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ABSTRACT

Bryce Little: OPTIMIZATION OF A STYRENE PRODUCTION AND SEPARATION

PROCESS (Under the direction of Dr. Adam Smith)

A step wise optimization of Unit 500 was completed. Unit 500 is a planned ethylbenzene
to styrene production plant that has a annual production goal of 100,000 metric tons of styrene.
The cost of styrene on the market is $1,598. The base case of Unit 500 produced styrene at a cost
of $2,650. Optimization was completed with an emphasis on parametric changes though material
of construction and heat integration were also considered. The optimized Unit 500 design
reduced the cost of styrene production to $2,035 per metric ton. While this represents a
significant improvement on the base case cost, it is not competitive with the market cost of
styrene. At this stage, purchase of styrene at the market rate is preferable from a financial
standpoint. However, risk analysis is required to better understand the implications of market
purchase. Additionally, further optimizations should be pursued on Unit 500 while alternatives to

the process currently described in Unit 500 for the production of styrene.
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Project Introduction

Unit 500 is a proposed production unit that makes styrene, the monomer of polystyrene.
This unit produces styrene by the dehydrogenation of ethylbenzene. A base case for this unit was
created to achieve a production rate of 100,000 metric tons per year. This base case was highly
unattractive from a financial perspective compared to the purchase of styrene. The Base Case
NPV of Unit 500 was approximately $(919) million. The cost to produce styrene was $2,650 per
metric ton. Styrene has a market price of $1,598 per metric ton. Though producing styrene was
more expensive than the purchasing, Unit 500 provided some key benefits such as control of
styrene supply that was not limited to styrene availability and qualities on the market. Unit 500
provided a greater level of control over the quality and quantity of styrene to produced. As such,

further analysis was completed on the base case in an attempt to improve the NPV of Unit 500.

A stepwise optimization was completed in order to increase the financial attractiveness of
Unit 500. The optimization of this process focused primarily on parametric variables in Unit 500.
However, material of construction and heat integration were also considered during the
optimization of the process. The goal of this optimization was to reduce the styrene manufacture
price per metric ton. The NPV was improved to $(534) million for an NPV savings of $385
million. This corresponded to a styrene production cost of $2,035 per metric ton. This is still
higher than the market price of styrene and Unit 500 remains unattractive from a financial
perspective. A risk analysis should be performed in order to quantify the risk associated with

market stability and ability to meet demand at required styrene quality. If the risk associated with



the market is greater, there may still be merit to the construction of Unit 500 in order to control

production and product quality.

Project Description

The goal of this project was to optimize Unit 500’s Base Case NPV in order to make it a
more financially attractive option compared to the alternative of the purchase of styrene on the
market. Unit 500 is an ethylbenzene to styrene production plant that can produce 100,000 metric
tons of styrene per year at 99.8 WT% purity. Unit 500 is designed to startup on January 1st, 2024
and operate at approximately 8,000 hours per year for a lifetime of 12 years. Unit 500 will use
the reversible dehydrogenation of ethylbenzene to produce styrene. This reaction is provided

below where R1 is the forward reaction and R2 is the reverse reaction.

CoHsCyHs & CoHsC,Hs + H, (R1/R2)

There are also two side reactions, R3 and R4, that occur. Both consume ethylbenzene as
raw materials. R3 produces benzene and ethylene. R4 produces toluene and methane. The

chemical reactions are as follows:

CoHsCy,Hs — CgHg + C,H, (R3)
CoHsCy,Hs + H, » CoHsCH; + CH,, (R4)
The reactions are further described by their rate equations which provide their activation
energies and can provide details to favorable conditions that maximize the particular reactions

discussed above.
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At the required 99.8 WT% styrene purity, there is risk of spontaneous polymerization at
temperatures greater than 125°C. This is complicated by styrene's normal boiling point as it is
higher than 125°C. As such, much of this process is run at vacuum. Spontaneous polymerization

is a much lower risk at lower styrene purities.

Description of Base Case Process

Fresh ethylbenzene is fed to the unit. This fresh stream meets recycled ethylbenzene from
the separation section of this process. The ethylbenzene is heated, and superheated steam is then
injected into the process line. This combined stream is then sent to the reactors where the
dehydrogenation reactions occur. There are two banks of five packed bed reactors. Each of the
five reactors are in parallel while the two banks are in series. The two banks of reactors are
separated by a heat exchanger that heats the effluent of the first bank of reactors prior to being
fed to the second bank of reactors. This is necessary as all of the reactions that occur are
endothermic and lower the available amount of thermal energy as they progress. Following the
second reactor is a set of three heat exchangers that cool and begin to condense the process
stream. The partially condensed stream is fed to a three-phase separator where the different
phases: liquid aqueous, liquid organic, and organic vapor are separated from one another. The
liquid aqueous phase is removed as wastewater. The organic vapor stream is removed to an

overhead fuel gas stream. The liquid organic stream contains majority of both styrene, the



desired product, and ethylbenzene, the raw material. It also contains toluene and benzene from
the non-desired reactions. This liquid organic stream is sent to a set of two distillation columns.
The first of these columns separates benzene, toluene, and any higher volatility components still
within the stream from the ethylbenzene and styrene. The benzene and toluene distillate are sold
as off products from this system. Some of this distillate is also sold as fuel gas. The bottoms of
this first tower, primarily ethylbenzene and styrene, is sent to the second tower where
ethylbenzene is separated as the distillate and recycled. The styrene bottoms stream is 99.8 WT%
purity and is our final product. It is important to assure that the final product stream remains
below 125°C as there is high risk of spontaneous polymerization if the stream is heated above

this temperature. A PFD is provided in Appendix A.

A sensitivity analysis was performed for the base case in order to determine the
sensitivity of the process to changes in various conditions. The process is most sensitive to the

cost of raw material, the price of styrene, and to a lesser extent the associated equipment costs.
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Figure 1: Sensitivity of Unit 500 Base Case



This chart indicates that raw material utilization is one of the most important

considerations on the NPV of this project.

Description of Optimization Process

A base case for Unit 500 was previously completed and reported upon. In this section of
the project, an optimization and economic analysis was completed. The optimization was
completed using “PRO/II Process Simulator” and the “Unit 500 Economic Model” Excel
workbook. The optimization for this project was completed as a stepwise optimization moving
from unit operation to unit operation within Unit 500. The variable being optimized was
compared against values on either side of the base case value. Values were then tested until a
value was found for an NPV maxima or a process constraint was reached that prevented further

test values in the direction of improved NPV.

Only a single round of stepwise optimization was completed for this section of the
project. While many optimizations focused on parametric changes to the unit operations, both
material of construction and heat integration were also considered. NPV graphs have the tested

values for each variable, the base case value is noted in red on these graphs.

Initial Material of Construction Optimization

The initial material of construction for the towers was specified in the base case as
titanium. It was investigated to determine if other materials of construction would be sufficient
for this process. It was determined that the tower material of construction would be changed to
stainless steel and NPV improved by $74 million. Later analysis would be conducted for the use

of carbon steel. This will be discussed later in “Final Tower Material of Construction Change.”



Reactor Optimization

Reactor optimization focused on improving NPV by manipulation of the reactor that
influenced equipment sizing and raw material utilization. Yield and selectivity increases allow
for less raw material to be used in the production of the desired amount of styrene. Increases in
the achieved conversion in the reactors allows for a reduced amount of recycle which grants
savings in equipment costs. These are generally opposed within this reaction scheme and

improvements in yield and selectivity are generally accompanied by losses in conversion and

vice versa.

Inlet temperature to R-501 was decreased from 523°C to 516°C. This temperature was
found to best balance the selectivity and conversion considerations, however, further review
found that 516°C was a local maximum. This is further investigated in “Review of Selected

Variables.” It should be noted that the value on the NPV charts in red is the initial process value.
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Figure 2: NPV vs R-501 Inlet Temperature
Steam was injected into the stream entering the reactors to increase the temperature and
provide dilution. The added steam impacts the concentrations in the reactor influencing the

reaction rate. The steam dilution was decreased from 3,900 to 3,700 kmol/hr. The steam dilution
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for R-502 was not explored because the steam was added before the reactors. This variable was

analyzed further in “Review of Selected Variables.”

(830.0) (832.6) (832.4)
(835.0) 838.3)

400 844.8)
(845.0)

(850.0)

(855.0)

NPV (Millions S)

(860.0)
(865.0) (866.5)

(870.0)
3400 3500 3600 3700 3800 3900 4000 4100 4200

Steam Dillution (kmol/hr)

Figure 3: NPV vs Steam Dilution

Reactor R-501s volume was decreased from 83 m> to 76 m>. R-502 was also changed at

this time as it was not realized that the R-502 was defined on the basis of R-501 volume at this

point.
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Figure 4: NPV vs R-501 Reactor Volume



The Length to Diameter (L/D) ratio impacts the pressure drop inside the reactor. The L/D
ratio for R-501 was reduced from 2.74 to 2.55. The ideal ratio is closer to 2, however, due to a
clerical error the 2.55 ratio was used. This error was later discovered but due to ongoing
optimization a ratio of 2 was less ideal than the 2.55 ratio in use. This unfortunately likely

impacted the possible amount of NPV improvement.
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Figure 5: NPV vs R-501 L/D Ratio

Inlet pressure was then investigated. Pressure impacts the partial pressures of the

components and subsequently the rates of reaction. The inlet pressure for R-501 was increased

from 190 to 210 kPa.
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The R-502 inlet temperature was decreased from 575°C to 555°C.
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Figure 7: NPV vs R-502 Inlet Temperature

Inlet pressure in R-502 showed NPV improvement when the pressure was increased from
185 to 195 kPa for R-502. However, the cost of the compressor to increase the pressure was

found to have a more negative impact on NPV than any savings from pressurization.

R-502’s volume was found to be best for the NPV at the volume previously set by the R-

501 reactor optimization, 76 m?.
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As in R-501, a minimized L/D ratio was found to be best for NPV. In R-502, L/D ratio

was reduced to 2 and was the lower limit on L/D ratio in this process.
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Figure 9: NPV vs R-502 L/D Ratio
Pre-Separation Optimization

The pre-separation section cools the effluent of the reactor section. This allowed for
investigation of the impact of temperature on the operation of the three-phase separator. By

reducing the temperature of the pre-separation stage, less ethylbenzene and styrene was lost to



the fuel gas stream from the three-phase separator. Due to the cooling limits of cooling water
(CW) preventing further optimization, refrigerated water (RW) was added to the third heat
exchanger of the pre-separation. This change offset any gains from ethylbenzene and styrene
recovery due to increased utility cost of RW (orange dot in figure 11). To reduce the amount of
refrigerated water utility needed, an additional heat exchanger using CW was added to reduce the
utility cost. RW was then used to cool the stream to 25°C. Unfortunately, the stream could have

been further cooled to 10°C. This is further discussed in “Review of Selected Variables” detailed

later.
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Figure 10: NPV vs Pre-Separation Temperature

Separation Optimization

Separation optimizations focused on the operation of the towers. The three-phase
separator was not analyzed in this section as its operating temperature is controlled by the pre-
separation stage of the process. The optimization of the towers included an analysis of top tray
pressure, number of trays, and feed tray location for the towers. Each of these variables will have
an impact on the operation of the tower. Top Tray Pressure changes the operation of the

compressor and changes the reflux ratio changing the size of the column. The number of trays
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changed the number of equilibrium stages within the tower. This changes the ability of the tower
to achieve the separation and the required reflux ratio to achieve the desired product purity. The
feed tray location refers to the tray on which the feed should enter the tower. This tray’s

characteristics should match the quality and composition of the feed stream.

T-501 was the first tower to be optimized. The ideal top tray pressure was found to be 46

kPa. The change in top tray pressure impacts the volume of the vapor flowing through the tower

as well as the utility costs associated with condensing.
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Figure 1111: NPV vs Top Tray Pressure

Following top tray pressure, the number of trays was optimized and the ideal number of
trays was 32. Tray number changes the number of equilibrium stages. An increase in the number

of stages allows for easier separations but comes incurs increased tower costs.
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Figure 12: NPV vs T-501 Number of Trays

The feed tray location was then adjusted. The feed tray was moved from tray 8 to 9 and

the change was minimal in its impact on NPV.
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Figure 13: NPV vs T-501 Feed Tray Location

T-502 was also analyzed, though focus was on the number of trays and the feed tray

location. Top tray pressure increases would increase the temperature at the bottom of the tower

12



increasing the risk of violating the 125°C polymerization temperature. Decreases in the top tray

tower pressure were unattractive as they would increase the vapor volume in the tower and

require a larger capital investment.

T-502 number of trays decreased from the base case value of 70 to 66 trays.
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Figure 14: NPV vs T-502 Number of Trays

The feed tray location was moved from tray 25 to tray 31.
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Review of Selected Variables

Several variables were reviewed after completing the first round of optimization. Inlet

temperature to R-501, steam dilution to R-501, and the temperature of the feed to the three-phase
separator.

The temperature of R-501 was tested once more with larger deviation from the base case

values. Further savings were found by increasing the temperature from 516°C to 540°C.
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Figure 16: NPV vs R-501 Inlet Temperature

The steam dilution was also tested for any additional savings and improvement was

found by adjusting the from 3700 kmol/hour to 4500 kmol/hour of steam.
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As mentioned in the pre-separation section of the paper, the pre-separation stage was
previously only investigated to 25°C. It was later realized that 15°C could be achieved using RW
and an analysis was completed. Moving from 25°C to 15°C improved NPV by ~$21 million to
bring NPV to $(586) million. It should be noted that RW has an approach temperature of 5°C
and 10°C is the true limit for the process stream temperature for using RW utility. (Turton,
Shaeiwitz, Bhattacharyya, & Whiting, 2018) This was not known until after completion of the

analysis and was not investigated but likely presents further opportunity for NPV improvement.

The various heat exchangers in the process were then sized using zone analysis. This
resulted in an NPV increase of about $3 million to ~$(583) million. Any further analysis after

this point used zone analysis and is reflected in the NPV calculation.

Compressor Optimization

The fuel gas compressor in the base case used a compression ratio that exceeded heuristic
recommendations. (Turton, Shaeiwitz, Bhattacharyya, & Whiting, 2018) Due to this high ratio,
the compressor was expensive to purchase and operate. To address this, an intercooler and an

additional compressor were added to reduce the per stage compression ratio and to approximate

15



isothermal compression. This allows for improvement as isothermal compression is more
efficient than isochoric compression at compression ratios greater than 2 to 4. (Turton,
Shaeiwitz, Bhattacharyya, & Whiting, 2018) This change allows for proper compression of the
fuel gas while decreasing the cost. Through the addition of the second compressor and

intercooler, the NPV was increased by $7 million to $(579) million.

Final Tower Material of Construction Change

After review of material compatibility matrices and discussion with the management
team. The decision was made to move from stainless steel towers to carbon steel towers. This
improved the overall NPV by an additional $40 million to $(539) million. Though, there are no
noted issues with the use of carbon steel in these towers, a material expert should be further

consulted on this decision.

Heat Integration

Heat integration uses process streams to either heat or cool a stream instead of using
utilities. The primary location for heat integration in the process was to use the reactor effluent in
E-501 to preheat the reactor feed stream. This also serves to cool the reactor effluent and further

reduced the cost of utilities. This optimization improved the NPV to $(534) million.

The Optimized Design Description

After the completion of the optimization process, there were little changes to the
overall process layout. The stream from the reactor effluent was fed into heat exchanger E-501
reducing the utility usage. The addition of heat exchanger E-510 with refrigerated water reduced
the outlet temperature of the pre-separation. Finally, compressor C-502 and heat exchanger E-

511 were added. Compressor C-502 was added to reduce the per stage compression ratio. The

16



heat exchanger was used as an intercooler between the two compressors to help approximate
isothermal compression. A PFD of the final process with changes from base case in red is

available in Appendix B.

Community, Environmental and Government Considerations

This project is also dependent on a number of key issues outside of the operations of the
plant. There are many things to consider such as community support for heavy industry,
environmental considerations, and the ability to gain key advantages from local and national
governments. With regards to community support, movements such as “Not in My Backyard”
(NIMBY) have been instrumental in blocking key development projects in a number of major
cities. This is important as it may present challenges to development of Unit 500 as well as any
relevant infrastructure that will be needed for Unit 500°s successful operation. Conversely areas
that would benefit heavily from the economic impact of these operations may be highly willing
to accept Unit 500’s build plans. Similarly local environmental regulations should be considered
when deciding the location of Unit 500 as the nature of the process is within the realm of
chemical processing. A variety of the chemicals that occur in the process are harmful to the
environment if containment is lost. This will likely limit the plant to a less populated areas and
those with poor environmental protections. Finally, the willingness of local governments to
support Unit 500’s construction and continued operation should be considered. If the project is
opposed, it could make implementation and continued operation unlikely. Support for the project
could be highly beneficial and reduce the tax burden on the project and aid in the approval of

necessary infrastructure improvements and projects necessary for successful operation.

The availability of styrene both now and in the future should also be investigated to

ensure that there will be enough to meet corporate needs if the decision is made to purchase
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rather than build. Similarly, an analysis should be performed involving the liabilities associated

with plant ownership.

Process Safety Considerations

Though early in the design process, safety should be considered. Noted issues include,
but are not limited to, flammable materials, dangerous chemicals, high pressure associated with
the injected super-heated steam, high temperature in R-501 and R-502, vacuum pressure, and
rotary equipment. Further analysis is required to ensure proper understanding of process safety if
the project proceeds. These early concerns will mainly be addressed with proper design
practices. Equipment should include all necessary flame suppression equipment and explosion
venting. Care should be taken to eliminate possible ignition sources. Equipment and piping
should be properly grounded and bonded. Exposure to the process chemicals should be limited
and levels monitored through the process environment. Immediately address any loss of
containment and conform to any reporting protocols. Controls should be implemented to ensure
control of temperatures and pressures. Pressure and vacuum relief systems should be added,
though care should be taken to not introduce oxygen as the components are flammable. Also,
proper guarding and protection surrounding all pumps, drives, and rotary equipment should be
incorporated in the design. Standard operating procedures should be developed, and training
planned for all site personnel. Finally, proper PPE should be selected to protect operators from

exposures and general workplace injury.

Final Report Recommendations

After completing the optimization of Unit 500. The Unit 500 NPV is $(534) million and
the production cost of styrene is $2,035 per metric ton. As mentioned previously, the market

price of styrene is $1,598 per metric ton. It is recommended that any issues mentioned in the
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optimization above be addressed, other options be considered, and a market risk analysis be

performed, while halting major work on Unit 500.
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Fluidized Bed Reactor Analysis

Analysis was completed on a fluidized bed reactor (FBR). This reactor used the
previously described reactions, R1-R4, and respective rate equations for Unit 500. The objective
of this reactor was to convert ethylbenzene to styrene while maximizing the achieved selectivity
of ethylbenzene to styrene. This analysis was completed using PRO/II Process Simulator. This

analysis was completed using constraints given in the table below.

Table 1: Tested Constraints of Reactor

Limits for
Constraints | Constraint | Units
L/D Ratio 2to 10
Inlet Feed
Pressure 0.75t0 5 Bar
Inlet Feed
Temperature | 300 to 700 | °C

The stream entering the reactor was composed of the following components:

Table 2: Reactor Feed Composition

Components Flow (kmol/hr)
H>O 8000.00
Ethylbenzene | 512.70

Styrene 1.20
Benzene 1.80
Toluene 2.13
Total 8517.83

20



Background Information

Fluidized bed reactors operate by using fluid velocity to suspend catalyst in a fluidized
state. Once the fluid velocity is sufficiently high, such that the drag force applied by the fluid
equals the gravitational force, the particles are said to be fluidized. This fluidization allows for
greater heat transfer than many other reactors, such as packed bed reactors and plug flow
reactors, as the particles are more capable of carrying thermal energy than vapor. This allows the
fluidized bed reactor to operate at nearly isothermal conditions. The increase in heat transfer
prevents runaway exothermic reactions and prevents endothermic reactions slowing their rates
through consumption the available thermal energy. Fluidized beds also lack the associated
downtime of packed bed reactors as FBRs require large amounts of time to ensure proper
catalyst filling. However, fluidized beds are prone to loss of catalyst due to fluidization, poor
scalability, and reduced mass transfer due to bubble creation in the operation of the FBR.

(Cocco, Karri, & Knowlton, 2014)

FBR Optimization

The FBR was modeled in PRO/IIL. To model bubbling in the reactor system, a 10%
bypass was used. Bubbling within the reactor limits conversion to 90%. Besides the constraints
mentioned previously in table 1, the conversion should be at least 5% and the superficial gas
velocity should be limited to between 3 and 10 times the minimum fluidization velocity, Umf. Umf

may be calculated using equation 1, the Wen and Yu Correlation:

Repmy = "L = [1135.69 +0.040847]°% — 337 (1)

where dj, is catalyst particle diameter, py is the gas density, g is the gas viscosity, and Ar is the

Archimedes number. The Archimedes number is described by equation 2:
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3 —
Ar = dp(ps Zg)pgg (2)

Hg
where ps is the catalyst density, and g is acceleration due to gravity.

Using these equations, constraints, and the optimizer function in PRO/II, the analysis for

the FBR was completed. The optimum conditions for this system are given in the table below:

Table 3: Optimized Conditions

Condition Value | Unit
Feed Temperature 488 °C
Feed Pressure 3.6 Bar
Reactor Volume 196 m’
Reactor L/D 2

Inlet Velocity 1.9 m/s
Outlet Velocity 23 m/s
Minimum

Fluidization

Velocity 0.4 m/s

The selectivity was maximized to 12.0 at the minimum required conversion within the
reactor. This is in agreement with analysis previously completed on Unit 500 as it was noted that
selectivity and conversion were generally in opposition to one another for this reaction scheme.
While this selectivity is much greater than the optimized overall selectivity from the analysis of
Unit 500, 2.25, and will greatly reduce the fresh ethylbenzene that must be feed to achieve the
required. However, it should be noted that the FBR’s conversion is 5% compared to 28%. This
will have implications on the size of downstream unit operations as it will require a very large
recycle to produce the required rate of styrene. Outside of the implications for the tower, analysis
would need to be completed to price the reactor, the replacement schedule of catalyst, the

internal heat exchanger utility costs, and the implications of this change for the separation
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section of Unit 500. While there is likely to be an increase in costs associated with the reactor
section of Unit 500, savings in capital costs from the separation section and improvement in raw

material utilization warrant further investigation into the financial impacts of FBRs on Unit 500.
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Appendix A: Base Case PFD
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Appendix C: Updated Stream Tables

Refer to Excel Workbook “Unit 500 Economic Model” for improved readability of

Appendices C-F.

Stream No. 1 2 | 3 a_ | 5 5 7 B 3 10 11 12
|Temperature [°C) 13600 10612]  217.00 15858 81250 81250 81250 81163 54054 51356 555.00 538586
|Pressurs (kPa) 230.00]  230.00]  210.00 600.00 565,00  565.00 £65.00 210.00 210.00) 194.16 172.16 157.06
|Vapor Mole Fraction 0.00 0.00] 1.00 100 1.00 1.00 1.00 1.00 1.00] 100 1.00 1.00
[Total Flow (kg/h) 1935163 | 65415.05 | 65419.05 | 13613455 | 13613455 | 5506579 | 3106876 | 8106876 | 14648781 | 146487.23 | 14648723 | 14648723
{Total Flow (kmok/h) 183.00] 61693 61698 755662]  7556.52] 305662] 4500.00] 450000]  511698] 513367 519567  s25884
Component Fiows
|Water 0.00 0.00] 000 755662  7556.62] 305662) 450000 450000] 450000 450000  4500.00]  4500.00
[Eshylbenzene 179.34] 61176  61L76 0.00 0.00 0.00 0.00 0.00 61176 517.96 517.26 437.73

0.00 1.22] 122 000 0.00 0.00 0.00 0.00 122 75.40 75.40 12183
0.00 0.00] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 £3.08 63.09 5245
183 183 183 0.00 0.00 0.00 0.00 0.00 183 1034 1034 23.05
|Toluene 183 217 217 0.00 0.00 0.00 0.00 0.00 217 13.27 1327 3433
|Eshylene 0.00 0.00] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 851 351 21726
[Methane 0.00 0.00] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1110 1110 3216

Stream No. 13 14 15 16 17 18 13 20 21 22 23 24
|Temperature (*C) 270.00]  180.00] 15.00 15.00 15.00 15.00 11955 15.02 50.15 12275 50.80 12360
|Pressurs (kPa) 15206)  137.06  107.06 107.06 107.06]  107.05 104.88 50.00 36.00 £6.00 25.00 £5.00
[Vapor Mole Fraction 100 1.00 0.03 1.00 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00
[Total Fiow (kg/h) 14648724 | 1464987.84 | 196487.84| 140623 | 6410611 | 80975.45 | 181766 | 6310611 | 505189 | 5863160 | 46067.42 | 12564128
|Total Flow (kmoi/h) 505285 525885 525885 14313 621.13| 449458 15171 62113 57.88 55461 433 38 12063
{Component Flows
|water 4500.00]  4500.00] 450000 223 322] 34%aas 336 332 053 0.00 0.00 0.00)
| 437.74| 437794, 43774 .68 075 437.03) 430 432.66 432.42 0.24

“12183]  17183] 12183 012 012 12171 010  171s1 B 12033

5245 3845 8845 8833 88.95 012 0.00 0.00 0.00 0.00)

23.09 23.09 2.09 032 75 22.69 20.33 0.00 0.00) 0.00

3433 3833 3433 017 146 3413 3250 034 034 0.00

2126 21.26] 21.26 1961 2120 164 0.05 0.00 0.00 0.00)

3218 | 32.16 3154 321 058 0.00 0.00 0.00 LY

3 % | o S 73 30 31] 32 3 34 35 38

{Temperature [°C) 700.00 5018]  120.35 15.01. 93.04 50.00 15.40 14.88 30.00 5565 204.00 43460

|Pressure (kPa) S50.00|  200.00]  200.00 200.00 230.00 46.00 46.00 46.00 122 06, 104.88 23313 167.06

|Vapor Mole Fraction 100 0.00] 0.00) 0.00 0.00 100 1.00 1.00 0.03 1.00 100 1.00)
[Total Flow (kg/h) 5506579 | 506183 | 1256418 | 2097660 | 4606742 | 41142 | 181765 | 140623 | 14648784 | 181766 | 181766 | 146487.29

[Total Flow (kmat/h) 3056.62 s788]  12063] 443465 43358 858 15171 14313| 525885 15171 15171| 525884

| Componant Flows

Water 3056.62 0.53] 000 443455 0.00 257 426 229] 450000 435 485]  4500.00

|Ethylbznzene 0.00 2.30] 0.24) 0.03 13242 0.07 0.75 0.58 437.74 0.75 0.75 437.73

|Styrene 0.00 010 12039 000 122 0.00 012 0.12 12183 012 0.12 12183

| 0.00 0.00] 0.00) 0.00 0.00 0.12 £2.45 88.33 28.45 58.45 88.45 £2.45

0.00 2033 0.00 0.00 0.00 236 275 0.39 23.05 275 275 23.09

0.00 32.50] 0.00 0.03 034 129 136 0.17 34.33 145 145 3433

0.00 0.05] 0.00 0.00 0.00 155 21.20 1361 2126 2120 2120 2126

|Methane 0.00 0.00] 0.00 0.04 0.00 058 3211 3154 32.16 3211 3211 3216
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Appendix D: Utility Tables

Exchanger E-501 E-502 E503 E504 E-505 E-506 E-507 E-508 E-500 E-510 E-511
In hps b bfw RW = cwW = cW oW cw

Out bfw s IS AW bfw b CW W cwW

Temp G 254 8125 115 115 5 160] 30 160 30 30 30
Pressure (Barg) a1 263675 0.68675 0.68675 101 5 101 5 1.01 1.01 101
|Rate (ke/h) 21,001 55,066 183 617 - 14,004 398,787 56,585 | 1,935,193

|Rate (vT/n) 21.00 55.07 0.18 0.62 - 14.00 389.79 56.58 | 1,935.18

|Rate (Mi/hr) 35577.1 14369.4 519414 25878.4) 122411 29154.3 16633.5 117813 120642.4[ 2555904 2789
|Rate (Gi/nn) 355771 143694 51.9414 25.8784) 122411 29.1543 16.6335 117.813| 120.6423| 2555904] 02788
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Appendix E: Equipment Table
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Appendix F: Income Cash Flow
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