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ABSTRACT

The aim of this thesis is to explore causal set theory (CST), which proposes that at the

smallest level of spacetime, discrete entities known as “spacetime atoms” are causally related to

one another, forming the basis for understanding quantum gravity. While theories such as general

relativity that operate on a continuous manifold are more appropriate when dealing with the universe

on a large scale, it is crucial for the discrete causal points in CST to maintain their causal structure

during the continuum approximation to ensure consistency with general relativity. One way to

preserve the causal structure is to accurately embed the set of causally discrete points (known as

a causal set) into a Lorentzian manifold, resulting in manifoldlike causal sets. The thesis will

investigate the dynamics of manifoldlike causal sets through two distinct approaches to calculating

action: layers and chain. The layer action, known as the Benincasa-Dowker action, introduces a

discrete non-local operator, which is represented as a linear combination of various layer elements,

aims to find the solution for the action. On the other hand, the chain action explores the distribution

of 𝑘-chains to determine the action. The thesis will explore potential enhancements to the existing

chain action calculation, particularly by incorporating higher-order terms of scalar curvature in the

derivation.
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CHAPTER 1

INTRODUCTION

1.1 Birth of Quantum Gravity

Gravity, one of the earliest observed phenomena in the universe, remains one of the least

understood to this day. Einstein’s groundbreaking work, “The Foundation of General Theory of

Relativity,” published in 1915, presents the most consistent theory of gravity in accordance with the

experimental observations and is widely accepted by many physicists in the present era. According

to this theory, gravity is the manifestation of the curvature of spacetime. The paths of objects are

determined by the curvature of spacetime. The spacetime is described as a Lorentzian manifold

endowed with a metric tensor. The field equation governing the evolution of the metric is given by:

𝑅𝜇𝜈 −
1
2
𝑅𝑔𝜇𝜈 + Λ𝑔𝜇𝜈 =

8𝜋𝐺
𝑐3 𝑇𝜇𝜈 (1.1)

Here, 𝐺 is Newton’s gravitational constant, 𝑅𝜇𝜈 and 𝑅 represent the Ricci tensor and scalar

respectively, 𝑔𝜇𝜈 is the metric tensor, 𝑐 is the speed of light, Λ represents Cosmological Constant,

and 𝑇𝜇𝜈 represents the energy-momentum tensor.

As refered in Ref.1, this theory has successfully predicted phenomena such as the existence

of black holes, the behavior of planets in their orbits, gravitational waves, and the bending of light

due to gravity with great precision. However, despite its many successful predictions, the theory has

significant limitations. It not only permits singularities but also deems them inevitable in certain

real-world scenarios, necessitating a thorough comprehension of them for a complete understanding

of spacetime’s nature. While some physicists view the prediction of singularities as an excellent

chance to explore uncharted territories and expand our knowledge of the physical world, most
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believe it indicates inadequacies in the theory’s ability to model such behavior. This is because

they believe that our physical world does not exhibit singularities. In general relativity, singularities

occur when a particle’s path in spacetime becomes incomplete or unextendible, disappearing from

spacetime after a finite amount of time. It’s as if there’s a rip in the fabric of spacetime, causing any

path passing through it to fall in and vanish. If we were to ask what causes the path’s incompleteness,

we would have to refer to the geometry of spacetime, especially its curvature. It seems that near

the singularities, the local measure of curvature seems to approach infinity, which is evident when

measuring curvature near black holes. These spacetime singularities predicted by general relativity,

whether attributed to path incompleteness or infinite curvature, are not physical and are leading the

theory towards its own demise.

While some physicists argue that spacetime singularities are real, they remain hidden

behind event horizons, making them inaccessible to external observers. General relativity also

predicts unbounded “naked singularities” that are available to outside observers. One type of these

singularities is the “white hole” or time-reversed black hole. Roger Penrose has stated that these

objects are nonphysical and violate the laws of thermodynamics. All of these phenomena suggest

that to investigate black holes or the Big Bang, one must either improve the current assumptions

made in general relativity or find a replacement theory.

It is worth exploring what might have gone wrong with the theory of relativity. The theory

posits that the universe can be represented as a spacetime manifold with a metric that is shaped

by the distribution of matter in the spacetime. This is a classical theory that assumes physical

quantities have definite positions and momenta defined by real numbers. However, the behavior of

matter-energy and their interactions is inherently quantum mechanical. The classical theory can

be applied at a macroscopic scale because quantum fluctuations are insignificant. However, when

we try to apply it to extremely small scales, it fails because we can no longer disregard quantum

effects. Therefore, to study such extreme conditions, we need a quantized theory of gravity. One

method is to quantize the gravitational field similarly to how we quantize the electromagnetic

field. However, this approach comes with significant challenges such as non-renormalizability and
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the inability of perturbative methods. These difficulties arises because while quantizing gravity

we need to consider quantum fluctuations in spacetime itself. For instance, the theory of quantum

electrodynamics assumes that there is a classical background or spacetime against which all quantum

fluctuations are measured. This approach makes it possible to renormalize the quantization process.

However, if we tried to quantize the background/spacetime itself, it would be difficult to interpret

the fluctuations of spacetime. This is because if the metric of spacetime fluctuates, it would imply

fluctuations in the causal structure and ordering of events. This would then make it impossible

to define equal time commutation relation in quantum field theory. Therefore, the difficulty of

unifying the two essential foundations of physics, namely quantum field theory (QFT) and general

relativity (GR), was realized.

Looking back at the history of physics, it becomes clear that progress in the field has always

required unification of different forces. The integration of major basic forces has had a signifi-

cant impact on the advancement of physics, as demonstrated by the unification of electricity and

magnetism through Maxwell’s equations and the integration of electromagnetism with Newtonian

mechanics to develop special relativity. Dirac further unified quantum mechanics with special

relativity to create quantum field theory. These successful unifications have led to the recognition

of four fundamental forces of nature: strong force, weak force, electromagnetic force, and grav-

itational force. The continued progress in electro-weak theory and previous unification theories

suggests that physics must keep striving for further unification. The remaining task is to unify the

gravitational force with quantum field theory, which has led to the creation of a new field known as

”Quantum Gravity”.

According to David Reid, ”Quantum Gravity is a theory that describes the structure of

spacetime and the effects of spacetime structure down to sub-Planckian scales”.

We will discuss one of many approaches to quantum gravity known as ”Causal Sets Theory”

in the next section.
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1.2 A Promising History Behind Causal Sets Theory

One of the consequences of special relativity is the realization that space and time are not

separate entities but are part of a single construct known as spacetime. By considering spacetime

as a Lorentzian manifold equipped with a metric tensor, the concept of local lightcones and causal

structure emerged. The spacetime interval between two events depends on the metric tensor and

determines which event qualify as causal, null, or spacelike related.

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 (1.2)

Here, 𝑔𝜇𝜈 is the metric associated with the spacetime. In Lorentzian signature (−,+,+,+),

if the spacetime interval between two events is timelike (𝑑𝑠2 < 0), they are causally related. On

the other hand, if the spacetime interval is spacelike (𝑑𝑠2 > 0), the two events are not causally

related. The metric is used to recover the causal relationship between events, and as stated in the

previous section, quantization of spacetime refers to quantization of this metric. But, what if the

metric is not a fundamental property of spacetime but rather an emergent property? What if we

start by considering causal relationships and calculate the metric from there? If we take causal

relationships as the starting point instead of the metric, then it would mean that the quantization of

spacetime would be the same as quantizing the causal structure of spacetime. This is the approach

of CST, which takes the causal structure of spacetime as the starting point for quantization, rather

than the metric.

To characterize the spacetime based on its causal structure, it can be represented as a partially

ordered set (poset) consisting of all events or points in the spacetime along with their causal relations

(𝑀 ,≺). This is known as a continuum causal poset. The main question is whether this continuum

causal poset contains the same information as the metric of the spacetime. As mentioned in Ref.2,

Zeeman in 1964 demonstrated in his paper titled “Causality Implies the Lorentz group” that the

Lorentz group arises naturally from the idea of causality. He showed that causal relations alone may

be sufficient to recover the Lorentzian manifold. This concept was further developed by Malament
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in 1977 through the Hawking-King-McCarthy-Malament theorem (HKMM).

The HKMM theorem states that: If a causal bijection exists between two 𝑑-dimensional

spacetimes which are both future and past distinguishing, then these spacetimes are confor-

mally isometric when 𝑑 > 2.

In other words, if the causal structure of two spacetimes is the same, then they must also

be conformally isometric, meaning that they are the same up to a conformal factor that encodes

the volume of space. Therefore, the continuum causal poset carries the same information as the

metric of the spacetime up to a conformal factor. However, since the continuum causal poset is

uncountably infinite, it cannot represent volume. To solve this issue, we can use a discrete causal

poset that is locally finite and can represent volume as the total count of its elements. The discrete

causal poset just mentioned above is what we call “Causal Sets” and the theory of these causal sets

is called“Causal Sets Theory”. The formal definition of CST by Bombelli et al Ref.3 is followed in

the next section.

1.3 Causal Set Hypothesis

To mathematically investigate the features of spacetime in terms of its causal structure, we

need to establish a framework for causal sets. The basis of this framework is formed by defining

axioms for causal set theory. With the help of these axioms, we can define causal sets as:

1.3.1 Definition

A locally finite partially ordered set with an order relation (≺) is called a causal set (𝐶,≺)

if it satisfies the following properties:

Anti-Reflexive: ∀𝑥 ∈ 𝐶, we have 𝑥 ⊀ 𝑥.

Non-Circularity: ∀𝑥 and y ∈ C, we have 𝑥 ≺ 𝑦 and 𝑦 ≺ 𝑥 implies 𝑥 = 𝑦.

Transitive: ∀𝑥, 𝑦, 𝑧 ∈ 𝐶, we have 𝑥 ≺ 𝑦, and 𝑦 ≺ 𝑧 implies 𝑥 ≺ 𝑧.

Locally finite: ∀𝑥, 𝑧 ∈ 𝐶, we have |𝐼 (𝑥, 𝑧) | < ∞.
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Here, 𝑥 ≺ 𝑦 means 𝑥 is in the past of 𝑦, | · | is the cardinality of the set, and 𝐼 (𝑥, 𝑧) = {𝑦 ∈ 𝐶 | 𝑥 ≺

𝑦 ≺ 𝑧 |} is an order interval. 𝐼 (𝑥, 𝑧) is a causal set analogue of the Alexandrov interval (𝐴0) in the

continuum, where 𝐴0 = 𝐽+(𝑥) ∩ 𝐽−(𝑧).

The Anti-Reflexive property states that no event is causally related to itself, while the Non-

circularity and Transitivity together define 𝐶 as a poset. The poset can be represented by a Hasse

diagram, where the dots are elements, and the line between them is a causal relation represented in

a matrix called the “ Relation matrix.” The property of the elements in this matrix is described by

𝑅𝑖 𝑗 =


1 if i ≺ j

0 otherwise
(1.3)

Let’s introduce some terminology that will be useful later.

a) A link is defined as a pair of elements 𝑎, 𝑏 ∈ 𝐶, =⇒ 𝑎 ≺ ∗𝑏, and 𝐼 (𝑎, 𝑏) = ∅

b) A chain is a sequence of elements 𝑎0, 𝑎1, ......, 𝑎𝑛, =⇒ 𝑎 𝑗 ≺ 𝑎 𝑗+1 for 𝑗 = 0, 1, 2, ....(𝑛−1).

c) If every 𝑎 𝑗 , 𝑎 𝑗+1 forms a link, then the chain is called a path.

Figure 1.1: (Hasse Diagram) Because of transitivity, we can ignore the line between (1) and (5).
Only the nearest neighbor relations are depicted, and the rest can be deduced from transitivity.

Local finiteness as described by Sorkin is “ a formal way of saying that a causal set is

discrete.” The condition states that all order intervals in the set have finite cardinality. Cardinality

6



is the measure of the set’s size or the number of elements in the set.

As suggested by Sumati Surya in her paper titled “Causal set approach to quantum gravity”, the

essence of the HKMM theorem can be summarised as

Causal Structure + Volume Element = Lorentzian Geometry or,

Order + Number ∼ Lorentzian Geometry

This is called the “CST slogan” and ensures that an entire continuum spacetime geometry

can be recovered from volume elements and causal order between events.

1.3.2 Continuum Approximation

The fundamental assumption of CST is that continuum spacetime can be approximated by

discrete causal sets that have a volume element and causal relations. The question arises whether

any causal set can approximate continuum spacetime.

To answer this question, we must first formalize what is meant by approximation. We almost

define it as a mapping between a discrete causal set and continuum spacetime that is injective and

structure-preserving (preserves global topological properties), called an Embedding. However,

we also impose an extra condition, which requires the elements that are mapped to be uniformly

distributed, and we call this a Faithful Embedding. Therefore, not all causal sets can approximate

continuum spacetime arbitrarily; it must be faithfully embeddable. We call the causal sets that can

be faithfully embedded as “Manifold-like Causal Sets”. In statistical terms, it is not feasible to

create manifold-like causal sets starting from a poset with causal ordering because distinguishing

between manifold-like and non-manifoldlike causal sets just by examining the causal set remains an

unresolved issue. The majority of causal sets are typically found to be non-manifoldlike. Among

the non-manifoldlike causal sets, a significant proportion are of the three-layer Kleitman-Rothschild

(KR) type, which are illustrated in Fig. (1.2).

As discussed in Ref.2, the process of generating manifold-like causal sets can be achieved

by starting with a continuum spacetime or Lorentzian manifold. From this manifold, a countable

number of elements are chosen to create the causal set. This process is called Sprinkling. A

7



Figure 1.2: KR causal sets with 20 elements. As the number of elements increases, the ratio of
KR causal sets to the total generated causal set approaches one.

primitive method of sprinkling involves placing the points on a regular grid, which appears to be

evenly spaced. However, under a Lorentz boost, the spacing becomes distorted, leading to an uneven

distribution. Therefore, a more sophisticated method is necessary to ensure that the resulting causal

set is Lorentz invariant. To ensure Lorentz invariance, one method is to sprinkle points according to

Poisson’s distribution with an average density 𝜌𝑐. By using the Poisson distribution, the sprinkled

points are distributed in a way that is invariant under Lorentz transformations, making it possible

to generate manifold-like causal sets. The probability of finding 𝑛 elements in a region of volume

𝑉 through a Poisson distribution is given by

𝑃𝑉 (𝑛) =
(𝜌𝑐𝑉)𝑛
𝑛!

exp (−𝜌𝑐𝑉), (1.4)

where

⟨𝑛⟩ = 𝜌𝑐𝑉

We can also say that a Lorentzian manifold is said to be a continuum approximation to a

causal set 𝐶 if 𝐶 can be obtained from a Poisson sprinkling in that manifold.

The Poisson process distribution allows for the concept of equivalence classes, which means

that several causal sets can be approximated by a single Lorentzian manifold. These causal sets can

be grouped together into the same class if they are generated from the same continuum spacetime.

However, it is not possible for a single causal set to represent multiple continuum spacetimes. This

is due to the Hauptvermutung of CST, a fundamental conjecture that states the following:

8



“A causal set can only be faithfully embedded into two spacetimes at the same density 𝜌𝑐 if

those spacetimes would be approximately isometric.”

This means that every causal set has a unique physical emergent spacetime continuum. If

it were to approximate many continuum spacetimes, these spacetimes are identical at larger scales.

However, they can differ at the Planckian scale.

Some of the Manifoldlike causal sets sprinkled using Poisson’s distribution are given below.

Figure 1.3: Manifoldlike Causal sets sprinkled in two-dimensional Minkowski Spacetime with
total number of elements 𝑁= 1000

Figure 1.4: Manifoldlike Causal sets sprinkled in two-dimensional de Sitter Spacetime with total
number of elements 𝑁= 1000

A detailed mechanics of generating these manifold-like causal sets can be found in Ap-

pendix (A).

9



CHAPTER 2

BENINCASA-DOWKER ACTION FOR CAUSAL SET

2.1 Non-Locality in CST and Quasi-local operator

In this chapter, we are trying to find a causal set analogue of the continuum action given by

the Einstein-Hilbert action.

𝑆𝐸𝐻 =

∫ √−𝑔𝑅(𝑥)𝑑𝑑𝑥, (2.1)

where, 𝑐 = 16𝜋𝐺 = 1, 𝑔 = |𝑔𝜇𝜈 | and 𝑅(𝑥) is the scalar curvature of the spacetime.

As discussed in Ref.4, the causal set version of this action would be,

𝑆𝐶𝑆𝑇 = 𝑙𝑑Σ𝑖𝑅𝑖, (2.2)

where, 𝑅𝑖 is the scalar curvature at each element, and 𝑙 is a length scale equal to 𝑙 = 𝜌−1/𝑑 .

The equations above show that in order to proceed, we must determine the equivalent of

the scalar curvature in causal set theory. It’s worth noting that scalar curvature is defined locally

in spacetime. However, is a local region well-defined in discrete causal set theory? The answer is

discussed in the paper by Sorkin Ref.5 as follow.

Consider an event located at the origin. Let 𝑢 and 𝑣 be null geodesics through the origin.

Let a point in causal set ‘a’ be the nearest neighbor to the origin. The red line in the Fig. (2.1)

represents the hyperbola that passes through ‘a’ and is defined as a set of all possible points that

can be Lorentz transformed to ‘a’. All points on this hyperbola are equidistant from the origin at

a distance of one Planck length. Thus, any arbitrary point ‘b’ on the hyperbola also has the same

distance from the origin as ‘a’. We can create two Alexandrov intervals [defined in Sec (1.3.1)]

between the origin and ‘a’ and ‘b’ respectively. Based on the current definitions of causal set
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Figure 2.1: In CST, it is not possible to distinguish between local regions using either length or
volume, even if one point (such as point a) is located in a local region with respect to the origin,
while another point (such as point b) is not.

properties (link, chain, volume), can we determine which interval can be considered a local region

in causal set theory? They both are at same distance (𝑙𝑎 = 𝑙𝑏= Planck length) and have no elements

in between (𝑉𝑎 = 𝑉𝑏 = 0), therefore, we cannot differentiate between these two intervals based on

the fundamental properties of CST. So, the answer is “No”. Therefore, causal set theory is said to

be fundamentally non-local. Non-locality is the price we must pay for working on a theory that is

both discrete and Lorentz invariant.

Rafael Sorkin proposed a solution to the non-locality problem in CST by introducing a

quasi-local scalar wave operator called 𝐵(2) for scalar fields on causal sets approximated by a

two-dimensional Minkowski spacetime. The goal of this operator was to define local regions in the

causal set. Sorkin showed that in the continuum limit, the operator tends to converge towards the

two-dimensional flat scalar d’Alembertian, which is a locally defined operator. Benincasa extended

this idea to four-dimensional spacetime by introducing an analogous operator called 𝐵(4) 6.

To express these operator as defined , we need to introduce the concept of layers in causal

set.

A layer in a causal set refers to a subset of the causet, which is obtained by grouping

the events having the same chain length with respect to a specific root element. For instance in

11



Fig. (2.2), Layer 1 is comprised of all the events that are located at one chain length from 𝑥. We

can also define layers in terms of intervals. Layer one (𝐿1) is defined as the set of all Alexendrov

intervals between an event (y) and x that have zero cardinality. To be more precise, if 𝑥 is an event

in a causet 𝐶, then we can define the set of all past neighborhood events of 𝑥 that belong to the 𝑖 th

layer as follows:

𝐿𝑖 (𝑥) = {𝑦 ∈ 𝐶 | 𝑦 ≺ 𝑥, 𝑛(𝑥, 𝑦) = 𝑖 − 1}, (2.3)

where 𝑛(𝑥, 𝑦) is the cardinality of the interval excluding end points.

Figure 2.2: This Figure shows the concept of causal set layers, where the elements on the first
hyperbolic line are equidistant from the origin and are therefore referred to as layer 1. In addition,
the intervals for these elements have zero cardinality. This concept has been extended to higher
layers as well.

For a scalar field with compact support defined as, 𝜙 : 𝐶 → R, Sorkin defined 𝐵(2) such

that,

𝐵(2)𝜙(𝑥) = 2
𝑙0𝑝

[
− 𝜙(𝑥) +

(
2
∑︁
𝑦∈𝐿1

−4
∑︁
𝑦∈𝐿2

+2
∑︁
𝑦∈𝐿3

)
𝜙(𝑦)

]
(2.4)

Benincasa defined 𝐵(4) such that,

𝐵(4)𝜙(𝑥) = 4
√

6𝑙2𝑝

[
− 𝜙(𝑥) +

( ∑︁
𝑦∈𝐿1

−9
∑︁
𝑦∈𝐿2

+16
∑︁
𝑦∈𝐿3

−8
∑︁
𝑦∈𝐿4

)
𝜙(𝑦)

]
(2.5)
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Here, 𝑙 is the length scale, and
∑

𝑦∈𝐿𝑖
is the total number of events in 𝑖th layer.

In the following section, we will explore how Benincasa employed this operator to define

scalar curvature and action for the causal set.

2.2 Action using the Benincasa-Dowker method

In the previous section, it was discussed that Sorkin proved the operator 𝐵(2) could produce

a two-dimensional flat scalar d’Alembertian under the continuum limit. The formal expression is

shown as follows:

lim
𝜌→∞

⟨𝐵𝜙(𝑥)⟩ = □𝜙(𝑥) (2.6)

Benincasa extended this result not only to four-dimensional Minkowski spacetime but also to curved

spacetime, given by:

lim
𝜌→∞

⟨𝐵𝜙(𝑥)⟩ = □𝜙(𝑥) − 1
2
𝑅(𝑥) (2.7)

A proof of Eq. (2.6) for four dimensions using the operator defined in Eq. (2.5) was proposed by

Benincasa.6 The left-hand side (LHS) of Eq. (2.6) can be expressed as:

lim
𝜌→∞

⟨𝐵𝜙(𝑥)⟩ = lim
𝜌→∞

4
√

6𝑙2𝑝

[
− ⟨𝜙(𝑥)⟩ + ⟨

∑︁
𝑦∈𝐿1

𝜙(𝑦)⟩ − 9⟨
∑︁
𝑦∈𝐿2

𝜙(𝑦)⟩ + 16⟨
∑︁
𝑦∈𝐿3

𝜙(𝑦)⟩ − 8⟨
∑︁
𝑦∈𝐿4

𝜙(𝑦)⟩
]

(2.8)

In the context of a causal scalar field 𝜙(𝑥), the goal is to determine the expected value of the

total number of elements in Layer 1, 2, 3, and 4. In order to accomplish this, the sprinkled spacetime

is divided into small cells with volumes labelled by ‘𝑖′ and denoted as Δ𝑉𝑖. For a given cell, let 𝑚𝑖

be the total number of elements between the root element ′𝑥′ and the 𝑖th cell. Additionally, each

volume cell contains an average of 𝑛𝑖 =
∑

𝑖 ⟨𝜒𝑖⟩ sprinkled points, where 𝜒𝑖 is defined as,

𝜒𝑖 =


1 if 𝑖 is filled

0 otherwise
(2.9)

If we assume that the density of the causal set is uniform as 𝜌 = 𝑛𝑖/Δ𝑉 , where 𝑛𝑖 is the
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total number of elements in the 𝑖th cell of volume Δ𝑉 , then we can say 𝑛𝑖 =
∑

𝑖 ⟨𝜒𝑖⟩ = 𝜌Δ𝑉 .

The main objective is to calculate the expected value of the total number of elements in different

layers, starting with layer 1. We need to determine the probability of finding an element in layer 1,

which is equivalent to finding the probability that the interval between the root element 𝑥 and its

past neighbor 𝑦 has zero cardinality, i.e., 𝑛(𝑥, 𝑦) = 0. The causal set is generated using Poisson’s

distribution, which implies that 𝜇 = 𝜌𝑉𝑖, where 𝑉𝑖 is the volume between 𝑥 and the 𝑖th cell.

𝑃(𝑚𝑖 = 0) = (𝜌𝑉𝑖)0

0!
𝑒−𝜌𝑉𝑖 = 𝑒−𝜌𝑉𝑖 . (2.10)

Now, if 𝑛𝐿1 =
∑

𝑦∈𝐿1 as a number of elements in layer 1,

⟨𝑛𝐿1⟩ =
∑︁
𝑦∈𝐿1

𝑃(𝑚𝑖 = 0)𝑛𝑖 =
∑︁
𝑦∈𝐿1

𝜌Δ𝑉𝑒−𝜌𝑉𝑖 . (2.11)

Now, take the limit that Δ𝑉 goes to 𝑑𝑉 , then
∑

𝑦∈𝐿1 goes to
∫
𝑦∈𝐽− and 𝑉𝑖 = 𝑉 (𝑥, 𝑦)

Replacing 𝜉 = 𝜌𝑉 (𝑥, 𝑦), we get

⟨𝑛𝐿1𝜙(𝑦)⟩ =
∫
𝑦∈𝐽−

𝜌𝑑𝑉𝑒−𝜉𝜙(𝑦). (2.12)

For Layer 2,

𝑃(𝑚𝑖 = 1) = (𝜌𝑉𝑖)1

1!
𝑒−𝜌𝑉𝑖 = 𝜌𝑉𝑖𝑒

−𝜌𝑉𝑖 . (2.13)

Then,

⟨𝑛𝐿2⟩ =
∑︁
𝑦∈𝐿2

𝑃(𝑚𝑖 = 1)𝑛𝑖 =
∑︁
𝑦∈𝐿1

𝜌2Δ𝑉𝑉𝑖𝑒
−𝜌𝑉𝑖 . (2.14)

Taking the limit yields

⟨𝑛𝐿2𝜙(𝑦)⟩ =
∫
𝑦∈𝐽−

𝜌𝜉𝑑𝑉𝑒−𝜉𝜙(𝑦). (2.15)
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Similarly,

⟨𝑛𝐿3𝜙(𝑦)⟩ =
∫
𝑦∈𝐽−

𝜌
𝜉2

2
𝑑𝑉𝑒−𝜉𝜙(𝑦). (2.16)

⟨𝑛𝐿4𝜙(𝑦)⟩ =
∫
𝑦∈𝐽−

𝜌
𝜉3

6
𝑑𝑉𝑒−𝜉𝜙(𝑦). (2.17)

Plugging these values into Eq. (2.8) and using 𝜌 = 𝑙−𝑑 , where d is the dimension,

lim
𝜌→∞

⟨𝐵𝜙(𝑥)⟩ = lim
𝜌→∞

4√𝜌
√

6

[
− 𝜙(𝑥) + 𝜌

∫
𝑦∈𝐽−

𝑑𝑉𝜙(𝑦)𝑒−𝜉 (1 − 9𝜉 + 8𝜉2 − 4
3
𝜉3)

]
(2.18)

To evaluate the integration on the right-hand side (RHS) of Eq. (2.18), we need to establish

a coordinate system. We can select the point 𝑥 as the origin of a Cartesian coordinate system with

coordinates 𝑦𝜇, where the spatial polar coordinates are defined as 𝑟 =
√︃∑3

𝑖=1(𝑦𝑖)2, 𝜃, and 𝜙. We can

also define null coordinates that point towards the past as 𝑢 = 1√
2
(−𝑡 − 𝑟) and 𝑣 = 1√

2
(−𝑡 + 𝑟). The

volume 𝑉 (𝑦) between the origin and point 𝑦 is given by 𝑉 (𝑦) = 𝜋
6𝑢

2𝑣2. Let 𝑊 be the integration

region such that 𝑢2 + 𝑣2 ≤ 𝐿2, divided into three regions, 𝑊1, 𝑊2, and 𝑊3. 𝑊1 is a neighborhood

of the origin, 𝑊2 is a neighborhood of the past light cone and is bounded away from the origin,

and 𝑊3 is a subset of the interior of the causal set that is bounded away from the origin and the

boundary. This is illustrated in the figure below.

The regions as given in Fig. (2.3) are divided such that,

𝑊1 = {𝑦 ∈ 𝑊 | 0 ≤ 𝑢 ≤ 𝑣 ≤ 𝑎},

𝑊2 = {𝑦 ∈ 𝑊 | 𝑎 ≤ 𝑣 ≤ 𝐿, 0 ≤ 𝑢 ≤ 𝑎2

𝑣
},

𝑊3 = 𝑊/(𝑊1 ∪𝑊2),

(2.19)
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Figure 2.3: Partition of 𝑊 into regions 𝑊1 (Green), 𝑊2 (Pink), 𝑊3 (Blue) in 𝑡 − 𝑟 plane. 𝑎 > 0 is
small enough that expansions of 𝜙 are valid.

Given that, 𝑑𝑉 =
√−𝑔 𝑑4𝑦, Eq. (2.18) looks like as follows,

lim
𝜌→∞

⟨𝐵𝜙(𝑥)⟩ = lim
𝜌→∞

4√𝜌
√

6

[
− 𝜙(𝑥) + 𝜌

∫
𝑦∈𝑊

√−𝑔 𝑑4𝑦𝜙(𝑦)𝑒−𝜉 (1 − 9𝜉 + 8𝜉2 − 4
3
𝜉3)

]
= lim

𝜌→∞

4√𝜌
√

6

[
− 𝜙(𝑥) + 𝜌

( ∫
𝑦∈𝑊1

√−𝑔 𝑑4𝑦𝜙(𝑦)𝑒−𝜉 (1 − 9𝜉 + 8𝜉2 − 4
3
𝜉3)

+
∫
𝑦∈𝑊2

√−𝑔 𝑑4𝑦𝜙(𝑦)𝑒−𝜉 (1 − 9𝜉 + 8𝜉2 − 4
3
𝜉3)

+
∫
𝑦∈𝑊3

√−𝑔 𝑑4𝑦𝜙(𝑦)𝑒−𝜉 (1 − 9𝜉 + 8𝜉2 − 4
3
𝜉3)

)]
(2.20)

Benincasa’s findings suggest that as the density 𝜌 approaches infinity, the value of the integral

within regions 𝑊2 and 𝑊3 will become negligible, leaving the only significant contribution coming

from 𝑊1, which is the neighborhood of the origin. This ultimately leads to lim𝜌→∞⟨𝐵𝜙(𝑥)⟩ being

equivalent to the continuum d’Alembertian in Minkowksi spacetime, i.e. 𝑔𝜇𝜈 = 𝜂𝜇𝜈 and √−𝑔 = 1,

where 𝑔 = det 𝑔𝜇𝜈 as shown in Eq. (2.6).

In order to connect this expression to the action, we need to investigate its behavior in curved

spacetime. To achieve generality, we can expand the metric using Riemann normal coordinates in
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Eq. (2.20), with an approximation up to first order, where 𝑅 can be any component of the Riemann

tensor, Ricci tensor, or scalar curvature. The Riemann Normal Coordinate (RNC) system describes

a point 𝑥0 within a spacetime by using a convex normal neighborhood 𝑄. This neighborhood 𝑄

is a subset of 𝑀 where the exponential map exp: 𝑇𝑝𝑀 → 𝑄 is a diffeomorphism for any point 𝑝

within 𝑄. In the RNC system, the coordinates of 𝑄 are determined by the geodesics originating

from 𝑥0, and the metric at 𝑥0 is considered to be flat, meaning that 𝑔𝜇𝜈 (𝑥0) = 𝜂𝜇𝜈 and 𝜕
𝜕𝑔𝜇𝜈

���
𝑥0

= 0.

Consequently, the Christoffel connection is zero, allowing the metric at any point 𝑥 within 𝑄 to be

expanded as follows.7

𝑔𝜇𝜈 = 𝜂𝜇𝜈 −
1
3
(𝑥 − 𝑥0)𝛼 (𝑥 − 𝑥0)𝛽𝑅𝜇𝛼𝜈𝛽 (𝑥0) (2.21)

For small variable 𝜖 , det(𝐼 + 𝜖𝑋) can be expressed as 𝑑𝑒𝑡 (𝐼) + 𝑡𝑟 (𝑥)𝜖 +𝑂 (𝜖2), where 𝑡𝑟 (𝑋)

denotes the trace of the matrix 𝑋 . The term 𝑂 (𝜖2) indicates higher-order terms of 𝜖 that are

negligible in the approximation.

As such the determinant of the metric in Eq. (2.21) will be given by,

𝑔 = det(𝑔𝜇𝜈) = −1 + 1
3
(𝑥 − 𝑥0)𝛼 (𝑥 − 𝑥0)𝛽𝑅𝛼𝛽 (𝑥0) (2.22)

Thus,
√−𝑔 = 1 − 1

6
(𝑥 − 𝑥0)𝛼 (𝑥 − 𝑥0)𝛽𝑅𝛼𝛽 (𝑥0) (2.23)

Imposing this condition in Eq. (2.20) leads to,

lim
𝜌→∞

⟨𝐵𝜙(𝑥)⟩ = □𝜙(𝑥) − 1
2
𝑅(𝑥) (2.24)

In the present scenario, considering a scalar field in two dimensions defined by a constant,
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𝜙 : 𝐶 → −2, and inverting Eq. (2.24) provides us with the following expression:

𝑅(𝑥) = lim
𝜌→∞

⟨𝐵(2) (−2)⟩ − □(−2)

= lim
𝜌→∞

〈 2
𝑙0𝑝

(
2 +

(
2

∑︁
𝑦∈𝐿1 (𝑥)

−4
∑︁

𝑦∈𝐿2 (𝑥)
+2

∑︁
𝑦∈𝐿3 (𝑥)

)
(−2)

)〉
= lim

𝜌→∞

〈
4
(
1 − 2

∑︁
𝑦∈𝐿1 (𝑥)

+4
∑︁

𝑦∈𝐿2 (𝑥)
−2

∑︁
𝑦∈𝐿3 (𝑥)

)〉 (2.25)

As stated in Surya’s paper,2 we can write the dimensionless discrete Ricci curvature at an

element 𝑖 ∈ 𝐶 as,

𝑅𝑖 = 4(1 − 2𝑁1(𝑖) + 4𝑁2(𝑖) − 2𝑁3(𝑖)) (2.26)

Here, the 𝑁𝑘 (𝑖) represent the order intervals in the causal set which contain 𝑖+1 elements including

the end points. Summing over the 𝑁 elements of a finite element causal set gives the discrete action

as,

𝑆 = 𝑙2
∑︁
𝑖∈𝐶

𝑅𝑖

= 4𝑙2
∑︁
𝑖∈𝐶

(1 − 2𝑁1(𝑖) + 4𝑁2(𝑖) − 2𝑁3(𝑖)),

= 4(𝑁 − 2𝑁1 + 4𝑁2 − 2𝑁3)

(2.27)

In this context, 𝑙 = 1 and the variable 𝑁 refers to the total number of elements in the causal

set 𝐶. 𝑁𝑖 refers to the total number of 𝑖 + 1 element order intervals (including end points) in 𝐶.

In the case of Minkowski spacetime, we anticipate that the action will become zero as 𝑁

approaches large value since the curvature is zero. In contrast, in de Sitter spacetime, the action

should be equivalent to (2𝐻2 · 𝑉) in continuum, where 𝐻 is the hubble parameter.

Figures (2.4)–(2.5) illustrate the considerable uncertainty in the average value of BD action

across 50 different causal sets simulations, with error bars spanning several orders of magnitude,
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Figure 2.4: The graph shows the Benincasa-Dowker action plotted against the number of randomly
sprinkled points in Minkowski spacetime. This graph is the result of averaging 50 different causal
sets for each value of 𝑁 . As the number of points 𝑁 increases, it appears that the fluctuations in
the graph also increase.

Figure 2.5: The graph shows the Benincasa-Dowker action plotted against the number of randomly
sprinkled points in de Sitter spacetime with Hubble parameter equal to 100. This graph is the result
of averaging 50 different causal sets for each value of 𝑁 . As the number of points 𝑁 increases, it
appears that the fluctuations in the graph also increase.

from 102 to 103. Notably, as the number of points increases, the magnitude of these error bars also

grows. This trend can be attributed to the terms in Eq. (2.27) that arise directly from Poisson’s

distribution, which inherently leads to increased uncertainty with a larger number of points. Another

19



possible error could come from the fact that the result was obtained by neglecting all terms beyond

the linear term in the Riemann tensor’s metric expansion. As more points are added, the higher-

order terms become more significant and cannot be ignored. Despite some advantages of using

BD to calculate action, the large error bars must not be overlooked. Another efficient approach

to calculating action, known as “Chain Action,” proposed by Dr. Luca Bombelli and Dr. B. B.

Pilgrim,4 will be discussed in the next chapter.
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CHAPTER 3

CHAIN ACTION FOR CAUSAL SET

A chain in a causal set between two points, 𝑎0 and 𝑎𝑘 , of length 𝑘 is a sequence of 𝑘 + 1

related points arranged in a specific order, 𝑎0 ≺ 𝑎1 ≺ 𝑎2.... ≺ 𝑎𝑘 . The total number of 𝑘-chains

depend on the distribution of the points within the interval. The accompanying figure provides a

clearer explanation of this concept.

Figure 3.1: a) An Alexandrov set displays the sequence of 𝑎0 ≺ 𝑎1 ≺ 𝑎2.... ≺ 𝑎𝑘 with the
minimum point being 𝑎0 and the maximum point being 𝑎𝑘 . The red dot line denotes the null rays
from the point. (b) One example of distributing three elements within the interval such that 𝐶3 = 0
(c) Another example of distributing three elements in the same interval such that 𝐶3 = 1.

As shown in Fig. (3.1)(b) and (c), the number of 3-chains in a causal set appears to be

influenced by how the points are distributed within the interval. The distribution of points in the

causal set determines the distribution of chain lengths. On the other hand, if we examine Fig. (1.3)-

(1.4) from the first chapter, we can see a significant difference in the distribution of points within
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the interval for Minkowski spacetime (no curvature) and de Sitter spacetime (positive curvature).

This highlights an important correlation between chain length distribution and the curvature of

spacetime. The simulation for the distribution of 𝑘-chain abundance affected by the choice of

spacetime for same number of points 𝑁 = 500 is given in Fig. (3.2).

Figure 3.2: Distribution of 𝑘-chain abundance as a function of 𝑘-chain length for Minkowski and
de Sitter spacetime.

In the next section, we will take advantage of this relationship to determine the scalar

curvature and eventually the action.

3.1 Chain Length Distribution

The binomial distribution provides the probability of finding precisely 𝑘 points within a

volume 𝑉 of 𝑁 uniformly distributed points in a larger volume 𝑉0,

𝑃𝑘 =

(
𝑁

𝑘

) (
𝑉

𝑉0

) 𝑘 (
1 − 𝑉

𝑉0

)𝑁−𝑘
(3.1)

If 𝑉0 is much larger than 𝑉 , we can use Poisson’s distribution of density 𝜌 = 𝑁/𝑉0 to

estimate the probability density. Therefore, the likelihood of having one point in a very small

volume element 𝑑𝑉 can be expressed as 𝜌𝑑𝑉 = (𝑁/𝑉0)𝑑𝑉 . As illustrated in the paper by Aghili8,

the probability of having one point in each of the 𝑘 − 1 differential volumes can be determined in a

22



similar way.

𝜌0𝑑𝑉1𝜌1𝑑𝑉2....𝜌𝑘−2𝑑𝑉𝑘−1 + H.O.T, (3.2)

where 𝜌𝑖 = (𝑁 − 𝑖)/𝑉0.

Dr. Pilgrim discusses in his paper4 states that this probability density considers the points

that have already been placed. For example, 𝜌1𝑑𝑉2 = 𝑁−1
𝑉0

𝑑𝑉2 represents the probability of finding

one point in an infinitesimal volume 𝑑𝑉2 if there is already one point in 𝑑𝑉1. For an Alexandrov set

𝐴0 with a minimum point 𝑎0 and a maximum point 𝑎𝑘 , Eq. (3.2) gives the probability of a chain of

length 𝑘 existing between 𝑎0 and 𝑎𝑘 through the differential volumes 𝑑𝑉1, 𝑑𝑉2, ...., 𝑑𝑉𝑘−1.

Figure 3.3: A graphical depiction of how chains are acquired.

Once we have the probability distribution function, it is a straightforward integration of the

probability from Eq. (3.2) over the Alexendrov interval 𝐴𝑖, where 𝑑𝑉𝑖 ∈ 𝐴𝑖−1, to calculate the mean

number of chain length k between minimal and maximal point. Given that 𝑑𝑉𝑖 =
√−𝑔𝑖 𝑑𝑑𝑦𝑖,

⟨𝐶𝑘⟩ = 𝜌0

∫
𝐴0

√−𝑔1𝑑
𝑑𝑦1 ·𝜌1

∫
𝐴1

√−𝑔2𝑑
𝑑𝑦2 ·𝜌2

∫
𝐴2

√−𝑔3𝑑
𝑑𝑦3 ... 𝜌𝑘−2

∫
𝐴𝑘−2

√−𝑔𝑘−1𝑑
𝑑𝑦𝑘−1 (3.3)

3.2 Chain length distribution in Minkowski spacetime

Let’s look at this in 2-dimensions Minkowski spacetime with null coordinates (𝑢, 𝑣) which

are defined as follows, 𝑥 = (𝑢 − 𝑣)/
√

2, 𝑡 = (𝑢 + 𝑣)/
√

2. The volume of an Alexendrov interval
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between (𝑢0, 𝑣0) and (𝑢𝑘 , 𝑣𝑘 ) using 𝑑𝑉 =
√−𝑔𝑑𝑢𝑘𝑑𝑣𝑘 is given by,

𝑉 =

∫
𝐴

√−𝑔𝑑𝑢𝑘𝑑𝑣𝑘

=

∫ 𝑢𝑘

𝑢0

𝑑𝑢𝑘

∫ 𝑣𝑘

𝑣0

𝑑𝑣𝑘

= (𝑢𝑘 − 𝑢0) (𝑣𝑘 − 𝑣0)

(3.4)

Here, √−𝑔 = 1. Let’s start with the simple nontrivial cases of chain length distributions,

⟨𝐶3⟩, ⟨𝐶4⟩, as illustrated in the figure below.

(a) ⟨𝐶3⟩ (b) ⟨𝐶4⟩

Figure 3.4: Visual representation of region of integration for ⟨𝐶3⟩ and ⟨𝐶4⟩.
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Integrating eq 3.3 keeping in mind that 𝜌𝑖 = 𝑁−𝑖
𝑉

, 𝑉2 = (𝑢3 − 𝑢0)2(𝑣3 − 𝑣0)2, we get

⟨𝐶3⟩ = 𝜌0

∫
𝐴0

𝑑𝑢1𝑑𝑣1 · 𝜌1

∫
𝐴1

𝑑𝑢2𝑑𝑣2

=
𝑁 (𝑁 − 1)

𝑉2

(∫ 𝑢3

𝑢0

𝑑𝑢1

∫ 𝑣3

𝑣0

𝑑𝑣1 ·
∫ 𝑢3

𝑢1

𝑑𝑢2

∫ 𝑣3

𝑣1

𝑑𝑣2

)
=

𝑁 (𝑁 − 1)
𝑉2

(
(𝑢3 − 𝑢0)2(𝑣3 − 𝑣0)2

4

)
=

𝑁!
4(𝑁 − 2)!

(3.5)

Similarly for 𝑘 = 4, we have

⟨𝐶4⟩ = 𝜌0

∫
𝐴0

𝑑𝑢1𝑑𝑣1 · 𝜌1

∫
𝐴1

𝑑𝑢2𝑑𝑣2 · 𝜌2

∫
𝐴2

𝑑𝑢3𝑑𝑣3

=
𝑁 (𝑁 − 1) (𝑁 − 2)

𝑉3

(∫ 𝑢4

𝑢0

𝑑𝑢1

∫ 𝑣4

𝑣0

𝑑𝑣1 ·
∫ 𝑢4

𝑢1

𝑑𝑢2

∫ 𝑣4

𝑣1

𝑑𝑣2 ·
∫ 𝑢4

𝑢2

𝑑𝑢3

∫ 𝑣4

𝑣2

𝑑𝑣3

)
=

𝑁 (𝑁 − 1) (𝑁 − 2)
𝑉3

(
(𝑢3 − 𝑢0)3(𝑣3 − 𝑣0)3

36

)
=

𝑁!
36(𝑁 − 3)!

(3.6)

In a recent publication authored by Dr. Pilgrim and Dr. Bombelli4, they presented the

generalized equation for the expected number of 𝑘-chains with a dimension of 𝑑 as follows,

⟨𝐶𝑘⟩ =
𝑁!

(𝑁 − 𝑘 + 1))!

(
Γ(𝑑 + 1)

2

) 𝑘−2
Γ(𝑑/2 + 1)Γ(𝑑)

Γ((𝑘 − 1)𝑑/2 + 1)Γ(𝑘𝑑/2) (3.7)

The validity of this result can be confirmed through computer simulations involving the

calculation of the number of 3-chains and 4-chains as demonstrated in Fig. (3.5).

Figure (3.5) shows the gathered simulated data for 3-chains and 4-chains by taking the

average of 25 various causal sets. If we do not perform averaging, there is a possibility of some

fluctuation in the final outcome. It is observed that the expected numbers of 3-chains and 4-chains

utilizing Eq. (3.7) is highly accurate to the extent that it is almost equal to the simulated value. This

verifies our formula for chain length distribution in a flat spacetime.
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(a) ⟨𝐶3⟩ 𝑣𝑠 𝑁 (b) ⟨𝐶4⟩ 𝑣𝑠 𝑁

Figure 3.5: A graph comparing the expected number of chain length-3, 4 according to (3.7) with
the simulation.

3.3 Chain length distribution in Curved spacetime

In our pursuit to establish the connection between chain distribution and curvature, extending

the findings to curved spacetime seems to be a natural progression. Dr. Pilgrim, in his doctoral

thesis,9 successfully derived this relationship in the context of 2-dimensional curved spacetime by

expanding the metric using Riemann normal coordinates up to the linear term in 𝑅. The metric in

the vicinity of (𝑥0, 𝑡0) can be expressed through the following expansion:

𝑔𝜇𝜈 = 𝜂𝜇𝜈 −
1
3
(𝑥 − 𝑥0)𝛼 (𝑥 − 𝑥0)𝛽𝑅𝜇𝛼𝜈𝛽 (𝑥0). (3.8)

The line element in two dimension will take this form,

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈

= 𝑔00𝑑𝑥
0𝑑𝑥0 + 𝑔11𝑑𝑥

1𝑑𝑥1 + 𝑔01𝑑𝑥
0𝑑𝑥1 + 𝑔10𝑑𝑥

1𝑑𝑥0

=

(
−1 + 𝑅

6
(𝑥 − 𝑥0)2

)
𝑑𝑡2 +

(
1 + 𝑅

6
(𝑡 − 𝑡0)2

)
𝑑𝑥2 − 𝑅

6
(𝑥 − 𝑥0) (𝑡 − 𝑡0) (𝑑𝑡𝑑𝑥 + 𝑑𝑥𝑑𝑡)

(3.9)

In two-dimensional spacetime, the Riemann curvature tensor has only one independent

component. This means that the curvature is completely determined by a single scalar quantity
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known as the scalar curvature (denoted by 𝑅). Thus,

𝑅 = 𝑔𝜇𝜈𝑔𝛼𝛽𝑅𝛼𝜇𝛽𝜈 = 𝜂𝜇𝜈𝜂𝛼𝛽𝑅𝛼𝜇𝛽𝜈 = 𝜂𝜇𝜈 (𝑅0𝜇0𝜈 + 𝑅1𝜇1𝜈) = −𝑅0101 − 𝑅1010 = −2𝑅0101 (3.10)

Here, we made the assumption that the product of two inverse metric tensors, namely 𝑔𝜇𝜈𝑔𝛼𝛽, is

equal to 𝜂𝜇𝜈𝜂𝛼𝛽. It is because we are only interested in the linear terms in the scalar curvature. By

using this expression for the Riemann curvature, values of 𝑔00, 𝑔11, 𝑔01, and 𝑔10 were determined

through Eq. (3.8), leading us to Eq. (3.9).

In two dimensions, it is always possible to find an appropriate coordinate transformation that

will put the metric in conformally flat form. Conformally flat metrics have the advantage of allowing

the use of coordinate systems resembling Cartesian coordinates, which simplifies calculations and

transformations. When using this coordinate representation, we do not need to be concerned about

the presence of boundary terms during integration. In two-dimensional curved spacetime, as states

in the works of Dr. Pilgrim,9 the coordinate transformation takes the form below,

𝑡 =
𝑢 + 𝑣
√

2
+ 𝑅

12
√

2
((𝑣 − 𝑣0) (𝑢 − 𝑢0)2 + (𝑣 − 𝑣0)2(𝑢 − 𝑢0))

𝑥 =
𝑢 − 𝑣
√

2
+ 𝑅

12
√

2
((𝑣 − 𝑣0) (𝑢 − 𝑢0)2 − (𝑣 − 𝑣0)2(𝑢 − 𝑢0))

(3.11)

To understand the process of obtaining this coordinate transformation, we start by taking

the Minkowski null coordinates (𝑥 = (𝑢 − 𝑣)/
√

2, 𝑡 = (𝑢 + 𝑣)/
√

2 and adding terms that are linear

in the scalar curvature with the appropriate combination of (𝑣 − 𝑣0) and (𝑢 − 𝑢0) that preserves the

dimensionality. This is given below,

𝑡 =
𝑢 + 𝑣
√

2
+ 𝑅(𝐶 (𝑣 − 𝑣0) (𝑢 − 𝑢0)2 + 𝐷 (𝑣 − 𝑣0)2(𝑢 − 𝑢0))

𝑥 =
𝑢 − 𝑣
√

2
+ 𝑅(𝐴(𝑣 − 𝑣0) (𝑢 − 𝑢0)2 + 𝐵(𝑣 − 𝑣0)2(𝑢 − 𝑢0))

(3.12)

From these, we can derive the expressions for (𝑥2, 𝑡2, 𝑑𝑥, 𝑑𝑡, 𝑑𝑥2, 𝑑𝑡2, 𝑑𝑥𝑑𝑡) in terms of the

27



null coordinates (𝑢, 𝑣). By directly substituting these expressions into Eq. (3.9), we obtain the line

element of form as shown in Eq. (3.13). Throughout the calculations, we maintain the consideration

of only the linear order of scalar curvature.

𝑑𝑠2 = Minkowski part + 𝑅

12
(2𝑢2𝑑𝑣2 − 4𝑢𝑣𝑑𝑢𝑑𝑣 + 2𝑣2𝑑𝑢2)

+ 𝑅
√

2
[
𝐴(2𝑢𝑣𝑑𝑢2 + 𝑢2𝑑𝑢𝑑𝑣 − 2𝑢𝑣𝑑𝑢𝑑𝑣 − 𝑢2𝑑𝑣2) + 𝐵(2𝑢𝑣𝑑𝑢𝑑𝑣 + 𝑣2𝑑𝑢2 − 2𝑢𝑣𝑑𝑣2 − 𝑣2𝑑𝑢𝑑𝑣)

+ 𝐶 (−2𝑢𝑣𝑑𝑢2 − 𝑢2𝑑𝑢𝑑𝑣 − 2𝑢𝑣𝑑𝑢𝑑𝑣 − 𝑢2𝑑𝑣2) + 𝐷 (−2𝑢𝑣𝑑𝑢𝑑𝑣 − 𝑣2𝑑𝑢2 − 2𝑢𝑣𝑑𝑣2 − 𝑣2𝑑𝑢𝑑𝑣)
]

(3.13)

By choosing

𝐴 = 1
12
√

2
, 𝐵 = − 1

12
√

2
, 𝐶 = 1

12
√

2
, 𝐷 = 1

12
√

2

The line element can be reduced to,

𝑑𝑠2 = −(2 + 𝑅(𝑣 − 𝑣0) (𝑢 − 𝑢0))𝑑𝑢𝑑𝑣 (3.14)

We now want to investigate how the volume of an Alexendrov set 𝐴 in curved spacetime

with interval (𝑢0, 𝑣0) and (𝑢𝑘 , 𝑣𝑘 ) has changed from Minkowski spacetime. The metric is expanded

about (𝑢0, 𝑣0).

In this case,

det(𝑔𝜇𝜈) = 𝑔(𝑢𝑘 , 𝑣𝑘 ) = −(1 + 𝑅

2
(𝑣𝑘 − 𝑣0) (𝑢𝑘 − 𝑢0))2 = −(1 + 𝑅(𝑣𝑘 − 𝑣0) (𝑢𝑘 − 𝑢0)) (3.15)

thus, √︁
−𝑔(𝑢𝑘 , 𝑣𝑘 ) = 1 + 𝑅

2
(𝑣𝑘 − 𝑣0) (𝑢𝑘 − 𝑢0) (3.16)
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Now, the volume is given by

𝑉 =

∫
𝐴

√︁
−𝑔(𝑢𝑘 , 𝑣𝑘 )𝑑𝑢𝑘𝑑𝑣𝑘

=

∫ 𝑢𝑘

𝑢0

∫ 𝑣𝑘

𝑣0

(1 + 𝑅

2
(𝑣𝑘 − 𝑣0) (𝑢𝑘 − 𝑢0))𝑑𝑢𝑘𝑑𝑣𝑘

= (𝑢𝑘 − 𝑢0) (𝑣𝑘 − 𝑣0) +
𝑅

8
((𝑣𝑘 − 𝑣0)2(𝑢𝑘 − 𝑢0)2)

(3.17)

Using binomial expansion, we have

𝑉 𝑘−1 = (𝑢𝑘 − 𝑢0)𝑘−1(𝑣𝑘 − 𝑣0)𝑘−1 + 𝑅(𝑘 − 1)
8

(𝑣𝑘 − 𝑣0)𝑘 (𝑢𝑘 − 𝑢0)𝑘 (3.18)

We are now ready to integrate Eq. (3.3) for 2-dimensional curved spacetime keeping only

the linear term in the scalar curvature,

Let’s start with ⟨𝐶3⟩,

⟨𝐶3⟩ = 𝜌𝑜

∫
𝐴0

(1 + 𝑅

2
(𝑣3 − 𝑣1) (𝑢3 − 𝑢1))𝑑𝑢1𝑑𝑣1 · 𝜌1

∫
𝐴1

(1 + 𝑅

2
(𝑣3 − 𝑣2) (𝑢3 − 𝑢2))𝑑𝑢2𝑑𝑣2

=
𝑁 (𝑁 − 1)

𝑉2

( ∫ 𝑢3

𝑢0

𝑑𝑢1

∫ 𝑣3

𝑣0

𝑑𝑣1(1 + 𝑅

2
(𝑣3 − 𝑣1) (𝑢3 − 𝑢1)

·
∫ 𝑢3

𝑢1

𝑑𝑢2

∫ 𝑣3

𝑣1

𝑑𝑣2(1 + 𝑅

2
(𝑣3 − 𝑣2) (𝑢3 − 𝑢2))

)
=

𝑁!
𝑉2(𝑁 − 2)!

[ ∫
𝐴0

𝑑𝑢1𝑑𝑣1 ·
∫
𝐴1

𝑑𝑢2𝑑𝑣2 +
𝑅

2

(∫
𝐴0

𝑑𝑢1𝑑𝑣1 ·
∫
𝐴1

𝑑𝑢2𝑑𝑣2(𝑣3 − 𝑣2) (𝑢3 − 𝑢2)

+
∫
𝐴0

𝑑𝑢1𝑑𝑣1(𝑣3 − 𝑣1) (𝑢3 − 𝑢1) ·
∫
𝐴1

𝑑𝑢2𝑑𝑣2

) ]
=

𝑁!
𝑉2(𝑁 − 2)!

[ (𝑢3 − 𝑢0)2(𝑣3 − 𝑣0)2

4
+ 5𝑅

72
(𝑢3 − 𝑢0)3(𝑣3 − 𝑣0)3

]
(3.19)

Let’s subtract and add 𝑅(𝑢3−𝑢0)3 (𝑣3−𝑣0)3

16 and use𝑉2 = (𝑢3−𝑢0)2(𝑣3−𝑣0)2+ 𝑅
4 (𝑢3−𝑢0)3(𝑣3−

𝑣0)3 to get

⟨𝐶3⟩ =
𝑁!

𝑉2(𝑁 − 2)!

[𝑉2

4
+ 𝑅

144
(𝑢3 − 𝑢0)3(𝑣3 − 𝑣0)3

]
(3.20)
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Using 𝑅𝑉3 = 𝑅𝑉2 · 𝑁
𝜌
= 𝑅(𝑢3 − 𝑢0)3(𝑣3 − 𝑣0)3 gives

⟨𝐶3⟩ =
𝑁!

(𝑁 − 2)!

[1
4
+ 1

144
𝑁𝑅

𝜌

]
(3.21)

For 𝑘-chain, the generalized version of the expectation value of chain number9 is

⟨𝐶𝑘⟩ =
𝑁!

(𝑁 − (𝑘 − 1))!

(
1

((𝑘 − 1)!)2 + 𝑁𝑅

𝜌

(
2𝑘3 − 3𝑘2 + 𝑘

12(𝑘!)2 − 𝑘 − 1
8((𝑘 − 1)!)2

))
(3.22)

We would want to verify if this result holds true to causal sets created by sprinkling points in

de Sitter spacetime with a scalar curvature of 𝑅 = 2𝐻2, where 𝐻 represents the Hubble parameter.

Figure (3.6) illustrates that the calculated expected value of chain length 3, as determined by

Eq. (3.22), aligns closely with the simulation results when considering a small number of points.

However, as the number of points grows larger, the linear term of the scalar curvature becomes

insufficient to capture the complete geometric information. Consequently, the accuracy begins to

deviate from the simulation.

Figure 3.6: A graph comparing the Expected number of 3-chains using equation (3.22) and the
actual average number of 3-chain obtained by sprinkling elements in a causal set of dimension 2 in
de Sitter spacetime, plotted against the number of points in the causal set.
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3.4 Chain Action

Eq (3.22) serves as the connection between chain length and scalar curvature which was

mentioned at the beginning of this chapter. We can now invert this formula and calculate the scalar

curvature in terms of 𝑘-chain length as follows.

𝑅𝑘 =
𝜌

𝑁
·
(
⟨𝐶𝑘⟩ ·

(𝑁 − 𝑘 + 1)!
𝑁!

− 1
((𝑘 − 1)!)2

)
· 1(

2·𝑘3−3·𝑘2+𝑘
12·(𝑘!)2 − 𝑘−1

8·((𝑘−1)!)2

) (3.23)

From our previous discussion, it is evident that the estimation of scalar curvature becomes

less accurate as the number of points increases. However, it is still intriguing to observe the behavior

of scalar curvature in relation to the chain length since scalar curvature is determined for each 𝑘 .

In the regime where the significant contribution to the scalar curvature comes from its linear

part, we can make the following claim in (2.2),

For, 𝑉 = 𝑙𝑑 = 𝑁
𝜌

,

𝑆𝑐𝑠𝑡 = 𝑙𝑑Σ𝑖𝑅𝑖 ≈ 𝑅𝑉 (3.24)

Now plugging in (3.23) to (3.24), we get

𝑆𝑘 =
𝑁

𝜌
· 𝑅𝑘

=

(
⟨𝐶𝑘⟩ ·

(𝑁 − 𝑘 + 1)!
𝑁!

− 1
((𝑘 − 1)!)2

)
· 1(

2·𝑘3−3·𝑘2+𝑘
12·(𝑘!)2 − 𝑘−1

8·((𝑘−1)!)2

) . (3.25)

Because of the definition of 𝑅 in Eq. (3.23), instead of a single action, we now have a

collection of actions associated with each value of 𝑘 . It is intriguing to explore how the action can

be computed for each 𝑘 in various spacetime scenarios.

Figures (3.7)- (3.8) indicate that the error bars of the chain action are of order 1, and more

importantly, they decrease as the number of points increases. In contrast to the BD action, which
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Figure 3.7: The graph shows the Chain action (𝑆3) for chain length 3 plotted against the number
of randomly sprinkled points in Minkowski spacetime. This graph is the result of averaging 50
different causal sets for each 𝑁 . As the number of points 𝑁 increases, it appears that the fluctuations
in the graph decrease and the action converge to continuum value.

(a) Chain action for de sitter spacetime for chain length 3
with 𝐻 = 100 and 𝜌 = 2, 000, 000

(b) Chain action for de sitter spacetime for chain length 4
with 𝐻 = 100 and 𝜌 = 2, 000, 000

Figure 3.8: This graph is the result of averaging 50 different causal sets. As the number of points
𝑁 increases, it appears that the fluctuations in both of the graph decreases, however the average
value deviates away from the continuum value.

was calculated in the previous section and had statistical fluctuations of order 102 − 103, the chain

action appears to have significantly less statistical fluctuation. However, one of the drawbacks of

this approach is that for de Sitter spacetime as in Fig. (3.8), the action deviates from the continuum

value as the number of points increases. This is due to the fact that only the linear terms of the
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Scalar curvature are considered during the full derivation of chain action. If we include its higher

order terms, the red dot in Fig. (3.8) for 𝑆3 and 𝑆4 should converge towards the continuum value

(green line).

Figure (3.8) was generated with a curvature value of 𝐻 = 100. If we were to reduce the

curvature to 𝐻 = 50, the action using linear approximation to scalar curvature would approach the

value seen in the continuum as shown in Fig. (3.9) even for higher number of points. This suggests

that the linear scalar curvature is able to capture most of the curvature in this regime.

Figure 3.9: The graph illustrates the behavior of Chain action in de Sitter spacetime for 𝐻 = 50
and 𝜌 = 2, 000, 000. Even as the number of points increases, the value doesn’t deviate much from
the continuum value.

Nonetheless, we aim to confirm that even when 𝐻 is set to 100 and 𝜌 is set to 2,000,000, the

inclusion of higher order terms in the scalar curvature should improve the action for higher number

of points which seems deviating for 𝑁 > 1000 in Fig. (3.8) . In the next chapter, we will provide a

comprehensive explanation of the chain action which will encompass the quadratic component of

curvature.
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CHAPTER 4

HIGHER ORDER CORRECTION FOR CHAIN ACTION

To begin our correction of higher-order correction terms in the action, we examine Eq. (3.10).

Within this equation, in order to focus solely on the linear term in 𝑅, it was assumed that 𝑔𝛼𝛽𝑔𝜇𝜈 =

𝜂𝛼𝛽𝜂𝜇𝜈. Now, let’s loosen this assumption and observe the consequences of doing so, keeping in

mind that we are expanding the metric around a point (𝑥0, 𝑡0). We have,

𝑅 = 𝑔𝜇𝜈𝑔𝛼𝛽𝑅𝛼𝜇𝛽𝜈

= (𝜂𝜇𝜈 + 1
3
𝑅𝛾𝛿𝜖𝜁 𝜂

𝜇𝛿𝜂𝜁𝜈𝑥𝛾𝑥𝜖 ) (𝜂𝛼𝛽 + 1
3
𝑅𝛾𝛿𝜖𝜁 𝜂

𝛼𝛿𝜂𝜁 𝛽𝑥𝛾𝑥𝜖 )𝑅𝛼𝜇𝛽𝜈 .

(4.1)

Expanding all index contractions in this equation and keeping upto quadratic terms in the

curvature, while noting that in two dimensions, the Riemann tensor has only one independent

component characterized by 𝑅0101, we obtain the following expression:

0 = 𝑅2
0101((𝑥 − 𝑥0)2 − (𝑡 − 𝑡0)2) − 3𝑅0101 −

3
2
𝑅 (4.2)

Solving for 𝑅0101 using the quadratic equation gives

𝑅0101 =
3 ± 3

√︃
1 + 2𝑅[(𝑥−𝑥0)2−(𝑡−𝑡0)2]

3

2[(𝑥 − 𝑥0)2 − (𝑡 − 𝑡0)2]
(4.3)

Applying the binomial expansion and keeping upto quadratic terms in the scalar curvature,

one of the roots of this quadratic equation can be expressed as

𝑅0101 = −
(
𝑅

2
− 𝑅2

12
[(𝑥 − 𝑥0)2 − (𝑡 − 𝑡0)2]

)
(4.4)

34



The line element in Eq. (3.9) will now have these components,

𝑔00 = −1 + 𝑅

6
(𝑥 − 𝑥0)2 − 𝑅2

36
((𝑥 − 𝑥0)2 − (𝑡 − 𝑡0)2) (𝑥 − 𝑥0)2

𝑔11 = 1 + 𝑅

6
(𝑡 − 𝑡0)2 − 𝑅2

36
((𝑥 − 𝑥0)2 − (𝑡 − 𝑡0)2) (𝑡 − 𝑡0)2

𝑔01 =
𝑅

6
(𝑥 − 𝑥0) (𝑡 − 𝑡0) −

𝑅2

36
((𝑥 − 𝑥0)2 − (𝑡 − 𝑡0)2) (𝑥 − 𝑥0) (𝑡 − 𝑡0)

𝑔10 =
𝑅

6
(𝑥 − 𝑥0) (𝑡 − 𝑡0) −

𝑅2

36
((𝑥 − 𝑥0)2 − (𝑡 − 𝑡0)2) (𝑥 − 𝑥0) (𝑡 − 𝑡0)

(4.5)

and the line element will look like

𝑑𝑠2 =

(
−1 + 𝑅

6
(𝑥 − 𝑥0)2 − 𝑅2

36
((𝑥 − 𝑥0)2 − (𝑡 − 𝑡0)2) (𝑥 − 𝑥0)2

)
𝑑𝑡2

+
(
1 + 𝑅

6
(𝑡 − 𝑡0)2 − 𝑅2

36
((𝑥 − 𝑥0)2 − (𝑡 − 𝑡0)2) (𝑡 − 𝑡0)2

)
𝑑𝑥2

−
(
𝑅

6
(𝑥 − 𝑥0) (𝑡 − 𝑡0) −

𝑅2

36
((𝑥 − 𝑥0)2 − (𝑡 − 𝑡0)2) (𝑥 − 𝑥0) (𝑡 − 𝑡0)

)
(𝑑𝑡𝑑𝑥 + 𝑑𝑥𝑑𝑡)

(4.6)

As discussed in the previous section, it is crucial to modify the form of the line element

(utilizing null coordinates (𝑢, 𝑣)) in order to ensure that the metric takes on a conformally flat form.

In order to achieve the appropriate coordinate transformation, we select a specific combination of

(𝑣 − 𝑣0)𝑎 and (𝑢 − 𝑢0)𝑏 that maintains the dimensionality in quadratic term of Curvature. The key

lies in determining the correct coefficient in the Eq. (4.7), which allows us to transform the metric

into a conformally flat form.

𝑡 =
𝑢 + 𝑣
√

2
+ 𝑅

12
√

2
((𝑣 − 𝑣0) (𝑢 − 𝑢0)2 + (𝑣 − 𝑣0)2(𝑢 − 𝑢0))

+ 𝑅2(𝐶 (𝑣 − 𝑣0)2(𝑢 − 𝑢0)3 + 𝐷 (𝑣 − 𝑣0)3(𝑢 − 𝑢0)2)

𝑥 =
𝑢 − 𝑣
√

2
+ 𝑅

12
√

2
((𝑣 − 𝑣0) (𝑢 − 𝑢0)2 − (𝑣 − 𝑣0)2(𝑢 − 𝑢0))

+ 𝑅2(𝐴(𝑣 − 𝑣0)2(𝑢 − 𝑢0)3 + 𝐵(𝑣 − 𝑣0)3(𝑢 − 𝑢0)2)

(4.7)

From these, we can derive the expressions for (𝑥2, 𝑡2, 𝑑𝑥, 𝑑𝑡, 𝑑𝑥2, 𝑑𝑡2, 𝑑𝑥𝑑𝑡) in terms of the null

coordinates (𝑢, 𝑣). By directly substituting these expressions into Eq. (4.6), we obtain the line
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element of the form in Eq. (4.8). We are looking at the line element corresponding to the quadratic

part in Eq. (4.8).

𝑑𝑠2 =
𝑅2

48
(4𝑢3𝑣𝑑𝑣2 − 14𝑢2𝑣2𝑑𝑢𝑑𝑣 + 4𝑢𝑣3𝑑𝑢2)

+ 𝑅2√2
[
𝐴(2𝑣3𝑑𝑢𝑑𝑣 − 2𝑢3𝑣𝑑𝑣2 + 3𝑢2𝑣2𝑑𝑢2 − 3𝑢2𝑣2𝑑𝑢𝑑𝑣)

+ 𝐵(3𝑢2𝑣2𝑑𝑢𝑑𝑣 − 3𝑢2𝑣2𝑑𝑣2 + 2𝑢𝑣3𝑑𝑢2 − 2𝑢𝑣3𝑑𝑢𝑑𝑣)

+ 𝐶 (−2𝑣3𝑑𝑢𝑑𝑣 − 2𝑢3𝑣𝑑𝑣2 − 3𝑢2𝑣2𝑑𝑢2 − 3𝑢2𝑣2𝑑𝑢𝑑𝑣)

+ 𝐷 (−3𝑢2𝑣2𝑑𝑢𝑑𝑣 − 3𝑢2𝑣2𝑑𝑣2 − 2𝑢𝑣3𝑑𝑢2 − 2𝑢𝑣3𝑑𝑢𝑑𝑣)
]

(4.8)

By choosing

𝐴 =
1

48
√

2
, 𝐵 = − 1

48
√

2
, 𝐶 =

1
48

√
2
, 𝐷 =

1
48
√

2
(4.9)

The line element including the flat spacetime terms, 𝑅 correction, and 𝑅2 correction part

can be reduced to

𝑑𝑠2 = −(2 + 𝑅(𝑣 − 𝑣0) (𝑢 − 𝑢0) +
13𝑅2

24
(𝑣 − 𝑣0)2(𝑢 − 𝑢0)2)𝑑𝑢𝑑𝑣. (4.10)

Using the binomial expansion up to second order correction, we get

√−𝑔 = 1 + 𝑅

2
(𝑢 − 𝑢0) (𝑣 − 𝑣0) +

13𝑅2

48
(𝑢 − 𝑢0)2(𝑣 − 𝑣0)2. (4.11)

The volume of an Alexandrov set 𝐴 in curved spacetime with interval (𝑢0, 𝑣0) and (𝑢𝑘 , 𝑣𝑘 )

is given by

𝑉 =

∫
𝐴

√︁
−𝑔(𝑢𝑘 , 𝑣𝑘 )𝑑𝑢𝑘𝑑𝑣𝑘

=

∫ 𝑢𝑘

𝑢0

∫ 𝑣𝑘

𝑣0

(1 + 𝑅

2
(𝑣𝑘 − 𝑣0) (𝑢𝑘 − 𝑢0) +

13𝑅2

48
(𝑢𝑘 − 𝑢0)2(𝑣𝑘 − 𝑣0)2)𝑑𝑢𝑘𝑑𝑣𝑘

= (𝑢𝑘 − 𝑢0) (𝑣𝑘 − 𝑣0) +
𝑅

8
(𝑣𝑘 − 𝑣0)2(𝑢𝑘 − 𝑢0)2 + 13𝑅2

432
(𝑣𝑘 − 𝑣0)3(𝑢𝑘 − 𝑢0)3.

(4.12)
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Expression for 𝑉 𝑘−1 which is used during integration is given by

𝑉 𝑘−1 = (𝑢𝑘 − 𝑢0)𝑘−1(𝑣𝑘 − 𝑣0)𝑘−1 + 𝑅(𝑘 − 1)
8

(𝑣𝑘 − 𝑣0)𝑘 (𝑢𝑘 − 𝑢0)𝑘

+ 𝑅2(𝑘 − 1)
(

13
432

+ 𝑘 − 2
128

)
(𝑣𝑘 − 𝑣0)𝑘+1(𝑢𝑘 − 𝑢0)𝑘+1.

(4.13)

We are now ready to calculate our chain distribution including second order correction

terms starting with ⟨𝐶3⟩.

4.1 ⟨𝐶3⟩ including higher-order correction

We begin by integrating Eq. (3.3) for 𝑘 = 3 including the 𝑅2 term as follow,

⟨𝐶3⟩ = 𝜌𝑜

∫
𝐴0

(1 + 𝑅

2
(𝑣3 − 𝑣1) (𝑢3 − 𝑢1) +

13𝑅2

48
(𝑢3 − 𝑢1)2(𝑣3 − 𝑣1)2)𝑑𝑢1𝑑𝑣1·

𝜌1

∫
𝐴1

(1 + 𝑅

2
(𝑣3 − 𝑣2) (𝑢3 − 𝑢2) +

13𝑅2

48
(𝑢3 − 𝑢2)2(𝑣3 − 𝑣2)2)𝑑𝑢2𝑑𝑣2

(4.14)

Continuing in a similar manner as demonstrated in Eq. (3.19), we arrive at this equation

⟨𝐶3⟩ =
𝑁!

𝑉2(𝑁 − 2)!

[ (𝑢3 − 𝑢0)2(𝑣3 − 𝑣0)2

4
+ 5𝑅

72
(𝑢3 − 𝑢0)3(𝑣3 − 𝑣0)3 + 157𝑅2

6912
(𝑢3 − 𝑢0)4(𝑣3 − 𝑣0)4

]
(4.15)

Let’s subtract and add
(
𝑅(𝑢3−𝑢0)3 (𝑣3−𝑣0)3

16 + 131𝑅2 (𝑢3−𝑢0)4 (𝑣3−𝑣0)4

6912

)
and use𝑉2 = (𝑢3−𝑢0)2(𝑣3−

𝑣0)2 + 𝑅
4 (𝑢3 − 𝑢0)3(𝑣3 − 𝑣0)3 + 131𝑅2 (𝑢3−𝑢0)4 (𝑣3−𝑣0)4

1728 from (4.13) to get

⟨𝐶3⟩ =
𝑁!

𝑉2(𝑁 − 2)!

[𝑉2

4
+ 𝑅

144
(𝑢3 − 𝑢0)3(𝑣3 − 𝑣0)3 + 26𝑅2

6912
(𝑢3 − 𝑢0)4(𝑣3 − 𝑣0)4

]
(4.16)

Now, using 𝑅(𝑢3 − 𝑢0)3(𝑣3 − 𝑣0)3 = 𝑉2
(
𝑅𝑁
𝜌

)
− 3𝑅2

8 (𝑢3 − 𝑢0)4(𝑣3 − 𝑣0)4, we get

⟨𝐶3⟩ =
𝑁!

𝑉2(𝑁 − 2)!

[𝑉2

4
+ 𝑉2

144

(
𝑅𝑁

𝜌

)
+ 𝑅2

864
(𝑢3 − 𝑢0)4(𝑣3 − 𝑣0)4

]
(4.17)

Finally, using 𝑅2(𝑢3−𝑢0)4(𝑣3−𝑣0)4 = 𝑉2
(
𝑅𝑁
𝜌

)2
, we arrive at the expression corresponding
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to Eq. (3.21)

⟨𝐶3⟩ = 𝑁 (𝑁 − 1)
[1
4
+ 1

144
𝑁𝑅

𝜌
+ 1

864

(
𝑁𝑅

𝜌

)2 ]
(4.18)

Let’s calculate for ⟨𝐶4⟩ which will generate another quadratic equation similar to Eq. (4.18)

and solve for 𝑅.

4.2 ⟨𝐶4⟩ including higher-order correction

For 𝑘 = 4, Eq. (3.3) with thr higher order term to scalar curvature would look like as follows,

⟨𝐶4⟩ = 𝜌𝑜

∫
𝐴0

(1 + 𝑅

2
(𝑣4 − 𝑣1) (𝑢4 − 𝑢1) +

13𝑅2

48
(𝑢4 − 𝑢1)2(𝑣4 − 𝑣1)2)𝑑𝑢1𝑑𝑣1×

𝜌1

∫
𝐴1

(1 + 𝑅

2
(𝑣4 − 𝑣2) (𝑢4 − 𝑢2) +

13𝑅2

48
(𝑢4 − 𝑢2)2(𝑣4 − 𝑣2)2)𝑑𝑢2𝑑𝑣2×

𝜌2

∫
𝐴2

(1 + 𝑅

2
(𝑣4 − 𝑣2) (𝑢4 − 𝑢2) +

13𝑅2

48
(𝑢4 − 𝑢3)2(𝑣4 − 𝑣3)2)𝑑𝑢3𝑑𝑣3.

(4.19)

Integrating (4.19) leads to

⟨𝐶4⟩ =
𝑁!

𝑉3(𝑁 − 3)!

[ (𝑢4 − 𝑢0)3(𝑣4 − 𝑣0)3

36
+ 7𝑅

576
(𝑢4−𝑢0)4(𝑣4−𝑣0)4+ 721𝑅2

172800
(𝑢4−𝑢0)5(𝑣4−𝑣0)5

]
.

(4.20)

Let’s subtract and add
(

3𝑅(𝑢4−𝑢0)4 (𝑣4−𝑣0)4

288 + 79𝑅2 (𝑢4−𝑢0)5 (𝑣4−𝑣0)5

20736

)
and use𝑉3 = (𝑢4−𝑢0)3(𝑣4−

𝑣0)3 + 3𝑅
8 (𝑢4 − 𝑢0)4(𝑣4 − 𝑣0)4 + 79𝑅2 (𝑢4−𝑢0)5 (𝑣4−𝑣0)5

576 from (4.13) to get

⟨𝐶4⟩ =
𝑁!

𝑉3(𝑁 − 3)!

[𝑉3

36
+ 𝑅

576
(𝑢4 − 𝑢0)4(𝑣4 − 𝑣0)4 + 47𝑅2

129600
(𝑢4 − 𝑢0)5(𝑣4 − 𝑣0)5

]
. (4.21)

Now, using 𝑅(𝑢4 − 𝑢0)4(𝑣4 − 𝑣0)4 = 𝑉3
(
𝑅𝑁
𝜌

)
− 𝑅2

2 (𝑢4 − 𝑢0)5(𝑣4 − 𝑣0)5, we get

⟨𝐶4⟩ =
𝑁!

𝑉3(𝑁 − 3)!

[𝑉3

36
+ 𝑉3

576

(
𝑅𝑁

𝜌

)
− 131𝑅2

259200
(𝑢4 − 𝑢0)5(𝑣4 − 𝑣0)5

]
. (4.22)
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Finally, using 𝑅2(𝑢4 − 𝑢0)5(𝑣4 − 𝑣0)5 = 𝑉3
(
𝑅𝑁
𝜌

)2
gives

⟨𝐶4⟩ = 𝑁 (𝑁 − 1) (𝑁 − 2)
[ 1
36

+ 1
576

𝑁𝑅

𝜌
− 131

259200

(
𝑁𝑅

𝜌

)2 ]
. (4.23)

4.3 Chain Action with higher-order correction

By solving Eq. (4.18) and Eq. (4.23), we can find 𝑅 in terms of ⟨𝐶3⟩ and ⟨𝐶4⟩ as follows,

𝑅 =
𝜌

𝑁

[ 259200 · ⟨𝐶4⟩
1236 · 𝑁 (𝑁 − 1) (𝑁 − 2) +

113184 · ⟨𝐶3⟩
1236 · 𝑁 (𝑁 − 1) −

35496
1236

]
. (4.24)

The chain action is now given by

𝑆 =
𝑁

𝜌
· 𝑅

=

[ 259200 · ⟨𝐶4⟩
1236 · 𝑁 (𝑁 − 1) (𝑁 − 2) +

113184 · ⟨𝐶3⟩
1236 · 𝑁 (𝑁 − 1) −

35496
1236

]
.

(4.25)

The plot is given below

Figure 4.1: This graph is the chain action (𝑆) when higher order terms in the scalar curvature are
included. This is a result of averaging 50 different values of the causal set action for each 𝑁 with
𝐻 = 100 and 𝜌 = 2, 000, 000.
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Figure (4.1) shows that the error bars associated with the modified chain action are ap-

proximately of magnitude 1. These error bars progressively decrease as the number of data points

increases. The modified version of the action appears to be highly precise until around 𝑁 = 1700

points, after which it begins to deviate. If higher-order corrections such as (𝑅3, 𝑅4, ...) were in-

cluded, the action value would be expected to converge towards the continuum even for higher

number of points.

When compared to Dr. Pilgrim’s proposed chain action4, this modified version shows

improved approximation to the continuum action, particularly for larger numbers of data points.

This trend is depicted in the accompanying Fig. (4.2).

Figure 4.2: This graph presents a comparison between the chain action including only a linear
curvature term (Eq. (3.21)) and the modified chain action that incorporates the 𝑅2 term (equation
4.24).

Based on Fig. (4.2), it is evident that the modified chain action exhibits better convergence

towards the continuum compared to the original chain action.
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CHAPTER 5

CONCLUSION

The formulation of an Action is a significant advancement in causal set theory, playing a

vital role in understanding the theory’s evolution and dynamics. Despite the inherent non-local

nature of causal sets, certain locally defined quantities such as the scalar curvature and Benincasa-

Dowker (BD) Action were computed in the second chapter using a non-local discrete operator

which depends on certain linear combination of layers. However, the resulting BD action failed to

accurately match the continuum value and exhibited substantial statistical errors (in the order of

102 − 103). A potential reason for this difference could be attributed to the fact that the Eq. (2.27)

comprises terms originating directly from Posison’s distribution, which inherently results in higher

uncertainties as the number of points increases. Another limitation may arise from ignoring higher

order terms in the scalar curvature during the expansion of the metric.

Chapter 3 introduces an alternative approach proposed by Dr. BB and Dr. Bombelli, which

explores the relationship between the expectation value of the 𝑘-chain length and the curvature.

This method presents a more efficient approach and significantly reduces the error bars as the

number of points increases, surpassing the performance of the BD method. However, the chain

action still deviates from the continuum value with increasing point density (around 1000 points),

possibly due to the ignorance of higher-order terms associated with the scalar curvature during the

derivation.

The thesis in the fourth chapter focuses on investigating the enhancements of the chain action

by incorporating higher-order terms of the scalar curvature during the expansion of the metric.

Through extensive calculations, the specific form of the chain action, including these higher-order

terms (specifically the 𝑅2 term), in terms of ⟨𝐶3⟩ and ⟨𝐶4⟩, was successfully determined. The
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result in Fig. (4.2) indicates that the chain action can be improved by incorporating higher-order

terms associated with the scalar curvature.
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APPENDIX A

Mechanics of Sprinkling

As discussed in Ref.10, To better understand the computational aspect of the two-dimensional

Minkowski space, we can use a square manifold that contains an Alexandrov set extending from

𝑡1 to 𝑡2 along the time direction, and from 𝑥1 = (𝑡2 − 𝑡1)/2 to 𝑥2 = (𝑡1 − 𝑡2)/2 along the spatial

direction. To distribute points in the manifold, we can choose the first value to be a time coordinate

between 𝑡2 and 𝑡1, and the second value to be a spatial coordinate between 𝑥2 and 𝑥1. We then select

only those points that are inside the Alexandrov set and assign them their respective locations. We

repeat this process until we obtain the desired set of points.

Figure A.1: Causal diamond inside a square Lorentzian manifold

For flat spacetime:
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Line element: 𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑥2

Volume element:
√︁
−𝑔(𝑥)𝑑𝑥𝑑𝑡

Since
√︁
−𝑔(𝑥) = 1, there is no dependence on 𝑡 or 𝑥 for the volume element in Minkowski

space. Thus, we can choose points uniformly at random in both directions. Let’s use computer’s

function to generate a random number 𝑟𝑡 that can be translated to a random number 𝑚𝑡 between 𝑡1

and 𝑡2. They are related via equation below,

𝑟𝑡 =

∫ 𝑚𝑡

𝑡1
𝑑𝑡∫ 𝑡2

𝑡1
𝑑𝑡

(A.1)

where, 𝑚𝑡 ∈ [𝑡1, 𝑡2] and 𝑟𝑡 ∈ [0, 1],

We can now generate 𝑚𝑡 as a function of 𝑟𝑡 given by

𝑚𝑡 = 𝑟𝑡 (𝑡2 − 𝑡1) + 𝑡1 (A.2)

Similarly, the second coordinate (space) between 𝑥1 and 𝑥2 be 𝑚𝑥 such that,

𝑟𝑥 =

∫ 𝑚𝑥

𝑥1
𝑑𝑡∫ 𝑥2

𝑥1
𝑑𝑡

,

𝑚𝑥 = 𝑟𝑥 (𝑥2 − 𝑥1) + 𝑥1

(A.3)

where, 𝑚𝑥 ∈ [𝑥1, 𝑥2] and 𝑟𝑥 ∈ [0, 1].

Now that we have generated coordinates (𝑚𝑡 , 𝑚𝑥) randomly, we can determine if the gener-

ated points are in the diamond or not by satisfying this condition below,

(𝑚𝑡 − 𝑡1)2 > (𝑚𝑥)2

(𝑚𝑡 − 𝑡2)2 > (𝑚𝑥)2
(A.4)

This inequality checks if the generated points are timelike or not. In other words, it is

checking if the points are causally related or not. We can, then, encode this information in a

47



partially ordered set using a relations or link matrix (also includes equivalent information), which

can be arranged in lower or upper triangular form.

Relation matrix:

𝑅𝑖 𝑗 =


1 if i ≺ j

0 otherwise
(A.5)

If ≺ ∗ defines the link relation between elements, then the Link matrix is,

𝐿𝑖 𝑗 =


1 if i ≺ ∗ j

0 otherwise
(A.6)

For de Sitter space:

Line element:

𝑑𝑠2 =
1

𝐻2𝑡2
(−𝑑𝑡2 + 𝑑𝑥2) (A.7)

where 𝐻= Expansion rate, 𝑡 ∈ (−∞, 0) and 𝑥 ∈ (−∞,∞)

Volume element:

𝑑𝑉 = (𝐻2𝑡2)−1𝑑𝑥𝑑𝑡 (A.8)

It is evident from the volume element that the volume depends on t, thus, we can’t choose a

uniformly random value 𝑚𝑡 between 𝑡1 and 𝑡2. For this reason, the density should be higher at the

top of an Alexandrov set. However, the volume element is independent of 𝑥, thus, we can choose

𝑚𝑥 uniformly between 𝑥1 and 𝑥2.

For the time coordinate, let’s choose 𝑚𝑡 such that

𝑟𝑡 =

∫ 𝑚𝑡

𝑡1
(𝐻2𝑡2)−1𝑑𝑡∫ 𝑡2

𝑡1
(𝐻2𝑡2)−1𝑑𝑡

(A.9)

Let’s express 𝑚𝑡 in terms of 𝑟𝑡 ,

𝑚𝑡 =
𝑡2𝑡1

𝑟𝑡 (𝑡1 − 𝑡2) + 𝑡2
(A.10)
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where 𝑟𝑡 ∈ [0, 1] and 𝑚𝑡 ∈ (𝑡1, 𝑡2).

Since the volume element is independent of the 𝑥 coordinate, it will behave in the same way

it did in Minkowski space. So, we can write

𝑚𝑥 = 𝑟𝑥 (𝑥2 − 𝑥1) + 𝑥1 (A.11)

where 𝑚𝑥 ∈ [𝑥1, 𝑥2] and 𝑟𝑥 ∈ [0, 1] .

Now that we have generated (𝑚𝑡 , 𝑚𝑥), we can use the same condition as we did in Minkowski

space to determine if it belongs to the causal diamond or not. The only difference that will be

observed is that the apparent density of points as we go higher on 𝑡 appears to increase. The actual

density is approximately equal to a constant.
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