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ABSTRACT 

The structural and mechanical properties of void-free and single-void α-quartz were 

investigated using MD simulations with three different interatomic potentials (BKS, Vashishta and 

Tersoff). Two distinct ensembles, NVT and NPT, were separately applied to investigate the tensile 

response of α-quartz under uniaxial strain and uniaxial stress states. A comprehensive comparison 

among different potentials, as well as comparison with currently available experiments, has been 

made. The BKS and Vashishta potentials accurately predicted the structural properties of void-free 

α-quartz, while the Tersoff potential was deviated significantly from the experimental data. Under 

tension, the BKS did a better description for the mechanical performance of α-quartz. The 

Vashishta potential also captured the tension behavior, but overpredicted the Young’s modulus. 

The Tersoff potential accurately described the elastic deformation but was unable to predict the 

fracture behavior for α-quartz. Furthermore, the void-size effect on the tensile and fracture 

behavior of α-quartz was analyzed and the predictions by using all three potentials were compared. 

Additionally, the choice of the ensembles could influence the mechanical response of α-quartz. 

The presence of a small void with a radius of 2.5 Å, when using an NVT ensemble with the BKS 

potential, significantly affected the tensile properties, while the NPT simulation did not show the 

same effect. The tensile curves obtained by using the Vashishta potential were similar in both NVT 

and NPT simulations, with slightly higher tensile properties observed in the NPT simulation. With 

Tersoff potential, brittle fracture occurred at a strain of 0.33 in NVT simulation but was not 

observed in NPT simulation. The equivalent stress analysis reveals that the BKS potential can 

better describe the stress concentration around the voids, while the Vashishta and Tersoff 
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potentials cannot show satisfactory description on the material fracture with the presence of the 

voids. Based on all the above-mentioned comparisons, the BKS potential is demonstrated to be the 

most suitable one to describe α-quartz under tension. All the findings in this work highlight the 

importance of a proper selection of interatomic potentials for simulating the properties of nano-

void structures, especially for the study of fracture mechanisms in silica materials. 
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1.1 Introduction to silica and quartz 

            Silica dioxide, also known as silica, is an oxide of silicon with the chemical formula of 

SiO2. It is the most abundant oxide found in the earth's crust 1. More than 90% of the crust's volume 

is comprised of silicate minerals, composed of silica and various other molecules 2. They are also 

primary components of the crusts of the Moon, Mercury, Venus, and Mars 3. Silica has various 

applications due to its unique properties in different fields. It is the primary raw material in the 

production of glass and ceramics, and in the electronics industry, silica plays a vital role as it is 

utilized to produce silicon for computer chips. Moreover, the majority of fiber optic cables for 

telecommunications are also made from silica. Silica has been largely used in construction industry 

as well, e.g. for the production of concrete, and it has been found applications beyond these 

industries too. It serves as a soil additive to improve plant growth in agriculture. Additionally, it is 

a common additive in food and cosmetics production. Silica's versatility extends further as it is 

employed as a desiccant to absorb moisture and as a filler in rubber and plastics. Given its broad 

range of applications, silica is extensively studied and researched in various fields. Its significance 

in numerous industries, coupled with its abundant presence, makes it an intriguing material for 

scientific exploration. 

Silica is found in various forms with their unique properties and uses. The most common 

types of silica are cristobalite, tridymite and quartz. Cristobalite and tridymite are polymorphs of 

SiO2 in which the silica tetrahedra are packed in a two-layer structure (tridymite) or a three-layer 

structure (cristobalite). Cristobalite is a dominant mineral found in volcanic rocks and can also be 

observed as a detrital mineral in soils formed from pyroclastic volcanic materials. However, it is 

rare in other soil types. Cristobalite is used in some applications, such as refractory materials, 

fillers in polymers and polishing abrasives. Tridymite is found in various volcanic materials such 



 - 3 - 

as trachybasalt and tuffs, as well as in limestone. It could be used in the production of ceramics 

and refractory materials. 

Quartz is the most abundant form of silica and has been widely used in various industrial 

applications due to its great economic importance. Among all the varieties for quartz, α-quartz and 

β-quartz are two of the most common polymorphs. Alpha-quartz (or low quartz) is stable at the 

room temperature and pressure, while beta-quartz (or high quartz) is thermodynamically stable at 

temperatures above 573 °C. As the temperature increases to around 573 ℃, α-quartz will transform 

into β-quartz, and this transformation process is spontaneous and reversible. Both of them have 

been extensively studied in various areas, such as chemistry, mechanics, biophysics, geoscience 

and electronics 4–6. 

 

1.2 Porous or void-containing materials 

Porous or void-containing materials with pore/void sizes ranging from molecular to 

micrometer have interesting mechanical and thermal properties that make them suitable for many 

science and/or engineering applications 7. J. S. Beck et al. first reported the porous silica, and since 

then, numerous porous materials with varying pore sizes, pH levels (ranging from highly basic to 

strongly acidic conditions), and shapes have been synthesized using non-ionic, cationic, neutral, 

and anionic surfactants 8–12. These materials exhibit desirable properties such as high surface area, 

uniform pore structures, and narrow pore size distributions. Those porous materials with their large 

pore volumes have demonstrated potentials in loading guest species and accommodating 

expansion and strain relaxation during repeated electrochemical energy storage processes. 

Furthermore, their high surface areas offer numerous reaction and interaction sites for various 
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surface processes, including catalysis, adsorption, energy storage, and separation. These features 

make them particularly well-suited for applications in energy conversion and storage 13–15.  

When porosity, pore size/shape, and pore distribution in these materials are tailored, they 

can be used for thermal insulation, drug delivery, and microelectronics applications among others 

16–20. Pores, voids, and vacancies may sometimes be introduced to the structure of virgin materials 

during long-term use. For example, optical fibers made from quartz contain radiation-induced 

vacancies, which could significantly reduce the mechanical strength of the fibers during long-term 

operation. In general, the presence of pores or voids alters the crystalline structure of the material, 

thereby either complicating its physico-mechanical behavior or accelerating defect propagation 

and, hence, fundamentally deteriorating its overall performance 21. These effects are more 

pronounced for complex multi-physics scenarios. 

 

1.3 Literature review  

The origin of the simulation of the properties of silica dates back to the 1980s 22, soon after 

the development of computer modeling. Over the last decades, advancements in computational 

methods have enabled the scientists and engineers to better predict the bulk and surface properties 

of different materials, including crystalline quartz. Among the widely used computational methods 

is molecular dynamics (MD) simulation, which is a useful tool for investigating the molecular-

scale phenomena behind the evolution of microstructures and observed physico-mechanical 

properties of materials. Through an atomistic level description, MD simulation enables the analysis 

of nanostructure evolution on the nanoseconds time scale for systems that comprise of millions 

and sometimes billions of atoms. Moreover, by probing the time evolution of the interactions 

between the constituent atoms of the material, its dynamic, thermodynamic, and mechanical 
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properties can be estimated. This is possible through the use of a suitable interatomic potential or 

force field. Historically, Alder and Wainwright, two pioneers of MD simulation, studied the 

interactions of hard spheres in late 1950s 23,24. However, it was not until 1964 that the first 

interatomic potential, which was used by Rahman 25, yielded realistic predictions of the properties 

of argon. Since then, many interatomic potentials have been developed. Given the fact that the 

accuracy of material property predictions depends on the reliability and transferability of the 

interatomic potential used for a given simulation, it is pivotal to first evaluate the potential in terms 

of its capability in reproducing some target material properties. 

Based on the thermodynamic and mechanical parameters of temperature, pressure, and 

strain rate, α-quartz can undergo either brittle or ductile failure under an external load. The tension 

behavior of α-quartz has been simulated in past decades using different interatomic potentials 22,26–

36. The timeline of these simulations is provided in Figure 1, where each simulation work is 

designated by the name of the first author of the corresponding publication. For example, Molaei 

et al. investigated the mechanical properties and crack propagation mechanism of α-quartz through 

a series of MD simulations using the van Beest, Kramer, and van Santen (BKS) pairwise 

interatomic potential 5 and Tersoff potential 37 separately in their study. They determined the stress-

strain behavior of α-quartz under uniaxial tensile loading at different temperatures and strain rates, 

and successfully correlated between them. Chowdhury et al. 28 predicted the crystalline-to-

amorphous transition of silica during tension using the reactive force field (ReaxFF). The quasi-

static modulus, which was calculated from a power-law fitting to the low-strain-rate data obtained 

by ReaxFF simulation, is in good agreement with the experimental data. The effects of strain rate, 

as well as heating and cooling rates, on the nanostructure of silica and its stress-strain response 

were also investigated. In another work, Wang et al. 26 determined the tensile behavior of 
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amorphous silica through MD simulation with the Tersoff potential. The transition of deformation 

from elastic to plastic at different strain rates was correctly captured in their work.  

 

 
 

Figure 1. Timeline showing the development of interatomic potentials for α-quartz. 

 

Previously, some theoretical and computational investigations of the porous structure of α-

quartz and its mechanical properties under load were attempted by researchers to provide insights 

into the experimentally observed failure mechanisms and to aid the experimental efforts. For 

example, Molaei 37 found that the central cracks in α-quartz decreased the average stress and strain, 

and this reduction was much higher in the z-direction ([0 0 1]). In general, porosity, which is 

defined as the void-to-total-volume fraction, is usually used as a principal characteristic of the 

porous material when deriving correlations between its void structure and continuum behavior 38–

40, with the consideration of void size and shape often ignored. One of the reasons for only 

considering porosity is that quantifying the micro-void structure at continuum level is a 

challenging task.  
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1.4 Structure of the thesis  

While these published results provide confidence in using MD simulation to predict the 

mechanical properties of α-quartz, the fact that many different interatomic potentials were used to 

make the predictions merits a closer scrutiny of these potentials. This is especially true for an α-

quartz single crystal structure with void defects, where different potentials may deviate in their 

predictions of the mechanical and fracture behavior of the material. Herein, three widely used 

interatomic potentials for α-quartz, i.e., BKS, Vashishta, and Tersoff were used to determine the 

physical and mechanical properties of defect-free and single-void α-quartz with two different void 

sizes. The remaining part of the thesis is organized as follows. In Chapter 2, details on the 

computational approach, including MD simulations, and theoretical background on interatomic 

potentials are provided. Then in Chapter 3 presents the modelling and simulation processes for 

both void-free and single-void α-quartz models. In Chapter 4, the results for structural and 

mechanical properties of α-quartz are presented by utilizing three different potentials and, finally, 

conclusions from the previous chapters are summarized in Chapter 5, together with suggested 

future work.  
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CHAPTER 2 

MOLECULAR DYNAMICS METHODOLOGY 
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2.1 Introduction  

By capturing the motions of atoms and their interactions, computer simulations have 

become a valuable tool for investigating the dynamics of material systems. This has enabled 

researchers to explore specific questions about the properties and functions of various materials 

systems. Conventional MD simulation is one of the most frequently employed computational 

techniques for examining equilibrium and transport properties in many-particle systems. It is a 

computational technique used to study the motion and interactions of atoms and molecules over 

time and it involves solving the equations of motion for a system of interacting particles, usually 

in the context of classical mechanics.  

MD simulations were first proposed in the 1950s by Alder and Wainwright 23,41 at the 

Lawrence Radiation Laboratory (LRL) in the United States. They used the then available highly 

powerful mainframe computers at LRL to calculate the response of several hundred interacting 

classical particles in the fields of equilibrium and non-equilibrium statistical mechanics. Since then, 

MD simulation has been extensively used in various fields such as crystal growth, indentation, 

tribology, fracture, and laser interactions, among others 42–46. This has led to numerous publications 

and several books on the topic, making MD simulation a matured field 42,47,48.  

The fundamental principle behind MD simulations is to simulate the behavior of a system 

by numerically integrating the equations of motion for all the particles in the system. MD 

simulations involve numerically integrating the equations of motion for all particles in a system to 

simulate its behavior. The method relies on solving Newton's equations of motion for an atom 

ensemble via numerical techniques over short time intervals, and computing equilibrium statistical 

averages as temporal averages. To accurately describe interatomic forces, explicit knowledge of 

the electronic ground state in each system configuration is required. However, to make atomistic 
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simulation studies practical, a classical or semi-classical potential that meets material properties 

criteria, including lattice constant, energy of sublimation, compressibility, elastic constants, the 

equation of state, and the crystal's stability, is used to derive interatomic forces. 

MD simulations utilize a potential energy function to calculate the forces acting on each 

particle in a system, considering both bonded and non-bonded interactions, such as van der Waals 

and electrostatic forces. This simulation method can be likened to analyzing the dynamic response 

of nonlinear spring-mass systems under various conditions. From this point of view, MD 

simulation is similar to other analyses that mechanical engineers routinely conduct, such as the 

investigation of vibrations of a mechanical system wherein a series of springless masses and 

massless springs are connected and the response of the system is investigated under a given 

external load.  

MD simulation is particularly useful for studying the statistical properties of condensed 

matter systems at an atomistic level, providing valuable information that is not easily obtainable 

through other theoretical methods or experiments. Recent advancements in computational speed 

and memory storage have made it possible to study a range of phenomena in materials science, 

including the introduction of defect structures and the analysis of simple nanostructured materials. 

This computational method has contributed to a deeper understanding of the properties of materials, 

drug design, biological membranes, and the behavior of fluids and phase transitions in physics. It 

has become a critical tool for scientists to seek a better understanding for complex microscale 

systems and has played a crucial role in advancing our knowledge of the natural world. 

 

2.2 Molecular Dynamics Simulations  

2.2.1 Basic Idea of Molecular Dynamics 
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The MD simulations are based on Newton's laws of motion, which describe the behavior 

of particles in a classical mechanics system. Using this method, most notably the Newtonian 

formalism:  

𝐹! = 𝑚!𝒂!                                                                                                                          (1) 

are followed for each atom i in the system has a mass mi, an acceleration ai given by d2ri/dt2, and 

experiences a force Fi due to interactions with other atoms. The forces acting on the atoms are 

typically obtained from classical interatomic potentials or from quantum mechanical ab initio 

calculations. The thermodynamic state of a system is characterized by a few key parameters: 

temperature (T), pressure (P), and the number of particles (N). The microscopic state of the system, 

on the other hand, is described by the positions and velocities of the individual atoms, which exist 

in a multi-dimensional phase space. In a system consisting of N particles, the phase space has 6N 

dimensions. An Ensemble refers to a collection of points in phase space that satisfy the conditions 

of a particular thermodynamic state. In MD simulations, a sequence of points in phase space is 

generated over time, representing different conformations of the system that belong to the same 

ensemble. 

 

2.2.1 Ensembles 

A thermodynamic ensemble provides a way to derive the thermodynamic properties of a 

system through the laws of classical and quantum mechanics. The main idea is that different 

ensembles represent systems with different degrees of separation from the surrounding 

environment, ranging from completely isolated systems (i.e., microcanonical ensemble) to 

completely open ones (i.e., grand canonical ensemble). The choose of ensemble depends on the 
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specific problems and the conditions for the simulation. There are three primary ensembles used 

in MD simulations: NVE, NVT and NPT ensembles. 

NVE Ensemble is a statistical ensemble that is used to describe a closed system that is isolated 

from its surroundings. In the NVE ensemble, the number of particles (N), volume (V) and total 

energy (E) of the system are fixed, therefore, corresponds to an isolated system that cannot 

exchange heat or matter with the outer environment. By employing the NVE ensemble, the result 

is a system where the total energy is conserved but fluctuations in potential and kinetic energy are 

still allowed. For the NVT ensemble, N, V and T are fixed, which means the system is allowed to 

exchange heat with outer space so that the temperature stays constant. of the system are fixed, but 

the system is allowed to exchange energy with its surroundings while maintaining a constant 

temperature (T). The NVT ensemble is particularly useful for studying systems that are in contact 

with a heat bath, where energy can be exchanged with the surroundings to maintain a constant 

temperature. For the NPT ensemble, N, P and T are fixed during each time step, so it means that 

the total energy and volume of the system are not conserved, but the system's macroscopic 

properties such as temperature, pressure, and density are determined by both the system's internal 

energy, volume, and the energy and volume exchange with the surroundings.  

In addition to these primary ensembles, other ensembles, such as the Gibbs ensemble and 

the isobaric-isothermal ensemble, may also be used in specific cases. The choice of ensemble 

depends on the specific physical conditions of the system being studied and the properties being 

simulated. In this work, two different ensembles, NVT (constant Number of particles, Volume, 

and Temperature) and NPT (constant Number of particles, Pressure, and Temperature), were 

separately applied to investigate the uniaxial strain and uniaxial stress behaviors of α-quartz. 
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2.2.2 Boundary Conditions 

Boundary conditions in molecular dynamics simulations specify how a simulated system 

interacts with its environment or boundary. They play a critical role in determining the behavior 

of the system under study. For simulation purposes, a designer needs to set the boundary conditions 

in their simulation to determine a steady state solution to the differential equation they are 

investigating. There are two main types of boundary conditions we used in our simulations: 

periodic boundary conditions and fixed boundary conditions. In periodic boundary conditions 

(PBC), a set of boundary conditions which are chosen for approximating a large system by using 

a small part called a unit cell. The system is replicated infinitely in all directions, and the periodic 

images of the original system are treated as if they are identical copies of the original system. PBC 

are usually applied to calculate bulk gasses, liquids, crystals, or mixtures. A common application 

uses PBC to simulate solvated macromolecules in a bath of explicit solvent. In fixed boundary 

conditions, the system is placed in a finite box, and the atoms in the system interact with the walls 

of the box. Those boundaries are both rigid enough to maintain the structure and flexible enough 

to interact with other atoms. This approach is used to simulate systems that have a well-defined 

boundary, such as a molecule in solution or a protein in a membrane. The choice of boundary 

conditions depends on the system under study and the scientific question being addressed. Each 

type of boundary condition has its own advantages and limitations, and researchers must carefully 

choose the appropriate boundary conditions to ensure that the simulation accurately represents the 

real system being studied. In my work, PBC is used in all MD simulations.  

 

2.2.3 Minimization 
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In MD simulations, energy minimization is essential to determining the proper atomic 

arrangement due to the unfavorable energetic nature of drawn chemical structures. The potential 

energy of an atomic structure comprises various components, such as stretching, bending and 

torsion. Consequently, when employing an energy minimization program, it rapidly converges to 

a local minimum energy value. Minimization is typically performed as a preprocessing step before 

running an MD simulation, as it can help to ensure that the starting configuration of the system is 

reasonable.  

There are several different algorithms could be used for minimization, such as steepest 

descent, conjugate gradient, and quasi-Newton methods. Steepest descent method is a simple and 

widely used method that iteratively adjusts the position of each atom along the steepest descent 

direction of the potential energy surface until a minimum is found. Conjugate gradient method is 

an improvement over the steepest descent method and considers the previous search direction. It 

uses conjugate directions to minimize the energy and is often more efficient than the steepest 

descent method. Quasi-newton method is another algorithm to use an approximation of the Hessian 

matrix to estimate the curvature of the potential energy surface and determine the search direction. 

These algorithms differ in their efficiency and accuracy, and the choice of method will depend on 

the size and complexity of the system being studied. In my work, I used conjugate gradient 

schemes for the minimization prior to conducting MD simulations.  

 

2.3 Software Packages  

2.3.1 LAMMPS molecular dynamics simulator  
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The MD simulations in this thesis were performed using the Large-scale Atomic Molecular 

Massively Parallel Simulator (LAMMPS) which is a widely used software package written in C++. 

It was developed at Sandia National Laboratories and is distributed as an open-source code 49. 

LAMMPS is designed to simulate a variety of material systems, including solids, liquids, 

and biomolecules. It can handle a wide range of interatomic potentials and force fields, and 

supports various ensemble methods, such as NVT, NPT, and NVE, for performing MD simulations 

under different thermodynamic conditions. LAMMPS is also highly scalable and can efficiently 

run on parallel computing architectures, such as clusters and supercomputers to allow simulations 

of large structures with millions or billions of atoms. It provides a flexible and extensible 

framework for users to implement their own custom algorithms and models. This software is 

obtained as source code and can be compiled on a variety of computer architectures with optional 

packages that may be useful to specific applications. To optimize performance, LAMMPS is 

implemented using the MPI (Message Passing Interface) message passing library for parallel 

processing. In this case, LAMMPS uses spatial decomposition techniques to partition the 

simulation region into smaller sub-domains each assigned to a different processor. All the 

processes communicate results and atom information is stored for atoms that border the sub-

domains. In our simulations, multicore processors were used to take advantage of the parallel 

processing capabilities of LAMMPS. 

The input script for LAMMPS begins by specifying the type of units to be used for 

thermodynamic activity, such as real or atomic. The atom_style command determines the attributes 

associated with the atoms and must be used prior to setting up a simulation using the read_data 

command. The simulation setup requires establishing the boundary conditions, which can be 

accomplished using styles p, f, s, or m. In our simulation, style p was used, indicating that the box 
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is periodic and that particles interact with their mirrored images across the boundary. The 

coordinates of atoms in the substrate can be read from an external file or generated within the 

LAMMPS input script by creating a lattice, assigning groups to atoms, and creating atoms. 

The main part of the input script is the problem settings.  The potentials to be used in the 

simulation are referenced using the pair_style and pair_coeff commands. The parameter group is 

used to limit the MD integration to a specific group of atoms, which can be named by the user 

using the appropriate symbol. Additionally, the time for each step in the simulation, 

thermodynamic fixes, and commands for storing the coordinates and results of the simulation in a 

log file must be specified. In our simulations for α-quartz, a timestep of 1.0 fs was used. 

 

2.3.2  Visualization  

OVITO is a visualization and analysis software for atomistic and particle-based simulations 

in materials science, chemistry, and related fields. It provides a graphical user interface (GUI) for 

visualizing, analyzing, and manipulating large datasets of atomic configurations produced by 

molecular dynamics (MD) simulations, Monte Carlo simulations, or other particle-based 

simulations. 

OVITO supports a wide range of file formats commonly used in atomistic simulation, 

including LAMMPS, GROMACS, VASP, and many others. It allows users to visualize the atomic 

structure of a simulation system in three dimensions, generate snapshots of the system at different 

time steps, create animations, and analyze properties of the simulation output, such as the 

distribution of particles, the bond lengths, angles and dihedrals, and the energy landscape of the 

system. 
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In addition to its powerful visualization capabilities, OVITO also provides a Python 

scripting interface that allows users to automate and customize their analysis workflows. With this 

interface, users can access the underlying data structures and algorithms used by OVITO and 

perform complex analyses or custom calculations on the simulation data. 

 

2.4 Interatomic potentials 

In MD simulations, interatomic potentials are a set of mathematical functions to describe 

the interactions between particles (atoms, molecules, ions, etc.) in a system. The potential 

functions, also called the force fields, are defined in terms of a set of parameters that determine 

the strength and shape of the particle interactions. They provide a way to calculate the total energy 

of the system as a function of the positions and velocities of all the particles. Moreover, the forces 

acting on each particle at each time step can be determined using the same potential function, 

which in turn affects the movement of the particles according to Newton's laws of motion. Both 

bonded and non-bonded interactions would be represented using analytical functions, look-up 

tables, or more complex algorithms. The choice of potential function is critical in MD simulations 

as it determines the accuracy of the simulation results. The potential function must be able to 

reproduce the experimental or theoretical data for the system being studied and must also be 

computationally efficient to allow for large-scale simulations. 

 

2.4.1 BKS Potential 

The BKS potential was proposed by van Beest, Kramer, and van Santen in 1990 32. It is a 

two-body potential model which is composed of three major force field terms the nonbonded 

repulsion, the dispersive attraction, and the long-range electrostatic interactions. The parameters 
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for the repulsive and attractive terms are derived from iterative fitting to an ab initio potential 

energy surface of a H4SiO4 cluster and simultaneously optimizing the effective charges on the 

silicon and oxygen atoms to the bulk properties. The structural stability of the silica polymorphs 

is largely governed by an interplay of the electrostatic and the short-range atom-atom repulsive 

forces. Specifically, the total potential energy (ϕij) is determined by: 

 

𝜙!"(𝑟!") 	=
&!&"
'!"

 + 𝐴!"𝑒()!"	'!" 	− 	
%!"
'!"
#                                                                                              (2) 

 

where i, and j represent atom species (e.g., Si or O) with a distance of 𝑟!". The  𝐴!", 𝐵!", and 𝐶!" 

are BKS parameters that are listed in Table 1 50. Fixed charges are assigned to the atoms with the 

values 𝑄+! 	= 2.4 and 𝑄, = −1.2. The form of BKS potential is the usual Buckingham form, with 

the addition of a Coulomb force term. The parameters A, B, and C in the Buckingham interaction 

[31,32] were optimized for different pairs of atoms using Hartree-Fock ab-initio calculations and 

experimentally-determined properties, including the elastic constants of α-quartz. The reason to 

choose a value of zero for the Si-Si interaction is the fact that only Coulombic interactions are 

considered for this pair. The Si–O bond is partially covalent and partially ionic. The BKS has been 

successfully applied to a wide range of molecular simulations, and its performance has been 

evaluated through the calculation of the static and dynamical properties of several polymorphs of 

SiO2 using molecular dynamics methods. The pressure-volume equations of state for α-quartz, 

cristobalite 51, and stishovite 52,53, the pressure-induced amorphization transformation in α-quartz 

and thermally induced the α-β transformation in cristobalite could be well reproduced by this 

model 54.  
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Table 1. The BKS parameters involving crystalline and vitreous silica 

 A (eV) B (Å(-) C (eV. Å.) 

O – O 1388.7730 2.76000 175.0000 

Si – O 18003.7572 4.87318 133.5381 

Si – Si 0 0 0 

 

2.4.2 Vashishta Potential 

The Vashishta potential applied in this thesis is developed by Nakano et al. in 1994 55, and 

it is an optimized form of 1990-version of the potential 56. The applied interatomic potential is 

different from 1990-version one in that the long-range Coulomb interaction in the latter is replaced 

by the suitably adjusted Coulomb form. This potential comprises two-body and three-body 

covalent interactions, has been used successfully for molten, crystalline and amorphous states of 

normal SiO2 and also permanently densified amorphous SiO2 56–58. This potential has been applied 

in molecular dynamics studies to investigate the structural and dynamical correlations of silica 

under various densities and temperatures. 

The two-body contribution to the potential considers steric repulsion due to atomic sizes, 

Coulomb interactions resulting from charge transfer, and charge-dipole interactions to account for 

the large electronic polarizability of anions. The three-body covalent contributions consist of O-

Si-O and Si-O-Si interactions, which depend on the angle and distance between Si and O atoms. 

The function combines the repulsive, screened charge-dipole, screened Coulombic, and dispersion 

interactions with bond angle energies and can be expressed as:  

 

𝜙!" = ∑ 𝜙!"
(0)7𝑟!"8!2" + ∑ 𝑉"!3

(4)7𝑟!" , 𝑟!38!,"23                                                                                    (3) 
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Table 2. The Vashishta potential parameters for quartz from Nakano et al. 55 

A(eV) 𝝀(Å) 𝜻(Å) 𝒓𝒄(Å) 𝒓𝟎(Å) 𝝃(Å) 

1.592 4.43 2.50 5.50 2.60 1.00 

i 𝝈𝒊(Å)  𝒁𝒊(𝒆)  𝜶𝒊(Å𝟑) 

Si 0.47  1.76  0.00 

O 1.20  -0.88  2.40 

i - j 𝜼𝒊𝒋     

Si - Si 11     

Si - O 9     

O - O 7     

i – j - k 𝑩𝒋𝒊𝒌(eV) 𝜽𝒋𝒊𝒌    

O – Si - O 4.993 109.47    

Si – O -Si 19.972 141.00    

 

Eq. (3) includes both the two-body and three-body terms. In Eq. (4), Hij and 𝜂ij are the 

strength and exponent of the steric repulsion, respectively. Wij and Dij represent the strength of the 

van der Waals and charge-dipole interactions, respectively, and Zi is the effective charge. 𝜉 and 

𝜆	represent the screening lengths of the charge-dipole and Coulomb interactions and r = rij denotes 

the distance between atoms i and j. The three-body term is given by Eq. (5). Notice that only the 
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bond-bending terms of O-Si-O and Si-O-Si triplets are present for this three-body potential. The 

values of the parameters in Eq. (4) and (5) are listed in Table 2. Using this total potential function, 

lattice-structure calculations have shown that α-cristobalite and α-quartz have the lowest and 

almost degenerate energies, consistent with experiments. β-cristobalite, β-quartz, and keatite have 

higher energies than α-cristobalite and α-quartz. MD calculations using this potential function have 

correctly described the short- and intermediate-range order in molten and vitreous states 59. 

 

2.4.3 Tersoff Potential 

The Tersoff potential is a widely used empirical interatomic potential in molecular 

dynamics simulations to model the interactions between atoms. It was developed by John Tersoff 

in 1989 60 and finds extensive application in the study of covalent materials such as semiconductors, 

ceramics, and carbon-based materials. The Tersoff potential considers three-body interactions 

between atoms, which are not included in traditional pairwise potentials. This makes it particularly 

useful for modeling complex materials where three or more atoms may be involved in the 

formation of chemical bonds. The Tersoff potential is based on a set of empirical parameters that 

are fit to experimental data and first-principles calculations. These parameters determine the 

strength and distance dependence of the atomic interactions and are specific to each material being 

studied. Applications of the Tersoff potential include the study of crystal growth, the mechanical 

properties of materials, and the behavior of materials under extreme conditions such as high 

temperatures and pressures. It has also been used to study the properties of nanoscale materials 

and to simulate chemical reactions at surfaces and interfaces. 

The Tersoff potential is a bond order potential that, unlike a pair potential, modifies the 

bond strength based on the angles between the bond and all other bonds. It was developed to model 
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covalent systems and applied successfully to C, Si, and O elements. This potential includes radial 

two-body repulsive and attractive exponentials. The repulsive term is modified by a factor, which 

depends on the three-body terms, local environment, and atomic coordinates. For example, an 

atom with many neighbors forms weaker bonds than an atom with few neighbors. The three-body 

Tersoff potential was first calibrated for Si and later extended to the Si–O system based on the ab-

initio calculations performed by Munetoh et al. 61. It has since been successfully used to describe 

the interactions of amorphous SiO2. The potential energy E of an atomic system is taken to be:  

 

𝐸 = 	∑ 𝐸!! =	 -
0
∑ 𝑉!"!J"                                                                                                                  (6) 

The analytic form for the pair potential, Vij, of the Tersoff model is specified by the next functions:  
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Those equations depict the distance between atoms like i and j by 𝑟!", with 𝑓!"# representing the 

attractive pair potential and 𝑓!"$  representing the repulsive pair potential. The bond strength is 

denoted by 𝜆. 𝑎!" is a term that limits the range of the repulsive potential and bij is a measure for 

bond order. 𝑓!"%  is the cut-off function that ensures that only nearest-neighbor interactions are 
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considered to reduce computational cost 33,62. 𝑅- and 𝑅0 are two cut-off distances to be employed 

in the cut-off function 𝑓!"% . 
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CHAPTER 3 

MODELLING AND SIMULATION PROCESS 
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2.2. Models of void-free and single-void α-quartz  

α-quartz is composed of a monoclinic unit cell with three Si atoms and six O atoms. It has 

translational symmetry in any crystal plane along unit vectors a, b, or c. To conveniently perform 

the mechanical tests along one prescribed longitudinal direction with preserved periodic 

boundaries in the other two lateral directions, the monoclinic α-quartz unit cell was converted to 

an orthorhombic unit cell by using the “generalized crystal-cutting method” (GCCM) 63,64 along 

the [001] direction, as shown in Figure 2. The blue spheres are silicon atoms, while the red spheres 

represent oxygen atoms in the schematic diagram of the α-quartz unit cell. Energy minimization 

was performed by adjusting the atom positions before building the supercell. Next, a 3D periodic 

supercell was built by replicating the converted orthorhombic unit cell geometry by repeat factors 

of 5 ´ 8 ´ 66 along the x, y, and z directions. 

  

Figure 2. The unit cell of α-quartz after conversion from monoclinic to orthorhombic structure 
using the generalized crystal-cutting method with the tensile direction identified along the z-axis. 
The red spheres represent the oxygen atoms, while the blue spheres represent the silicon atoms) 
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Three crystalline α-quartz models with no void, small single-void (void radius = 2.5 Å), 

and large single-void (void radius = 15 Å) structures were generated (Figure 3a). The voids have 

spherical shape and are located in the middle of the single-void structures. The dimensions of the 

simulation box for all systems are around 42 Å´42 Å´320 Å. The void-free α-quartz system 

comprises 14,400 Si and 28,800 O atoms. The single-void models with the radii of 2.5 Å and 15 

Å were generated by removing 6 and 1161 atoms from the void-free α-quartz structure, 

respectively. In Figures 3b and 3c, both the cross-sectional and front views of a portion of the 

supercells are provided for a better illustration of the void morphology in the single-void α-quartz 

structures.  

 

2.3. Simulation procedure  

MD simulations were performed using the three interatomic potentials introduced in 

Section 2.1, to assess their capability of reproducing the structural and material properties of void-

free and single-void α-quartz structures. A time step of 0.001 ps was set for all simulations. For 

the initial structures, a Gaussian velocity distribution was applied to the entire systems, followed 

by a 100-ps equilibration simulation performed using an NPT ensemble (constant number of atoms, 

N; constant pressure, P; constant temperature, T) and 3D-periodic boundary conditions (PBC). 

This allowed the systems to be fully relaxed at 1 K and 1 atm.  Next, the temperature was ramped 

from 1 K to 298 K and another 100-ps thermal equilibration was performed at 298 K. The tensile 

tests were then performed by stretching the structures along the z-direction at 298 K until failure. 

Two different ensembles, NVT and NPT, were applied separately in the tensile tests to 

study the tensile properties in the uniaxial strain and uniaxial stress states for different α-quartz 

structures, respectively. The PBC for the case of NVT assures the uniaxial strain state during the 
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simulation process. However, for the NPT, in addition to the PBC, all stresses were enforced as 

zero except the axial stress to generate the uniaxial stress condition. The results were visualized 

and analyzed using the open-source OVITO visualization tool. 

 

Figure 3. (a) Schematic views of the atomistic models for void-free and single-void α-quartz 
structures with two different void sizes of 2.5 and 15 Å; (b) Cross-sectional views of the α-quartz 
structures; (c) Front views of a portion of the microsopic structures of the single-void α-quartz 
structures. 
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CHAPTER 4 

RESULTS AND DISCUSSION 
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3.1. Structural properties of α-quartz 

In the tensile experiments and simulations, the structural properties and corresponding 

physical quantities are basically essential in determining the mechanical responses of the materials. 

The simulated structural properties of void-free α-quartz obtained using the BKS, Tersoff, and 

Vashishta potentials are compared with the experimental results in Table 3. The reported lattice 

constants and equilibrated densities were obtained based on the last 500 steps of the 500,000-step 

NPT equilibration simulations at 298 K. The density of α-quartz calculated using the BKS potential 

was 2.662 g/cm3, which yields best agreement with the experimental value of 2.646 g/cm3 reported 

by Cowen and El-Genk 65 among all the three potentials. The prediction made by Vashishta 

suggests a slightly lower density of 2.511 g/cm3, which falls within an acceptable error range 

compared to the reported value. However, the Tersoff potential significantly underestimated the 

density of α-quartz. 

Table 3. Predicted density and lattice parameters of perfect crystalline α-quartz by the BKS, 
Tersoff, and Vashishta potentials versus the experimental data. 
 

 Density 
(g/cm3) 

a 
(Å) 

b 
(Å) 

c  
(Å) 

Exp. 65–67 2.646 4.916 4.916 5.405 
BKS 2.662 4.673 5.225 5.141 
Tersoff 2.081 5.072 5.671 5.671 
Vashishta 2.511 5.066 5.057 5.381 
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Figure 4. Radial distribution functions obtained for the (a) O-O, (b) O-Si, and (c) Si-Si bonds in 
void-free α-quartz at ambient conditions (298 K and 1 atm) using the BKS, Tersoff, and Vashishta 
potentials. 

The lattice constants for the a, b, and c directions, calculated using the Vashishta potential, 

exhibited an excellent agreement with the experimental values, with a difference of only ~3%. 

Similarly, the lattice parameters predicted by the BKS potential show a good agreement as well, 

within ~5% of the experimental values. However, the Tersoff potential significantly deviated from 

the experimental values, especially for the lattice constant in the b direction, which differs by more 

than 15%. This disparity highlights the influence of NPT equilibration on the lattice constants, 

particularly in the b direction, and emphasizes the intrinsic mechanical properties of α-quartz. The 
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b direction, represented by the plane [0 1 0], corresponds to the transverse orientation with the 

lowest Young's modulus. As a result, during the NPT simulation, it experiences the highest 

stretching, making it more challenging to control compared to the a and c directions. 

The radial distribution functions (RDFs) vary as the microstructural characteristics of a 

material change. The RDF of void-free α-quartz were determined for all atom pairs (O-O, O-Si 

and Si-Si) using the trajectories obtained from the three potentials. The results are compared to the 

experimental data in Figures 4(a)–(c). Ideally, the peaks of the RDFs should match with the dashed 

lines, representing the experimental values 66. When comparing between the MD simulation results, 

those with peaks closer to the experimental values indicate the capability of a potential to 

accurately reproduce the structure of α-quartz. In Figure 4a, the RDF peaks corresponding to both 

BKS and Vashishta potentials are close to the experimental values, while that of the Tersoff 

potential is much larger than all four experimental O-O bond lengths. Similar observations are 

made with respect to the O-Si and Si-Si bond lengths. In general, the Tersoff potential significantly 

overestimates all three bond lengths for α-quartz. The RDF results obtained by the Tersoff potential 

are not as accurate as those obtained by the BKS and Vashishta potentials. 

 

3.2. Mechanical behavior of α-quartz under tension  

In this section, the tensile properties of void-free and single-void α-quartz, as determined 

from the MD simulations using the BKS, Tersoff, and Vashishta potentials are discussed. Two 

different ensembles, i.e., NVT (constant Number of atoms, Volume, and Temperature) and NPT 

(constant Number of atoms, Pressure, and Temperature), were separately applied to investigate the 

uniaxial strain and uniaxial stress behaviors of α-quartz. In the NVT ensemble, the volume of the 

simulation cell was kept fixed for each time step and the temperature was controlled, allowing the 
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quartz sample to deform in the z direction. Conversely, in the NPT ensemble, the volume of the 

simulation cell was allowed to change, while the pressure and temperature were controlled to 

maintain a constant pressure on the system while applying uniaxial stress. The use of these two 

ensembles enables the simulations under two different mechanical states, the uniaxial strain and 

uniaxial stress conditions, respectively, and thus can provide in-depth insight and understanding 

into the mechanical behavior of α-quartz. 

 

Figure 5. Stress-strain curves of void-free α-quartz in uniaxial strain condition, predicted by the 
BKS, Vashishta, and Tersoff potentials. 

3.2.1 Tensile properties of void-free α-quartz under uniaxial strain condition 

The tensile stress-strain (σ - ε) curves for void-free α-quartz under uniaxial strain condition 

are depicted in Figure 5. The tensile properties were obtained for the [001] direction of the quartz 

crystal at a constant strain rate of 0.01/ps by applying the NVT ensemble. The observation of the 

stress-strain curves in blue and red in Figure 5 indicates the brittle fracture behavior of α-quartz, 
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which is accurately captured by the BKS and Vashishta potentials, despite significant differences 

in ultimate tensile strength and elongation rate at fracture. The BKS potential yields an ultimate 

tensile strength exceeding 60 GPa, whereas the Vashishta potential produces a 43% lower value. 

Moreover, the simulation utilizing the BKS potential exhibits a strain of 0.35 at fracture, while 

Vashishta yields at the strain of 0.21. The contrasting mechanical behavior highlights the variation 

in deformation mechanisms between these two potentials. 

As shown in Figure 5, the Tersoff potential could reproduce the elastic response of α-quartz 

under tension, but it does not capture the brittle behavior of α-quartz within the strain range of 0.5 

studied in the present work. In the Tersoff or Tersoff-like force fields, the utilization of "soft" cut-

off distances, e.g., R1 and R2 in Eq. (7), can introduce non-physical strain hardening effects in the 

uniaxial stress-strain curve. Consequently, this can lead to unrealistic predictions of material 

strength and strain. Similar founds have been observed when applying the Tersoff potential in MD 

simulations to analyze the tensile behaviors of materials 68–70. In experimental settings, when a 

material is subjected to uniaxial stress, it undergoes plastic deformation, which involves the motion 

of dislocations. The presence of dislocations leads to strain hardening, where the material becomes 

stronger as it is deformed further. While the “soft” cut-off treatment used in the Tersoff and 

Tersoff-like force fields is computationally convenient and allows for efficient simulations, 

however, it can artificially enhance this strain hardening effect, thus giving rise to an 

overestimation of the fracture strength and strain. 
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Figure 6. Atomistic equivalent stress distribution that denotes the fracture for void-free α-quartz, 
predicted by the (a) BKS, (b) Vashishta, and (c) Tersoff potentials. The atoms are colored 
according to the equivalent stress value from 0 to 150 GPa. 

 

As mentioned previously, it is challenging for an interatomic potential to accurately capture 

the fracture behavior of a crystalline material system. To better understand the fracture mechanism 

of α-quartz under uniaxial strain condition, the fracture characteristics of the perfect single-crystal 

α-quartz are compared among the three potentials, as shown in Figure 6. The atomic equivalent 

stress distribution is described by means of the von Mises stress σVM, which is given by: 

𝜎KL = ^-
0
_7𝜎MM − 𝜎NN8

0 + (𝜎MM − 𝜎OO)0 + 7𝜎OO − 𝜎NN8
0 + 67𝜎MN0 + 𝜎MO0 + 𝜎NO0 8ab

-/0
	                      (10) 
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where σij (i = x, y, z, and j = x, y, z, respectively) are the components of the atomic strain tensor. 

Upon the observation of Figure 6, it is apparent that both Vashishta and BKS potentials are capable 

to describe the brittle damage near their fracture points. The Vashishta potential yields a fracture 

strain (εf) value of 0.26, while the utilization of the BKS potential exhibits a substantial 35% 

increase in the strain at fracture, resulting in a value of 0.35. The Tersoff potential does not show 

any sign of material rupture even at a large deformation of εf  = 0.40 (Figure 6c). By comparing 

Figure 6(a), (b) and (c), it could be noted that the utilization of the BKS potential allows for the 

detection of stress concentration in α-quartz. Higher equivalent stresses are generated around or 

close the fracture surface, indicating an uneven stress distribution within the materials. In Figure 

6(b) and (c), the stress concentration is difficult to observe by using both Vashishta and Tersoff. 

Consequently, the use of BKS potential provides a more accurate description of the fracture 

behavior in α-quartz among all three potentials. Further discussion regarding fracture analysis for 

the α-quartz structures with different sizes of single voids will be conducted in Section 3.2.4. 
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Figure 7. Deformation snapshots of the void-free α-quartz at different simulation time steps: (a) 
before applying tensile stress and after equilibrium, (b) before the failure point at the strain of 0.2, 
(c) at the beginning of the failure point (strain of 0.34), (d) in the middle of the failure (strain of 
0.35) and (e) after the failure (strain of 0.36). The atoms are colored according to the equivalent 
stress value from 0 to 150 GPa. 

Figure 7 depicts the time evolution of tensile deformation for the void-free α-quartz, 

predicted by the BKS potential with the NVT ensemble. The atoms colored according to the atomic 

equivalent stresses at different simulation time steps. At the initial stage of deformation, stress 

increases in the elastic region with strain, which is an expected behavior in such material. The 

snapshot in Figure 7(c) at a strain of 0.34 shows no cracks forming in the sample. However, Figure 

7(d) and (e) demonstrate the occurrence of failure for α-quartz, with rapidly generating cracks in 

the middle of the sample. Figure 7(d) represents the point on the stress-strain curve where the 
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maximum stress before failure occurs, then immediately after the failure point, the stress is released 

and the breakage of the material is observed (Figure 7(e)). The short time duration of crack 

nucleation and growth indicates the brittle mode of failure as observed experimentally. 

Additionally, the presence of high equivalent stress around the cracks is noticeable in Figure 7(e). 

This high stress concentration is often a significant factor contributing to the propagation or growth 

of the cracks and can influence the overall failure behavior of the material. 

 

3.2.2 Tensile properties of void-free α-quartz under uniaxial stress condition 

To gain more insight into the mechanical response of α-quartz, an NPT ensemble was 

utilized in the MD simulation to perform the tensile test under uniaxial stress condition. Figure 8 

displays the comparison of the stress-strain curves predicted by the BKS, Vashishta and Tersoff 

potentials with both NVT and NPT ensembles. It is apparent to find that the material behavior 

under uniaxial stress state is distinct from that under uniaxial strain state. Both BKS and Vashishta 

potentials exhibit notable disparities in predicting the ultimate tensile strengths and elongation 

rates at break. In the NPT simulation under the uniaxial stress state (Figure 8a), the utilization of 

the BKS potential results in a 14% decrease in the ultimate strength and a 11% decrease in the 

fracture strain when compared to the uniaxial stress state. Moreover, by employing the BKS 

potential under the NPT simulation, residual stress remains in the sample during the post-failure 

process, which is showing the correct mechanical response. The variation of the underlying 

deformation mechanisms between the two tension states could cause different mechanical 

responses before and after failure. When the Vashishta potential is employed, an increase of 20% 

in the ultimate strength and an increase of 24% in the fracture strain are observed under the uniaxial 

stress state. However, the Tersoff potential as shown in Figure 8c, while applied to both uniaxial 
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strain and stress states, fails to accurately predict the brittle fracture behavior of α-quartz. 

Nevertheless, a comparison of those tensile curve patterns reveals perceptible differences in their 

shapes. These noticeable dissimilarities for all three potentials suggest that the external loading 

conditions imposed on the simulated atomistic system, along with the choice of interatomic 

potentials, indeed influence the mechanical response of such materials. 

 

Figure 8. Comparison of the stress-strain curves of void-free α-quartz between NVT and NPT 
ensembles, predicted by (a) BKS, (b) Vashishta, and (c) Tersoff potentials. 
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Table 4. Young’s moduli, ultimate strengths, and strains at fracture of α-quartz, predicted by the 
BKS, Vashishta, and Tersoff potentials. 
 

 
Young’s 
Modulus 

(GPa) 

Ultimate 
Strength 

(GPa) 

Strain at 
Fracture 

(%) 
BKS 99.9 51.9 0.31 

Vashishta 103.7 42.1 0.25 

Tersoff 73.5 -- -- 

To further compare all three potentials by using NPT ensemble, the values of Young’s 

moduli, ultimate strengths, and strains at fracture are summarized in Table 4. Young’s moduli were 

calculated using the initial linear portion of the stress-strain curves corresponding to each potential. 

It is worth noting that the BKS potential provides an excellent description for the elastic 

deformation of α-quartz. The Young’s modulus of α-quartz predicted by the BKS potential is 99.9 

GPa, which is in excellent agreement with the experimental value of 97.9 GPa at 298 K for 

crystalline α-quartz 71. Although the fracture region appears in the stress-strain curve associated 

with the Vashishta potential, the value of Young’s modulus (103.7 GPa) is slightly overestimated 

when compared to the experimental value. Based on the observation from Table 4, the Vashishta 

potential predicts the highest values for Young's modulus, whereas the Tersoff potential estimates 

the lowest. Overall, the Tersoff potential significantly underestimates the Young's modulus and 

fails to provide any information regarding the fracture parameters of α-quartz. 

3.2.3. Tensile properties of single-void α-quartz 

In this section, the mechanical behavior of crystalline α-quartz with nanovoid structures is 

described by utilizing NVT and NPT ensembles. For this purpose, the stress-strain curves of 

single-void structures are compared to that of the void-free in Figure 9. We simulated single-void 

α-quartz models containing two different void radii of 2.5 and 15 Å, respectively at a constant 



 - 40 - 

strain rate of 0.01/ps. The presence of a void within the α-quartz structure was observed to have 

an impact on the tensile strength and fracture strain, regardless of the utilization of different 

potentials and ensembles. Figure 9a illustrates that the introduction of voids with sizes of 2.5 and 

15 Å in the structure leads to a decrease in its ultimate tensile strength predicted by the BKS by 

19% and 72%, respectively, by utilizing the NVT ensemble. Additionally, the strain at fracture of 

α-quartz decreases by 21% and 63% for void sizes of 2.5 and 15 Å, respectively. Similar results 

were obtained for the Vashishta potential (Figure 9b). Note that the Vashishta potential 

demonstrates an oscillatory or “ringing” behavior beyond the peak limit point. This phenomenon 

is due to the stress waves that travel back and forth, particularly with the case of α-quartz with a 

single void. For the Tersoff potential, when using both NVT and NPT ensembles, the stress-strain 

curves do not exhibit any noticeable difference upon introducing a small void with the size of 2.5 

Å. However, a large void with a radius of 15 Å can significantly affect the tensile properties, 

especially under the uniaxial strain condition. In Figure 9(c), brittle fracture is observed in the 

single-void structure with the size of 15 Å, which exhibits a tensile strength of 33.6 GPa and a 

fracture strain of 0.33. These results indicate that structural defect in α-quartz, such as a spherical 

nanovoid, may significantly reduce its mechanical properties, and the extent of this reduction is 

highly correlated with the void size. 
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Figure 9.  Tensile stress-strain curves of single-void α-quartz with different void sizes utilizing 
(a)-(c) NVT and (d)-(f) NPT ensembles.  Simulations are predicted by (a)(d) BKS, (b)(e) Vashishta 
and (c)(f) Tersoff potentials. 

 

To better understand the distinction between the NVT and NPT simulations in tension 

studies of α-quartz, the predicted mechanical responses of the single-void quartz structures with 

the two ensembles are compared in Figure 9. In the case of the small single-void model with the 

void size of 2.5 Å, the results obtained for the BKS potential with the two ensembles differ 

significantly. The presence of the small void has a notable impact on the mechanical properties of 

α-quartz, as predicted by NVT simulation. However, this is not the case for the NPT simulation. 

This observation suggests that voids may have a significant influence on the materials under 

uniaxial strain when the BKS potential is used. For the Vashishta potential, the small void clearly 

caused a reduction in the tensile properties of α-quartz, as predicted by both NVT and NPT 

simulations. The tensile curve patterns are quite similar in those two cases, except that slightly 

higher tensile properties are obtained when the NPT ensemble is used during MD simulation. 

Interestingly, the Tersoff potential shows no difference in the tensile curves between the void-free 
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quartz and the small single-void model, regardless of whether NPT or NVT ensemble is used. No 

brittle damage is detected in the stress-strain curves for the small single-void models (2.5 Å), as 

evident in both Figures 9(c) and 9(f). 

With respect to the single-void α-quartz structure with the large void size of 15 Å, both the 

BKS and Vashishta potentials result in a dramatic reduction in the ultimate strength and elongation 

at fracture of α-quartz. However, when using the Tersoff potential, a fracture region appears at a 

strain of 0.33 in the NVT ensemble. Nevertheless, the elongation at break is too large to be 

comparable with experimental data or the results obtained using the other two potentials. All 

tensile curves obtained with the Tersoff potential exhibited very high strengths and large fracture 

strains, indicating the unrealistic elongation in all models that led to an overestimation of the tensile 

properties. 

     

3.2.4 Fracture process of single-void α-quartz 
 

To further investigate all three potentials and reveal the fracture mechanism of single-void 

α-quartz under tensile loading, snapshots of the equivalent stress distribution (structural evolution 

of the single-void α-quartz structures) in uniaxial strain state are illustrated in Figure 10 and 11. 

The equivalent stress for each atom was calculated for two single-void structures with the BKS, 

Vashishta, and Tersoff potentials.  
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Figure 10. Atomistic views of the equivalent stress distribution in the single-void α-quartz 
structure with the void size of 2.5 Å before and after failure, predicted by the (a) BKS, (b) 
Vashishta, and (c) Tersoff potentials. Atoms are colored with the equivalent stress values. Red 
color indicates the highest and blue color represents the lowest stress. 

The atomistic configurations with the equivalent stress distribution before and after fracture 

in the single-void α-quartz structure with the smaller void size of 2.5 Å are provided in Figure 10. 
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The models were subjected to the uniaxial strain condition by applying an NVT ensemble. The 

snapshots were captured before and after failure within specific elongation ranges (27.5 - 28.5% 

for the BKS potential and 17.5-18.5% for the Vashishta potential), as shown in Figures 10(a) and 

10(b), respectively. The fracture behavior could be easily observed for both potentials with 

fractures occurring rapidly within a narrow elongation strain range of 1%. This indicates that such 

brittle materials do not undergo significant plastic deformation. The failure behavior observed in 

both cases is attributed to the breakage of the atomic bonds, which is facilitated by the presence of 

voids that lead to stress concentration. While the equivalent stress is typically associated with 

macroscopic distortion energy, it has been demonstrated that the movement of defects at the 

nanoscale plays a crucial role in the material deformation and crack growth. This suggests that the 

behavior of defects at the atomic level can significantly influence the macroscopic response of α-

quartz. The equivalent stress distributions are illustrated for each interatomic potential around its 

rupture stage, highlighting the correlation between the void and stress distribution.  

By direct inspection, the high equivalent stresses are observed to be concentrated around 

the void for the BKS potential, while the Vashishta potential exhibits much lower stress values in 

this region. The BKS potential shows high stress values (~150 GPa) both before and after failure 

near the edges of the spherical void, indicating the stress concentration around the edges of this 

small void. The stress tends to concentrate and become higher in magnitude around these regions 

compared to the surrounding material. The exact stress distribution will depend on factors such as 

the shape and size of the void, as well as the external applied load. It should also be noted that the 

stress distribution in Figure 10(a) is not perfectly uniform or symmetric, indicating the anisotropy 

of the α-quartz models. Conversely, the equivalent stress distribution for the Vashishta potential 

(Figure 10(b)) does not effectively describe the stress concentration around the void structure. 
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When considering the Tersoff potential (Figure 10(c)), the structure seems to be stretched quite 

evenly without any stress concentration throughout the investigated area. No failure phenomenon 

is observed at elongation ratios of 20%, 30%, or even 40%, suggesting that α-quartz behaves like 

a ductile material, as predicted by the Tersoff potential. This is inconsistent with the typical 

brittleness observed in such materials under tension. In summary, the BKS potential provides a 

more satisfactory description of stress concentration around the void compared to the Tersoff or 

Vashishta potential. 
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Figure 11.  Atomistic views of the equivalent stress distribution in the single-void α-quartz 
structure with the void size of 15 Å before and after failure, predicted by the (a) BKS, (b) Vashishta, 
and (c) Tersoff potentials. Atoms are colored with the equivalent stress values. 

As the size of the void increases, the equivalent stress distributions around the void with a 

size of 15 Å are shown in Figure 11 for all three potentials. Comparing the structures with large 
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and small void sizes in Figure 10 and 11, it is found that the presence of a large void leads to a 

more pronounced stress concentration around its surface, especially in the initial stage of failure. 

By using the BKS potential at the strain of 27.5%, local stress concentration is distinctly noticed. 

Hence, the specific behavior of stress concentration around the void in α-quartz is highly related 

to the size of the void. In Figures 11(a) and 11(b), the stress concentration is effectively described 

by using the BKS potential, while the presence of the void does not show any significant impact 

on the stress distribution, as predicted by the Vashishta potential. The Tersoff potential behaves 

differently for the two different single-void quartz structures shown in Figures 10(c) and 11(c). 

While fracture can hardly be observed for the small void structure, stress concentration does occur 

around the large spherical void with the radius of 15 Å. However, for the Tersoff potential, the 

non-physical strain hardening in the stress-strain curve results in unrealistic material strength and 

strain. The elongation strain is 35.5%, as predicted by the Tersoff potential, which is several times 

higher than that of the BKS (εf  = 14%) and Vashishta (εf  = 10%) potentials. 

The strain rate shows a considerable influence on the calculated stress-strain responses in 

the uniaxial strain state predicted by the BKS potential, as observed in Figure 12. The single-void 

α-quartz structures with the two void sizes were investigated, and tensile loading was applied with 

two different strain rates of 0.01 and 0.001/ps. The findings reveal that both the ultimate tensile 

strength and elongation at fracture increase as the strain rate increases. This can be attributed to 

the impact of strain rate on relaxation time during tension. During each time interval of simulation, 

the rearrangement of atoms, bonds, and angles reach local equilibria (stress release) after 

deformation. A lower strain rate results in a longer relaxation time and leads to a more extensive 

equilibrium process for the entire system, especially at the highest unstable state of deformation 
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just before failure. This leads to a lower material strength. It should be noted that Young's modulus 

remains unaffected by the strain rate, as depicted in Figure 12. 

 
 

Figure 12. Tensile stress-strain curves for the single-void α-quartz structures with two void sizes 
of 2.5 and 15 Å obtained at strain rates of 0.01 and 0.001/ps, as predicted by the BKS potential.  
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CHAPTER 5 

CONCLUSIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 - 50 - 

In this work, molecular dynamics simulation was employed to study the structural and 

mechanical properties of void-free and single-void α-quartz structures. Three interatomic 

potentials, i.e., BKS, Vashishta, and Tersoff, were utilized in the simulations to simulate the 

tension and fracture behavior of three α-quartz structures. Two distinct ensembles, NVT and NPT, 

were employed in tensile tests to simulate two different mechanical states, i.e., uniaxial strain and 

uniaxial stress, respectively. The main findings of the work are summarized below:  

§ The BKS and Vashishta potentials provide accurate predictions of the equilibrium structures 

of perfect single-crystal α-quartz. The BKS potential yields a density of 2.662 g/cm3, which 

closely agrees with the reported value of 2.60 g/cm3. In contrast, the Vashishta potential 

suggests a slightly lower density of 2.511 g/cm3. However, the Tersoff potential significantly 

underestimates the density of α-quartz. When examining the lattice constants, the Vashishta 

and BKS potentials exhibit good agreement with experimental values, differing by 

approximately 3% and 5% respectively. Conversely, the Tersoff potential deviates 

considerably from experimental values, particularly in the lattice constant along the b direction, 

which differs by over 15%. By analyzing the RDF, it is evident that the BKS and Vashishta 

potentials offer favorable predictions for the α-quartz structures. In contrast, the Tersoff 

potential consistently overestimates all three bond lengths. 

§ For a void-free α-quartz crystal, the BKS potential provides an accurate depiction of its tensile 

properties by successfully predicting stress-strain curves. Similarly, the Vashishta potential 

can capture the fracture behavior in void-free α-quartz, although it exhibits some tendency to 

over-predict Young's modulus under uniaxial stress conditions. The Tersoff potential 

effectively captures the elastic region of the stress-strain curve but falls short in accurately 

predicting the fracture behavior of void-free α-quartz. 
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§ In the context of single-void α-quartz structures, the presence of a spherical defect can have a 

significant detrimental effect on the mechanical properties, with the degree of reduction being 

closely linked to the void size. Utilizing the BKS potential, the introduction of voids measuring 

2.5 and 15 Å in the structure results in a notable decrease in ultimate tensile strength by 19% 

and 72% respectively when using the NVT ensemble. Moreover, the strains at fracture also 

experience reductions of 21% and 63% respectively. These findings are consistent with the 

outcomes obtained using the Vashishta potential. Conversely, when employing the Tersoff 

potential with both the NVT and NPT ensembles, the stress-strain curves do not exhibit any 

discernible differences upon introducing a smaller void with a size of 2.5 Å.  

§ The choice of ensembles, such as NVT or NPT, plays a significant role in influencing the 

mechanical response of α-quartz, due to the difference between uniaxial strain problem and 

uniaxial stress problem. When utilizing the BKS potential, the presence of a smaller void with 

a radius of 2.5 Å has a notable impact on the tensile properties of the material in the NVT 

simulation, whereas there is no significant influence observed in the NPT simulation. With the 

Vashishta potential, the patterns of the tensile curves are quite similar in both NVT and NPT 

simulations, albeit slightly higher tensile properties can be obtained when using the NPT 

ensemble. In the case of the Tersoff potential, brittle fracture occurs at a strain of 0.33 in the 

NVT ensemble, while it is not observed in the NPT ensemble. However, the tensile strength 

and elongation at break for the Tersoff potential are excessively large compared to the results 

obtained using the other two potentials. This discrepancy can be attributed to the "soft" cut-off 

treatment in the Tersoff potential, which leads to non-physical strain hardening in the stress-

strain curve, thereby resulting in an overestimation of the material strength and strain.  
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§ Examinations of the equivalent stress distributions for α-quartz structures reveal their 

microscopic fracture mechanisms under uniaxial strain state. BKS potential can better describe 

the stress concentration around both voids with the radii of 2.5 Å and 15 Å, while the presence 

of the voids does not show any significant impact on such stress distribution by Vashishta. It 

is noteworthy that the Tersoff potential behaves differently for two different single-void 

structures. While the fracture can hardly be observed for the smaller void structure, stress 

concentration does occur around the larger spherical void with 15 Å along with an unrealistic 

large elongation for α-quartz.  

It is essential to emphasize that the interatomic potentials discussed in this context are 

empirical models derived from approximations of true atomic interactions, which inherently 

impose limitations. When investigating material properties, it is always prudent to carefully 

consider the strengths and weaknesses of these potentials and validate their predictions against 

experimental data whenever feasible. By doing so, one can ensure a more reliable and accurate 

understanding of the materials under study. The results and discussions in this work are intended 

to offer some guidance for atomistic modeling and simulation of silica materials by aiding in the 

selection of appropriate atomic potentials. However, it is crucial to recognize that further validation 

and refinement through experimental validation is necessary to enhance the applicability of 

making informed decisions and advancing the understanding of silica materials through atomistic 

modeling and simulation.  
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