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ABSTRACT 

JAMES RICARD MICHELS: Th1, Th2 and Th 17 inflammatory pathways predict 
cardiometabolic protein expression in serum of COVID-19 patients. 

(Under the direction of Ana Pavel) 

 

A predominant source of complications in SARS-CoV-2 patients arises from severe 

systemic inflammation contributed to by Helper T-cell associated cytokines, potentially leading to 

tissue damage and organ failure. The high inflammatory burden of this viral infection often results 

in cardiovascular comorbidities. A better understanding of the interaction between the cytokine 

storm and cardiovascular proteins might inform medical decisions and therapeutic approaches. We 

hypothesized that all major helper T-cell inflammatory pathways (Helper T 1, Helper T 2 and 

Helper T 17) synergistically contribute to cardiometabolic pathways in serum of COVID-19 

patients, and that both of these factors correlate to COVID-19 severity. We found that Helper T 1, 

Helper T 2, and Helper T 17 cytokines and chemokines are able to predict expression of 186 

cardiometabolic proteins profiled by OLINK proteomics. 
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CHAPTER 1 

INTRODUCTION 

 COVID-19 disease, since its discovery in 2019, has caused a large amount of damage 

throughout the world, resulting in massive strain on hospital systems, and, sadly, many patient 

deaths (Satiani et al., 2020). A major point of study is through patient proteomic profiles, which 

consists of chemical signals such as cytokines and chemokines (Stenken et al., 2016). Patient 

proteomic profiles, in conjunction with computational analysis through correlation methods can 

be used to gain a greater understanding of the interactions of these chemical signals in 

inflammatory diseases. This could allow for the enhanced development of therapies to prevent the 

cardiovascular complications such as myocardial strain and hypertension associated with 

associated proteins or the cytokines (Del Valle et al., 2020). 

This study explores how the presence of cardiometabolic proteins and helper T cell 

associated cytokines and chemokines from day zero data affect patient outcomes. The dataset that 

is being used in this analysis originates from the Massachusetts General Hospital COVID-19 

Registry, and the study takes a large number of patient proteomic profiles being analyzed through 

computational modelling in order to correlate the presence of markers and proteins with patient 

severities versus a control group (Pavel et al., 2021). After this, the cytokines and chemokines are 

modelled in relation to cardiometabolic proteins in order to create a set of networks that will map 

the large number of signals that take part in the activation or suppression of these cardiometabolic 

proteins. 
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CHAPTER 2 

BACKGROUND 

2.1 COVID-19 

2.1.1  COVID-19 BACKGROUND 

 The respiratory virus SARS-CoV-2 has caused over 200 million reported cases of COVID-

19 Disease and over 5 million reported deceased to date (Dong et al., 2020). Strides have been 

made in the treatment of this virus through the development of the vaccinations to prevent infection 

and specialized treatments such as the monoclonal antibody infusions (Brobst et al., 2022). Despite 

this, more research into the treatment of COVID-19 is needed, as there are many dangerous 

complications such as acute respiratory distress syndrome, respiratory failure, hepatic and renal 

insufficiency in severe cases (Yang et al., 2021). Cardiovascular complications such as 

hypertension and myocardial injury have also been shown in severe COVID-19 cases, and are the 

main interest of this study (Guo Tao et al., 2020). Proteomic profiling is a method that can study 

the cytokines and chemokines in the cardiometabolic system to potentially open doors for the 

development of immunomodulatory therapies in the future (Yu et al., 2021).  

2.1.2 ROLE OF CYTOKINES AND CHEMOKINES IN COVID-19 

Cytokines and chemokines, often referred together as markers, are signal molecules 

released by Helper T cells in an immune response (Dong, C et al., 2021). Each type of Helper T 

immune cell reacts to a different potential threat to the body. The three Helper T cells that are the 

focus of this study are selected for their implications in the body’s reaction to COVID-19. Helper 
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T 1 cells react to viruses (Alberts et al., 2002), Helper T 2 cells react to antigens such as the 

COVID-19 spike protein (Wu et al., 2021), and Helper T 17 cells play a role in adaptive immunity 

(Khader et al., 2009), often acting in coordination with the Helper T cells during an autoimmune 

response.  

Recent research has shown that a shift in the balance of Helper T 1 and Helper T 2 

associated markers, with an increase in Helper T 2 expression, is correlated with an increase in 

severity in COVID-19 (Pavel et al., 2021). Research on atopic patients also has shown that patients 

treated with Helper T 2 inhibitors have displayed more asymptomatic cases (Ungar et al., 2022).  

The study of cytokines and chemokines is fundamental towards understanding the body’s 

reaction to viral infection by COVID-19 because these signals play a key role in the reaction and 

possible overreaction in the immune system. In this process referred to as cytokine storm, there is 

an elevated expression of inflammatory helper-T-cell-associated cytokines (Fajgenbaum et al., 

2020). Many effects of the COVID-19 disease are believed to be as a result of cytokine storm, and 

this can lead to complications. Expressed proteins that have been associated with negative side-

effects are expressed more, and this can worsen a patient’s condition. In the DISCUSSION section, 

more is discussed on proteins’ effects on patients. However, cytokine storm is not necessary for 

complications to occur. Figure 2.1 shows an infographic on cytokine storm.  

Cytokines and chemokines are deeply involved in the body’s processes involved in the 

reaction to COVID-19 through response pathways. Response pathways describe the roles 

cytokines play in the complex interactions of viral infection. These pathways can be incredibly 

detailed, with databases such as the regularly updated KEGG PATHWAY Database (Kanehisa et 

al., 2000) displaying the many cytokines and chemokines involved in the process of COVID-19 

infection, such as the example in Figure 2.2. 
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Figure 2.1: Cytokine Storm Infographic (Modified from Al-Kuraishy et al. 2020) 
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Figure 2.2 COVID Pathway from KEGG Database (Kanehisa et al., 2000) 
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2.2 PROFILING METHOD 

 The cytokines and proteins to be studied were profiled by the OLINK Explore 1536 

Proteomics Assay. The OLINK Explore 1536 Proteomics Assay originally released in the summer 

of 2020, and is used for the screening of protein biomarkers (Olink 2021).  The assay measures 

over 1500 proteins in 88 samples with less than 3 microliters of sample each (Olink 2021). The 

platform uses a semi-automated process where robots perform the entire assay except for plate 

transfer and sealing (Olink 2021). The automation makes the experiment repeatable and 

reproducible. The four panels of focus are inflammation, oncology, neurology, and 

cardiometabolic proteins (Olink 2021). Of these four panels, cardiometabolic proteins are of 

interest in the study, as no prior study has used integrated major Helper T pathways to evaluate the 

implications of COVID-19 cytokine expression on cardiometabolic proteins. 

 

 

 

 

 



  
 

7 
 

 

 

CHAPTER 3 

 DATASET 

3.1 DATASET ORIGIN 

 The dataset originates from a Massachusetts General Hospital system study, with the data 

on 383 patients being collected on September 2020. The first study analyzed this dataset in order 

to generate a model of immune and epithelial cell interactions that are involved in cell-specific or 

tissue-specific damage in cases of COVID-19 (Filbin et al., 2020). The research described in this 

thesis is intended to analyze the cardiometabolic interactions that shape the body’s response to 

COVID-19. 

3.2 PARAMETERS 

 The data was obtained in two datasets, a clinical info dataset and a blood marker dataset. 

The recorded parameters in the clinical info dataset included the following: 

 Subject ID of the Patient 

 COVID status of the Patient 

 Age Group of the Patient 

 BMI Group of the Patient 

 Presence of other conditions such as diabetes or kidney disease 

 Presence of certain symptoms 

 Disease severity 
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The severity was checked at 0, 3, 7, and 28 days after admission into the hospital system.  

The blood marker dataset contained the results of the OLINK Explore 1536 Proteomics 

assays, which contained the limit of detection, the threshold for a valid reading from the assay, 

and normalized protein expression, the expressed level of a tested protein, for the presence of 

cardiometabolic proteins and Helper T-associated markers. The main focus of the research 

project described in this thesis was on the day zero data, COVID-19 status, and normalized 

protein expression readings. 

3.3 PRELIMINARY CHANGES TO THE DATASET 

The data was modified in a myriad of ways to make the managing of the data less 

complicated. One modification was the removal of one patient, patient number 365, for missing a 

normalized protein expression value for the Interferon Gamma 1 marker, IFNGR1. Every other 

patient displayed readable normalized protein expression levels for every other cardiometabolic 

protein of interest. 

 Another modification was changing the outcome severity scale from a five-point scale, as 

displayed in Figure 3.1, to a three-point scale. The intent of this change was to simplify the five-

point scale, with level 3 (hospitalized with supplemental oxygen), 4 (hospitalized without 

supplemental oxygen), and 5 (discharged from emergency department), being merged into one 

“non-severe” outcome group as these levels, albeit admitted to the hospital, were not severe 

enough to warrant intubation. This was to simplify the patient groups so that the heatmaps could 

be simplified and that three groups could be focused on in the research: Deceased, Intubated, and 

Non-severe.  
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In the code that processed the data, the data was also processed at points to separate the 

COVID-19 Positive and COVID-19 Negative patients, so that the proteomic data of the 

individual groups could be processed. This would allow the COVID-19 Negative patients to act 

as a control group, with the COVID-19 Positive patients to act as the experimental group.

 

Figure 3.1: Original Five Point Scale from the Massachusetts General Hospital Study 

(Filbin et al. 2020) 

3.4 STATISTICS ON EXPERIMENTAL AND CONTROL GROUPS 

 The patients were separated into COVID-19 Positive and COVID-19 Negative groups, 

with 306 and 78 patients respectively. The original study from which the dataset originated found 

that the COVID-19 Positive patients displayed a younger median age as compared to the COVID-

19 Negative patients, with median ages for each group of 58 and 67 years, respectively (Filbin et 

al., 2020). The COVID-19 Positive patients in this study were also found to be mostly Hispanic, 
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with 54% of the COVID-19 Positive group being Hispanic as compared to 15% of the COVID-19 

Negative group (Filbin et al., 2020). 

 The patients of the study, as classified by severity, were grouped into 49 deceased patients, 

83 intubated patients, and 251 non-severe patients. Of the 49 deceased patients, 42 were COVID-

19 Positive and 7 were COVID-19 Negative. Of the 83 intubated patients, 67 were COVID-19 

Positive and 16 were COVID-19 Negative. Of the 251 non-severe patients, 196 were COVID-19 

Positive, and 55 were COVID-19 Negative. 
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CHAPTER 4 

METHODOLOGY 

4.1 CYTOKINE/CHEMOKINE SELECTION AND VARIABLES 

 The Helper T 1, Helper T 2, and Helper T 17 cytokines and chemokines were classified 

based on previous study in various inflammatory diseases for their characterized pathways and 

response to different targeted biologics (Pavel et al., 2021). The following cytokines and 

chemokines were detectable by the OLINK Explore Proteomics Assay: 

 11 Helper T 1 markers: CCL3, CCL6, CXCL11, CXCL10, CXCL9, IL2RA, IFNG, 

IFNGR1, IFNGR2, IL12B, and IL1B 

 14 Helper T 2 markers: CCL11, CCL13, CCL17, CCL22, CCL24, CCL26, CCL7, IL10, 

IL13, IL33, IL4R, IL5, IL7R, and TSLP 

 13 Helper T 17 markers: CCL20, S100P, IL6, IL6R, LCN2, S100A12, CXCL1, PI3, 

IL17A, IL17F, CXCL3, IL12A, and IL12B 

These cytokines and chemokines were used in the study as the markers to be correlated with 

cardiometabolic proteins expression and patient outcomes for both the COVID-19 Positive and 

COVID-19 Negative groups. There are three main correlations of focus studied in this research, 

each with their own independent and dependent variables: The correlation between 

cardiometabolic protein expression (dependent variable) and cytokines/chemokine expression 

(independent variables), the correlation between cytokine/chemokine expression (dependent 
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variable) and disease severity (independent variable), and the correlation between cardiometabolic 

protein expression (dependent variable) and disease severity (independent variable). 

4.2 R PACKAGES USED 

 All statistical analyses for this study were performed using the R programming language. 

A functionality of R that was instrumental to the data processing was the use of external R 

packages.  Packages are extensions of R that contain specific functions and data sets suited towards 

different needs, and can be downloaded from within the R program. After packages are 

downloaded onto the RStudio client, they can be called from a directory called “library”, which 

allows them be called for use. Further discussed below are the R packages used, and the role which 

each package played within the generation of the results.  

4.2.1 GLMNET – LINEAR MODELLING 

 The glmnet R package is a package designed for lasso and other generalized linear models 

to perform linear regression (r-project 2021). The glmnet R package was used to perform the 

generalized linear models that were required for the correlations. The package’s cv.glmnet 

function was used to predict the expression levels of each cardiometabolic protein based on Helper 

T 1, Helper T 2, and Helper T 17 cell immune profiles using 10-fold cross-validation. The model 

can be summarized by using the following equation: 

ௗ  

ଵଵ

ୀଵ

 

ଵସ

ୀଵ

 

ଵଷ

ୀଵ

 

 𝑦ௗ is a continuous variable representing the predicted expression of each 

cardiometabolic protein modelled by a weighted sum across the Helper T 1, Helper T 2, and Helper 
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T 17 cytokines and chemokines. The weights of the model, represented by 𝑎, 𝑏, and 𝑐, are 

estimated by the elastic net regularized linear regression. The best fit of linear predictions was 

calculated by Pearson correlation between the predicted and measured expression of each 

cardiometabolic protein. These predictions were then ranked among all 355 cardiometabolic 

proteins and were considered as a significant best fit if those predictions had an r value greater 

than or equal to 0.7, and an adjusted p-value less than 0.05. 

4.2.2 IGRAPH – NETWORK GENERATION 

 The igraph R package contains network analysis tools that are used in order to efficiently 

generate network graphs, which allow connections or correlations in data to be visually displayed 

(igraph 2020). The igraph R package was used to visualize the interaction between immune and 

cardiometabolic markers with a Pearson correlation r value greater than or equal to 0.7. The edges 

of the networks generated represent non-zero coefficients of the elastic net regression model with 

an absolute value greater than or equal to 0.05. This choice was to filter noise and very weak 

interactions. These generated networks were additionally color-coded by changing the color of 

certain vertices. 

 

Figure 4.1: Planned Network Cytokine and Chemokine Legend 
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 The color scheme, as displayed in Figure 4.1, allows for both positive and negative links 

between cytokine or chemokine and cardiometabolic protein to be identifiable, as well as clearly 

differentiating which Helper T cell the cytokine or chemokine is associated with. 

4.2.3 GGPLOT2 – BAR GRAPH GENERATION 

 The ggplot2 R package is used for creating graphics, with a high degree of customizability 

available to the user (tidyverse). It was used in this study to generate supplementary Pearson 

scatterplots and in addition to a bar graph displaying the number of both positive and negative 

links associated with the three studied types of Helper T cells and cardiometabolic proteins. 

4.2.4 DPLYR – GRAMMAR AND CONSISTENCY 

 The dplyr R package is used for data manipulation, and adds a consistent set of verbs to 

allow users to manipulate data in R more effectively. This was mainly a quality-of-life package 

used in the study, but was still important in isolating certain parameters of the markers, such as the 

subject ID, assay type, and normalized protein expression. 

4.3 LASSO REGRESSION 

 Lasso regression, or Least Absolute Shrinkage and Selection Operator regression, is a type 

of linear regression that is characterized by the use of shrinkage, where data values are shrunk 

towards a central point, often a mean (Great Learning 2021). This method encourages models that 

are less complex and have fewer parameters (Great Learning 2021). Lasso regression was used in 

the generation of the correlations between cytokine expression and cardiometabolic protein 

expression modelled in the heatmaps and networks. 
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4.4  SUPPLEMENTAL DATA GENERATION 

 Supplemental data tables were generated to contain the raw values of the results of the 

main analysis, in the form of the mean expression of each cytokine/chemokine and 

cardiometabolic protein for each of the three patient groups and the logFCH, FCH, and p-values 

for all comparisons between the groups. This was performed for both the COVID-19 Positive 

group and the COVID-19 Negative group, as to show the data that is mainly implicated in the 

generation of heatmaps and network plots. 

The logFCH and FCH values are numerical means of measuring how much a quantity 

changes between two measurements, which are the two compared patient groups 

(RDocumentation 2021). The FCH value is alternatively recorded in a logarithmic format with a 

base of two. The p-value is a statistic that refers to the likelihood of the data occurring under a null 

hypothesis, which is a hypothesis stating that there is no difference between the tested groups 

(Tanha et al., 2017). A significantly small p-value, a p-value less than 0.05, is considered ideal in 

confirming the differences between any of the major three comparisons: Deceased versus Non-

severe, Intubated versus Non-severe, and Deceased versus Intubated. 
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CHAPTER 5 

RESULTS 

5.1 HEATMAPS 

5.1.1 CYTOKINE AND CHEMOKINE HEATMAPS 

The cytokines and chemokines of the studied Helper T cell types were analyzed via 

heatmaps in both COVID-19 Positive and COVID-19 Negative patients, shown in Figures 5.2 and 

5.1, respectively. The heatmaps feature a color scale to display results, where a deeper red color 

correlates to increased cytokine or chemokine expression, and a deeper blue color correlates to a 

decreased cytokine or chemokine expression. The score is normalized to a z-scale, which is a color 

scale from -1.5 to 1.5 standard deviations from the mean, with a negative standard deviation 

meaning a standard deviation towards under-expression. This z-scale is displayed in Figure 5.3. 

In most of the Helper T 1 and Helper T 17 markers, an increasing trend in protein 

expression and COVID-19 severity was shown. This increasing trend has been displayed in over 

half of the Helper T 2 markers as well. Significant increases, as denoted by a p-value < 0.05, were 

found in a myriad of markers in deceased patients as compared to non-severe patients. These 

significant markers are IFNGR1, CCL3, CCL4, CCL5, CXCL9, CXCL10, IL1B, and IL2RA for 

Helper T 1 markers, CCL11, CCL13, CCL7, CCL24, and IL4R for Helper T 2 markers, and 

S100A12, S100P, CCL20, LCN2, PI3, CXCL1, IL17A, and IL6 for Helper T 17 markers. COVID-
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19 Negative patients did not display any significant increasing trends in deceased patients as 

compared to non-severe patients in the Helper T 1, Helper T 2, and Helper T 17 pathways. 

Figure 5.1: COVID-19 Group Marker Heatmaps 

Figure 5.2: Control Group Marker Heatmaps 

 

Figure 5.3: Heatmap Color Key 
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5.1.2 CARDIOMETABOLIC PROTEIN HEATMAP 

 

Figure 5.4: Significant Cardiometabolic Protein Heatmaps 
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 Of the 355 cardiometabolic proteins detected by the OLINK Explore Proteomics 

assay, 35 cardiometabolic proteins were significantly associated with COVID-19 severity in 

COVID-19 Positive patients, as judged by a fold change value greater than or equal to 2, and an 

FDF value less than 0.05 in any of the three comparisons: deceased versus non-severe, intubated 

versus non-severe, or deceased versus intubated.  

A heatmap, shown in Figure 5.4, was generated to display the estimated mean expression 

of the significant 35 cardiometabolic proteins stratified by COVID-19 severity. Notably, all 35 of 

the significantly expressed proteins were significantly increased in deceased versus non-severe 

COVID-19 Positive patient groups. Of the cardiometabolic proteins, LTBP2, RNASE3, CHI3L1, 

CSTB, RETN, GDF15, CXCL8, PLA2G2A, IL1RL1, and NADK all showed significantly 

elevated expression in intubated COVID-19 Positive patient groups versus non-severe patient 

groups. 

Additionally, a heatmap was generated for the 8 cardiometabolic proteins that were 

significantly associated with severity in the COVID-19 Negative group, as defined by the same 

criteria as the COVID-19 Positive significant cardiometabolic proteins. Notably, none of the 8 

proteins have yielded significance when comparing the deceased versus non-severe patient groups, 

and all of the 8 significant cardiometabolic proteins only displayed significance when comparing 

the intubated versus non-severe COVID-19 Negative patient groups. 

5.2 NETWORKS 

Network graphs were generated of the 186 expressed cardiometabolic proteins to display 

the interactions between the Helper T cytokines/chemokines and the cardiometabolic proteins. 

Figure 5.5 displays examples of some of these network graphs. The network graphs appear as 
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many small colored vertices, representing the Helper T cytokines and chemokines, connected to a 

large white vertex, representing a cardiometabolic protein. The vertices are all labelled as to 

identify the markers protein, and the colors on the cytokines or chemokines correlate to which 

Helper T cell that is associated with the cytokine or chemokine. 

 

Figure 5.5: Example Significant Networks 
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Interestingly, a majority of links involved in these network plots are positive connections, 

which means that the presence or expression of that cytokine or chemokine encourages the 

expression of the cardiometabolic protein. This suggests that increased production in cytokines 

and chemokines may stimulate the overall production of cardiometabolic proteins in response to 

COVID-19 infection, which may correlate to increased side-effects associated with these proteins. 

 

Figure 5.6: Overall Cardiometabolic Activation Network. 
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Figure 5.7: Overall Cardiometabolic Network Bar Graph 

Another network graph, shown in Figure 5.6, generated was to display all positive 

associations in a way to display the positive connections between cytokines or chemokines and 

cardiometabolic proteins. The size of the colored vertices, which represent cytokines or 

chemokines, correlate to the number of cardiometabolic proteins that the cytokine or chemokine 

is positively linked to. A bar graph, shown in Figure 5.7, was created to enumerate the number of 

positive, or activating, and negative, or suppressing, links between the cytokines or chemokines 

and cardiometabolic proteins of interest. 367 positive links and 122 negative links are associated 

with Helper T 1 cytokines or chemokines. 452 positive links and 90 negative links are associated 

with Helper T 2 cytokines or chemokines. 546 positive links and 91 negative links are associated 

with Helper T 17 cytokines or chemokines. The bar graph confirms that there are far more positive 

links and interactions, which supports the previous suggestion.  
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5.3 SUPPLEMENTARY DATA 

5.3.1 PEARSON CORRELATION PLOTS 

 

Figure 5.8: Pearson Scatter Plots 

As part of supplementary data, scatter plots of the cardiometabolic protein Pearson 

correlations were generated, which show how strong the correlation is between the predicted 

cardiometabolic protein expression and the actual cardiometabolic protein expression. These 

scatter plots, shown in Figure 5.8, were generated for every cardiometabolic protein investigated 

in the study. In Figure 5.8, there are the scatter plots of twenty of the twenty-three significant 
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cardiometabolic proteins correlated with severity. All of these scatter plots feature positive 

correlation, showing that the expression is expected and this helps confirm that the data is precise. 

The Pearson correlation coefficient, r, measures how well a prediction model fits, with all r values 

in the figure being greater than 0.7. The corresponding p-value is included for each protein as well. 

5.3.2 MEANS, logFCH, FCH, AND p-value TABLES  

 After the generation of visualized data forms such as heatmaps and networks, the rest of 

the data was put into tables, shown in Figure 5.9, 5.10, and 5.11, each concerning the Helper T 

associated cytokines or chemokines. The statistics displayed through these tables identify the mean 

expression of each cytokine or chemokine for each of the three patient groups and the logFCH, 

FCH, and p-values for all comparisons between the groups.  

 

Figure 5.9: Helper T 1 Marker Supplemental Data 
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Figure 5.10: Helper T 2 Marker Supplemental Data 

 

Figure 5.11: Th17 Supplemental Marker Data 

 



26 
 

 From this data, the process behind the generation of the heatmaps can be seen, as this data 

is used during the generation of the heatmaps. The p-values are valuable as well, as they show that 

some comparisons may not be as significant. A statistically significant comparison is represented 

by a p-value less than 0.05. From this it can be seen that while some comparisons are not 

statistically significant, but a large number are. 
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CHAPTER 6 

DISCUSSION AND FUTURE WORK 

6.1 SIGNIFICANT CARDIOMETABOLIC PROTEINS IN DISEASE 

 Of the thirty-one cardiometabolic proteins that were noted for significant correlation with 

COVID-19 severities, twenty-three have been highlighted as examples of cardiometabolic proteins 

associated with involvement in cardiovascular-related diseases or, in the case of the 

cardiometabolic protein GPR37, cardiovascular development.  

 LTBP2 has been identified previously as a marker associated with human heart failure (Bai 

et al., 2012). CHI3L1 levels has been correlated with severity levels in coronary (Ściborski et al., 

2020) and carotid atherosclerotic plaque (Michelsen et al., 2010) as well as stroke (Ridker et al., 

2014). Elevated GDF15 levels have been associated with higher risks in multiple cardiovascular 

diseases such as stable coronary artery disease, acute coronary syndrome, and heart failure (Kempf 

et al., 2009). Elevated CXCL8 levels have been found, in previous research, in cases of 

atherosclerotic plaque (Rus et al, 1996). SPP1 expression has been found to be higher in response 

to ischemia associated with stroke (Zhu et al, 2017), myocardial infarction (Muller et al., 2011) 

and peripheral artery disease (Koshikawa et al., 2009). FABP4 has been found to contribute to the 

development of atherosclerosis, and studies shown that lower levels of FABP4 protect against 

atherosclerosis to a degree (Makowski et al., 2001). 
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REG1A has been shown to have high levels of expression in heart tissue of patients who 

died of myocardial infarction (Kiji et al., 2005). TFF3 levels in sera have been linked to the 

prediction of major adverse cardiovascular events in (Obendorf et al., 2015) as well as being 

identified as a possible biomarker for myocardial infarction (Fernández et al., 2020). Il19 has been 

found to have an athero-protective effect, with higher expression levels resulting in lower 

atherosclerotic plaque lesion area in mice (Ellison et al., 2014). TNC has been previously linked 

to many cardiovascular diseases in humans such as pulmonary thromboembolism (Celik et al., 

2011) and hypertension (Schumann et al., 2010). IL1RL1 has been studied as a meaningful marker 

in cardiac disease, and found to have increased expression in the lungs in cases of heart failure 

(Domingo et al., 2018). IL1RL1, a protein associated with general inflammation and 

atherosclerosis, has also been shown to have significant upregulation in cases of both lesional and 

non-lesional Atopic Dermatitis compared to controls. (Pavel et al., 2019). CSTB has been 

identified as a relevant biomarker associated with chronic heart failure patients (Bouwens et al., 

2019). 

NTproBNP has been shown to be a reliable biomarker in diagnostic evaluation and 

outcome prediction in cases of acute heart failure, especially in dyspneic patients (Panagopoulou 

et al., 2013; Januzzi et al., 2006). One study suggested that NTproBNP been seen as “as S.O.S. 

signal” in heart failure, valvular heart diseases, pulmonary hypertension, and ACS. (Kimmenade 

et al., 2007). Higher IGFBP1 expression has been previously related to lessened cardiovascular 

risk factors and decreased presence of atherosclerosis in elderly patients (Janssen et al., 1998). 

RETN has been implicated as a risk factor for cardiovascular diseases in patients with type 2 

diabetes (Menzaghi et al., 2013). 
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RNASE3 studies shown that depletion of RNASE3 lead to development of heart 

disfunctions and induced apoptosis (Yamaguchi et al., 2004). DCN has been shown to play a 

protective role against cardiac diseases such as atherosclerosis and myocardial infarction, where 

DCN was found to reduce atherosclerosis development when overexpressed (Al Haj Zen et al., 

2006) and DCN was found to aid in proper fibrotic evolution in myocardial infarction (Weis et al., 

2005). Research has not yielded significant findings concerning the relations of GPR37 to 

cardiovascular disease, but GPR37 does play a role in cardiovascular development, with a study 

on mice finding GPR37 and GPR37L1 contributing to sexual dimorphism of central cardiovascular 

control, controlling blood pressure in females and assisting cardiovascular response in males 

(Coleman et al., 2018). 

IGFBP2 expression was investigated in a study on pulmonary artery hypertension, and it 

found that elevated IGFBP2 expression was associated with increased severity and mortality in 

pulmonary artery hypertension cases (Yang et al., 2020). ACTA2 has been implicated in 

cardiovascular disease, with a case study reporting how a mutation of ACTA2 led to pulmonary 

hypertension and persistent ductus arteriosus, implicating ACTA2 in a role of cardiovascular 

development (Meuwissen et al., 2013).  Another study on ACTA2 mutations found that ACTA2 

mutations can potentially lead to coronary artery disease, stroke, and Moyamoya disease (Guo et 

al., 2009). PLA2G2A elevated expression has been associated with calcific aortic valve stenosis 

in humans in previous research (Perrot et al., 2020). 

Two other notable proteins, NAD Kinase (NADK) and Myoglobin (MB), are also notable 

for the significant functions they perform within the body, even if they are not correlated in some 

way with cardiovascular disease. NADK plays a role in cellular energy as it helps convert the 

cellular energy carrier nicotinamide adenine dinucleotide (NAD) into its phosphorylated version 
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NADP. MB plays a role in oxygen transport to the mitochondria of muscle cells through the use 

of an iron molecule near the center of the protein’s structure. Both of these proteins are very 

essential to the body’s functions and so the implications of NADK overexpression being correlated 

to intubation and MB overexpression being correlated to deceased cases can be an interesting point 

for future study. 

In Figure 5.5, the networks of the twenty previously discussed proteins visualize what 

cytokines influence their expression. Notably, the most common Th1 cytokine influence by far is 

IFNGR1 present in seventeen of the twenty networks. The most common Th2 cytokine influences 

are CCL11 and CCL7, each being present in ten and eight, respectively, of the twenty networks. 

The most common Th17 cytokine influences include PI3 and LCN2, which both were present in 

ten of the twenty networks, in addition to IL6 which was present in eight of the twenty networks. 

The common cytokines or chemokines are significant as this information could illuminate what 

the key players are in the Helper T response with reference to cardiometabolic proteins. 

6.2 FUTURE STUDY 

After the recent publication of the researched described in this thesis (Michels et al, 2021), 

there are many paths that can be taken for future study. The same processing methods can be used 

on other datasets of COVID-19 Patients that have undergone the same OLINK proteomics assay. 

This would allow the results to be validated further or to see if there is a regional factor towards 

the body’s cytokine and chemokine content, as the original study data acknowledges that the 

research was performed on a large, urban population. While the groups are large enough for the 

results to be considered statistically significant, larger groups of study would provide more data of 

interest.  
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Another further point of study is to use this process on the more recent variants of COVID-

19, such as the Omicron and Delta variants, which have been rising in more recent outbreaks. 

These variants are characterized by higher transmissibility and lower lethality, which would 

postulate an interesting question as to if the results would differ from the original variant. The 

study of other variants would yield more information on how Helper T Cell cytokines and 

chemokines interact the cardiometabolic proteins and outcomes. 
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