens Jr., Roy S.

Egloff, Keith T.

Ethridge, Robbie
Flannery, Kent and Joyce Marcus

Flannery, Kent and Marcus C. Winter

Fritz, Gayle J.

Fundaburk, Emma Lila and Mary Douglas Fundaburk Foreman

Galloway, Patricia

Gearing, Fredrick O.

Goad, Sharon I.

Gougeon, Ramie A.

Green, Ulrike Matthies and Kirk E. Costion
Hally, David J.

2008 *King: The Social Archaeology of a Late Mississippian Town in Northwestern Georgia*. University of Alabama Press, Tuscaloosa.

Hally, David J. and Hypatia Kelly

Hally, David J. and John F. Chamblee

Hatch, James W. and Gregory H. Bondar

Herr, Sarah A.

Hester, Thomas R.

Holland, C. G.

Horton, Elizabeth T.

Hudson, Charles
1976 *The Southeastern Indians*. The University of Tennessee Press, Knoxville.

Jackson, H. Edwin, Susan L. Scott, and Frank F. Schambach

Jefferies, Richard W.

Jones, B. Calvin

Jones, Eric E.

Joyce, Rosemary A. and Cheryl Claassen

Jurney, David H. and Velicia Bergstrom
2001 Silica Froth: An Indicator of Thatch Architecture. *Index of Texas Archaeology Open Access Grey Literature from the Lone State*.

Kimball, Larry R., Thomas R. Whyte, and Gary D. Crites
King, Adam

King, Adam and Maureen Meyers
2002 Exploring the Edges of the Mississippian World. **Southeastern Archaeology** 21 (2):113-116

King, Adam and F. Kent Reilly III

King, Adam, Christopher L. Thornock, and Keith Stephenson

Knight, Vernon James, Jr.

Kowalewski, Stephen A. and Victor D. Thompson
2020 Where is the Southeastern Native Economy? In **Southeastern Archaeology** 39(4):281-308.

Lacquement, Cameron H., ed.
2007a **Architectural Variability in the Southeast**. University of Alabama Press, Tuscaloosa.

Lacquement, Cameron H.

Lankford, George E., F. Kent Reilly III, and James F. Garber, eds.

Lapham, Heather A.
2011 Animal Remains from Carter Robinson Mound (44LE10), Lee County, Virginia. Manuscript on file, Research Laboratory of Archaeology, Department of Anthropology, University of North Carolina, Department of Anthropology, Chapel Hill.

Lewis, R. Barry, Charles Stout, and Cameron B. Wesson

Lewis, Thomas M. N. and Madeline Kneberg

Lincecum, Gideon

Lyle, Erika Leigh

MacCord, Howard A.

MacCord, Howard A. and William T. Buchanan
1980 The Crab Orchard Site, Tazewell County, Virginia. Archaeological Society of Virginia, Richmond.

MacCurdy, George Grant

McGimsey, Charles R., III
Means, Bernard K.

Meyers, Maureen E.

Moody, Carlisle A.

Moore, Clarence Bloomfield

Mooney, James
Morgan, Lewis Henry

Mueller, Natalie G., Gayle J. Fritz, Paul Patton, Stephen Carmody, and Elizabeth T. Horton
2017 Growing the lost crops of eastern Northern America’s original agricultural system. *Nature Plants* 3(7):1-5.

Muller, Jon

Nelson, Sarah Milledge
2004 *Gender in Archaeology: Analyzing Power and Prestige*, 2 ed. Alta Mira Press, Walnut Creek, California.

Parker, Bradley J.

Parker, Kathryn E. and Mary L. Simon

Pauketat, Timothy R.

2007 *Chiefdoms and Other Archaeological Delusions*. Altamira Press, Lanham, Maryland.

Pauketat, Timothy R. and Susan M. Alt

Pauketat, Timothy R., and Thomas E. Emerson
Pluckhahn, Thomas J.

Pollack, Dave, A. Gwynn Henderson, and Christopher T. Begley

Polhemus, Richard R.

Priestly, Herbert Ingram

Quinn, Colin P., Emily Walker, and Alice Wright

Rae, Michael

Ramsey, Bronk C. and S. Lee

Reilly, F. Kent, III

Reilly, F. Kent, III, James F. Garber, eds.
2007 *Ancient Objects and Sacred Realms: Interpretations of Mississippian Iconography*. University of Texas Press, Austin.

Rice, Prudence, M.

Roberts Thompson, Amanda D. and Mark Williams
2015 A Fresh Look at a Little-Known Southeastern Copper Plate. Southeastern Archaeology 34(2):149-163.

Robertson, James A. (translator)

Rodning, Christopher B.

Rodning, Christopher B. and Lynne P. Sullivan

Rodseth, Lars and Bradley J. Parker

Rapoport, Amos

Schoolcraft, Henry Rowe

Schroedl, Gerald F., Clifford Boyd, Jr., & R. P. Stephen Davis
Shapiro, Gary

Shippee, J. M.

Shimada, Izumi

Smith, Bruce D.

Steere, Benjamin A.

Sternheimer, Patricia A.
1983 Classification and analysis of the grave goods from the Trigg Site: A Late Woodland-Contact burial site in Southwestern Virginia. Master’s thesis, Department of Anthropology, University of Virginia, Charlottesville.

Sullivan, Lynne P.

Swanton, John R.

Thompson, Leonard and Howard Lamar
Tilley, Christopher

Trubitt, Mary Beth

Wallerstein, Immanuel

Warner, Emily Jane

Webster, Hutton

Wesson, Cameron B.

Wesson, Cameron B. and Joel P. Lennen

Wolf, Eric R.

Wooten, Shannon Medah

Worth, John E.
Appendix A: Test Unit Descriptions

Below is a detailed description of each of the 17 test units excavated in 2017. These descriptions are included here as these units, and this excavation, have not previously been written on. These descriptions include location, soil color, and artifacts found in the unit. All color soil descriptions are based on the standard Munsell Coloring system. Since this field season primarily focused on Level 4 and Zone 46 of Block 3, the previous unit descriptions from the 2007 and 2008 field seasons are not presented here. Level 4 is the arbitrary 10 cm thick level that begins at 31 cm below surface (cmbs). Zone 46 is the midden layer directly overlaying the burned floor of Structure 2b that represented the occupational level of the structure, and manifested as a dark brown (10YR3/3) loamy clay with charcoal inclusions. Photos were taken of each unit and feature as excavations were completed and plan and profile maps of test units and blocks were completed. In addition, selected features were plan viewed, profiled, and photographed pre-and post-excavation. Plan view photos and maps of the entire block were also taken.

Test Unit N1049/E1059 (TU 17)

Test Unit N1049/E1059 (Figure A.1) was previously excavated to a depth of 27 cmbs and backfilled in 2007. In 2017, it was re-opened and the backfill removed, and was opened to a depth of 30 cmbs, or Level 4. It was cleaned and mapped. Level 4 was composed of three different soils, but soil type was not recorded: (1) dark yellowish brown (10YR3/6) was the majority of the unit at this level; in the southwestern quarter of the unit was a (2) very dark greyish brown (10YR3/2) soil that featured a pocket of charcoal on the border between it and the previous soil and a hole in the western wall 20 – 30 cm north of the datum; the final soil type is
(3) a dark brown (10YR3/3) soil in the northern portion of the unit, bordered almost entirely in
the south by charcoal and burned log deposits. When removing the upper soil layers, less than
0.1 g of daub, 2 ceramic sherds, and 4 lithics were collected.

Figure A.1: Plan View of Unit N1049/E1059, Level 4, 30 cm below surface

At this depth, it was determined that Zone 46 was encountered and was excavated to a
depth of 37 cmbs in one cultural level (Figure A.2). Zone 46 had eight different soil types
present: (1) a dark yellowish brown (10YR3/4) silty loam that was the majority of the center and
eastern portions of the unit; (2) a very dark grayish brown (10YR3/2) silty loam that was present
in the southwestern corner of the unit with a small inclusion of the previous soil type in the
southern wall; (3) a very dark grayish brown (10YR3/2) silty loam in the southwestern unit with
a small log within it; (4) a very dark grayish brown (10YR3/2) clay loam surrounding the
previous two soils in the southwestern quarter of the unit; (5) a very dark brown (10YR2/2) clay
loam present as a pocket in the southeastern corner; (6) a very dark grayish brown (10YR3/2)
clay loam that was present as a pocket entering the eastern wall of the unit; (7) a dark brown
(10YR3/3) silty loam mottled with charcoal in the northern portion of the unit that features three
distinct burned logs within it; and (8) a dark brown (7.5YR3/3) silty loam that is the extreme
northern portion of the unit. No features were recorded, although field notes indicate a possible
feature in the northern part of the unit. The artifact assemblage at this level included less than 0.1
g of daub and 1 modified rock.

Figure A.2: Plan View of Unit N1049/E1059, Zone 46

Test Unit N1049/E1060 (TU 16)

In 2007 this test unit was excavated to a depth of 30 cmbs and backfilled at the time. It
was reopened and backfill removed, and opening elevations were 31 cmbs, or Level 4. At this
level the unit was entirely composed of a dark brown (10YR3/3) silty clay, and had Zone 46 within it (Figure A.3). A log was present in the southeast corner and was removed during excavation. Zone 46 was encountered at a depth of 35 cmbs and was excavated to a depth of 40 cmbs. Here, soil was a (1) dark grayish brown (10YR3/2) silty loam in the test unit’s western half, and a (2) clay loam of brown (10YR4/3) mottled with yellowish red (5YR5/6) clay loam on the eastern half. Above Zone 46, 11 pieces of animal bone, 1.8 g of daub, 2 pieces of ceramic, 1 piece of fire cracked rock (FCR), and 1 piece of unidentified modified stone were collected in the field. The artifact assemblage within Zone 46 consisted of: 49 pieces of animal bone, 2.2 g of gastropod shell, 1.7 g of daub, 26 pieces of ceramic, 24 pieces of lithic debris, 12 chipped-stone tool fragments, 9 pieces of FCR, 3 bone tools (2 polished, 1 with green stains), 2 pebbles, 1 chert conglomerate, 9 marl fragments, and 1 potential chunky stone.

Figure A.3: Plan View of Unit N1049/E1060, Zone 46
Test Unit N1049/E1061 (Old TU 165W)

In 2008 this unit was excavated as a 1-x-2-m unit to a depth of 36 cmbs as a single level of plow zone, no soil was screened from this unit at the time. In 2017, excavation started by opening the unit to 31 cmbs, and to cleaning the surface for mapping by removing the first 0.5 – 2.0 cm. At the top of Level 4 (31 – 40 cmbs) (Figure A.4), the unit was (1) a dark reddish brown (5YR3/3) silty clay, with remnants of a burned log in the southeastern and the western corners of the unit. While cleaning this level, less than 0.1 g of daub was found, 4 pieces of ceramic, and 6 lithics. While excavating this level, 6 pieces of animal bone were found, as well as less than 0.1 g of gastropod shell, 1.4 g of daub, 6 pieces of ceramics, 7 total lithics (including 2 chipped-stone tool fragments), 1 marl frag, and 2 modified rock fragments.

Figure A.4: Plan View of Unit N1049/E1061, Top of Level 4, 31 cm below surface
The unit was excavated further to the base of Zone 46 (40 cmbs, 42 cmbs in the southwest corner) (Figure A.5). Zone 46, the midden, was identified at a depth of 33 cmbs. The soil at the floor of Structure 2b in this unit was: (1) a dark brown (10YR3/3) silty loam in the northwestern and southern portions of the unit, with sections identified as burned logs pedestaled in situ 11cm above the surface of the Zone in the northwest corner (a rock within this portion of soil was also pedestaled 8cm above the surface) and 10cm above the surface in the southeast corner; (2) a dark brown (10YR3/3) clay loam in the western and central portion of the units; (3) three small pockets of very dark brown (10YR2/2) clay loam in the center of the unit within the previous soil type; (4) four mid-sized areas of very dark grayish brown (10YR3/2) clay loam located in the southern and eastern portions of the unit, one of which was identified as a posthole and excavated as Feature 222 (see below); and (5) a yellowish brown clay loam that made up most of the unit in the northern and eastern halves. Within this Zone 61 animal bones were found, 14.8 g of gastropod shell, 8.8 g of mussel shell, 18.6 g of daub, 29 pieces of ceramics, 32 pieces of lithics (1 piece of modified sandstone, 7 tool fragments, 7 pieces of fire cracked rock), and 1 marl fragment.
Within Zone 46, Feature 222 (Figure A.6) was identified, which may represent a square posthole. Feature 222 measured 29 cm north-south, 26 cm east-west, and was 20 cm deep (from 18 cmbd to 38 cmbd). The feature was bisected and the plan view was recorded. Feature soil was a very dark brown (10YR3/2) clay loam mottled with charcoal. Its shape suggests it may be an interior support post common in middle and late Mississippian houses (Hally 2008; Steere 2017). While excavating the feature, 8 pieces of animal bone were recovered, 3.3 g of gastropod shell, 6.1 g of wood, 1 piece of ceramic, 1 tool fragment, 1 piece of fire cracked rock, and 1 marl fragment.
Test Unit N1049/E1062 (Old TU 165E)

This test unit, originally labeled 165E, was first excavated in 2008. As with TU N1049/E1061 it was excavated to a depth of 35 cmbs and then backfilled without being screened. In 2017 the test unit was relocated, renamed using datum coordinates, and backfill was removed from the unit using a backhoe, which caused some damage to the top of Level 4. It was then cleaned and the new excavations were begun at a total depth of 31 cmbs. The unit was cleaned as best as possible, while trying to salvage the floor, and then excavated to between 5 – 7 cmbd (35 – 37 cmbs), until the floor was level and Zone 46 was uncovered. A burned log was located in the south-central part of the unit, and was not removed. Soil in Level 4 was a very dark grayish brown (10YR3/2) silty clay loam which overlaid a dark yellow brown (10YR3/4) silty clay, with charcoal deposits throughout. Cleaning after opening recovered 2 lithics and 1 modified quartz fragment.

Zone 46 was encountered at a depth of 35 cmbs, and it was excavated to a depth of 37 cmbs.
cmbs (Figure A.7). The floor consisted of five soil types: (1) a very dark grayish brown (10YR3/2) silty loam that made a majority of the southern and western portions of the unit; (2) a yellowish red (5YR4/6) clay loam that was in several portions of clay wall observed in the western portion of the unit; (3) a very dark brown (10YR2/2) clay loam mottled with charcoal deposits in the north wall of the unit; (4) a very dark grayish brown (10YR3/2) clay loam making up the majority of the northern unit; and (5) a black (10YR2/1) silty loam mottled with charcoal that makes up the soil surrounding the log. The aforementioned log, as well as several clay wall deposits, were left in situ, approximately 5 – 10 cm above the structure floor. No features were encountered in the test unit. The test unit was mapped and photographed. Excavation to this Zone recovered 40 animal bone pieces, 9 g of gastropod shell, 0.5 g of mussel shell, 0.9 of botanical material, 45.8 g of daub, 21 pieces of ceramics, 29 pieces of lithics, 7 sandstone tool fragments, 17 tool fragments, 2 pieces of fire cracked rock, 2 bone tools (1 incised and polished, 1 burned and polished), 4 pebbles, and 5 marl frags.
Test Unit N1050/E1059 (TU 9)

This test unit was originally designated TU 9 in 2007 and was opened at the time and not excavated. In 2008 it was excavated to a depth of 114 cmbs, where sterile subsoil was encountered. This unit and TU N1050/E1060 represent two of the most archaeologically complex units within Block 3, and they were two of the most important units for previous interpretations of 44LE10 (see Meyers 2011). In the 2008 field season this unit was excavated in both arbitrary levels and in cultural zones. A total of seven stratigraphic levels were identified in 2008. Level 1 was plow zone (yellowish brown [10YR3/2] silty loam), and was excavated in 10cm levels to a depth of 59 cmbs. Level 2 (59-71 cmbs, dark brown [7.5YR3/2] and yellowish brown [10YR3/2] silty clay loam) was interpreted as the floor of Structure 2C (or the most recent occupation) (Meyers 2011:216). Level 3 (71-80 cmbs, dark brown [10YR3/3] silty loam) was
midden fill of particular interest due to the presence of Zones 23 through 27, 29, and 44. Level 4 (80-89 cmbs, dark yellow brown [10YR4/6] clay) was the clay cap between the first and second occupations of this structure. The split Level 5 (upper: 89-98 cmbs, dark brown [7.5YR3/2] silty loam; lower: 98-110 cmbs, dark gray brown [10YR3/2] silty loam) was another midden that is also of interest because of the presence of two features, Features 216 (a posthole) and 217 (probably a posthole), which are associated with the first occupation at this structure (Meyers 2011:205). Level 6 (110-114 cmbs, dark brown [10YR3/3] silty loam) was a midden that was excavated to the sterile soil, which was labeled as Level 7 (Meyers 2011:391-395).

In 2017, the unit was cleaned to a total depth of 44 cmbd (as measured using profile diagrams), and its western wall and northern wall profiles were mapped in reference to a string datum above the surface. The west wall profile (Figure A.8) shows 14 stratigraphic levels (from uppermost to lowest): (1) a dark brown (10YR3/3) silty loam, that extended the entire length of the wall and 7 cm thick (at the thickest); (2) a dark red brown (5YR2.5/2) silty clay that was 17 cm long and 3 cm thick; (3) pockets of a strong brown (5YR4/6) clay within the previous level, in an area that measured 10 cm by 10cm, the largest pocket was 2 cm wide by 8 cm thick; (4) a brown (7.5YR4/4) clay that was 46 cm long and 5 cm thick; (5) another brown (7.5YR5/6) clay, 47 cm thick and 2 cm thick; (6) a black (7.5YR2.5/1) clay, 9 cm long and 3 cm thick; (7) a dark gray brown (10YR3/2) silty clay, 77 cm long and 7 cm thick; (8) a dark brown (7.5YR3/2) silty clay, 23 cm long and 4 cm thick; (9) a dark brown (7.5YR3/4) clay, 29 cm long and 3 cm thick; (10) a dark red brown (5YR2.5/2) silty clay, 32 cm long and 2 cm thick; (11) a dark brown (7.5YR3/4) clay, 31 cm long and 3 cm thick; (12) a dark brown (7.5YR3/3) silty clay, that extends the entire length of the wall and is 20 cm thick; (13) a brown (7.5YR4/4) silty clay, 37 cm long and 20 cm thick; and (14) a dark brown (10YR3/3) clay, that extends the entire length of
The northern profile wall (Figure A.9) showed 16 stratigraphic layers: (1) a dark brown (10YR3/3) silty clay, it extended the entire length of the wall, and measured 11 cm at its thickest; (2) a dark yellow brown (10YR3/4) silty clay, 14 cm long and 2 cm thick; (3) a dark yellow brown (10YR4/6) clay, 14 cm long and 2 cm thick; (4) the dark brown (10YR3/3) silty clay mixed with charcoal, two layers, the upper was 35 cm long and 1 cm thick, the lower was 19 cm long and 1 cm thick; (5) a yellow brown (10YR5/4) clay, 40 cm long and 4 cm thick; (6) a yellow brown (10YR5/4) clay mixed with daub, 16 cm long and 2 cm thick; (7) a very dark
brown (7.5YR2.5/2) clay that became a brown (10YR4/3) silty loam, that extended the entire length of the wall and was 6 cm thick; (8) a dark brown (7.5YR3/3) silty clay, 72 cm long and 2 cm thick; (9) a dark brown (7.5YR3/2) silty clay, 63 cm long and 4 cm thick; (10) a dark brown (10YR3/2) silty clay, 74 cm long and 12 cm thick; (11) a strong brown (7.5YR4/6) silty clay, 24 cm long and 5 cm thick; (12) a strong brown (7.5YR4/6) clay, 59 cm long and 12 cm thick; (13) a dark brown (7.5YR3/2) clay, that extended the entire length of the wall, but with three post features (described below) within it, and was 22 cm thick; (15) a dark brown (10YR3/3) silty clay, 29 cm long and 9 cm thick; and a dark brown (7.5YR3/4) clay that was the subsoil of the unit.

The remains of three posts (16) were found and bisected within the eastern half of the profile. From west to east: the first post measures from 50 – 55 cmbd and is 17 cm wide, the second post measures from a depth of 33 – 54 cmbd and is 12 cm at its widest, the final post is located at a depth of 32 – 46 cmbd and is 12 cm at its widest. All posts are made of a soil that
was a very dark grey brown (10YR3/2) clay.

While cleaning these walls for profiling 9 pieces of animal bone, 0.1 g of gastropod shell, 0.4 g of botanical remains, 2.8 g of daub, 1 piece of ceramic, 11 lithics, 4 tool fragments, 1 piece of fire cracked rock, and 3 marl fragments were all recovered.

Test Unit N1050/E1060 (TU 8W1/2)

Located directed adjacent to and east of N1050/E1059 (TU 9), this unit was also cleaned and two walls were profiled (south and east). Also like its neighbor, these profiles are very complex, and were mapped in reference to a string datum installed above the surface. In 2007 this unit was excavated as a 1-x-2-m unit to a depth of 88 cmbs, in 2008 this unit was reopened at the same dimensions and excavated to a depth of 118 cmbs, or sterile subsoil. The first three 10-cm levels (or, to 30 cmbs) were excavated as a part of the plow zone (very dark brown [10YR2/2] silty clay). In Level 4, Zones 1 through 18 and Feature 1 were identified, described here in order of encounter: Zone 1 was a mottled (light yellowish brown [5YR6/3], dark yellowish brown [10YR3/6], yellowish red [5YR4/6], dark grayish brown [10YR4/2], and reddish yellow [5YR6/6]) clay silt; Feature 1 was a “kidney bean-shaped” (Meyers 2011:383) feature that was heavily mottled (dark brown [7.5YR3/4], dark reddish brown [5YR3/4], yellowish red [5YR5/8], and very dark grayish brown [10YR3/2]) clay silt; Zone 2 was another heavily mottled (reddish yellow [5YR6/8], yellowish red [5YR4/6], yellow [10YR8/6], and dark brown [7.5YR3/4]) clay silt; Zone 3 was a burned yellowish red (5YR4/6) mottled with dark brown (10YR3/3) and strong brown (7.5YR5/6), all silty loam, and located within Zone 5 and overlaying Zones 7 and 8; Zone 4 was a dark yellowish brown (10YR4/4) and dark brown (10YRA.3) silty clay; Zone 5 was an ashy, heavily mottled (very dark brown [7.5YR2.5/3], dark
brown [7.5YR3/3], dark brown [7.5YR3/4], and reddish yellow [7.5YR6/8]) silty clay that was intruded by a burnt wood; Zone 6 was a dark yellowish brown (10YR3/4) and pale brown (10YR6/3) clay silt with charcoal present; Zone 7 was a mottled (dark yellowish brown [10YR4/4] with a yellowish brown [10YR5/8]) silty clay; Zone 8 contained burned logs, and the soil was mottled (yellowish red [5YR5/8] with dark reddish brown [5YR3/3]); Zone 9 was a mottled (yellowish brown [10YR5/6], dark yellowish brown [10YR3/4], and very dark brown [10YR2/2]) clay silt; Zone 10 was another ashy layer made of a mottled (dark brown [10YR3/3] with yellowish brown [10YR4/6] ashy clay, that had a small log recovered from it and was identified as the layer underlying one of the clay caps; Zone 11 was a very dark grayish brown (10YR3/2) silty clay; Zone 12 was a dark brown (10YR3/3) silty clay; Zone 13 was a born (10YR2/1) ashy soil; Zone 14 was a brown (10YR4/3) silty clay located under the ash layer; Zone 15 was a dark grayish brown (10YR4/3); Zone 16 was a mottled (brown [10YR4/3] with dark brown [10YR3/3]) silty clay, and was had many artifacts recovered from within it; Zone 17 was a mottled (yellowish brown [10YR5/6] with dark brown [10YR3/3]) silty clay, with many artifacts within and overlaying another ash layer; Zone 18 was a dark grayish brown (10YR3/3) silty clay that also contained many artifacts, notably remains of several different animals. (Full details of Levels 3 and 4 can be found in Meyers [2011:383-388]).

Levels 5 through 7 were excavated during the 2008 field season. Level 5 was a very dark brown (10YR3/2) silty loam, and was interpreted to be the same layer as Zone 18. Level 6 was a dark brown (10YR3/3) silty loam that had seven features within it: Feature 201, a pit feature visible as (18) in Figure A.11; Feature 202, a posthole in that narrowed as it was excavated made of dark brown (10YR3/3) silty loam; Feature 203, a posthole made of very dark grayish brown (10YR3/2) silty loam; Feature 204, a posthole also made of very dark grayish brown (10YR3/2)
silty loam; Feature 205 was also made of very dark grayish brown (10YR3/2) silty loam, and was determined to be a posthole after fully excavating it; Feature 206 was possibly part of a trench connecting Features 205 and 207, or another posthole, and was made of dark brown (10YR3/3) silt loam; Feature 207 was only a portion of a posthole present in the north wall of the test unit, and made of a very dark grayish brown (10YR3/2) silty loam. Feature 208 was identified in 2008, but originates in Level 3 and impacts Levels 4 and 5, and was found in the north and east wall profiles of this test unit. Level 7 was a dark yellowish brown (10YR4/6) silty clay loam that was is the subsoil of the unit. (Full details of Levels 5, 6, and 7 can be found in Meyers [2011:388-390]).

In 2017 the south profile (Figure A.10) had 19 stratigraphic layers: (1) a dark brown (7.5YR3/4) silty clay, 19 cm long and 4 cm thick; a strong brown (7.5YR5/6) clay, 20 cm long and 3 cm thick; (3) a brown (7.5YR4/2) clay silt that became a yellowish red (10YR5/6) clay silt, it extended the entire length of the wall and is 7 cm thick; (4) a dark brown (7.5YR3/2) clay, 33 cm long and 1 cm thick; (5) a dark brown (7.5YR3/2) that was 40 cm long and 3 cm thick; (6) a brown (7.5YR4/4) silty clay with a shell at 18 cm bd and 17 cm from the eastern edge of the wall, 48 cm long and 9 cm thick; (7) a dark brown (7.5YR3/3) clay silt that was mottled with charcoal and daub, 80 cm long and 7 cm thick; (8) a dark brown (7.5YR3/4) clay, 22 cm long and 3 cm thick; (9) a brown (7.5YR5/6) silt, 28 cm long and 2 cm long; (10) a dark brown (7.5YR3/3) silty clay, 40 cm long and 6 cm thick; (11) a dark yellowish brown (10YR3/3) clay silt with pockets of (12) a strong brown (10YR4/6) clay and several pieces of shell, it extended the entire length of the wall and was 24 cm thick; (13) a strong brown (7.5YR4/6) silty clay, 10 cm long and 2 cm thick that was within the above layer of a (10) dark brown (7.5YR3/3) silty clay; (14) a brown (7.5YR5/6) silt, 20 cm long 4 cm thick; (15) a brown (10YR5/4) clay interpreted as one of
the yellow caps by Meyers (2017, field notes), 20 cm and 4 cm thick; (16) a dark brown (10YR3/3) clay loam, that extended the entire length of the wall and was 19 cm thick, and had a stone within the wall 41 cm from the eastern edge of the profile and 45 cm bd; (17) a brown (7.5YR4/3) silty clay interpreted as a possible post (Meyers 2017, field notes), 28 cm long and 11 cm thick; (18) a dark yellowish brown (10YR4/6) silty clay with a feature that was excavated in 2008 inside of it, that is 51 cm long and 33 cm thick; and (19) a brown (7.5YR5/3) clay that represented the subsoil of the unit.

The east profile (Figure A.11) of this unit is the most complex of the profiles recorded in 2017, with 23 different stratigraphical layers: (1) a dark reddish brown (5YR3/4) silt with a (2) pocket of yellowish red (5YR4/6) clay silt in it, it measured the full length of the wall and was 5
cm thick, the pocket of clay silt was located 42 cm south of the northern edge of the wall, and at a depth of 5 cm; (3) a red brown (5YR3/3) silt clay, 69 cm long and 6 cm thick; (4) a brown (7.5YR4/2) clay, 35 cm long and 6 cm thick; (5) a brown (7.5YR4/2) silt, 38 cm long and 3 cm thick; (6) a dark brown (10YR3/2) clay, 9 cm long and 1 cm thick; (7) a dark red brown (5YR3/3) clay, 81 cm long and 4 cm thick; (8) a pocket of dark brown (7.5YR3/3) clay that is 5 cm long and 4 cm tall; (9) a dark brown (7.5YR3/4) silt clay that extended the entire length of the wall and was 10 cm thick; (10) a red brown (5YR4/4) clay, 12 cm long and 2 cm thick; (11) a brown (7.5YR4/3) silt clay, that extended the entire length of the wall and was 5 cm thick; (12) a dark brown (7.5YR3/3) silt clay, 13 cm long and 3 cm thick; (13) a dark gray (7.5YR4/1) ash, that was 20 cm long and 1 cm thick; (14) a dark brown (7.5YR3/3) silt clay, that was 54 cm long and 5 cm thick; (15) a brown (7.5YR4/3) clay silt, that extended the entire length of the wall and was 10 cm thick with a piece of charcoal located within it 18 cm south and 31 cm; (16) a brown (7.5YR4/3) clay, 20 cm long and 3 cm thick; (17) a yellowish red (5YR4/6) clay, 42 cm long and 6 cm thick; (18) a brown (7.5YR4/4) clay silt, 24 cm long and 2 cm thick; (19) a gray (7.5YR5/1) silt, 22 cm long and 3 cm thick; (20) a dark red brown (5YR3/2) silt clay that extended the entire length of the wall and that is 17 cm thick, with (21) a section of brown (7.5YR4/4) clay, that was 40 cm long and 17 cm thick, and also included a piece of charcoal 2 cm south and 47 cm; and (22) a reddish brown (10YR4/4) clay that extended the entire length of the wall and was 13 cm thick, with a (23) post comprised of a dark red brown (5YR2.5/2) clay starting at 46 cm and that continued to 58 cm at its deepest; beneath this was the sterile subsoil.
While cleaning these walls for profiles 15 animal bones, 7.1 g of gastropod shells, 0.2 g of mussel shells, 0.2 g of botanical remains, 2.8 g of daub, 10 pieces of ceramics, 16 lithics, 3 tools, 2 fire cracked rocks, and 1 marl fragments were recovered in the field.

Test Unit N1050/E1061 (TU 8E)

This unit was initially excavated to a depth of 33cm below the surface as part of the east half of Test Unit 8 during the 2007 field season, and the backfill from this excavation was removed for the initial excavation in 2017. The unit was opened to a depth of 30 cmbs (the depth of Level 4), this depth was used as the datum level for measurements within this unit. It was recognized in the field that Zone 46, a dark brown (10YR3/3) silty clay, was encountered immediately and excavation began to remove this Zone, to a depth of 40 cmbs in the Southwest corner. The floor and burned logs found in this excavation were pedestaled to leave them in situ.
Cleaning at the top of this recovered 2.7 g of daub, 1 lithic, 1 tool fragment, 1 fire cracked rock, and a modern plastic washer. While excavating this level 2 animal bones, 9.1 g of daub, 2 ceramic pieces, 11 lithics, 1 tool fragment, 3 fire cracked rocks, and 2 marl fragments were recovered.

At the floor of the mixed Zone 46/Level 4 (Figure A.12), seven main soil types were identified: (1) a dark brown (7.5YR3/2) clay loam in the northernmost portion and southern half of the unit; (2) a yellowish red (5YR4/6) clay loam located in small (~10cm diameter) pocket in the northeastern corner of the unit; (3) a dark reddish brown (5YR3/3) clay loam that stretched across the northern half of the unit; (4) a yellowish red (5YR5/6) clay interpreted by the excavators as a portion of the structure floor that runs through the central of the unit and has the aforementioned pedestaled log; (5) a dark brown (7.5YR3/3) clay loam in pockets throughout the unit, one of which was Feature 223 (discussed below); (6) a reddish brown (5YR3/4) silty loam with charcoal throughout, interpreted as a burned log in the field; and (7) a brown (7.5YR4/4) clay loam also interpreted as a log on the southwestern-most portion of the unit border. While excavating to the floor of this Zone, 13 animal bones, 5.7 g of gastropod shell, 1.6 g of mussel shell, 5.7 g of daub, 14 pieces of ceramics, 14 lithics, 5 tool fragments, 1 fire cracked rock, and 4 marl frags were recovered.
Feature 223 (Figure A.13) was initially discovered in the 2008 excavation of TU 8E, but wasn’t recognized at the time by the excavator. The feature was a posthole comprised of a dark brown (7.5YR3/3) clay loam. The feature was encountered at a depth of 39.5 cmbs, it measured approximately 30 cm north-south and was bisected and profiled to a depth of 49.5 cmbs. 2.05 L of soil from this unit was collected for ethnobotanical analysis (completed in 2020). No artifacts were recovered in the field.
Test Unit N1050/E1062 (TU 10)

This Unit was originally excavated in 2007 and was designated TU 10 at the time, and it was excavated to a depth of 28 cmbs. Like TU N1049/E1062, its neighbor to the south, the backhoe excavated too deeply into Level 4 during the 2017 uncovering of earlier excavated test units. This resulted in some damage, and excavators recorded a mixed stratum of Level 4 and Zone 46, and the starting elevations in the north end of the TU were deeper than the starting elevations in the center and south end. A datum was used to measure elevations, but its elevation was not noted, although in other units the datum elevation was at 30 cmbs.

Once taken to level (Figure A.14), three zones were left pedestaled in-situ: a portion of yellowish red (5YR4/6) clay left 7 cm above the floor in the northeastern corner of the unit, bordering Feature 228 to the north; a second portion of yellowish red (5YR4/6) clay in the extreme northern portion of the unit, about 60 cm west of the northwest corner, left 9 cm above the surface of the floor; and a burned log within a portion of dark brown (10YR3/3) silty loam that was in the extreme western portion of the wall 50 cm from the southwestern corner, and left 3 cm above the floor. The floor of the unit was largely defined by six other soil types throughout, (1) a dark brown (10YR3/3) clay loam that comprised most of the southwestern unit; three small
pockets of (2) a very dark brown (10YR2/2) clay loam, one in the southeastern wall of the unit, one identified as Feature 224, and one identified as Feature 227; (3) a very dark grayish brown (10YR3/2) that made up most of the northern portion of the unit, and the eastern edge; two more pockets of (4) a yellowish red (5YR4/6) clay, one in the extreme western portion of the wall and one in the northeastern corner; a small pocket of (5) dark yellowish brown (10YR4/4) silty loam that bordered the higher piece of pedestaled clay in the northern part of the unit; and a (6) larger area of yellowish red (10YR5/6) clay loam in the southeastern portion of the unit that had a piece of limestone within it. During the cleaning of this unit, three features were identified—Features 224, 227, and 228—at 6 cmbd, 11.5 cmbd, and 17 cmbd, respectfully. Features 224 and 227 were excavated while Feature 228 was identified but not excavated. While excavating this unit to the floor of Structure 2b, artifacts recovered included: 55 pieces of animal bone, 12.0 g of gastropod shell, 0.3 g of mussel shell, 0.3 g botanical remains, 56.7 g of daub, 32 pieces of ceramics, 40 lithics, 70 tool fragments, 32 pieces of fire cracked rock, 11 pebbles, 1 worked stone, and 8 marl fragments.
Feature 224 (Figure A.15) was a small feature located in the center-eastern portion of the test unit. The feature was a very dark brown (10YR2/2) clay loam, and measured 12 cm north-south and 15 cm east-west and it was 11.5 cm deep. Its small size further suggests it may not be cultural. The feature was excavated and profiled, and 10 L of soil was collected for flotation and ethnobotanical analysis (completed in 2021 [Horton 2021]). No artifacts were recovered in the field.
Feature 227 was much larger than Feature 224. It had a diameter of 19 cm, and was approximately 38 cm thick (Figure A.16). The soil was largely a very dark brown (10YR2/2) clay loam, the same as Feature 224. During excavation it was noted that the profile is very narrow and the deep, suggesting that it is cultural in nature, and it was profiled in the field. 10 L of soil was taken for a floatation sample (completed in 2021 [Horton 2021]). No artifacts from Feature 227 were recovered in the field.
Feature 228 was not excavated due to time constraints, but it was recorded and mapped in the field. It measured 29 cm north-south and 24 cm east-west and may be the remains of a wall post associated with Structure 2b. The fill was recorded as a very dark grayish brown (10YR3/3) clay loam.

Test Unit N1051/E1059 (TU 167 S)

In 2008 this unit was excavated as part of a 1-x-2-m unit (Test Unit 167), and the north half was excavated to a depth of 20 cmbs. This unit was uncovered with a backhoe in 2019, and its back dirt removed. Excavators recorded no Level 4, only the presence of Zone 46 which was identified as a dark brown (10YR3/3) silty clay, that contained a complex soil composition throughout the unit at level.
Zone 46 was excavated to a depth of 9.5 cmbd at its deepest in the northeast corner, and between 5.5 cmbd and 6.5 cmbd in the rest of the unit, save for the center of the unit which was opened at 1 cmbd and closed at 1 cmbd (Figure A.17). Within the test unit were several notable charcoal deposits and one area contained remains of a burnt log that was recognized as part of the Structure 2b wall in the field. The soil at level featured eight different types of soil: (1) a black (10YR2/1) silty loam with portions of the burned log remains that made up the wall of Structure 2b, that was in the center and north-center portion of the unit; (2) a light yellowish brown (10YR6/4) clay loam located in the central and center-west portion of the unit; (3) a very dark greyish brown (10YR3/2) silty loam with pockets in the far south of the unit, the southeastern corner, and the north-center of the unit; (4) a brown (10YR4/3) silty loam that was in the center-west of the unit, a portion with charcoal inclusions in the north-center of the unit, and two more pockets in the northeast and southeast of the unit; (5) a dark yellowish brown (10YR4/4) silty loam in the northwest corner of the unit; (6) a dark greyish brown (10YR4/2) clay loam that ran along the length of the western edge of the unit; (7) a dark yellowish brown (10YR3/4) clay loam in the western portion of the southern wall, and (8) a yellowish brown (10YR5/8) clay loam inclusion in the center of the eastern portion of the unit. No feature remains were identified in this unit. Artifacts found in this unit include: 14 animal bones, 0.3 g of botanical remains, 26.9 g of daub, 7 pieces of ceramics, 14 lithics, 35 tool fragments, 20 pieces of fire cracked rock, 33 pebbles, 1 conglomerate of quartz and pebbles, and 1 marl fragment.
Test Unit N1051/E1060 (TU 15)

In 2007 this unit was excavated to a depth of 30 cmbs. After backhoe removal of backfill, the unit was opened at a depth of 30 cmbs and contained a mix of Level 4 and Zone 46. The soil composition in this unit was also complex, but was mostly dominated by the dark brown (10YR3/3) silty clay soil that was identified as a portion of the structure wall (Figure A.18). The soil at level was composed of six different soil qualities: (1) a brownish yellow (10YR6/6) clay loam, in the north-center portion of the unit with three inclusions within the dark brown (10YR2/1) silty clay identified as the structure wall; (2) a yellow (10YR7/6) silty loam in the southern portion of the unit (against the Old TU 8 intersection) and in pockets in the northern corners of the unit; the (3) dark brown (10YR3/3) silty loam that ringed the entire western, northern, and western of the edges of the unit, with a subsection within the center of the unit that
contained charcoal; (4) a dark yellowish brown (10YR4/4) silty loam surrounded by the previous three soil types in the center-northeast part of the unit; a (6) black (10YR2/1) log inclusion; and a (6) very dark grayish brown (10YR3/2) both in silty loam (in the eastern portion of the unit) and a clay loam (in the southwestern corner of the unit). There were no features within this unit, but it should be noted that the old TU 8 intersected with this excavation on the southern edge. While cleaning beneath the plow zone, 4 tool fragments, 3 pieces of fire cracked rock, and 1 pebble were recovered. While excavating, 3 pieces of animal bone, 0.6 g of botanical remains, 10.9 g of daub, 1 piece of ceramic, 10 lithics, 30 tool fragments, 13 pieces of fire cracked rock, 1 pebble, and 1 marl fragment.

![Plan View of Unit N1051/E1060](image)

Figure A.18: Plan View of Unit N1051/E1060

Test Unit N1051/E1061 (TU 171W)

TU N1051/E1061 was excavated in two primary levels after the backfill was removed,
like most of the other units, Level 4 and Zone 46. Level 4 (Figure A.19) was mostly comprised of (1) a dark brown (10RY3/3) clay loam, and featured some patches of (2) a yellowish-red (5YR5/8) clay loam and (3) a reddish-yellow (5YR6/8) clay loam in the western portion of the unit; it was excavated to a depth of 40 cm, where it was underlain by Zone 46. While cleaning this unit before excavation, 2 lithics were recovered. While excavating Level 4 above Zone 46, 2.1 g of daub, 2 ceramics, 6 lithics, 1 tool fragment, 1 fire cracked rock, 1 pebble, and 1 marl fragment were recovered.

Figure A.19: Plan View of Unit N1051/E1061, Top of Level 4, 30 cm below surface

Within this unit Zone 46 (Figure A.20) featured six different soils: the first is a (1) dark brown (7.5YR3/4) clay loam in the northwestern corner of the unit; (2) listed next is a reddish brown (5YR4/6) clay loam that is takes up most of the northern part of the unit, this was broken
into two sections, each that were left 5 cm and 10 cm above the floor of the Zone (from north to south); next was a (3) dark brown (7.5RY3/3) clay loam that ran across the entirety of the north wall and about 75 cm of the eastern wall of the unit; following this was (4) a dark reddish brown (5YR3/3) clay loam that was divided into three distinct sections in the south-central portion of the unit, two of these sections featured portions of a burned log; the fifth type was (5) a dark reddish brown (5YR3/4) clay loam found in the southern half of the unit that also featured burned logs, one of which was left standing 5 cm above the floor of the unit; the final soil type was (6) a dark brown (7.5YR3/4) clay loam in the southwest corner of the unit. No features were identified in the test unit, and the unit was mapped and photographed. While excavating to the floor of Zone 46 in this unit, 2 animal bone, 0.1 g, 1 piece of ceramic, 2 lithics, 2 tool fragments, 1 fire cracked rock, and 1 pebble were recovered.

Figure A.20: Plan View of Unit N1051/E1061, Zone 46
Test Unit N1051/E1062 (TU 171E)

This unit was also excavated in two levels after removing the backfill. Level 4 (Figure A.21) was a (1) largely uniform dark brown (7.5YR3/2) silty clay that was excavated to a depth of 33 cmbs, before encountering charcoal and orange-colored daub stains in the southwestern corner of the unit. At this point, it was excavated as a mixed zone of Level4/Zone 46 was identified at an approximate depth of 33.5 cmbs and it was excavated to a depth of 38 cmbs. Above the mixed zone of Level/Zone 46, 3 animal bones, 6.4 g of daub, 2 pieces of ceramic, 7 lithics, 7 tool fragments, 4 pieces of fire cracked rock, and 1 marl frag were recovered.

Figure A.21: Plan View of Unit N1051/E1062, Level 4, 33 cm below surface

The mixed zone (Figure A.22) was comprised of four soil types, the first was a (1) yellowish red (5YR4/6) clay that made up the majority of the unit, two pockets of it were left pedestal in situ in the southwestern corner of the unit, one of which was 8 cm above the floor
of the unit; the next was a (2) dark brown (7.5YR3/3) clay loam mottled with charcoal in the western and southwestern portions of the unit, and also featured two logs pedestaled in situ 4 cm and 7 cm above the floor of the unit, from west to east; the third soil type was a (3) very dark brown (10YR2/2) clay loam that formed two small pockets in the northern and western portions of the unit, and the final soil type was a yellowish red (5YR5/8) clay mottled with a (4) dark reddish brown (5YR3/3) clay loam that ran the entire length of the eastern wall. No features were uncovered in the test unit. In the mixed zone, 19 animal bones, 0.3 g of botanical remains, 29.1 g of daub, 21 pieces of ceramics, 15 lithics, 38 chipped-stone tool fragments, 15 pieces of fire cracked rocks, 5 pebbles, 1 worked stone, and 6 marl fragments were found.

Figure A.22: Plan View of Unit N1051/E1062, Zone 46

Test Unit N1051/E1063

This unit was not previously excavated until 2017. Because the plow zone depth was
known, a backhoe was used to remove it, and Levels 1 through 3 were screened as a single context. Level 4 (Figure A.23) was identified after removal of the plow zone at 30 cmbs. The top of Level 4 was a (1) largely uniform very dark brown (10YR2/2) silty clay, with (2) dark reddish brown (5YR3/3) daub deposits in the northern portion of the unit and an (3) area of dark brown (10YR3/3) silty loam on the northern edge of the unit. After opening the unit to depth, Level 4 and Zone 46 were excavated as a combined level, to a depth of 37 cmbs. When cleaning the floor just beneath the plow zone, 0.3 g of daub and 2 chipped-stone tool fragments were recovered. Above Zone 46 artifacts recovered include: 49 pieces of animal bone, 0.2 g of mussel shell, 0.5 g of botanical remains, 20.9 g of daub, 18 pieces of ceramic, 32 lithics, 51 chipped-stone tool fragments, 11 pieces of fire cracked rock, 7 pebbles, and 5 marl fragments.

Figure A.23: Plan View of Unit N1051/E1063, Top of Level 4, 30cm below surface

The floor of Zone 46 (Figure A.24) featured nine types of soil: the first was a (1) dark
brown (10YR3/3) clay loam that stretched from the northwestern corner of the unit to the center; second was a (2) dark grayish brown (10YR3/4) silty loam that started in the western portion of the north wall and continued about 10 cm south; next was a (3) dark yellowish brown (10YR3/4) silty loam in the north eastern corner of the floor; following this was a (4) dark brown (10YR3/3) clay loam that extended from the northwestern corner of the floor to the central portion of south wall of the floor, transitioning to a brownish yellow (10YR6/6) towards the southern half of the unit; next was a (5) small pocket of brown (10YR5/3) clay loam, located 40 cm both south of the north wall and east of the west wall; (6) a majority of the eastern half of the floor was made up of a dark brown (10YR3/3) silty loam that began in the north at nearly the wall, and continued through the entire unit to the south wall and a portion of the eastern wall; (7) running about 75 cm of the western wall of the floor was a strip of dark yellowish brown (10YR3/4) clay loam, extended at its furthest about 23 cm east; (8) in the center-west of the unit leading the southern wall was a strip of very dark greyish brown (10YR3/2) silty loam, and there existed a second strip of this soil in the far southeastern corner of the unit; the final soil type in this unit was a (9) circular patch of very dark grey brown (10YR3/2) silty loam in the western portion of the south half of the wall, about 30 cm from the west wall, that was identified as Feature 221. Within Zone 46, the artifacts recovered include: 20 pieces of animal bone, 13 g of daub, 15 pieces of ceramics, 4 lithics, 15 chipped-stone tool fragments, 4 pieces of fire cracked rock, 3 pebbles, 1 hematite fragment, and one marl fragment.
Feature 221 in the southwestern portion of the unit (Figure A.25). Feature 221 was identified in the field as a posthole, most likely associated with the most recent occupation (Structure 2c). It was identified at a depth of 37 cmbs, and is circular in shape, measuring 22 cm north/south and 25 cm east/west. It was comprised of a very dark grayish brown (10YR3/2) silty loam throughout, and contained charcoal in the upper portion of the feature (Figure Y.29). This feature was very large and was bisected and excavated in six arbitrary 10-centimeter levels (with the exception of Level 6, which was only 5 cm thick) to a total depth of 97 cmbs. The large size and depth of this feature suggest it is a posthole, or multiple superimposed postholes, associated with the most recent occupation, Structure 2C (Meyers 2017, notes taken in the field). Soil was collected from this feature for flotation analysis. Artifacts associated with Feature 221 were collected in six different contexts: the Level 4 midden associated with the Feature, the five 10-
cm levels the Feature was excavated in, and the wall clean. In the Level 4 midden associated with the Feature, artifacts include: 12 animal bones, 0.4 g of gastropod shell, 12.6 g of botanical remains, 2.7 g of daub, 4 pieces of ceramic, 8 lithics, 14 chipped-stone tool fragments, 1 pebble, and 3 marl fragments. In the 0-10-cm level artifacts recovered included: 4.2 g of daub, 1 lithic, and 1 fire cracked rock. In the 11-20-cm level: 2 animal bones and 2 lithics were recovered. In the 21-30-cm level: 2 animal bones and 0.2 g of botanical remains were found. In the 31-40-cm level, 0.7 g of gastropod shell, 0.1 g of botanical remains, and 1 chipped-stone tool fragment were recovered. In the 41-50-cm level, 1.1 g of gastropod shell were recovered. And in the wall clean for profiling this Feature, 0.1 g of gastropod shell and 0.2 g of botanical remains were recovered in the field.

Figure A.25: East Profile of Feature 221
Test Unit N1052/E1059 (TU 167 N)

This test unit was previously excavated in 2008 as a part of a 1-x-2-m unit to a depth of 28 cmbs and then backfilled. Backfill was removed in 2019 by the backhoe and the unit was opened to the beginning of Zone 46 and cleaned with a starting depth of 3 cmbd (33 cmbs) in the center and northeast corners (Figure A.26). Field notes state that areas of the unit were very soft, and were not able to be completely excavated to level for fears of damaging the floor, but the northeastern corner of the unit was excavated to a depth of 11 cmbd (41 cmbs). There were three colors of soil identified in the field: the first is a dark brown (10YR3/3) that is a (1) silty loam in the northern and southeastern portions of the unit, and a (2) clay loam in the southwestern and central parts of the unit; the second is a (3) reddish yellow (7.5YR7/6) clay loam that is only present in the central-northern portion of the unit; the final is a (4) pinkish grey (7.5YR6/2) clay loam. In three portions of the unit logs interpreted as being from Structure 2b in the northwestern corner, the south-western corner, and the south-eastern portion of the center. Several charcoal deposits were also identified in the center and western portions of the unit. No features were uncovered in the test unit. In this unit artifacts recovered include 1 animal bone, 175.2 g of wood, 7.7 g of daub, 3 pieces of ceramic, 8 lithics, 32 chipped-stone tool fragments, 6 pieces of fire crack rock, and 5 pebbles.
Figure A.26: Plan View of Unit N1052/E1059

Test Unit N1052/E1060 (TU 11)

In 2007 this unit was excavated to a depth of 36 cmbs, to sterile soil. In 2017 the backhoe was used to remove the overlying layers (plow zone) to Zone 46 (Figure A.27). There were four primary soil colors observed in the field: the first was a dark brown (10YR3/3) that was present as a (1) clay loam containing a log in the western wall of the unit, (2) a silty loam that had charcoal in the western wall of the unit, (3) a silty loam that ran the entire length of the southern wall with a log along the southeastern corner, a silty loam that contained a log in the center of the unit, (4) a silty loam that had charcoal in the north-central portion of the unit, (5) a clay in the northeastern wall of the unit, a clay loam in the southern portion of the unit that was identified in the field as Feature 229 (see below), and a silty loam that was identified as Feature 230 (see
below). The second color was a (5) a reddish yellow (7.5YR2/6) that was present as a clay loam in the center and southern portions, and as a pocket of clay loam against the eastern wall. Third was (6) a reddish yellow (7.5YR7/8) that existed as a pocket of clay in the southwestern portion of the unit and as a pocket of clay loam in the northwestern corner of the unit. The final was (7) a pinkish grey (7.5YR6/2) silty loam that was the majority of the northern half of the unit.

Artifacts recovered in this unit include: 2 animal bones, 17.6 g of daub, 7 pieces of ceramics, 10 lithics, 1 metal washer, 27 chipped-stone tool fragments, 5 pieces of fire cracked rock, 4 pebbles, and 1 marl fragment.

A feature designated Feature 229 was observed at time of excavation, but was determined in the field to be a part of the later Structure 2c and thus was not excavated at this time. Feature
229 was located in the central part of the southern portion of the unit, its center approximately 63 cm west of the southwest corner, and 15 cm north. It measured approximately 20 cm east-west and 15 cm north-south, and was made of a dark brown (10YR3/3) clay loam. A second feature, Feature 230, was also observed, but not excavated. It was located approximately 15 cm west of the southwest corner, and 30 cm north; it measured about 12 cm east-west and 15 cm north-south; and was a dark brown (10YR3/3) silty loam. No artifacts from these features were recovered in the field.

Test Unit N1052/E1061 (TU 170W)

This test unit was previously excavated in 2008 and backfilled at that time. In 2019 the backhoe removed the backfill to a depth of 30 cmbs, or Level 4. Level 4 (Figure A.28) was comprised of (1) a very dark brown (10YR2/2) clay loam throughout most of the unit; (2) a dark brown (10YR3/3) clay loam in several different pockets in the western, central, and eastern portions of the unit; (3) a reddish yellow (7.5YR6/8) clay loam featured in six pockets throughout the central band of the unit; (4) a reddish yellow (7.5YR6/6) clay loam that featured in four pockets across the center band of the unit, including in the eastern wall; (5) and finally a black (7.5YR2.5/1) clay loam in two different pockets within the center and eastern part of the unit. Most of these pockets featured several different types of soil within them, with the exception of a pocket in the eastern portion of the wall that had only the reddish yellow (7.5YR6/6) clay loam and a pocket in the south-center of the unit that had. When cleaning the floor at the top of Level 4, artifacts found include: 0.1 g of botanical remains, 2 lithics, 2 chipped-stone tool fragments, and 2 pieces of fire cracked rock. When excavating Level 4, artifacts recovered include: 2 pieces of ceramics, 3 lithics, 3 chipped-stone tool fragments, 2
pieces of fire cracked rock, and 1 marl fragment.

Figure A.28: Plan View of Unit N1052/E1061, Level 4

Following this mapping, the midden overlain by the top three zones was removed as a single plow zone and excavated as Zone 46 (Figure A.29). This Zone was excavated to a depth of 7 cmbd, and had a clay “wall” in the center that was not excavated. The soil at this level featured a higher level of complexity than the one above it, featuring six different soil types: (1) the first was a very dark brown (7.5YR2.5/3) clay loam that was identified as Feature 255 (see below); (2) next was a strong brown (5YR4/4) silty loam that was featured in the southern area of the unit; (3) following this was a yellowish red (5YR4/6) clay loam that represents the aforementioned unexcavated clay “wall” left pedestaled 10 cm above the floor of the unit, and a smaller portion directly to the west of this wall that contained portions of a burned log; (4) then a very dark grayish brown (10YR3/2) silty loam with charcoal located in a large portion of the
north and northwestern parts of the unit, this was identified in the field as being a burned feature, and potentially the remains of another burned log; (5) then a very dark brown (10YR2/2) silty loam in the north part of the western half of the unit; (6) and a dark brown (10YR3/3) clay loam that was the majority of the eastern half of the unit, save for a small portion in the southeastern corner that was a burned log pedestaled 7 cm above the floor of the unit. When excavating Zone 46, 21 animal bones, 0.3 g of botanical remains, 42.2 g of daub, 9 pieces of ceramics, 23 lithics, 60 chipped-stone tool fragments, 8 pieces of fire cracked rock, 17 pebbles, and 1 marl fragment.

Figure A.29: Plan View of Unit N1052/E1061, Zone 46

Feature 225 was a probable posthole, and measured 24 cm north-south by 26 cm east-west (Figure A.30). It was uncovered at an approximate depth of 9 cm bd (39 cmbs). It was located partially in the unit to the south, and at time of excavation was bisected (Figure Y.33)
and soil was collected for flotation analysis (8.25 L). The soil in the feature was a very dark brown (7.5YR2.5/3) clay loam. The feature extended to a depth of 39 cm, and was excavated in 4 10-cm levels. Artifacts associated with this Feature that were recovered in the field include: 4 pieces of animal bone, 1.1 g of botanical remains, 19.3 g of daub, 3 pieces of ceramic, 5 lithics, 34 chipped-stone tool fragments, 6 pieces of fire cracked rock, 6 pebbles, and 2 marl fragments.

Figure A.30: Profile View of Feature 225, North Wall Profile

Test Unit N1052/E1062 (TU 12/170E)

In 2007 this unit was excavated to a depth of 33 cmbs and then backfilled, in 2008 it was reassigned as Test Unit 170E, and the backfill was removed for observation at that time. In 2017 the backfill was removed and the unit was re-opened and cleaned to a depth of 6 cmbd, or Zone 46. This Zone was then excavated to a closing depth of 9.5 cmbd at its deepest. At its floor (Figure A.31), Zone 46 was a yellowish red (5YR4/6) clay loam mottled with dark reddish
brown (5YR3/2) clay loam in the northeastern corner of the unit, this was left pedestaled 10 cm above the floor of the unit; next was a dark brown (7.5YR3/2) silty loam in the north and western parts of the unit; following this is a very dark brown (10YR2/2) clay loam that was present throughout most of the southern unit as well as that ran the length of the west wall and half the east wall; finally in the center of the western wall was a portion of reddish yellow (5YR6/6) clay that had been pedestaled 12 cm above the floor. While excavating this unit, artifacts recovered include: 11 animal bones, 6.5 g of daub, 7 pieces of ceramics, 15 lithics, 14 chipped-stone tool fragments, 3 pieces of fire cracked rock, 1 pebble, and 1 marl fragment.

Test Unit N1052/E1063

This unit was excavated slightly differently than many other ones, as it was one of the first units to be excavated before Zone 46 had been properly identified. This unit, the first 3
Levels of soil removed, opening to 30 cmbs. This was considered to be the top of Level 4, or 31 – 40 cmbs. The opening of Level 4 was mapped (Figure A.32), and had a total of three soils: (1) the majority of this level consisted of a very dark brown (10YR2/2) silty clay; within that soil was two pockets of dark brown (10YR3/3) silty clay, the easternmost one of these disappeared as excavations continued; (3) the final soil was a very dark grayish brown (10YR3/2) that was present in the southwest corner and along almost the entirety of the eastern wall.

Figure A.32: Plan View of Unit N1052/E1063, 30 cm below surface

Rather than excavating Zone 46 as a cultural zone, the unit was excavated through the entire arbitrary Level 4 to a depth of 40 cmbs (Figure A.33). All of the soil was still listed as a silty clay, with a noted increase in clay content as the deeper portions of the unit were reached by excavators. The soil quality is as follows: (1) the majority of the unit was characterized by a very
dark grayish brown (10YR3/2) silty clay in the western and central portions of the unit; (2) a
dark brown (10YR3/3) silty clay ran the entirety of the northern wall; (3) a very dark brown
(10YR2/2) silty clay with a pocket of very dark brown (10YR2/2) isolated within its southern
half; within the western half of the unit, there were several pockets of soil identified: (4) three
pockets of very dark brown (10YR2/2) silty clay, (5) a large pocket of very dark greyish brown
(10YR3/2) silty clay, (6) and a small pocket of dark brown (10YR3/3) silty clay. Above Zone 46,
artifacts recovered in the field artifacts recovered include: 27 pieces of animal bone, 5.9 g of
botanical remains, 51 g of daub, 10 pieces of ceramics, 53 pieces of lithics, 84 chipped-stone tool
fragments, 15 pieces of fire cracked rock, 23 pebbles, 1 quartzite conglomerate, and 5 marl
fragments.

Figure A.33: Plan View of Unit N1052/E1063, 40 cm below surface

Later, after Zone 46 has been properly identified, a separate map of this layer was made,
with a different interpretation of the soil composition at this layer (Figure A.34). With this mapping, there were four primary soil types, all of which were mottled with charcoal: (1) the first was a dark brown (7.5YR3/2) silty loam located only within the middle portion of the north wall; (2) the second was a yellowish red (5YR4/6) clay loam mottled with a dark brown (7.5YR3/3) clay loam that took up most of the eastern portion of the unit; (3) the third was a dark brown (7.5YR3/3) clay loam that that is in the central north/south band of the unit and southeastern corner of the unit (the southeastern portion was determined to be Feature 226 [see below]); (4) and the final soil was a dark brown (10YR3/3) clay loam that runs along the western wall. Artifacts recovered within Zone 46 in this unit include: 1 animal bone, 0.4 g of daub, and 2 lithics.

Figure A.34: Plan View of Unit N1052/E1063, Zone 46

Feature 226 was located partially within the east wall of the unit, so the total diameter is
not known, but the excavated portion measured 39.5 cm north-south and was 35 cm from west to the wall (Figure A.35). It was discovered at 11 cmbd (41 cmbs) and it was excavated to a total depth of 50 cmbd (or 70 cmbs). The feature narrowed at an approximate depth of 35 cmbd (65 cmbs). Notes suggest that the upper, wider portion of this feature may represent use by the later occupations, and the lower portion by the earlier original occupation of the Structure (Meyers 2017, field notes). Feature soil was a dark brown (7.5YR3/3) clay loam and 4.75 L of soil was retained for flotation. Artifacts from Feature 226 were recovered in two contexts: the center of the Feature, and the Feature’s outer ring. In the Feature proper, artifacts recovered in the field include: 21 animal bones, 3.2 g of botanical remains, 22.3 g of daub, 7 pieces of ceramic, 10 lithics, 49 chipped-stone tool fragments, 10 pieces of fire cracked rock, 8 pebbles, a wood sample that was massed at 31.2 g within the bag it was recovered in, and 2 marl fragments. In the Feature’s outer ring, artifacts include: 2 animal bone, 2.2 g of daub, 3 pebbles, and 1 marl fragment.

Figure A.35: Profile View of Feature 226 facing the East Wall
Test Unit N1053/E1062 (TU 12/170E)

This unit was opened in 2007, excavated to a depth of 33 cmbs, and then reopened again in 2008 as a part of TU 170, before being closed. In 2017 it was re-opened using backhoe and shovel and cleaned because of potential damage from the backhoe used to clear the midden from other units.

This unit was excavated as a mix of both Level 4 and Zone 46. It was excavated to a depth of 9.35 cmbd (39.35 cmbs), mapped and photographed (Figure A.36). The unit featured six primary soil types: (1) the first was a dark red (2.5YR3/6) clay loam that remained pedestaled 7 cm above the floor of Zone 46 in the north-central part of the unit running to the north wall; (2) next was a yellowish red (5YR4/6) clay loam that ran the entire north-south length of the unit across the central band; third was a dark reddish brown (5YR3/3) clay loam that had two shell inclusion and was pedestaled 14 cm above the floor of the unit in the northeastern corner; fourth was a dark brown (7.5YR3/3) silty loam that took up the eastern expanse of the unit, running almost the entire length of the eastern wall, with a small rock inclusion 17 cm west and 12 cm north of the southeastern corner of the unit; next was a yellowish red (7.5YR5/6) clay loam that was left pedestaled 8 cm above the Zone floor in the northwestern corner of the unit; and final was a dark greyish brown (10YR3/2) silty loam that makes up the majority of the western half of the unit, with two rock inclusions in the northern and southern halves of this portion. No features were present in this level. Artifacts recovered in this unit while cleaning below the plow zone include 1 animal bone and 3 chipped-stone tool fragments. Artifacts found within Zone 46 include: 5 animal bones, 0.3 g of gastropod shell, 2.0 g of botanical remains, 49.6 g of daub, 12 pieces of ceramics, 21 lithics, 38 chipped-stone tool fragments, 15 pieces of fire cracked rock, 10 pebbles, 1 possible chunky stone, 1 piece of glass, and 6 marl fragments.
Figure A.36: Plan View of Unit N1053/E1062
Appendix B: Additional Artifact Table

Table B.1: Artifacts divided by Excavated Test Unit and Level.

<table>
<thead>
<tr>
<th>TU/Level</th>
<th>Artifacts</th>
<th>Ceramics (Total)</th>
<th>Lithics (Tool Frag)</th>
<th>Lithics (Total)</th>
<th>Animal Bone</th>
<th>Botanical (g)</th>
<th>Shell (g)</th>
<th>Daub (g)</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Backhoe</td>
<td>Pz</td>
<td>8</td>
<td>207</td>
<td>22</td>
<td>17</td>
<td>1.4</td>
<td>>0.1</td>
<td>25.8</td>
<td>4</td>
</tr>
<tr>
<td>N1049/E1059</td>
<td>Pz</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Z46</td>
<td>9</td>
<td>18</td>
<td>18</td>
<td>7</td>
<td>-</td>
<td>0.1</td>
<td>2.7</td>
<td>-</td>
</tr>
<tr>
<td>N1049/E1060</td>
<td>Pz</td>
<td>1</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4/Pz</td>
<td>4</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4/Midden</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>1.8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Z46</td>
<td>26</td>
<td>38</td>
<td>-</td>
<td>49</td>
<td>-</td>
<td>2.2</td>
<td>1.7</td>
<td>11</td>
</tr>
<tr>
<td>N1049/E1061</td>
<td>Pz</td>
<td>4</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>->0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4/Midden</td>
<td>6</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>-</td>
<td>>0.1</td>
<td>1.4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Z46</td>
<td>29</td>
<td>39</td>
<td>1</td>
<td>61</td>
<td>-</td>
<td>23.6</td>
<td>18.6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>F. 222</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>6.1</td>
<td>3.3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>N1049/E1062</td>
<td>Pz</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4/Midden</td>
<td>21</td>
<td>46</td>
<td>17</td>
<td>40</td>
<td>0.9</td>
<td>9.5</td>
<td>45.8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Z46</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>0.2</td>
<td>2.4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>N1050/E1059</td>
<td>Wall Cleaning</td>
<td>1</td>
<td>15</td>
<td>4</td>
<td>9</td>
<td>-</td>
<td>0.1</td>
<td>2.8</td>
<td>1</td>
</tr>
<tr>
<td>N1050/E1060</td>
<td>Wall Cleaning</td>
<td>10</td>
<td>19</td>
<td>3</td>
<td>15</td>
<td>0.2</td>
<td>7.3</td>
<td>2.8</td>
<td>2</td>
</tr>
<tr>
<td>N1050/E1061</td>
<td>Pz</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>12</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>9.1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Z46</td>
<td>14</td>
<td>19</td>
<td>5</td>
<td>13</td>
<td>-</td>
<td>7.3</td>
<td>5.7</td>
<td>4</td>
</tr>
<tr>
<td>N1050/E1062</td>
<td>Z46</td>
<td>32</td>
<td>110</td>
<td>70</td>
<td>55</td>
<td>0.3</td>
<td>12.3</td>
<td>56.7</td>
<td>43</td>
</tr>
<tr>
<td>N1051/E1059</td>
<td>Z46</td>
<td>7</td>
<td>49</td>
<td>35</td>
<td>14</td>
<td>0.3</td>
<td>-</td>
<td>26.9</td>
<td>53</td>
</tr>
<tr>
<td>N1051/E1060</td>
<td>Z46</td>
<td>1</td>
<td>40</td>
<td>30</td>
<td>3</td>
<td>0.6</td>
<td>-</td>
<td>10.9</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>4/Plowzone</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>L4 Clean</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Z46</td>
<td>10</td>
<td>30</td>
<td>10</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>10.5</td>
<td>8</td>
</tr>
<tr>
<td>N1051/E1062</td>
<td>Pz</td>
<td>-</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4/Midden</td>
<td>8</td>
<td>29</td>
<td>22</td>
<td>11</td>
<td>0.3</td>
<td>-</td>
<td>8.1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Z46</td>
<td>13</td>
<td>25</td>
<td>16</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>21.0</td>
<td>10</td>
</tr>
<tr>
<td>N1051/E1063</td>
<td>Pz</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>18</td>
<td>83</td>
<td>51</td>
<td>49</td>
<td>0.5</td>
<td>0.2</td>
<td>20.9</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Z46</td>
<td>15</td>
<td>19</td>
<td>15</td>
<td>20</td>
<td>-</td>
<td>13.0</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>F. 221/L4</td>
<td>4</td>
<td>22</td>
<td>14</td>
<td>12</td>
<td>12.6</td>
<td>0.4</td>
<td>2.7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>F. 221</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0-10 cm</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>F. 221</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11-20 cm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>21-30 cm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>31-40 cm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TU</td>
<td>Lvl</td>
<td>Artifacts</td>
<td>Ceramics</td>
<td>Lithics (Total)</td>
<td>Lithics (Tool Frag)</td>
<td>Animal Bone</td>
<td>Botanical (g)</td>
<td>Shell (g)</td>
<td>Daub (g)</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>N1051 E1062</td>
<td>F. 221 (41-50 cm)</td>
<td>- 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N1052 E1059</td>
<td>F. 221 wall</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N1052 E1060</td>
<td>Z46</td>
<td>3 40</td>
<td>32</td>
<td>1</td>
<td>175.2</td>
<td>-</td>
<td>7.7</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>N1052 E1061</td>
<td>Z46</td>
<td>7 37</td>
<td>27</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>17.6</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>N1052 E1062</td>
<td>Z46</td>
<td>10 138</td>
<td>84</td>
<td>27</td>
<td>5.9</td>
<td>-</td>
<td>51.9</td>
<td>38</td>
<td>-</td>
</tr>
<tr>
<td>N1052 E1063</td>
<td>Z46</td>
<td>- 2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N1053 E1062</td>
<td>Z46</td>
<td>12 60</td>
<td>38</td>
<td>5</td>
<td>2.0</td>
<td>0.3</td>
<td>49.6</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>316</td>
<td>1390</td>
<td>698</td>
<td>522</td>
<td>211.7</td>
<td>71.5</td>
<td>517.8</td>
<td>353</td>
</tr>
</tbody>
</table>
VITA

Taylor Greene
January 2023

Contact Information:

Email: taylorg@uark.edu

Education:

B.S., Anthropology, University of Kentucky, 2017

Archaeological Field Experience:

2021-present Arkansas Archeological Survey, Research Assistant, Magnolia Station
Field work as needed primarily in southwestern Arkansas, work includes metal
detector survey, geophysical work, Phase I through Phase III excavation at a
variety of Pre-Contact and Historic sites.

2020 Center for Archaeological Research
Phase I survey of the Prospect Hill Plantation, outside of Port Gibson,
Mississippi, as a part of Bryce Krumcke’s thesis research.

2020 Acheulean Consulting, Archaeological Technician
Phase II excavation of a historic structure in Lexington, Kentucky for Section 106
compliance of a road expansion.

2020 Mid-South Archaeological Consulting, Archaeological Technician
Phase I excavation in middle Tennessee for Section 106 compliance for industrial
park construction projects.

2019 History Nebraska, Archaeological Technician
Assisted the Nebraska State Archaeologist in site monitoring and Phase I
excavations for Section 106 compliance as needed in the area of Omaha and
Lincoln, Nebraska.

2019 History Nebraska, Archaeological Technician, Willa Cather Childhood Home
Excavations
Phase II excavation at the historic Willa Cather Childhood Home in Red Cloud,
Nebraska.
Archaeological Field Experience (cont.):

2019 History Nebraska, Archaeological Technician, Farmland Restoration Section 106 Compliance
Phase I pedestrian surveys for the purpose of Section 106 compliance so Nebraska farmers could receive grant money from the Department of Agriculture to repair working fields damaged from the February and March 2019 floods.

2019 Acheulean Consulting, Archaeological Technician
Phase I survey in Louisville, Kentucky for Section 106 compliance in the construction of a cell tower.

2019 Mid-South Archaeological Consulting, Archaeological Technician
Phase I surveys in middle Tennessee and eastern Arkansas for Section 106 compliance on construction projects.

2019 GAI Consulting, Inc., Archaeological Technician
Phase I survey in West Virginia for Section 106 compliance of power line corridors in the southern and eastern parts of the state.

2018 Shasta-Trinity National Forest, Archaeological Technician
Phase I archaeology and site monitoring for the forest service in northern California.

2018-2020 Bedrock Mortar Project, Archaeologist
Field work for project in rock shelters throughout eastern Kentucky.

2018-2020 Daniel Boone National Forest, Volunteer Archaeologist
Phase I Archaeology and site monitoring for the Forest Service throughout eastern Kentucky.

2016 Field School, University of the South
Five-week field program under Drs. Stephen Carmody and Sarah Sherwood of the University of the South. Performed Phase II and III excavations at three different sites: Rebel’s Rest, a post-Civil War domestic occupation in Sewanee, Tennessee; the Pinson Mounds, a Woodlands mound complex in western Tennessee; and a repatriation excavation at Russell Cave National Monument in northern Alabama.

2016 Fox Farm Excavations, Kentucky Archaeological Survey
One week of Phase III excavation of a Fort Ancient occupation in northern Kentucky.
Research Experience:

2021-present Arkansas Archeological Survey, Research Assistant, Magnolia Station
Laboratory work includes digitization of records, archival maintenance of physical records, processing of artifacts from a variety of Pre-Contact and Historic sites, and individual research on novel topics with regards to southwestern Arkansas archaeology.

2021 Laboratory Work, University of Mississippi, Oxford, Mississippi
Database creation of isotope analysis of bone and enamel samples taken from Maya and Mesoamerican archaeological sites.

2020 Laboratory Work, Center for Archaeological Research, Oxford, Mississippi
Artifact curation for the Prospect Hill Phase I survey and data management of shovel test reports.

2020 Laboratory Work, Center for Archaeological Research, Oxford, Mississippi
Artifact archival and management, as well as the digitization of catalogue records for collections constructed in the past century by the University of Mississippi.

2019-present Master’s Thesis, University of Mississippi, Oxford, Mississippi
Collecting and managing data associated with the Carter Robinson Site in Lee County, Virginia. The thesis is focusing on the use of an occupation of the only multi-phase domestic structure present at the site. This data includes GIS data of the relevant excavation block, as well as bioarchaeological remains from flotation sorting.

2018-2020 Bedrock Mortar Project, Red River Museum, Clay City, Kentucky
Project focuses on bedrock mortars located in the rock shelters and caves on the westward slope of the Cumberland Plateau in eastern Kentucky. Data is being collected to find the use of these mortars.

2016-2017 Laboratory Work, Kentucky Archaeological Survey, Lexington, Kentucky
Scanning of 3D models of Fort Ancient Points from the Fox Farm site.

2016-2017 Independent research study, Kentucky Archaeological Survey, Lexington, Kentucky
Classifying and sorting possible ornaments found at the Fox Farm Site.

2016-2017 Oral History Research Assistant, Louie B. Nunn Center for Oral History, Lexington, Kentucky
Listening through oral histories in order to tag sections for search engine efficiency
Research Experience (cont.):

2016 Independent research study, University of Kentucky, Lexington, Kentucky
Assisted in some minor tasks, such as transposing paper maps to illustrator, on a
report for Dr. Christopher Pool.

Awards:

2020 The Black Trowel Collective Microgrants ($100)

Publications & Conference Presentations

Greene, Taylor and Mary Beth Trubitt
In-Progress Analyzing Holman Springs Ceramics. Caddo Archeology Journal 33.

Greene, Taylor
2022 Analysis of Structure 2b at the Carter Robinson Site (44LE10). Poster presented at the
82nd Annual Meeting of the Archeological Society of Virginia, Williamsburg.

Greene, Taylor and Mary Beth Trubitt
2022 Analyzing Holman Springs Ceramics. Paper presented at the 2022 Meeting of the
Arkansas Archeological Society, Conway.

Greene, Taylor A., Steve Bentley, Matthew Davidson, Johnny Faulkner, Jason Flay, Larry
Meadows, and Eric J. Schlarb
Poster presented at the 76th Southeastern Archaeological Conference, Jackson,
Mississippi

Greene, Taylor A., Steve Bentley, Matthew Davidson, Johnny Faulkner, Jason Flay, Larry
Meadows, and Eric J. Schlarb
Poster presented at the 36th Kentucky Heritage Council Archaeology Conference, Newport.

Other Papers & Presentations:

05/2022 Presentation, Greene, “Recent Archeology at the McCollum-Chidester House”
Presentation given to the Camden Rotary Club about a metal detector survey
completed at the McCollum-Chidester Museum in Camden, Arkansas.

11/2021 Presentation, Greene, “An Introduction”
Presentation given to Red River Chapter of the Arkansas Archeological Society
by way of introducing myself as a new member of ARAS.
Other Papers & Presentations:

05/2018 Research Paper, Greene, “A Phase I Archaeological Survey of the Twin Knobs Campground”
Section 106 compliance for the Daniel Boone National Forest.

03/2017 Presentation, Greene and Mills, “Fort Ancient Objects of Personal Adornment”
Presentation based on results of independent research, presented at Central Ohio Valley Archaeological Society meeting.

01/2017 Research Paper, Greene and Mills, “Fort Ancient Personal Objects from the Fox Farm Site in Mason County, Kentucky”
Independent undergraduate research on possible ornamentation found at the Fox Farm site.

Book Reviews

Greene, Taylor

Symposia

Chair, General Sessions
2022 Landscape Approaches to Change and Resilience. Taylor Greene, Chair. 78th Southeastern Archaeological Conference, Little Rock, Arkansas.

Professional Memberships and Service:

Caddo Conference Organization
Active Member-at-Large 2022-present

Arkansas Archeological Society
Active Member-at-Large 2022-present

Southeastern Archaeological Conference
Organizer, 78th Annual Meeting, Little Rock, Arkansas 2022
Active Member-at-Large 2022-present
Student Member-at-Large 2016, 2019-2021

Archaeological Society of Virginia
Active Member-at-Large 2022-present
Student Member-at-Large 2020-2021

Lambda Alpha National Anthropology Honor Society
Lifetime Member-at-Large 2020-present
Selected Other Publications:

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>Sous les pavés, la plage (poem)</td>
<td>Brazos River Review 1:118.</td>
</tr>
<tr>
<td>2022</td>
<td>In Which We Find (poem)</td>
<td>Impostor 2(1):5. Accessible at impostorlit.com/vol-2-issue-1/.</td>
</tr>
</tbody>
</table>