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ABSTRACT

Interest in the cardinality of the intersection of two longest cycles is inspired by Scott

Smith, who conjectured that in a k-connected graph, two longest cycles meet in at least k

vertices. Grötschel and Nemhauser, Grötschel, and Stewart and Thompson proved Smith’s

Conjecture for 2 ≤ k ≤ 8, and for general k, Chen, Faudree, and Gould proved that in a

k-connected graph, two longest cycles meet in at least c0k
3/5 vertices, where c0 ≈ 0.2615.

In this dissertation, we study the intersection of two long cycles or two long paths passing

through a specified linear forest subgraph in which each component is a path or empty set.

Let G be a k-connected graph (k ≥ 2), F be a linear forest subgraph of G with at most

k − 1 vertices, and cF (G) be the length of a longest cycle containing F . We pose a more

general conjecture than Smith’s Conjecture which states that if C and D are cycles of a

k-connected graph G containing F such that |C| + |D| ≥ 2cF (G) − 1, then C and D must

meet in at least k common vertices. In Chapter 3, we prove this conjecture for 2 ≤ k ≤ 6.

In Chapter 4, we extend Chen, Faudree, and Gould’s result and give a lower bound for the

intersection of two long cycles in a k-connected graph. In Chapter 5, we give a lower bound

on the intersection of two long cycles containing a linear forest in a k-connected graph.

Finally, in Chapter 6, as consequences of the main theorems regarding cycles, we provide

analogous path results.
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1 INTRODUCTION

1.1 Notation and Definitions

In this dissertation, we generally follow the definitions and notations of West [24]. A

graph G is a vertex set V (G), an edge set E(G), and a relation that associates two vertices

with each edge. We call these vertices the endpoints of that edge. A loop is an edge whose

endpoints are the same vertex. Multiple edges are edges that share the same endpoints.

A simple graph is a graph that has no loops or multiple edges. We say that two vertices

are adjacent if they are the endpoints of the same edge. If vertex v is an endpoint of edge

e, then v and e are incident. The degree of a vertex v in a graph G, denoted dG(v) or

d(v), is the number of edges incident to v, except that each loop at v counts twice. We

denote the maximum degree by ∆(G), the minimum degree by δ(G), and say G is regular

if ∆(G) = δ(G). G is k-regular if the common degree is k. A graph G is called bipartite if

V (G) is the union of two disjoint independent sets, called partite sets of G. A subgraph of

G is a graph H such that V (H) ⊆ V (G), E(H) ⊆ E(G), and the relation associating two

vertices with an edge in G is the same relation in H. A complete graph, denoted Kn, is a

simple graph whose n vertices are pairwise adjacent. A complete bipartite graph, denoted

Kr,s, is a simple bipartite graph such that two vertices are adjacent if and only if they are in

different partite sets, with one partite set having r vertices and the other having s vertices.

A path is a simple graph whose vertices can be ordered so that two vertices are adjacent

if and only if they are consecutive in the list. The two vertices of a path that are only

adjacent to one other vertex are the endpoints of the path. All other vertices are called

internal vertices. Two paths are parallel if they have the same endpoints and are internally
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disjoint. We denote a path between two vertices u and v as a [u, v]-path. The path resulting

by removing the two endpoints of a path P is called the truncation of P , denoted by P .

Note that a truncated path P may be empty if P is a single edge. We use l(P ) to denote

the length of P .

A cycle is a graph with an equal number of vertices and edges whose vertices can be placed

around a circle so that two vertices are adjacent if and only if they appear consecutively along

the circle. We call a cycle a longest cycle when it has the maximum number of edges for

cycles in the graph, and denote that number, also called the circumference of G, by c(G).

We call a cycle a longest cycle containing some specified vertex v when it has the maximum

number of edges for cycles in the graph containing v, and denote that number by cv(G). We

similarly define the length of longest paths and longest paths containing v, denoting them

by p(G) and pv(G) respectively. A Hamiltonian cycle is a spanning cycle, that is, a cycle

containing every vertex in the graph. Likewise, a Hamiltonian path is a spanning path. If P

and Q are paths which are internally disjoint from each other and have at least one endpoint

in common, then P ∪Q denotes the concatenation of P and Q, and this concatenation may

either be a path or a cycle. For two vertices u and v on a path or cycle X, a [u, v]-segment

of X is the path from u to v on X (when X is a cycle, there are two [u, v]-segments).

A linear forest is a subgraph in which every component is a path, including the trivial

path (a single vertex) or the empty set. Thus the empty set is also considered a (trivial)

linear forest. We define cF (G) as the length of a longest cycle containing a specified linear

forest F . Similarly, pF (G) is the length of a longest path containing a specified linear forest

F . A cycle or path X that passes through F means that V (F ) ⊆ V (X) and E(F ) ⊆ E(X).

1.2 Graph Connectivity

We say that G is connected if it has a [u, v]-path whenever u, v ∈ V (G). Otherwise

G is disconnected. The components of a graph are its maximal connected subgraphs. A

cut-edge or cut-vertex of a graph is an edge or vertex whose deletion increases the number of

2



components. An articulation set is a set of vertices whose removal results in a disconnected

graph or the graph with one vertex (similarly a separating set or vertex cut of a graph G is a

set S ⊆ V (G) such that G− S has more than one component). The connectivity of a graph

G, denoted κ(G), is the minimum size of a vertex set S such that G− S is disconnected or

only has a single vertex. We say a graph is k-connected if its connectivity is at least k. We

say that the intersection of two cycles C and D is V (C)∩ V (D) and that the intersection of

two paths P and Q is V (P ) ∩ V (Q).

Connectivity in graphs is an important topic to study in graph theory and it has wide

ranging applications, including research on the intersection of long paths and cycles. The

most famous result on connectivity is Menger’s Theorem.

Theorem 1.2.1. (Menger [1927]) If x, y are vertices of a graph G and xy /∈ E(G), then

the minimum size of an x, y-cut equals the maximum number of pairwise internally disjoint

x, y-paths.

This notion of pairwise internally disjoint paths between two vertices is extremely useful

in constructing proofs. For instance, if we assume a graph is 2-connected, then the minimum

size of an x, y-cut is at least 2, and thus we can assume there exists 2 pairwise internally

disjoint x, y-paths.

A famous application of Menger’s Theorem is the Fan Lemma, attributed to Dirac. Given

a vertex x and a set U of vertices, an x, U -fan is a set of paths from x to U such that any

two of them share only the vertex x (see Figure 1.1).

Theorem 1.2.2. (Dirac [1960]) A graph is k-connected if and only if it has at least k + 1

vertices and, for every choice of x, U with |U | ≥ k, it has an x, U-fan of size k.

Dirac also showed the following, which links the number of vertices in a cycle to the

connectivity of the graph.

Theorem 1.2.3. [4] Let G be a k-connected graph, where k ≥ 2, and let X be a set of k

vertices of G. Then there is a cycle in G containing every vertex of X.

3



x U

Figure 1.1: x, U − fan

Additionally, Dirac proved an important result on the minimum length of a longest cycle

in a graph, dependent on the minimum degree of the graph.

Theorem 1.2.4. [4] Let G be a 2-connected graph of minimum degree δ on n vertices, where

n ≥ 3. Then G contains either a cycle of length at least 2δ or a Hamiltonian cycle.

By taking the cycle in Lemma 1.2.4 and removing an edge, we obtain an analogous

corollary for paths, where G contains either a path of length at least 2δ or a path of length

n− 1. Further extending Lemma 1.2.4 is the following lemma of Grötschel.

Theorem 1.2.5. [7] Let G be a 2-connected graph of minimum degree δ on n vertices, where

n ≥ 3. Then G contains either a cycle of length at least 2δ or a Hamiltonian cycle which

passes through a given vertex.

This is an improvement on Dirac’s famous result as Grötschel showed that there exists

such a cycle given by Dirac that passes through any specified vertex of the graph. We use

this to prove results on cycles and paths containing a specified vertex.

Noting that the path we construct from the cycle now in Lemma 1.2.5 contains the same

vertices, we may obtain the following similar corollary for paths.

4



Corollary 1.2.6. Let G be a 2-connected graph of minimum degree δ on n vertices, where

n ≥ 3. Then G contains either a path of length at least 2δ or a path of length at least n− 1

which passes through a given vertex.

The next result of Hu, Tian, and Wei gives a general improvement of the last result.

Recall that a cycle or path X that passes through F (alternatively the edges and vertices of

F , E(F ) ∪ V (F )) means that V (F ) ⊆ V (X) and E(F ) ⊆ E(X).

Let σk(G) = min

{∑k
i=1 dG(vi) : {v1, v2, ..., vk} is an independent set of G

}
.

Theorem 1.2.7. [13] Let k ≥ 3, m ≥ 0, and 0 ≤ s ≤ k−3. Let G be a (m+k−1)-connected

graph and let F be a linear forest subgraph with m edges and s isolated vertices. Then G has

a cycle of length ≥ min{|V (G)|, 2
k
σk(G)−m} passing through E(F ) ∪ V (F ).

The following is a corollary to Theorem 1.2.7 that we will use in many of our proofs

involving cycles containing a linear forest.

Corollary 1.2.8. Let G be a k-connected graph and F be a linear forest subgraph with l edges,

t isolated vertices, and l+t ≤ k−2. Then G has a cycle of length at least min{|V (G)|, 2δ−l}

passing through F .

Egawa et al. [5] provide this useful result similar to Theorems 1.2.4 and 1.2.5 which we

also use for many of our proofs involving cycles containing a linear forest.

Theorem 1.2.9. [5] Let G be a k-connected graph, k ≥ 2, with minimum degree δ and with

at least 2δ vertices. Let X be a set of k vertices of G. Then G has a cycle C of length at

least 2δ such that every vertex of X is on C.

1.3 Some Extremal Results

The following lemmas and corollaries in this section are some extremal results that are

useful for our proofs in later chapters.
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Theorem 1.3.1. [6] Every sequence of n2+1 real numbers contains a monotone subsequence

of length n+ 1.

A generalization of the theorem from Erdös and Szekeres [6] gives

Lemma 1.3.2. [1, Lemma 3] Let Σ be a set of n permutations of a sequence of S of 22
n

elements. Then there is a subsequence (a, b, c) of S on which each permutation σ ∈ Σ is

monotonic (that is, either σ(a) < σ(b) < σ(c) or σ(a) > σ(b) > σ(c)).

Theorem 1.3.3. [14] Let G ⊆ Kn,n be a bipartite graph. Then G contains Ks,t as a subgraph

if

e(G) ≥ (s− 1)1/t(n− t+ 1)n1−1/t + (t− 1)n.

Setting t = 3 and s = 257 gives

Corollary 1.3.4. Let G ⊆ Kn,n where n ≥ 3. Then G contains K3,257 if

e(G) ≥ 3
√
256(n− 2)n2/3 + 2n.
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2 MAIN PROBLEMS AND REVIEW OF LITERATURE

2.1 Smith’s Conjecture and Main Problems

Current interest in the number of vertices contained in the intersection of two longest

cycles is inspired by the conjecture of Scott Smith:

Conjecture 2.1.1. (See [1]) In a k-connected graph, k ≥ 2, two longest cycles meet in at

least k vertices.

Smith’s Conjecture is proven to be true for 2 ≤ k ≤ 8.

Theorem 2.1.2. (Smith’s Conjecture for small k) Let G be a k-connected graph where

2 ≤ k ≤ 8. If C and D are longest cycles of G, then C and D meet in at least k vertices.

This conjecture is proven for k ∈ {2, 3} by Grötschel and Nemhauser [9], for k ∈ {4, 5, 6}

by Grötschel [8], and for k ∈ {7, 8} by Stewart and Thompson [23]. Grötschel [8] reported

that the conjecture is probably proven up to ten.

A lower bound on the intersection of two longest cycles for general k is given by Chen,

Faudree, and Gould [1].

Theorem 2.1.3. [1, Theorem 2] If G is a k-connected graph, then any two different longest

cycles meet in at least c0k
3/5 vertices, where c0 = 1/( 3

√
256 + 3)3/5 ≈ 0.2615.

Similar to the conjecture of Smith, Hippchen made the following conjecture.

Conjecture 2.1.4. [12] If G is k-connected, then any two paths in G must meet in at least

k vertices.
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Gutiérrez and Valqui prove this Hippchen’s Conjecture for k ≤ 6 [15], and Gutiérrez

provides a lower bound on the intersection for general k [10]. In [3], it is proven that

Hippchen’s conjecture is true for k ≥ n+2
5
.

The current strategy for the proofs of Smith’s Conjecture for small k rely on results

related to the intersection as an articulation set, which we explore in detail in the following

section. Related conjectures have been proven for small k as well (See [12, 15, 18, 19, 22]),

and we discuss these briefly later in this chapter. For further reading, see the survey paper,

[21].

The main focus of this dissertation is the following conjecture which generalizes Smith’s

conjecture, as we consider long cycles relative to the longest cycles containing a linear forest.

Note that the longest cycle containing F may be much shorter than the longest cycle of G

in general. Recall that a linear forest is a subgraph in which every component is a path,

including the trivial path (a single vertex) or the empty set, and that cF (G) as the length

of a longest cycle containing a specified linear forest, F . We make the following conjecture:

Conjecture 2.1.5. Let G be a k-connected graph (k ≥ 2) and F be a linear forest subgraph

with at most k− 1 vertices. If C and D are longest cycles of G containing F then C and D

must meet in at least k common vertices.

In fact, we believe the following, stronger conjecture to be true.

Conjecture 2.1.6. Let G be a k-connected graph (k ≥ 2) and F be a linear forest subgraph

with at most k − 1 vertices. If C and D are cycles of G containing F such that |C|+ |D| ≥

2cF (G)− 1, then C and D must meet in at least k common vertices.

In this dissertation, we prove the above conjecture for 2 ≤ k ≤ 6, and provide a bound for

general k. We note that Conjecture 2.1.5 implies a special conjecture for two cycles containing

a specified vertex when F is equal to a single vertex, and implies Smith’s Conjecture when

F is the empty set.

As a final note in this section, we pose a similar path version to Conjecture 2.1.5.
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Conjecture 2.1.7. Let G be a k-connected graph (k ≥ 2) and F be a linear forest subgraph

with at most k − 1 vertices. If P and Q are longest paths of G containing F then P and Q

must meet in at least k common vertices.

2.2 Articulation Sets in Longest Cycles and Proof of Smith’s Conjecture for

Small k

Smith’s conjecture is still an open problem for general k, but in 1984, Grötschel and

Nemhauser gave a proof of this conjecture for k ∈ {2, 3} using part (b) of the following

theorem. Recall that an articulation set is a set of vertices whose removal results in a

disconnected graph or the graph with a single vertex. In the following four theorems, multiple

edges are allowed, but loops are not allowed.

Theorem 2.2.1. [9, Theorem 4.2] Let C1 and C2 be two longest cycles of G whose inter-

section is the set {u, v}. Suppose C1 = P1 ∪Q1 and C2 = P2 ∪Q2, where P1, P2, Q1, Q2 are

internally disjoint {u, v}-paths. Then

(a) paths P1, P2, Q1, Q2 have the same length (which implies that |C1| = |C2| is even).

(b) {u, v} is an articulation set of G and every truncated path P 1, P 2, Q1, Q2 obtained from

P1, P2, Q1, Q2 by removing the two endpoints u and v belongs to a different component of

G− {u, v}.

They also showed that if two longest cycles meet in exactly two vertices, that those two

vertices are contained in every longest cycle extending the proposition listed below.

Proposition 2.2.2. [9, Proposition 4.1]

(a) Every pair of longest cycles containing v of G meet in at least two vertices.

(b) If two longest cycles meet in exactly two vertices, then these two vertices are not adjacent

on either of the two cycles.

Theorem 2.2.3. [9, Theorem 4.3] Suppose two longest cycles C1 and C2 of G meet in

exactly two vertices, say u and v.
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(a) Then all longest cycles of G contain u and v, but not the edge uv.

(b) For every longest cycle C of G, the two pieces of C − {u, v} in G − {u, v} belong to

different components of G− {u, v}.

In the same year, Grötschel gave a proof of Smith’s Conjecture for k ∈ {4, 5, 6}, which

follows from the next result.

Theorem 2.2.4. [8, Theorem 1.2] Let k ∈ {3, 4, 5} and let G = [V,E] be a 2-connected

graph with at least k + 1 vertices. Suppose that C and D are two different longest cycles

meeting in a set W of exactly k vertices. Then:

(a) W is an articulation set of G.

(b) In the case k = 3, the paths obtained by removing W from C and D are in different

components of G−W .

In [8], Grötschel gives a counterexample for Theorem 2.2.4 when k = 6 (See Figure 2.1).

Here, the graph has circumference six and two different cycles with length six (1234561 and

1234651) meeting in six vertices such that the removal of these vertices leaves a connected

graph. Grötschel however conjectures that a restricted version could be true for k ∈ {6, 7},

with the restriction being that the length of the longest cycle in Gmust be at least k+1. This

was proven by Stewart and Thompson [23], listed below, and is tight due to a counterexample

for k = 8 (the Petersen graph, see Figure 2.2) provided by Grötschel [8]. Here, the cycles

1238079451 and 6805432796 intersect in k = 8 vertices, both have length k + 1 = 9, and

the removal of the intersection vertices leaves the edge 16, thus the intersection is not an

articulation set.

Theorem 2.2.5. [23] Let k ∈ {6, 7} and let G be a graph whose circumference is at least

k + 1. Suppose that C and D are distinct longest cycles of G meeting in a set W of exactly

k vertices. Then W is an articulation set of G.
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Figure 2.1: Counterexample to Theorem 2.2.4 when k = 6

Using Lemma 1.2.4, the 2-connected graph contains either a Hamiltonian cycle or a cycle

of length at least 2δ ≥ 2k, which satisfies the circumference of at least k + 1. Thus, an

application of Theorem 2.2.5 implies Smith’s Conjecture for k ∈ {7, 8}.

2.3 Bounds for the Intersection of Long Cycles

Though Smith’s conjecture for general k is still open, as mentioned above in Theorem

2.1.3, Chen, Faudree, and Gould [1] found a lower bound for the number of vertices in this

intersection that improves on a theorem by Burr and Zamfirescu (See [1]).

Many previous results consider longest cycles or longest paths, but McGuinness shows

that if two cycles, not necessarily longest, are long enough, they will intersect in at least two

vertices.

Theorem 2.3.1. [17, Theorem 1.2] Suppose that G is a k-connected graph where k ≥ 2

having circumference c ≥ 2k. If C1 and C2 are a pair of cycles of G such that |V (C1)| +

|V (C2)| ≥ 2c− 2k + 3, then C1 and C2 intersect in at least two vertices.

Wu extends this by showing that in a highly connected graph, two sufficiently long cycles

will intersect many times, and gives a path version as well.
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Figure 2.2: Petersen graph, counterexample to Theorem 2.2.5 when k = 8

Theorem 2.3.2. [25] Let G be a k-connected graph for s ≥ 3 and k ≥ ds2 where d =

(3 +
√

7
13
)2 ≈ 13.9413. Suppose C and D are cycles of G such that |V (C)| + |V (D)| ≥

2c(G)− c
√
k

s
+ 12 where c = 2

√
13
7
≈ 3.7337. Then C and D meet in at least s+ 1 common

vertices.

Theorem 2.3.3. [25] Let G be a k-connected graph where k ≥ 2710. Suppose C and D are

cycles such that |V (C)| + |V (D)| ≥ 2c(G) − c 6
√
k + 12 where c = 2

√
13
7
≈ 3.7337. Then C

and D meet in at least ⌊ 3
√
k⌋+ 1 common vertices.

Chen, Chen, and Liu pose a conjecture related to Smith’s Conjecture, and prove it for

k ≤ 6.

Conjecture 2.3.4. [2] Let G be a k-connected graph, k ≥ 2, and let C and D be two cycles

of G. Then there exist two cycles C∗ and D∗ such that V (C∗)∪ V (D∗) ⊇ V (C)∪ V (D) and

|V (C∗) ∩ V (D∗)| ≥ k.

Additionally, they provide a bound to their conjecture for general k.

Theorem 2.3.5. [2] Let G be a k-connected graph, k ≥ 2, and let C and D be two cycles

of G. Then there exist two cycles C∗ and D∗ such that V (C∗)∪ V (D∗) ⊇ V (C)∪ V (D) and

|V (C∗) ∩ V (D∗)| ≥ k3/5

( 3√256+3)3/5
.
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2.4 Other Related Conjectures

Smith’s conjecture has also been generalized to matroids by McMurray, Reid, Wei, and

Wu. For Matroid definitions and notation, see Oxley [20].

Conjecture 2.4.1. [19] If C and D are largest circuits of a k-connected matroid M with at

least 2(k − 1) elements, then r(C ∪D) ≤ r(C) + r(D)− k + 1.

This conjecture is true for k = 2 [19] and k = 3 [16]. Noting that this conjecture’s

dual leads to a statement of cocircuits, which when restricting that dual to graphic matroids

relates to graphic bonds. A bond is a minimal nonempty edge-cut, and ω(G) is the number

of components in a graph G.

Conjecture 2.4.2. [18] If C and D are largest bonds of a k-connected graph G, then ω(G−

(C ∪D)) ≥ k + 2− |C ∩D|.

This conjecture has been proven for k ≤ 6 in [18]. In [22], Sheppardson provides two

lower bounds for ω(G− (C ∪D)) when k ≥ 7 as well.

Theorem 2.4.3. [22] If C and D are distinct bonds of a k-connected graph G, k ≥ 7, with

C a largest bond and |D| ≥ |C| − 1, then ω(G− (C ∪D)) ≥ 1
4
(k + 14− 3

2
|C ∩D|).

For small k, Sheppardson improves the bound above.

Theorem 2.4.4. [22] Let C and D be distinct bonds of a k-connected graph G with C a

largest bond and |D| ≥ |C| − 1. If α ∈ R, 0 ≤ α ≤ 16, and 4 ≤ k ≤ 40 − 2α, then

ω(G− (C ∪D)) ≥ 1
5
(2k + α− 3|C ∩D|).

In Chapter 3, we examine the intersection of two long cycles containing a linear forest

as an articulation set, and prove Conjecture 2.1.6 for 2 ≤ k ≤ 6. In Chapter we 4, we

extend Theorem 2.1.3 by improving the bound and not requiring the cycles to be longest.

In Chapter 5, we provide a lower bound on the intersection of two long cycles containing

a linear forest for general k. In Chapter 6, as consequences of the main results, we obtain

similar results for long paths containing a linear forest.
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3 INTERSECTION OF LONG CYCLES CONTAINING A LINEAR

FOREST AS AN ARTICULATION SET

3.1 Introduction

In this chapter we extend the results of Grötschel and Nemhauser [9] and Grötschel [8]

regarding the intersection of two cycles as an articulation set, and raise and partially prove

the following conjectures related to Smith’s Conjecture.

Conjecture 3.1.1. Let G be a k-connected graph (k ≥ 2) and F be a linear forest subgraph

of G with at most k − 1 vertices. If C and D are longest cycles of G containing F , then C

and D must meet in at least k common vertices.

Smith’s Conjecture is identical to the above conjecture when F = ∅. We believe that

Smith’s Conjecture may be modified to consider two cycles whose sum is one edge short of

two longest cycles.

Conjecture 3.1.2. Let G be a k-connected graph (k ≥ 2). If C and D are cycles of G such

that |C|+ |D| ≥ 2c(G)− 1, then C and D must meet in at least k common vertices.

In fact, we believe the following, stronger conjecture to be true, considering two long

cycles passing through a linear forest. Recall cF (G) is the length of a longest cycle containing

the linear forest F , and if P is a path, we use |P | to denote the path length of P .

Conjecture 3.1.3. Let G be a k-connected graph (k ≥ 2) and F be a linear forest subgraph

of G with at most k − 1 vertices. If C and D are cycles of G containing F such that

|C|+ |D| ≥ 2cF (G)− 1, then C and D must meet in at least k common vertices.
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When F is a single vertex v, we use cv(G) to denote cF (G).

Our work in this chapter extends Theorems 2.2.1 and 2.2.4, which state that in a 2-

connected graph G with at least k + 1 vertices, the intersection of two longest cycles is an

articulation set of G when k = 2 and when k ∈ {3, 4, 5}, respectively. We also extend

Theorem 2.2.3 which states that if two longest cycles of a graph G contain exactly two

vertices in their intersection, then those two vertices are contained in every longest cycle of

G. We show that the intersection of two long cycles may still be an articulation set under

certain conditions. Finally, we apply our results to partially prove Conjecture 3.1.3.

Recall that an articulation set is a set of vertices whose removal results in a disconnected

graph or the graph with one vertex. In this chapter, we assume that G is loopless, but

multiple edges are allowed. Also recall that a simplified graph of G, denoted by si(G), is

isomorphic to the graph obtained from G with loops and multiple edges deleted. Also recall

that the path resulting by removing the two endpoints of a path P is called the truncation

of P , denoted by P , and that a truncated path P may be empty if P is a single edge. If P

and Q are paths which are internally disjoint from each other and have at least one endpoint

in common, then P ∪Q denotes the concatenation of P and Q, and this concatenation may

either be a path or a cycle.

3.2 Main Results

In this section we state the main results. The first two results study the intersection

of two cycles when the intersection has at most two vertices. The third result studies the

intersection of two cycles with three, four, or five vertices. Finally, the fourth result proves

Conjecture 3.1.3 for 2 ≤ k ≤ 6.

We define K+
2,m as the graph obtained from K2,m with an edge connecting the two vertices

in the partite set of size two.

Theorem 3.2.1. Let G be a 2-connected graph and C and D be two cycles of G passing

through a specified linear forest subgraph F , where |V (F )| ≤ 2, and F contains no edge, such
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that |C|+ |D| ≥ 2cF (G)− 1. Then:

(i) |V (C) ∩ V (D)| ≥ 2,

(ii) if V (C) ∩ V (D) = {u, v} and cF (G) ≥ 5, then uv is not an edge on C or D,

(iii) if V (C) ∩ V (D) = {u, v} and cF (G) = 3, then si(G)∼=K3 and G is obtained from a

triangle by adding at least one multiple edge, and

(iv) if V (C) ∩ V (D) = {u, v} and cF (G) = 4, then either (1) si(G)∼=K+
2,m for m ≥ 3 or (2)

si(G)∼=K2,m for m ≥ 4.

In the next result, we consider the case where the linear forest has no edge and has at

most two vertices. The case when F is a single edge is straightforward, and will be discussed

later.

Theorem 3.2.2. Let C and D be two different cycles of a 2-connected graph G meeting in

exactly two vertices, u and v, |V (G)| ≥ 4, and F be a linear forest subgraph with no edges

and V (F ) ⊆ {u, v}. Assume that |C|+ |D| ≥ 2cF (G)− 1 and C = P1 ∪P2 and D = Q1 ∪Q2

where Pi and Qi (i = 1, 2) are [u, v]-segments of C and D respectively. Suppose without loss

of generality that |P1| ≤ |P2| and |Q1| ≤ |Q2|. Then the following hold:

(a) {u, v} is an articulation set of G if cF (G) ≥ 4,

(b) if |C| = |D| = cF (G), then |P1| = |P2| = |Q1| = |Q2|,

(c) if |C| = |D| − 1, then either (i) cF (G) is even, |P2| = |Q1| = |Q2|, and |P1| = |P2| − 1,

or (ii) cF (G) is odd, and |P1| = |P2| = |Q1| = |Q2| − 1,

(d) the nonempty truncated paths P 1, P 2, Q1, and Q2 obtained by removing {u, v} from P1,

P2, Q1, and Q2 are in different components of G− {u, v},

(e) every cycle R containing F with at least cF (G)− 1 vertices must contain both u and v if

cF (G) ≥ 4,

(f) if R is a longest cycle passing through F and cF (G) ≥ 4, then the two segments of

R− {u, v} in G− {u, v} belong to different components of G− {u, v}, and

(g) if |C| = |D| = cF (G) ≥ 5, then the conclusion of (f) is true for any cycle R passing

through F with length at least cF (G)− 1.
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Our third result for this chapter generalizes Theorem 2.2.4 and extends Theorem 3.2.2

for intersections of two long cycles containing a specified linear forest of size three, four, and

five vertices.

Theorem 3.2.3. Let k ∈ {3, 4, 5} and let G be a 2-connected graph with at least k + 1

vertices and F be a linear forest subgraph with at most k − 1 vertices. Suppose that C and

D are two different cycles containing F meeting in a set W of exactly k vertices such that

|C|+ |D| ≥ 2cF (G)− 1. Then the following are true:

(i) For k = 3, 4, assume cF (G) ≥ k + 2 if |C| + |D| = 2cF (G) − 1, and cF (G) ≥ k + 1 if

|C|+ |D| = 2cF (G). Then W is an articulation set of G.

(ii) In the case above for k = 3, the paths obtained by removing W from C and D are in

different components of G−W .

(iii) For k = 5 and cF (G) ≥ 7, W is an articulation set of G.

(iv) Moreover, when |V (F )| ≤ 1 and k = 3, 4, W is always an articulation set.

For k = 5 and cv(G) = k+1 = 6, Figure 3.1 shows a counterexample, where |C|+ |D| =

2cv(G)− 1, C and D meet in a set W of exactly five vertices, but W is not an articulation

set.

Figure 3.1: Two cycles intersecting in 5 vertices with cv(G) = 6

Also note that the theorem is untrue if G is not 2-connected. In our first counter example,

suppose we have two cycles intersecting in k = 4 vertices with cv(G) = 5. The deletion of
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the intersection vertices leaves one connected component (here a tree, see Figure 3.2 (a)).

Our second counter example similarly shows the theorem is not true but for two cycles

intersecting in k = 5 vertices with cv(G) = 6 (see Figure 3.2 (b)).

(a) (b)

Figure 3.2: Two cycles intersecting in four vertices with cv(G) = 5, and intersecting in six
vertices with cv(G) = 6, respectively, and G not 2-connected

The condition cF (G) ≥ k + 2 is natural as we will see in the proof of our next main

theorem. As a consequence of Theorems 3.2.1, 3.2.2, and 3.2.3, we obtain the following main

result, which proves Conjecture 3.1.3 for 2 ≤ k ≤ 6.

Theorem 3.2.4. Let G be a k-connected graph where k ∈ {2, 3, 4, 5, 6}, and F be a specified

linear forest subgraph of G with at most k − 1 vertices. If C and D are cycles containing F

such that |C|+ |D| ≥ 2cF (G)− 1, then C and D must meet in at least k common vertices.

We note that the above theorem also implies Conjectures 3.1.1 and 3.1.2 when k ∈

{2, 3, 4, 5, 6}. All proofs will be delayed until section 3.4.

3.3 Some Lemmas for Long Cycles

In this section, we provide lemmas that are used in the proofs of our main results in the

next section.

Proposition 3.3.1. Let G be a 2-connected graph and F be a set containing at most one

vertex of G. Then the following hold:
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(i) cF (G) = 3 if and only if si(G) = K3.

(ii) cF (G) = 4 if and only if si(G) ∼= K4, K2,m, or K+
2,m for m ≥ 2.

Note that [8] showed that c(G) = 4 if and only if G is one of the graphs in the above

proposition. Therefore, we need only consider the case for cF (G) = 3 or cF (G) = 4 for

|V (F )| = 1.

Proof. (Proof of Proposition 3.3.1) One direction is straightforward, so we prove the other

direction. (i) Suppose that cF (G) = 3, and uvw is a cycle of length three containing F .

If there is another vertex t /∈ S = {u, v, w}, then as G is 2-connected, there are two

internally disjoint (t, S)-paths. Now it is easily seen that cF (G) ≥ 4, a contradiction. Thus

si(G) ∼= K3.

(ii) Suppose cF (G) = 4 where F = {v}. Then, there is a 4-cycle C containing v, and

suppose C = v1v2v3v4v1 where v ∈ {v1, v2, v3, v4}. If |V (G)| = 4, then si(G) = K2,2, K
+
2,2, or

K4, and the theorem holds. So we may assume that |V (G)| ≥ 5. For any t /∈ V (C), as G is

2-connected, there are at least two internally disjoint (t, V (C))-paths, S1 and S2, with end

vertices vi, vj ∈ V (C). As cv(G) = 4, vi and vj cannot be consecutive vertices in C, otherwise

we obtain a cycle of length at least five, a contradiction. Thus without loss of generality,

we have that either vi = v1 and vj = v3, or vi = v2 and vj = v4. Suppose the latter is

true. As cv(G) = 4, it is easily seen both S1 and S2 have length one. Then, {v1, v3, t1} must

be an independent set, otherwise we would obtain a cycle of length five passing through v,

a contradiction. Now for any t2 /∈ V (C) and t2 ̸= t1, then by the above argument either

t2v2, t2v4 ∈ E(G) or t2v1, t2v3 ∈ E(G). The latter case gives a cycle such that cv(G) ≥ 6,

a contradiction (see Figure 3.3). Additionally, it is easily seen that v1v3 /∈ E(G), but v2v4

may possibly be an edge of G. We conclude that t2 may only be such that it is adjacent to

v2 and v4. Moreover, V − {v2, v4} is independent. Thus si(G) ∼= K2,m or K+
2,m for m ≥ 3 if

|V (G)| ≥ 5. Thus the proposition holds.
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Figure 3.3: cv(G) = 4 if and only if si(G) ∼= K4, K2,n, or K
+
2,n for n ≥ 2

If C and D are two cycles which both contain the vertices u and v and if P is a [u, v]-

segments of C and Q a [u, v]-segment of D, then P and Q are called parallel if P is internally

disjoint from D and Q internally disjoint from C. We say that P and Q are parallel paths

on the cycles C and D. In the following, if e is a common edge of two cycles C and D, we

consider (e, e) to be a trivial parallel path.

Lemma 3.3.2. Let C and D be cycles of a 2-connected graph G passing through a linear

forest subgraph F such that |C|+ |D| ≥ 2cF (G)− 1. Assume without loss of generality that

|C| ≥ |D|. Suppose (Pi, Qi), 1 ≤ i ≤ t, are parallel paths of C and D. Then

(i) |Pi| ≥ |Qi| for all i ∈ {1, ..., t},

(ii) for at most possibly one i, say i = 1, we have that |P1| − |Q1| ≤ 1, and |Pi| = |Qi| for

all 2 ≤ i ≤ k.

Proof. As C is a longest cycle containing F and |C| + |D| ≥ 2cF (G) − 1, we deduce that

|Pi| ≥ |Qi| for all i ∈ {1, ..., t}, otherwise, if |Pi| < |Qi| for some i ∈ {1, 2, ..., t}, we obtain a

longer cycle than C containing F by replacing Pi by Qi. First we show that |Pi|−|Qi| ≤ 1 for

all 1 ≤ i ≤ t. For contradiction, suppose |Pi| − |Qi| ≥ 2 for some i. Then |Pi| ≥ |Qi|+2. As

Pi and Qi are parallel segments, we may construct D′ such that D′ contains every segment
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of D except Qi, but replaces Qi by Pi. Then clearly, D′ still contains F , and |D′| ≥ |D|+2.

As |D| ≥ cF (G)−1, we have that |D′| ≥ cF (G)−1+2 = cF (G)+1 > cF (G), a contradiction.

Now suppose that there are at least two i, say i = 1, 2, such that |Pi| − |Qi| ≥ 1. If

|C|+ |D| = cF (G), then it is easy to see that |Pi| = |Qi| for all i ∈ {1, ..., t}, a contradiction.

Thus we assume that |C| = |D|+1 = cF (G), and all Pi belong to C, and all Qi belong to D

for i ∈ {1, ..., t}. Now suppose C = P∪P1∪P2 andD = Q∪Q1∪Q2 where P and Q are unions

of segments of C and D respectively. Note that P ∪Q1 ∪Q2 and Q∪P1 ∪P2 are both cycles

containing F . If |P | < |Q|, then |Q∪P1∪P2| > |P ∪P1∪P2| = |C| = cF (G), a contradiction.

Thus |P | ≥ |Q|. Then we have that |D| = |Q∪Q1∪Q2| ≤ |P |+ |P1|−1+ |P2|−1 = |C|−2,

a contradiction.

Lemma 3.3.3. Let C and D be two cycles of G containing a linear forest subgraph F such

that |C| + |D| ≥ 2cF (G) − a. Let P be a segment on C and Q be a segment on D such

that P and Q have u as one endpoint, P is internally disjoint from D, and Q is internally

disjoint from C. Then G contains no [P ,Q]-path internally disjoint from C and D such that

its length is greater than a
2
.

Proof. Let P1 be the union of remaining segments of C such that C = P ∪P1, and similarly

let Q1 be the union of remaining segments of Q such that D = Q ∪ Q1. Let R be a path

connecting an internal vertex x of P to an internal vertex y of Q such that R is internally

disjoint from C and D. Write P and Q now such that P = P ′ ∪ P ′′ and Q = Q′ ∪ Q′′,

separated by x and y respectively (see Figure 3.4). Then

D′ = Q1 ∪ P ′ ∪R ∪Q′′

C ′ = P1 ∪Q′ ∪R ∪ P ′′
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Figure 3.4: The Graph in Lemma 3.3.3

are cycles, both containing F , as we only replaced P ′ by Q′ ∪ R in C and Q′ by P ′ ∪ R in

D, and P is internally disjoint from D, and Q is internally disjoint from C. Now,

|C ′|+ |D′| = |C|+ |D|+ 2|R| ≥ 2cF (G)− a+ 2|R|.

As |R| > a
2
, |C ′|+ |D′| > 2cF (G), a contradiction.

Corollary 3.3.4. Let C and D be two cycles of G containing a linear forest subgraph F

such that |C|+ |D| ≥ 2cF (G)− 1. Let P be a segment on C and Q be a segment on D such

that P and Q have u as one endpoint, P is internally disjoint from D, and Q is internally

disjoint from C. Then G contains no [P ,Q]-path R internally disjoint from C and D.

Lemma 3.3.5. Let C and D be two cycles of a graph G containing a linear forest subgraph

F such that |C| + |D| ≥ 2cF (G) − a and let C = P1 ∪ P2 ∪ P3 and D = Q1 ∪ Q2 ∪ Q3

be concatenations of three paths respectively. Suppose that P1 and Q1 are parallel, and P2
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and Q2 are internally disjoint from D and C respectively. Then G contains no [P 1, P 2]-,

[P 1, Q2]-, [Q1, Q2]-, and no [Q1, P 2]-paths R internally disjoint from C and D such that

|R| > a
2
.

z

w y v

u

x Q1

Q′′
2 Q′

2

P ′′
1

P ′
1

Q3

P3

R

P2

Figure 3.5: The Graph in Lemma 3.3.5

Proof. By Lemma 3.3.3, there is no (P 1, Q1)-path internally disjoint from C∪D with |R| > a
2
.

We show that there does not exist a [P 1, Q2]-path internally disjoint from C and D such that

|R| > a
2
, and the others follow by symmetry. Suppose R is a path connecting x ∈ V (P 1) and

y ∈ V (Q2) such that R is internally disjoint from C andD and |R| > a
2
. Let P1 = P ′

1∪P ′′
1 and

Q2 = Q′
2∪Q′′

2, separated by x and y respectively (see Figure 3.5). Then C = P ′
1∪P ′′

1 ∪P2∪P3

and D = Q1 ∪Q′
2 ∪Q′′

2 ∪Q3. Now,

C1 = P ′
1 ∪R ∪Q′

2 ∪ P2 ∪ P3

D1 = Q1 ∪ P ′′
1 ∪R ∪Q′′

2 ∪Q3

are cycles, both containing F , as in C, we only replace P ′′
1 by R ∪ Q′

2, and in D, we only

replace Q′
2 by R∪P ′′

1 , and P1 is internally disjoint from D, and Q2 is internally disjoint from
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C, respectively. Now,

|C1|+ |D1| = |C|+ |D|+ 2|R| ≥ 2cF (G)− a+ 2|R| > 2cF (G)− a+ a = 2cF (G),

a contradiction.

Corollary 3.3.6. Let C and D be two cycles of a graph G containing a linear forest subgraph

F , such that |C| + |D| ≥ 2cF (G) − 1 and let C = P1 ∪ P2 ∪ P3 and D = Q1 ∪ Q2 ∪ Q3 be

concatenations of three paths respectively. Suppose that P1 and Q1 are parallel, and P2 and Q2

are internally disjoint respectively from D and C. Then G contains no [P 1, P 2]-, [P 1, Q2]-,

[Q1, Q2]-, and no [Q1, P 2]-paths, R, internally disjoint from C and D.

Lemma 3.3.7. Let P and Q be parallel paths on two cycles C and D respectively, both

containing a linear forest subgraph F of a graph G, such that |C| + |D| ≥ 2cF (G) − 1. Let

S be a segment on one of the cycles disjoint from the other. If there is a [P , S]-path R

(respectively a [Q,S]-path) internally disjoint from C ∪ D, then there is no [Q,S]-path R′

(respectively no [P , S]-path) internally disjoint from C and D.

P ′′P ′

Q′′Q′

P1

R′ R
Q1Q2

S ′′ S ′S ′′′

Figure 3.6: The Graph in Lemma 3.3.7
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Proof. Suppose S is a segment on D and that there exists both a [P , S]-path R and a [Q,S]-

path R′ internally disjoint from C ∪D. Note that by Corollary 3.3.4, R is internally disjoint

from R′. Then, we may assume S = S ′ ∪ S ′′ ∪ S ′′′, P = P ′ ∪ P ′′, Q = Q′ ∪Q′′, C = P ∪ P1,

and D = Q ∪Q1 ∪ S ∪Q2 (see Figure 3.6). Now, consider the cycles C1 and C2, such that

C1 = P1 ∪ P ′′ ∪R ∪ S ′′ ∪R′ ∪Q′

C2 = P1 ∪Q′′ ∪R′ ∪ S ′′ ∪R ∪ P ′.

Note that V (P ) ∩ V (Q) = ∅, so F is a subgraph of P1. Therefore, both C1 and C2 contain

F . By Lemma 3.3.2, |P | ≤ |Q| + 1. Moreover, |P1| ≥ |Q1 ∪ S ∪ Q2| − 2, as otherwise,

|C| = |P1| + |P | ≤ |Q1 ∪ S ∪ Q2| − 3 + |Q| + 1 = |Q1 ∪ S ∪ Q2 ∪ Q| − 2 = |D| − 2, a

contradiction.

Thus,

|C1|+ |C2| = |P1|+ |P |+ |P1|+ |Q|+ 2(|R|+ |R′|+ |S ′′|) ≥ |C|+ |D| − 2 + 4 ≥ 2cF (G) + 1;

a contradiction.

3.4 Proof of the Main Results

Proof. (Proof of Theorem 3.2.1)

Case 1: |V (F )| = 0. Then cF (G) = c(G). If |C| + |D| = 2c(G), then both C and D are

longest cycles, and parts (i) and (ii) of the theorem follow from [9, Proposition 4.1], and parts

(iii) and (iv) follow from [8, Theorem 2]. Thus we assume F = ∅ and |C|+ |D| = 2c(G)− 1,

say |C| = c(G) and |D| = c(G) − 1. If C and D do not meet, then as G is 2-connected,

there are two vertex-disjoint (V (C), V (D))-paths R1 and R2 which divide C into C ′ ∪ C ′′

and divide D into D′ ∪D′′. Suppose without loss of generality, |C ′| ≥ |C ′′| and |D′| ≥ |D′′|.
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Then C1 = C ′ ∪ R1 ∪D′ ∪ R2 is a cycle of G such that |C1| ≥ c(G)
2

+ c(G)−1
2

+ 2 > c(G) + 1,

a contradiction.

If C and D meet at exactly one vertex v, then as G− v is connected, there is a (V (C)−

v, V (D) − v)-path R. Suppose v and R divide C into C ′ ∪ C ′′, and divide D into D′ ∪D′′.

Let C1 = C ′ ∪ R ∪ D′ and C2 = C ′′ ∪ R ∪ D′′. Then both are cycles of G such that

|C1|+ |C2| = |C|+ |D|+ 2|R| ≥ 2c(G) + 1, a contradiction. Therefore |V (C) ∩ V (D)| ≥ 2.

Now note that (ii) is clearly true for c(G) ≥ 4 in this case, (iii) is also clearly true, and (iv)

is true due to [8] (see Proposition 3.3.1 (ii)).

Case 2: 1 ≤ |V (F )| ≤ 2.

(i): If |V (C) ∩ V (D)| = 1, let V (C) ∩ V (D) = {v} = F . Then as G is 2-connected,

there exists a path S internally disjoint from C ∪ D connecting V (C) − v and V (D) − v.

Suppose the path divides C − v into P1 ∪P2 and D− v into Q1 ∪Q2, where P1, P2, Q1, and

Q2 are all paths starting from v. Now, let C1 = P1 ∪ Q1 ∪ S and D1 = P2 ∪ Q2 ∪ S. Then

v ∈ V (C1) ∩ V (D1) and |C1|+ |D1| = |C|+ |D|+ 2|S| ≥ 2cF (G) + 1, a contradiction. Thus

|V (C) ∩ V (D)| ≥ 2.

(ii): Suppose without loss of generality that uv ∈ E(C). Then C1 is divided into P1 ∪P2

such that both are [u, v]-segments, P2 = uv, and D is divided into two [u, v]-segments Q1

and Q2 (let |Q1| ≤ |Q2|). As cF (G) ≥ 5, |P1| ≥ 3, and |Q2| ≥ 3. Then |P1∪Q2| ≥ |P1|+3 =

(|P1|+ 1) + 2 ≥ (cF (G)− 1) + 2 = cF (G) + 1, a contradiction.

(iii): As cF (G) = 3, then it is obvious that |C| + |D| = 2cF (G) − 1. Assume, |D| = 3

and |C| = 2 such that D = uvwu and C = uvu. If there exists another vertex t adjacent to

one of u, v, w, say u, as G is 2-connected, t must be adjacent to another vertex, say w, but

then we obtain a cycle R = uvwtu which implies cF (G) ≥ 4, a contradiction. Thus no other

vertex may exist, only multiple edges could be added, and si(G) ∼= K3.

(iv): First, suppose that |C| = 3 and |D| = 4 such that C = vuav and D = vbucv. If

ab, ac, or bc is an edge of G, we obtain a cycle of length five containing F , a contradiction

as cF (G) = 4. So ab, ac, bc /∈ E(G). Now, if there exists a vertex t such that t /∈ S =
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V (C) ∪ V (D), then as G is 2-connected, there exists two internally disjoint (t, S)-paths P1

and P2 with endpoints s1, s2 ∈ S. If s1 and s2 are adjacent edges, then we can clearly reroute

through t and obtain a cycle of length at least five, a contradiction as cF (G) = 4. So suppose

s1 and s2 are not adjacent. Now, if {s1, s2} = {u, v}, then P1 = tu and P2 = tv. As t is

arbitrary, it is easily seen that G ∼= K+
2,m for some m ≥ 3. So suppose {s1, s2} ⊆ {a, b, c}.

Without loss of generality suppose s1 = a and s2 = b such that P1 is a [t, a]-path and P2

is a [t, b]-path. Then we obtain a new cycle R = tP1avubP2t which implies cF (G) ≥ 5, a

contradiction. Thus si(G) ∼= K+
2,m for m ≥ 3.

Now suppose that cF (G) = 4 = |C| = |D| and suppose C = ubvau and D = ucvdu. Let

S = V (C)∪V (D). Note that {a, b, c, d} must be an independent set, as otherwise we obtain

a cycle of length five containing {u, v}, a contradiction as cF (G) = 4. If there exists a vertex

t /∈ S, then as G is 2-connected, there exists two internally disjoint (t, S)-paths P1 and P2

with endpoints s1, s2 ∈ S. If {s1, s2} = {u, v}, then P1 = tu and P2 = tv as cF (G) = 4. So

suppose {s1, s2} ⊆ {a, b, c, d}. Without loss of generality suppose s1 = a and s2 = b. Then

we obtain a new cycle R = tP1aucvbP2t which implies cF (G) ≥ 6, a contradiction. Similarly,

we can show that the case where s1 ∈ {u, v} and s2 ∈ {a, b, c, d} is impossible. Thus if there

is any t ∈ S, then tu, tv ∈ E(G). Now, it is easily seen that the only other possible edge is

uv. Thus G ∼= K2,m or K+
2,m for some m ≥ 4. This completes the proof of Theorem 3.2.1.

Proof. (Proof of Theorem 3.2.2) If cF (G) = 3 or 4, the theorem follows from Theorem 3.2.1

(iii) and (iv). So we assume cF (G) ≥ 5 from now on. We defer the proof of part (a) until

after we present the proofs of parts (b), (c), and (d).

Part (b): Suppose either |P1| ̸= |P2| or |Q1| ̸= |Q2|, and without loss of generality say

|P1| < |P2|. Then P2 ∪Q2 is a cycle containing F with size |P2 ∪Q2| > 1
2
cF (G) + 1

2
cF (G) =

cF (G), a contradiction.

Part (c): Suppose |C| = cF (G)− 1 and |D| = cF (G).

Case (1): cF (G) = 2a is even. Recall C = P1 ∪ P2, D = Q1 ∪Q2, and |C| = |D| − 1.

Then |Q2| ≥ a. As |C| = 2a− 1, if |P1| ≤ a− 2, then |P2| ≥ a + 1. Now note that P2 ∪Q2
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is a cycle containing F such that |P2 ∪ Q2| ≥ a + 1 + a = 2a + 1, a contradiction. Thus

|P1| ≥ a−1. As |P1| ≤ |P2|, we have that |P1| = a−1 and |P2| = a. Additionally, if |Q2| > a,

then again |P2 ∪Q2| > 2a, a contradiction. Thus |Q1| = |Q2| = a.

Case (2): cF (G) = 2a−1 is odd. Then we have that |C| = 2a−2 and |D| = 2a−1. Thus

|Q2| ≥ a, so |P2| ≤ a − 1, otherwise |P2 ∪ Q2| > 2a − 1. Therefore |P1| ≤ a − 1, and thus

|P1| = |P2| = a− 1. We also have that |Q2| ≤ a, otherwise |P2 ∪Q2| ≥ a + 1 + a− 1 = 2a,

a contradiction, as P2 ∪ Q2 is a cycle containing F . Thus |P1| = |P2| = |Q1| = a − 1 and

|Q2| = a. Note that in this case, if there exists a cycle R passing through F with size

cF (G), then V (D) ∩ V (R) ̸= {u, v}. Otherwise, if R = R1 ∪ R2, where Ri is the [u, v]-

segment of R such that |R1| ≤ |R2|, then R2 ∪ Q2 is a cycle passing through F such that

|R2 ∪Q2| ≥ a+ a = 2a, a contradiction as cF (G) = 2a− 1.

Part (d): The proof is simple when |C| = |D| = cF (G), so we will only prove the case

when |C| = |D| − 1.

Case (1): cF (G) = 2a is even. By (c), |P2| = |Q1| = |Q2| = a and |P1| = a − 1.

Suppose now that some of the nonempty truncated paths P 1, P 2, Q1, and Q2 are in the

same component of G − {u, v}, say a path S internally disjoint from C ∪D connecting P 1

and Q1 such that P1 = P ′
1 ∪ P ′′

1 and Q1 = Q′
1 ∪ Q′′

1 with P ′
1 and Q′

1 containing u as an end

vertex. Let C1 = Q2∪Q′
1∪S∪P ′′

1 and C2 = Q2∪P ′
1∪S∪Q′′

1 be cycles both passing through

F . Then |C1| + |C2| = |P1| + |Q1| + 2|S| + 2|Q2| ≥ a − 1 + a + 2 + 2a = 4a + 1 > 2cF (G),

a contradiction. Thus there is no such path and P 1 and Q1 are in different components

of G − {u, v}. Similarly, we have that no such path between any two of the nonempty

truncated paths which may exist and that all of P 1, P 2, Q1, and Q2 (if nonempty) are in

different components of G− {u, v}.

Case (2): cF (G) = 2a− 1 is odd. If cF (G) = 3, by Theorem 3.2.1, si(G) ∼= K3, and the

result is trivially true. So we assume cF (G) ≥ 5 from now on. By (c), |P1| = |P2| = |Q1| =

a − 1 and |Q2| = a. Suppose now that some of the nonempty truncated paths P 1, P 2, Q1,

and Q2 are in the same component of G−{u, v}, say a path S internally disjoint from C ∪D
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connecting Q1 and Q2 such that Q1 = Q′
1∪Q′′

1 and Q2 = Q′
2∪Q′′

2 with Q′
1 and Q′

2 containing

u as an end vertex. Let D1 = P1 ∪Q′
1 ∪ S ∪Q′′

2 and D2 = P1 ∪Q′′
1 ∪ S ∪Q′

2 be cycles both

passing through F . Then |D1|+ |D2| = 2|P1|+ |Q1|+ |Q2|+2|S| ≥ 2(a−1)+(a−1)+a+2 =

4a− 1 > 2cF (G), a contradiction. Thus there is no such path and Q1 and Q2 are in different

components of G − {u, v}. Similarly, we have that no such path between any two of the

nonempty truncated paths which may exist and that all of P 1, P 2, Q1, and Q2 (if nonempty)

are in different components of G− {u, v}.

Part (a): As cF (G) ≥ 4, by (b) and (c) P 2, Q1, Q2 ̸= ∅. Now (a) follows.

Part (e): Here, we prove the case when |C|+ |D| = 2cF (G)−1 and omit the similar proof

when |C|+ |D| = 2cF (G). Suppose R is a cycle passing through F with |R| ≥ cF (G)− 1. If

cF (G) = 4, then G ∼= K+
2,m for some m ≥ 3 or G ∼= K2,m for some m ≥ 4, and the conclusion

holds. So suppose cF (G) ≥ 5. If |V (F )| = 2, then there is nothing needed to prove, so

assume V (F ) ≤ {v}. Now, suppose u /∈ V (R), then by (d), P 1, P 2, Q1, and Q2 must be in

different components of G−{u, v}. Thus R− v can only be in exactly one component which

contains, say, P 1. Note that by (b) and (c), all P i, Qi ̸= ∅ for i = 1, 2. However, note that

P2∪Q2 is a cycle containing F such that |P2∪Q2| = cF (G), and now, R and P2∪Q2 have at

most one common vertex v, a contradiction to Theorem 3.2.1 as |R|+ |P2∪Q2| ≥ 2cF (G)−1.

Thus (e) holds.

Part (f): By (e), R must contain both u and v. If cF (G) = 4, the conclusion is easily

verified by Theorem 3.2.1. So we assume cF (G) ≥ 5. Thus P 1, P 2, Q1, Q2 ̸= ∅.

Case (1): cF (G) is even. By (b) and (c), |P2| = |Q1| = |Q2| = a, |P1| = a − 1 or a, and

cF (G)) = 2a. Note that R−{u, v} has two segments R1 and R2. By (d), two of P 1, P 2, Q1,

and Q2, by symmetry, say either P 2 and Q1, or P 1 and Q1, are in different components of

G− {u, v} from the components containing R1 and R2, respectively. We assume the former

is true, and note that the proof for the latter case is similar. Without loss of generality,

suppose |R1| ≤ |R2|. If |R2| ≥ a + 1, then Q1 ∪ R2 is a cycle containing F such that

|Q1 ∪ R2| ≥ 2a + 1, a contradiction. So, |R2| ≤ a. Thus |R1| = |R2| as |R| = 2a. Now, let
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C1 = R1∪Q1 and C2 = R2∪P2. Then both cycles pass through F , and |V (C1)∩V (C2)| = 2

with |C1| = |D1| = cF (G). By (d), R1 and R2 are in different components of G− {u, v}.

Case (2): cF (G) is odd. By (c), |P1| = |P2| = |Q1| = a − 1 and |Q2| = a. By (d) and

symmetry, we may assume that either P 2 and Q1, or P 1 and Q2 are in different components

of G − {u, v} from the components containing R1 and R2 respectively. We assume the

former is true, and note that the proof for the latter case is similar. As |R| = |R1|+ |R2| =

cF (G) = 2a − 1, and |R1| ≤ |R2|, we have that |R2| ≥ a. Indeed, |R2| = a, and thus

|R1| = a − 1, otherwise |R2| ≥ a + 1, then Q1 ∪ R2 is a cycle passing through F such that

|Q1 ∪R2| ≥ a− 1+ a+1 = 2a > cF (G), a contradiction. Now suppose R1 and R2 belong to

the same component of G− {u, v}. Then there exists an (R1, R2)-path S in G− {u, v}. By

our assumption, S is disjoint from P 2∪Q1. Note that the end vertices of S divide R1 into two

segments R′
1 and R′′

1, and R2 into two segments R′
2 and R′′

2, where R′
1 and R′

2 have u as an

end vertex. Let C1 = R′
1∪S∪R′′

2∪P2 and C2 = R′′
1∪S∪R′

2∪Q1 be cycles passing through F .

Then |C1|+|C2| = |R1|+|R2|+2|S|+|P2|+|Q1| ≥ 2a−1+2+2(a−1) = 4a−1 = 2cF (G)+1,

a contradiction. Thus (f) holds.

Part (g): As |C| = |D| = cF (G), by (b), cF (G) = 2a is even and C = P1∪P2, D = Q1∪Q2

such that |P1| = |P2| = |Q1| = |Q2| = a. As |R| ≥ cF (G) − 1, by (e), R must pass through

both u and v. Now, G−{u, v} has two segments R1 and R2, |R1| ≤ |R2|. By (d), two of P 1,

P 2, Q1, and Q2 are in different components of G − {u, v} from the components containing

R1 and R2 respectively, say P 2 and Q1. Thus, |R1| = a − 1 and |R2| = a. Additionally,

C1 = R1 ∪ P2 and D1 = R2 ∪ Q1 are cycles containing F of length cF (G) − 1 and cF (G),

respectively, and V (C1) ∩ V (D1) = {u, v}. By (d), R1 and R2 are in different components

of G− {u, v}. This completes the proof of Theorem 3.2.2.

Next we prove Theorem 3.2.3.

Proof. (Proof of Theorem 3.2.3) We may assume without loss of generality that |C| ≥ |D|

and W is not an articulation set.
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(a) k = 3: We show (i) and (ii) both hold in this case. Suppose that W = V (C)∩V (D) =

{v1, v2, v3}. In this case, F is a subgraph of a path of length two. The following in Figure

3.7 are just three examples of F .

(a)
(b) (c)

Figure 3.7: Examples of F when |V (F )| = 3

In (a), C and D have at least two trivial parallel paths. In (b), C and D have at least

one trivial parallel path. In the proof below, we will create new cycles, each containing all

three common vertices and all possible trivial parallel paths in F . Therefore, the new cycles

still contain F .

We can write C and D as concatenations of three paths such that C = P1 ∪ P2 ∪ P3 and

D = Q1 ∪ Q2 ∪ Q3, and Pi and Qi are parallel [vi, vi+1]-segments where i is read modulo

3 (see Figure 3.8). Note that in the rest of the proof when |Pi| = |Qi| = 1 for some

i ∈ {1, 2, 3}, it is possible that Pi = Qi, which is a single edge. As cF (G) ≥ k + 2 = 5 when

|C| + |D| = 2cF (G) − 1, and cF (G) ≥ k + 1 = 4 when |C| + |D| = 2cF (G), we deduce that

|Pi| ≥ 2 for some i ∈ {1, 2, 3}, and |Qj| ≥ 2 for some j ∈ {1, 2, 3}.

Case (a.1): There exists an i ∈ {1, 2, 3} such that |Pi| ≥ 2 and |Qi| ≥ 2, say i = 1.

By Lemma 3.3.2 (ii), |P1| − |Q1| ≤ 1. By Corollary 3.3.4, there does not exist a [P 1, Q1]-

path internally disjoint from C and D. Note now that each of the paths P2, P3, Q2, and

Q3 satisfy the assumptions of Corollary 3.3.6 with respect to the parallel paths P1 and Q1.

Thus, by Corollary 3.3.6, there does not exist a [P 1, P 2]-, [P 1, P 3]-, [P 1, Q2]-, or [P 1, Q3]-path

internally disjoint from C and D. Thus, the component of G −W containing P 1 does not

contain any of the (non-empty) paths P 2, P 3, Q1, Q2, or Q3. Thus, we have that P 1 and Q1

are in different components of G−W , and W is an articulation set of G, a contradiction.

Case (a.2): For all i ∈ {1, 2, 3}, min{|Pi|, |Qi|} = 1. By Lemma 3.3.2, we may assume

that |P2| = |P3| = |Q2| = |Q3| = 1 and |Q1| = |P1| − 1 = 1. In this case cF (G) = 4,
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v1

v2v3

P2

P1P3

Q2

Q1Q3

Figure 3.8: Two cycles with intersection size k = 3 and Pi parallel to Qi for i ∈ {1, 2, 3}

and |C| + |D| = 2cF (G) − 1 = 7, and we are in part (iv) of Theorem 3.2.3. Thus we

assume |V (F )| ≤ 1. Suppose F = {v} ⊆ W . Note that it is possible that P2 = Q2 and

P3 = Q3. Suppose that P 1 = {u}. If W is not an articulation set, then there exists a vertex

t /∈ {u} ∪W such that ut ∈ E(G). As G is 2-connected, there is a (t,W )-path in G− u (see

Figure 3.9). Regardless of what the end vertex of this path is in W , it is easy to see that G

has a new cycle C1 passing through F and the edge ut such that |C1| ≥ 5 = cF (G)+ 1. This

contradiction completes the case for k = 3.

(b) k = 4: Suppose W = {u1, u2, u3, u4}. Let D = Q1 ∪ Q2 ∪ Q3 ∪ Q4 where Qi is a

[ui, ui+1]-segment of D for i ∈ {1, 2, 3}, and Q4 is a [u4, u1]-segment. In this case F is a

subgraph of the path P3. The following graphs in Figure 3.10 list all possible cases of F

where W = V (F ) has four vertices, just note that |V (F )| could be less than four.

In our next proof, all of the new cycles will contain W , and each trivial parallel path of

C and D, thus containing F as well. As cF (G) ≥ k + 2 = 6 when |C| + |D| = 2cF (G) − 1

and cF (G) ≥ k + 1 = 5 when |C| + |D| = 2cF (G), we conclude that |C|, |D| ≥ 5, and thus

there are i, j ∈ {1, 2, 3, 4} such that |Pi| ≥ 2 and |Qj| ≥ 2.
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t

v1

v2v3

P2

uP3

Q2

Q1

Q3

Figure 3.9: The Graph in Case a.2

(a) (b) (c)

(d) (e)

Figure 3.10: Examples of F when |V (F )| = 4

Case (b.1): Each segment of D is parallel to a segment of C, say Pi is parallel to Qi for

all i ∈ {1, 2, 3, 4} (see Figure 3.11). Note that it is possible that Pi = Qi if |Pi| = |Qi| = 1.

First, assume that there is an i ∈ {1, 2, 3, 4} such that |Pi|, |Qi| ≥ 2, say i = 1.

By Lemma 3.3.2 (ii) and Corollaries 3.3.4 and 3.3.6, we have that there does not exist a

[P 1, Q1]-, [P 1, Q2]-, [P 1, Q4]-, [P 1, P 2]-, or [P 1, P 4]-path internally disjoint from C and D. If

P 3 and Q3 are empty, then Q1 and P 1 are in different components of G−W , a contradiction

as W is not an articulation set by assumption. If P 3 or Q3 is nonempty, then by Lemma

3.3.7, if there exists a [P 1, Q3]-path internally disjoint from C and D, there cannot exist a
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[Q1, Q3]-path internally disjoint from C and D. Moreover, there does not exist a [P 3, Q3]-

path internally disjoint from C and D. Thus P 1 and Q1 are in different components of

G−W , a contradiction.

u1 u2

u3u4

P1

P2

P3

P4

Q1

Q2

Q3

Q4

Figure 3.11: Two cycles with intersection size k = 4 and Pi parallel to Qi for i ∈ {1, 2, 3, 4}

Now we assume that for all i ∈ {1, 2, 3, 4}, either |Pi| = 1 or |Qi| = 1. By Lemma 3.3.2,

we may assume that |P1| = 2, |Q1| = 1, and |Pi| = |Qi| = 1 for all i ∈ {2, 3, 4}. Thus

cF (G) = 5 = k + 1, and |C|+ |D| = 2cF (G)− 1. Thus we are in part (iv) of Theorem 3.2.3,

and F ⊆ {v} ⊆ W . Now suppose P 1 = {u}. As W is not an articulation set, there exists a

vertex t /∈ {u} ∪W such that ut ∈ E(G). As G is 2-connected, G − u has a (t,W )-path S

internally disjoint from C∪D ending at some ui ∈ W . Since cF (G) = 5, i ̸= 1, 2 as we would

obtain a cycle containing v of length at least 6 by replacing either the edge u1u on C with

u1Stu, or the edge u2u on C with u2Stu. Now, by symmetry, we assume i = 3 (see Figure

3.12). Then, C1 = utSu3u4u1u2u is a cycle containing F such that |C1| ≥ 6, a contradiction.

Case (b.2): Two segments of C are parallel to segments of D respectively, say P1 is

parallel to Q1 and P3 is parallel to Q3 (see Figure 3.13). As cF (G) = |C| ≥ k + 1 = 5, for

some i ∈ {1, 2, 3, 4}, |Pi| ≥ 2.
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Figure 3.12: The Graph in Case b.1 where P 1 = {u}

Case (b.2.1): Assume that either |P2| or |P4| has length at least 2, say |P2| ≥ 2. By

Corollaries 3.3.4 and 3.3.6, there is no (P 2, Qi)-path internally disjoint from C ∪ D for

i ∈ {1, 2, 3, 4}, and no (P 2, P 1)-path or (P 2, P 3)-path internally disjoint from C ∪D. Next

we show that there is no (P 2, P 4)-path internally disjoint from C ∪D. Note that if P 4 = ∅,

then this is certainly true. So assume the contrary and that there is such a path R dividing P2

into two segments P ′
2 and P ′′

2 , and dividing P4 into two segments P ′
4 and P ′′

4 , such that P ′
2 is

adjacent to u2 and P ′
4 is adjacent to u4 (see Figure 3.13). ThenD1 = Q1∪P ′

2∪R∪P ′
4∪Q3∪Q4

and D2 = P1 ∪ Q2 ∪ P3 ∪ P ′′
2 ∪ R ∪ P ′′

4 are both cycles of G. As both D1 and D2 contain

all vertices of W , and the only possible edges of F are u1u2 (in this case P1 = Q1 = u1u2)

and u3u4 (in this case P3 = Q3 = u3u4). Thus both D1 and D2 pass through F . Moreover,

|D1|+|D2| = |C|+|D|+2|R| ≥ 2cF (G)+1, a contradiction. Thus, the components containing

P 2 in G−W contain none of the other nonempty truncated paths, a contradiction as W is

not an articulation set.

Now, consider (iv) and consider the case when all other truncated paths are empty. Thus,

|Pi| = 1 for i ∈ {1, 3, 4} and |Qi| = 1 for all i ∈ {1, 2, 3, 4}. Then F ⊆ {v} ⊆ W . Note

now that |D| = 4 and |C| = 5, and |P2| = 2. Assume that P 2 = {u}. As G −W is not an

articulation set, there exists a vertex t /∈ W ∪{u} such hat ut ∈ E(G). As G is 2-connected,
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Figure 3.13: The Graph in Case b.2.1

G− u has a (t,W )-path S1 ending at some ui internally disjoint from C ∪D. As cF (G) = 5,

i ̸= 2, 3, as we would obtain a cycle containing F of length at least six by replacing either

the edge u2u on C with u2S1tu, or the edge u3u on C with u3S1tu. By symmetry we may

assume that i = 1 (see Figure 3.14). Now, C1 = utS1u1u2u4u3u is a cycle of length at least

six passing through F , a contradiction.

Case (b.2.2): Suppose that neither |P2| nor |P4| has length at least 2, thus |P2| = |P4| = 1.

As cF (G) ≥ 5, we may assume then that |P1| ≥ 2. If |Q1| ≥ 2, or both |P3| ≥ 2 and |P4| ≥ 2,

then using the same proof as in case (b.1), we deduce that P 1 and Q1 (or P 3 and Q3) are in

different components of G−W , a contradiction as W is not an articulation set.

Thus, we may assume |P1| = 2 and |Q1| = 1. By Lemma 3.3.2, |P3| = |Q3|. Now,

cF (G) = 5 and |D| = 4. Thus we are in part (iv) again, and F ⊆ {v} ⊆ W . If G −W

is connected with more than one vertex, then there exists a vertex t /∈ W ∪ {u} such that

ut ∈ E(G). As G is 2-connected, there exists a (t,W )-path S2 in G − u which is internally

disjoint from C ∪D. As cF (G) = 5, i ̸= {1, 2}, otherwise we would obtain a cycle containing

F of length at least six by replacing either the edge u1u on C with u1S2tu, or the edge u2u

on C with u2S2tu. By symmetry, assume i = 3 (see Figure 3.15). Then there exists a cycle
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Figure 3.14: The Graph in Case b.2.1 where |D| = 4 and |C| = 5

C2 = uu2u1u4u3S2tu passing through F with length at least 6 = cF (G) + 1, a contradiction.

Thus the proof for k = 4 part (i) is complete.

(c) k = 5. Again here we assume |C| ≥ |D|. Now, note that we assume that cF (G) ≥ 7.

Let W = {u1, u2, u3, u4, u5} be the intersection of two cycles C and D containing the linear

forest subgraph F with at most five vertices such that |C| + |D| ≥ 2cF (G) − 1. Then,

without loss of generality, C and D can be written as concatenations of five paths, C =

P1∪P2∪P3∪P4∪P5 and D = Q1∪Q2∪Q3∪Q4∪Q5 respectively. Relabeling as necessary,

Pi is the [ui, ui+1]-segment of C for 1 ≤ i ≤ 4, and P5 is the [u5, u1]-segment. In this case,

the linear forest F is a subgraph of P5. When |V (F )| = 5, F is one of the graphs in Figure

3.16.

In the following proof, all new cycles we create will contain all vertices of W , therefore

containing all vertices of F . Moreover, these cycles will also contain each trivial parallel path

of C and D, thus contain F as well.

Then, there are four cases of how C and D can intersect: (c.1) each segment Pi is parallel

to Qi for 1 ≤ i ≤ 5, (c.2) three pairs of Pi and Qi segments are parallel, (c.3) two pairs of

Pi and Qi segments are parallel, and (c.4) no pairs of Pi and Qi segments are parallel. Note
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Figure 3.15: The Graph in Case b.2.2

(a) (b)

(c)
(d) (e)

(f) (g)

Figure 3.16: Examples of F when |V (F )| = 5

that four parallel segments would force all five to be parallel, and one parallel segment would

force at least a second pair of segments to be parallel, so these are not cases to be considered.

Again, we proceed by supposing W is not an articulation set, and prove the subcases here

by contradiction. Note here again if |Pi| = |Qi| = 1, it is possible that Pi = Qi is a single

edge when (Pi, Qi) is a trivial parallel pair.

As cF (G) ≥ 7 and |C| ≥ |D| with |C|+ |D| ≥ 2cF (G)− 1, we have that |C| = cF (G) ≥ 7

and |D| ≥ cF (G)−1 ≥ 6. Thus there are Pi and Qj for i, j ∈ {1, 2, 3, 4, 5} such that |Pi| ≥ 2

and |Qj| ≥ 2.
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Figure 3.17: The Graph in Case c.1.1

Case (c.1): Suppose that (Pi, Qi) are parallel for all i = 1, 2, 3, 4, 5.

Case (c.1.1): Assume there is an i such that |Pi| ≥ 2 and |Qi| ≥ 2, say i = 1. By

Corollaries 3.3.4 and 3.3.6, there does not exist a [P 1, Q1]-, [P 1, Q2]-, [P 1, Q5]-, [P 1, P 2]-,

or [P 1, P 5]-path internally disjoint from C and D. By symmetry, suppose there exists a

[P 1, Q3]-path, R, internally disjoint from C and D (see Figure 3.17). First assume that

(P2, Q2) is not a trivial parallel segment in F (recall that the trivial segment in F means

P2 = Q2 = u2u3 ∈ E(F )). Then

C1 = R ∪Q′
3 ∪ P3 ∪ P4 ∪ P5 ∪Q1 ∪ P ′′

1

is a cycle in G containing F . Now, |C1| ≤ |C| and |Q1| ≥ |P1|−1 imply that |R∪Q′
3∪P ′′

1 | ≤

|P2| + 1. Thus |P2| ≥ 2. As G −W is connected, there exists a path from P 2 to another

segment. However, we have that P 2 may only possibly be connected to P 4, P 5, Q4, or Q5.

By symmetry, suppose there exists a [P 2, Q5]-path, R
′, internally disjoint from C and D (see
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Figure 3.17). Then, we get two cycles, both containing F such that

C ′ = P ′
1 ∪R ∪Q′

3 ∪ P3 ∪ P4 ∪Q′
5 ∪R′ ∪ P ′

2 ∪Q1

D′ = Q′′
5 ∪R′ ∪ P ′′

2 ∪Q2 ∪ P ′′
1 ∪R ∪Q′′

3 ∪Q4 ∪ P5.

Note though that both cycles contain all vertices of F and contain every possible trivial

(Pi, Qi)-path, thus contain F . Moreover,

|C ′|+ |D′| = |C|+ |D|+ 2|R|+ 2|R′| ≥ 2cF (G)− 1 + 4 = 2cF (G) + 3 > 2cF (G),

a contradiction.

u1

u2

u3u4

u5

P ′
1

P ′′
1

P2 = Q2

P ′
3P ′′

3

P4

P5 = Q5

Q′
1

Q′′
1

Q3

Q4 R

Figure 3.18: The Graph in Case c.1.1 where P2 = Q2 is an edge of F

Now assume that P2 = Q2 = u2u3 is an edge of F . By symmetry, we can assume

that P5 = Q5 = u5u1 is also an edge of F . As P1 ̸= ∅ and Q1 ̸= ∅, there is a (P1, P3),

(P1, P4), (P1, Q3), or (P1, Q4)-path, say, (P1, P3)-path R, internally disjoint from C ∪D (see

Figure 3.18). By Corollaries 3.3.4 and 3.3.6, and Lemma 3.3.7, there is no (P3, P4), (P3, Q4),

(P3, Q3), or (P3, Q1)-path internally disjoint from C ∪ D. Thus P 1 and Q1 are in different

components of G−W , a contradiction. This completes the proof of case (c.1.1).
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Case (c.1.2): For all i ∈ {1, 2, 3, 4, 5}, either |Pi| = 1 or |Qi| = 1. As cF (G) ≥ 7, there

is a Pi, say P1, such that |P1| ≥ 2. By Lemma 3.3.2, |Pi| = |Qi| = 1 for i = 2, 3, 4, 5 and

|Q1| = |P1| − 1 = 2. Thus, cF (G) = 6, contradicting the assumption that cF (G) ≥ 7.

Case (c.2): Suppose without loss of generality that (P1, Q1), (P3, Q3), and (P4, Q4) are

parallel. As noted earlier, |Pi| ≥ 2 for some i ∈ {1, 2, 3, 4, 5}. Thus we have that one of the

following cases is true: case (c.2.1): |P1| ≥ 2, case (c.2.2): |P2| ≥ 2 or |P5| ≥ 2, say |P2| ≥ 2,

or case (c.2.3): |P3| ≥ 2 or |P4| ≥ 2, say |P3| ≥ 2.

u1

u2

u3u4

u5

P ′
1

P ′′
1

P2

P3

P4

P5

Q1

Q2

Q′
3Q′′

3

Q4

Q5

R

Figure 3.19: The Graph in Case c.2.1

Case (c.2.1): Suppose |P1| ≥ 2. As P 1 ̸= ∅ and Qj ̸= ∅ for some j, there is a (P 1, X)-

path in G − W internally disjoint from C ∪ D, where X is some truncated path other

than P 1. Corollaries 3.3.4 and 3.3.6 show that G contains no [P 1, Q1], [P 1, Q2], [P 1, Q5],

[P 1, P 2], [P 1, P 5]-paths internally disjoint from C and D. Now, we show that P 1 is in its

own component of G−W by showing there are no [P 1, P 3], [P 1, P 4], [P 1, Q3], [P 1, Q4]-paths

as well. By symmetry and for contradiction, suppose there is a [P 1, Q3]-path, R, internally

disjoint from C and D such that R splits P1 into P ′
1 ∪ P ′′

1 and Q3 into Q′
3 ∪Q′′

3 (see Figure

3.19). Then we obtain two cycles, C ′ and D′, both containing F , as they contain all vertices

of W and contain the only possible common edge in F (when u4u5 = P4 = Q4 is an edge of
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F ) such that

C ′ = P ′
1 ∪R ∪Q′

3 ∪ P3 ∪ P4 ∪Q5 ∪Q1

D′ = P5 ∪Q4 ∪Q′′
3 ∪R ∪ P ′′

1 ∪ P2 ∪Q2.

Note now that

|C ′|+ |D′| = |C|+ |D|+ 2|R| ≥ 2cF (G)− 1 + 2|R| = 2cF (G) + 1 > 2cF (G)

which is a contradiction.

Case (c.2.2): Suppose |P2| ≥ 2. By case (c.2.1) we may assume |P1| = |Q1| = 1.

By Corollaries 3.3.4 and 3.3.6, there is no [P 2, P 1], [P 2, P 3], [P 2, Q1], [P 2, Q2], [P 2, Q3],

or [P 2, Q5]-path internally disjoint from C and D. Note that there may exist a [P 2, Q4],

[P 2, P 4], or [P 2, P 5]-path internally disjoint from C and D. We show in each case however

that we reach a contradiction.

u1
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u3u4

u5

P1

P ′
2

P ′′
2

P3

P4

P ′
5

P ′′
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Q3

Q4

Q5

R

Figure 3.20: The Graph in Case c.2.2 (i)
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(i) Suppose there exists a [P 2, P 5]-path, R, internally disjoint from C and D such that

R splits P2 into P ′
2 ∪ P ′′

2 and P5 into P ′
5 ∪ P ′′

5 (see Figure 3.20). Then we obtain two cycles

C ′ = P1 ∪ P ′
2 ∪R ∪ P ′′

5 ∪ P4 ∪ P3 ∪Q2

D′ = Q1 ∪Q5 ∪Q4 ∪Q3 ∪ P ′′
2 ∪R ∪ P ′

5,

such that both C ′ and D′ contain F as both contain all vertices of W . Moreover, if e is an

edge of F , then e = u1u2 (in this case P1 = Q1 = e), e = u3u4 (in this case P3 = Q3 = e),

or e = u4u5 (in this case e = P4 = Q4). Clearly C ′ and D′ contain all possible edges of F .

Moreover,

|C ′|+ |D′| = |C|+ |D|+ 2|R| ≥ 2cF (G)− 1 + 2|R| ≥ 2cF (G) + 1 > 2cF (G)

which is a contradiction.

Note that |Pi| ≥ |Qi| for i = 1, 3, 4 and at most one of the inequalities could occur.

If |P3| ≥ 2 or |Q3| ≥ 2, say |P3| ≥ 2, then by the above argument, P 2 and P 3 must be

in different components of G −W . To see this, any [P 2, P 3]-path S in G −W must meet

P 4 or Q4, say P 4. However, there is no [P 3, P 4]-path or [P 3, Q4]-path internally disjoint

from C ∪D, and no [P 3, Q3]-path, and no [P 4, Q4], [P 4, Q5], [P 4, P 5], [P 4, P 1], [P 4, Q1]-path

internally disjoint from C ∪ D. Therefore, once reaching P 4, S can only reach Q2, then

possibly Q4, but will never reach P 3 in G−W . This is a contradiction. Thus we may now

assume |P1| = |Q1| = |P3| = |Q3| = 1.

(ii) Now suppose there exists a [P 2, Q4]-path or a [P 2, P 4]-path R, say the former, inter-

nally disjoint from C and D such that R splits P2 into P ′
2 ∪ P ′′

2 and Q4 into Q′
4 ∪ Q′′

4 (see

Figure 3.21). The latter case is similar unless Q4 = ∅. Note that |P4| ≥ |Q4| ≥ 2, and as

G −W is connected, there must exist a path from P 4 to another segment. By Corollaries

3.3.4 and 3.3.6, there is no [P 4, P 3], [P 4, P 5], [P 4, Q3], [P 4, Q4], or [P 4, Q5]-path, and by

Lemma 3.3.7, there is no [P 4, P 2]-path. Additionally, by the fact that |P1| = |Q1| = 1, there
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Figure 3.21: The Graph in Case c.2.2 (ii)

is no [P 1, Q1]-path. Thus there may only be a [P 4, Q2]-path, R
′, internally disjoint from C

and D splitting P4 into P ′
4 ∪P ′′

4 , and Q2 into Q′
2 ∪Q′′

2 (see Figure 3.21). Then we obtain two

cycles C ′ and D′ such that

C ′ = P1 ∪ P ′
2 ∪R ∪Q′

4 ∪ P3 ∪Q′
2 ∪R′ ∪ P ′′

4 ∪ P5

D′ = Q1 ∪Q5 ∪Q′′
4 ∪R ∪ P ′′

2 ∪Q3 ∪ P ′
4 ∪R′ ∪Q′′

2.

Now, both C ′ and D′ contain all vertices of W , and contain all possible edges of F (the only

possibilities occur when u1u2 = P1 = Q1, and/or u3u4 = P3 = Q3). Moreover,

|C ′|+ |D′| = |C|+ |D|+ 2|R|+ 2|R′| ≥ 2cF (G)− 1 + 4 = 2cF (G) + 3 > 2cF (G),

which is a contradiction.

In the case that there is a [P 2, P 4]-path but Q4 = ∅, by Lemma 3.3.2, it must be true

that |P4| = 2 and |Q4| = 1 as |P4| ≤ |Q4| + 1. Now |C| ≥ 7, thus |Q2| ≥ 2 or |Q5| ≥ 2. If

Q5 = ∅, we show P 2 ∪ P 4 and Q5 must be in different components of G −W . By Lemma
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3.3.5, noting that |P1| = |Q1| = |P3| = |Q3| = |Q4| = 1, any [P 2 ∪ P 4, Q5]-path must meet

P 5, which contradicts (c.2.1).

If Q5 = ∅ but Q2 ̸= ∅, there is no [P 2, P 5]-path by (c.2.1), any [P 2, Q2]-path must meet

P 4. So there is a [P 2, P 4]-path R which divides P2 into P ′
2 ∪ P ′′

2 , a [Q2, P 4]-path R′ which

divides Q2 into Q′
2 ∪Q′′

2, and P4 is divided into P ′
4 ∪ P ′′

4 (as |P4| = 2, |P ′
4| = |P ′′

4 | = 1). Note

R and R′ only meet at a vertex in P 4 as there is no [P 2, Q2]-path internally disjoint from

C ∪D (see Figure 3.22).
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Figure 3.22: The Graph in Case c.2.2 where R and R′ meet at a vertex in P 4

Now, let C2 and D2 be two cycles such that

C2 = P1 ∪ P ′
2 ∪R ∪R′ ∪Q′

2 ∪ P3 ∪Q4 ∪ P5

D2 = Q1 ∪Q5 ∪Q4 ∪Q3 ∪ P ′′
2 ∪R ∪R′ ∪Q′′

2.

Then, V (W ) ⊆ V (C2) ∩ V (D2) and C2 and D2 contain all possible edges of F (the only

possibilities occur when u1u2 = P1 = Q1, and/or u3u4 = P3 = Q3 are edges of F ). Moreover,

|C2| + |D2| ≥ |C| + |D| − 1 + 2|R| + 2|R′| ≥ 2cF (G)− 1− 1 + 4 = 2cF (G) + 2 > 2cF (G), a

contradiction.
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This concludes the case (c.2.2).

Case (c.2.3): Suppose |P3| ≥ 2. By the above argument, we may assume that |P1| =

|Q1| = |P2| = 1. By symmetry, we may also assume |P5| = 1. By Corollaries 3.3.4 and

3.3.6, there is no [P 3, Q2], [P 3, Q3], [P 3, Q4], [P 3, P 2], or [P 3, P 4]-path internally disjoint

from C and D. Additionally, as |P1| = |Q1| = 1, there can be no [P 3, Q1] or [P 3, P 1]-path

internally disjoint from C and D. The remaining possibilities for a path are a [P 3, P 5]-path

or a [P 3, Q5]-path internally disjoint from C∪D. As |P5| = 1, there is no such [P 3, P 5]-path.

Thus we need only consider the case where there exists a [P 3, Q5]-path internally disjoint

from C ∪D (see Figure 3.23). However, note that this case is equivalent to case (c.2.2) (ii)

when |P2| ≥ 2. This completes the case for |P2| ≥ 2.
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Figure 3.23: The Graph in Case c.2.3

Case (c.3): Suppose there are two parallel segments, say (P2, Q2) and (P5, Q5). We have

three subcases: (c.3.1) |P1| ≥ 2, (c.3.2) |P2| ≥ 2 or |P5| ≥ 2, say |P2| ≥ 2, and (c.3.3) |P3| ≥ 2

or |P4| ≥ 2, say |P3| ≥ 2.

Case (c.3.1): Suppose |P1| ≥ 2. As cF (G) ≥ 7, at least one of Qi ̸= ∅ for some i ∈

{1, 2, 3, 4, 5}. As G−W is connected, there is a path from P 1 to some other truncated path

internally disjoint from C ∪D. By Corollaries 3.3.4 and 3.3.6, there is no [P 1, P 2], [P 1, P 5],
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Figure 3.24: The Graph in Case c.3.1 where R is a [P 1, Q1]-path

[P 1, Q2], [P 1, Q3], [P 1, Q4], or [P 1, Q5]-path internally disjoint from C ∪D. Thus, there may

only exist a [P 1, Q1], [P 1, P 3], or [P 1, P 4]-path. By symmetry, assume that there is a [P 1, Q1]

or [P 1, P 3]-path internally disjoint from C ∪D.

If R is a [P 1, Q1]-path dividing P1 into P ′
1 ∪ P ′′

1 and Q1 into Q′
1 ∪ Q′′

1 (see Figure 3.24),

then we obtain two new cycles C1 and D1 such that

C1 = R ∪ P ′
1 ∪ P5 ∪ P4 ∪Q3 ∪Q2 ∪Q′

1

D1 = R ∪ P ′′
1 ∪ P2 ∪ P3 ∪Q4 ∪Q5 ∪Q′′

1.

Thus, W ⊆ V (C1) ∩ V (D1), and both contain all possible edges of F (the only possibilities

occur when u2u3 = P2 = Q2, and/or u5u1 = P5 = Q5 are edges of F ). Moreover, |C1|+|D1| =

|C|+ |D|+ 2|R| ≥ 2cF (G)− 1 + 2 = 2cF (G) + 1 > 2cF (G), a contradiction.
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Figure 3.25: The Graph in Case c.3.1 where R is a [P 1, P 3]-path

If R is a [P 1, P 3]-path dividing P1 into P ′
1 ∪ P ′′

1 and P3 into P ′
3 ∪ P ′′

3 (see Figure 3.25),

then we obtain two new cycles C2 and D2 such that

C2 = R ∪ P ′
1 ∪ P5 ∪ P4 ∪Q3 ∪ P2 ∪ P ′

3

D2 = R ∪ P ′′
1 ∪Q2 ∪Q1 ∪Q5 ∪Q4 ∪ P ′′

3 .

Thus, again, W ⊆ V (C2) ∩ V (D2) and both contain all possible edges of F (the only pos-

sibilities occur when u2u3 = P2 = Q2, and/or u5u1 = P5 = Q5 are edges of F ). Moreover,

|C2| + |D2| = |C| + |D| + 2|R| ≥ 2cF (G) − 1 + 2 = 2cF (G) + 1 > 2cF (G), a contradiction.

This completes case (c.3.1), and we may assume that |P1| = 1 from now on.

Case (c.3.2): Suppose |P2| ≥ 2. By Corollaries 3.3.4 and 3.3.6, there is no [P 2, P 1],

[P 2, P 3], [P 2, Q1], [P 2, Q2], or [P 2, Q3]-path internally disjoint from C ∪ D. As G −W is

connected, there exists a path in G −W connecting P 2 and some other truncated segment

which is internally disjoint from C ∪ D. Note that Qi ̸= ∅ for some i ∈ {1, 2, 3, 4, 5} as

|D| ≥ cF (G)− 1 ≥ 6.
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Figure 3.26: The Graph in Case c.3.2 (i)

(i) Assume there is a [P 2, P 4]-path R dividing P2 into P ′
2 ∪ P ′′

2 and P4 into P ′
4 ∪ P ′′

4 (see

Figure 3.26). Then we obtain two new cycles C1 and D1 such that

C1 = R ∪ P ′
4 ∪ P3 ∪Q1 ∪ P5 ∪ P1 ∪ P ′

2

D1 = R ∪ P ′′
4 ∪Q5 ∪Q4 ∪Q3 ∪Q2 ∪ P ′′

2 .

Thus, W ⊆ V (C1) ∩ V (D1). Additionally, C1 and D1 contain P5 and Q5 respectively, and

thus C1 and D1 contain the only possible edge of F (when u5u1 = P5 = Q5 is an edge of

F ). Moreover, |C1| + |D1| = |C| + |D| + 2|R| ≥ 2cF (G) − 1 + 2 = 2cF (G) + 1 > 2cF (G), a

contradiction. By symmetry, there is no [Q2, P 4]-path internally disjoint from C ∪D.

(ii) Assume there is a [P 2, Q4]-path R in G−W internally disjoint from C ∪D dividing

P2 into P ′
2 ∪ P ′′

2 and Q4 into Q′
4 ∪Q′′

4 (see Figure 3.27). Then we obtain two new cycles C2

and D2 such that

C2 = R ∪ P ′
2 ∪Q2 ∪ P3 ∪ P4 ∪ P5 ∪Q′′

4

D2 = R ∪ P ′′
2 ∪Q1 ∪Q5 ∪ P1 ∪Q3 ∪Q′

4.
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Figure 3.27: The Graph in Case c.3.2 (ii)

Thus, W ⊆ V (C2) ∩ V (D2), C2 and D2 contain P5 and Q5 respectively, and thus C2 and

D2 contain the only possible edge of F (when u5u1 = P5 = Q5 is an edge of F ). Moreover,

|C2| + |D2| = |C| + |D| + 2|R| ≥ 2cF (G) − 1 + 2 = 2cF (G) + 1 > 2cF (G), a contradiction.

Additionally by symmetry, there is no [Q2, Q4]-path internally disjoint from C∪D in G−W .

(iii) Assume there is a [P 2, P 5] or [P 2, Q5]-path R in G − W internally disjoint from

C ∪D, say the former by symmetry. Suppose then that R divides P2 into P ′
2 ∪ P ′′

2 and P5

into P ′
5 ∪ P ′′

5 (see Figure 3.28). Then we obtain two new cycles C3 and D3 such that

C3 = R ∪ P ′′
2 ∪Q2 ∪Q3 ∪ P4 ∪Q5 ∪ P ′′

5

D3 = R ∪ P ′
2 ∪ P1 ∪Q4 ∪ P3 ∪Q1 ∪ P ′

5.

Note that in this case, F has no edges, and V (F ) ⊆ W . Moreover, W ⊆ V (C3) ∩ V (D3),

and |C3|+ |D3| = |C|+ |D|+2|R| ≥ 2cF (G)−1+2 = 2cF (G)+1 > 2cF (G), a contradiction.

This completes case (c.3.2).

Case (c.3.3): Suppose |P3| ≥ 2. By (c.3.1) and (c.3.2) we may assume that |P1| = |P2| =

|Q2| = |P5| = |Q5| = 1. As Qj ̸= ∅ for some j ∈ {1, 2, 3, 4, 5}, and G−W is connected, there
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Figure 3.28: The Graph in Case c.3.2 (iii)

exists a path in G−W from P 3 to some other truncated segment which is internally disjoint

from C ∪ D. By Corollaries 3.3.4 and 3.3.6, the only possible paths are [P 3, P 1], [P 3, P 5],

and [P 3, Q5]. However, this is not possible as |P1| = |P5| = |Q5| = 1. This completes the

proof for the case (c.3).

Case (c.4): No parallel segments exist. Then, F has no edges and V (F ) ⊆ W . As

cF (G) ≥ 7, |Pi| ≥ 2 for some i ∈ {1, 2, 3, 4, 5}. As Qj ̸= ∅ for some j ∈ {1, 2, 3, 4, 5} and

G −W is connected, there exists a [P i, Qj]-path R for some truncated path Qj ̸= ∅, which

is internally disjoint from C ∪D in G−W . We may assume that i = 1. By Corollary 3.3.4,

there is no [P 1, Qj]-path (i = 1, 3, 4, 5) internally disjoint from C ∪D. Thus j = 2. Suppose

then that R divides P1 into P ′
1 ∪ P ′′

1 and Q2 into Q′
2 ∪Q′′

2 (see Figure 3.29).

Then we obtain two new cycles C1 and D1 such that

C1 = R ∪Q′
2 ∪ P3 ∪Q4 ∪Q3 ∪ P5 ∪ P ′

1

D1 = R ∪ P ′′
1 ∪ P2 ∪Q1 ∪Q5 ∪ P4 ∪Q′′

2.
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Figure 3.29: The Graph in Case c.4

Thus, W ⊆ V (C3) ∩ V (D3), and therefore both C3 and D3 contain F , and |C3| + |D3| =

|C|+ |D|+ 2|R| ≥ 2cF (G)− 1 + 2 = 2cF (G) + 1 > 2cF (G), a contradiction. This completes

case (c.4), and thus the proof of (iii).

Part (iv): In this case, F ⊆ {v}. For k = 3, the case for cF (G) ≥ k + 2 = 5 has been

covered in (i) and (ii). If cF (G) = 3, then by Proposition 3.3.1, si(G) ∼= K3, and the theorem

is true. If cF (G) = 4, then by Proposition 3.3.1 again, si(G) ∼= K2,m, K
+
2,m(n ≥ 2), or K4.

It is easily verified that the theorem is true. For k = 4, as |V (G)| ≥ k + 1 = 5, we deduce

from Proposition 3.3.1 that if cF (G) ≤ 4, then si(G) ∼= K2,m or K+
2,m for some m ≥ 3. But

then C and D would meet in at most three common vertices. Then cF (G) ≥ 5, which has

been covered in (i) and (ii). This completes the proof of (iv) and thus the proof of Theorem

3.2.3.

Proof. (Proof of Theorem 3.2.4) Suppose that G is a k-connected graph for 2 ≤ k ≤ 6, and

C and D are two cycles containing a linear forest subgraph F with at most k − 1 vertices.

Thus |E(F )| ≤ k− 2. By Corollary 1.2.8 and Theorem 1.2.9, cF (G) ≥ min{|V (G)|, 2δ(G)−

|E(F )|}. Hence, cF (G) ≥ min{|V (G)|, k + 2}.
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Therefore, if |V (G)| < k + 2, then G has a Hamiltonian cycle containing F , and the

theorem is clearly true. So we assume cF (G) ≥ k + 2.

(i) k = 2, |V (F )| ≤ k − 1 = 1. So we may assume |V (C)| ∩ V (D)| ≤ 1. As |C| + |D| ≥

2cF (G)− 1, by Theorem 3.2.1, |V (C) ∩ V (D)| ≥ 2.

(ii) k = 3. Then |V (F )| ≤ 2, and |E(F )| ≤ 1. Thus either F is a single edge e = uv,

or |E(F )| = 0, and |V (F )| ≤ 2. If |V (F )| = 2, then |V (C) ∩ V (D)| ≥ 2. If |V (F )| ≤ 1, by

Theorem 3.2.1, we also have |V (C) ∩ V (D)| ≥ 2. Thus either F ⊆ {u, v} or F ∼= K2 with

V (F ) = {u, v}. If G ∼= K4, it is easily checked that the theorem holds. Thus we assume

|V (G)| ≥ 5, thus cF (G) ≥ k + 2 = 5. Assume V (C) ∩ V (D) = {u, v}.

If E(F ) = ∅, we deduce that {u, v} is an articulation set by Theorem 3.2.2, a contradiction

as G is 3-connected. If F is an edge e = uv, then as G is 3-connected, G−{u, v} is connected,

thus there is a (V (C)−{u, v}, V (D)−{u, v}-path R internally disjoint from C∪D. R divides

the [u, v]-segment of P = C − e into P = P ′ ∪ P ′′, and the [u, v]-segment of Q = D − e into

Q = Q′ ∪Q′′, as shown in Figure 3.30.

e

v

u

R

Q′′P ′′

Q′P ′

Figure 3.30: Cycles C and D Containing F as a single edge, e

Then, both C1 = P ′ ∪R ∪Q′′ ∪ uv and D1 = Q′ ∪R ∪ P ′′ ∪ uv pass through e = uv and

|C1|+ |D1| = |C|+ |D|+ 2|R| ≥ 2cF (G) + 1, a contradiction. Thus |V (C) ∩ V (D)| ≥ 3.

(iii) Now assume 4 ≤ k ≤ 6. Suppose that t = |V (C) ∩ V (D)| ≤ k − 1. By (ii), t ≥ 3.

Thus 3 ≤ t ≤ k − 1 = 5. Moreover, cF (G) ≥ k + 2 ≥ t + 3. Therefore, by Theorem 3.2.3,
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W = V (C) ∩ V (D) is an articulation set with exactly t vertices (t ≤ k − 1). This is a

contradiction as G is k-connected. This completes the proof of Theorem 3.2.4
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4 INTERSECTION OF LONG CYCLES IN k-CONNECTED GRAPHS

4.1 Introduction

Recall that Theorem 2.1.3 states that if G is a k-connected graph, then any two different

longest cycles meet in at least c0k
3/5 vertices, where c0 = 1/( 3

√
256 + 3)3/5 ≈ 0.2615. In

this chapter, we improve the result of Theorem 2.1.3 in two ways. The first is that we do

not require the cycles to be longest, and the second is that we improve the constant in the

bound.

Also recall that c(G) is the length of a longest cycle in G. Our main results are listed

below. In the first, we only require that the sum of the length of our two cycles must have

at least 2c(G)− 7 edges. In the second, we have a stronger restriction in that the sum of the

length of our two cycles must be at least 2c(G) − 3, in exchange for a tighter bound than

the first.

Theorem 4.1.1. Let C and D be cycles of a k-connected graph G where k ≥ 11, such that

|C| + |D| ≥ 2c(G) − 7. Then |V (C) ∩ V (D)| ≥ ck3/5 where c = 1/( 3
√
256 + 1.22271)3/5 ≈

0.2968.

Theorem 4.1.2. Let C and D be cycles of a k-connected graph (k ≥ 2) G such that |C| +

|D| ≥ 2c(G)−3. Then, |V (C)∩V (D)| ≥ c1k
3/5 where c1 = 1/( 3

√
256+0.02481)3/5 ≈ 0.3291.

In Section 2, we will prove some lemmas and in Section 3, we prove the main results of

this chapter.
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4.2 Preliminary Results

Here, we present some lemmas that help prove our main results. We obtain two different

lower bounds for the intersection of two long cycles, each corresponding to the minimum

length of the sum of our two cycles.

Our first bound is dependent on showing that k − 9m ≥ 3
√
256(m− 2)m2/3 + 2m.

Lemma 4.2.1. If m < ck3/5 where c = 1/( 3
√
256 + 1.22271)3/5 ≈ 0.2968, then

k − 9m ≥ 3
√
256(m− 2)m2/3 + 2m.

Proof. Letm < ck3/5 and let c = 1/( 3
√
256+t)3/5, where t > 0 is a to be determined constant.

Note that

m < ck3/5 =⇒ k > (1/c)5/3m5/3

c = 1/(
3
√
256 + t)3/5 =⇒ (1/c)5/3 =

3
√
256 + t.

Combining the above, we obtain

k > (
3
√
256 + t)m5/3 =

3
√
256m5/3 + tm5/3.

Now, we need to show that k − 9m ≥ 3
√
256(m− 2)m2/3 + 2m, which is equivalent to

k ≥ 3
√
256(m− 2)m2/3 + 11m.
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Thus, it suffices to show that 3
√
256m5/3+tm5/3 ≥ 3

√
256(m−2)m2/3+11m. This is equivalent

to

tm5/3 ≥ 3
√
256(m5/3 − 2m2/3) + 11m− 3

√
256m5/3

tm5/3 ≥ 3
√
256m5/3 − 2

3
√
256m2/3 + 11m− 3

√
256m5/3

tm5/3 ≥ −2 3
√
256m2/3 + 11m

tm ≥ −2 3
√
256 + 11m1/3

tm− 11m1/3 + 2
3
√
256 ≥ 0.

For x = m1/3, it then suffices to show that f(x) = tx3 − 11x+ 2 3
√
256 ≥ 0.

Note that f(x) = tx3 − 11x+ 2 3
√
256 (x ≥ 0) obtains its absolute minimum at x =

√
11
3t
,

and f(
√

11
3t
) = t(11

3t
)3/2 − 11(

√
11
3t
) + 2 3

√
256 =

√
113/(3

√
3
√
t)− (11

√
11)/(

√
3
√
t) + 2 3

√
256.

We need t > 0 such that f(
√

11
3t
) > 0, which gives us

√
113/(3

√
3
√
t)−3(11

√
11)/(3

√
3
√
t)+

2 3
√
256 > 0. Thus

√
t > (11

√
11)/(3

√
3 3
√
256) which gives us that t > (11

√
11/(3

√
3 3
√
256))2,

thus t > 1.222703009. Choosing t = 1.22271 > ((11
√
11)/(3

√
3 3
√
256))2 gives us c =

1/( 3
√
256 + 1.22271)3/5 as a constant such that f(x) > 0 for all x ≥ 0. Thus f(m

1
3 ) > 0,

which implies k − 9m ≥ 3
√
256(m− 2)m2/3 + 2m.

We now give a similar lemma for our second bound, which is dependent here on showing

that k −m ≥ 3
√
256(m− 2)m2/3 + 2m.

Lemma 4.2.2. If m < c1k
3/5 where c1 = 1/( 3

√
256 + 0.02481)3/5 ≈ 0.3291, then

k −m ≥ 3
√
256(m− 2)m2/3 + 2m.
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Proof. Let m < c1k
3/5 and let c1 = 1/( 3

√
256 + t)3/5, where t > 0 is a to be determined

constant. Note that

m < c1k
3/5 =⇒ k > (1/c1)

5/3m5/3

c1 = 1/(
3
√
256 + t)3/5 =⇒ (1/c1)

5/3 =
3
√
256 + t.

Combining the above, we obtain

k > (
3
√
256 + t)m5/3 =

3
√
256m5/3 + tm5/3.

Now, we need to show that k −m ≥ 3
√
256(m− 2)m2/3 + 2m, which is equivalent to

k ≥ 3
√
256(m− 2)m2/3 + 3m.

Thus, it suffices to show that 3
√
256m5/3+tm5/3 ≥ 3

√
256(m−2)m2/3+3m. This is equivalent

to

tm5/3 ≥ 3
√
256(m5/3 − 2m2/3) + 3m− 3

√
256m5/3

tm5/3 ≥ 3
√
256m5/3 − 2

3
√
256m2/3 + 3m− 3

√
256m5/3

tm5/3 ≥ −2 3
√
256m2/3 + 3m

tm ≥ −2 3
√
256 + 3m1/3

tm− 3m1/3 + 2
3
√
256 ≥ 0.

For x = m1/3, it then suffices to show that f(x) = tx3 − 3x+ 2 3
√
256 ≥ 0.

Note that f(x) = tx3 − 3x+ 2 3
√
256 (x ≥ 0) obtains its absolute minimum at x =

√
1/t,

and f(
√
1/t) = t(1/t)3/2−3(1/

√
t)+2 3

√
256 = 1/

√
t−3/

√
t+2 3
√
256 = −2/

√
t+2 3
√
256. We

need t > 0 such that f(
√

1/t) > 0, which gives us −2/
√
t+2 3
√
256 > 0. Thus 2 3

√
256 > 2/

√
t.

Thus
√
t > 1/ 3

√
256. Thus t > (1/ 3

√
256)2, and thus t > 0.024803141. Choosing t then to be
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t = 0.02481 > 1/ 3
√
256 gives us c1 = 1/( 3

√
256+0.02481)3/5 as a constant such that f(x) > 0

for all x ≥ 0. Thus f(m
1
3 ) > 0, which implies k −m ≥ 3

√
256(m− 2)m2/3 + 2m.

Our next pair of lemmas are elementary.

Lemma 4.2.3. If k ≥ 7 and c = 1/( 3
√
256 + 1.22271)3/5 ≈ 0.2968, then k − 6 ≥ ck3/5.

Proof. Let f(k) = k − 6 − ck
3
5 . Then f ′(k) = 1 − 3c

5
k− 2

5 > 0 for all k ≥ 1. Thus f(k) is

increasing for all k ≥ 1. In particular, for k ≥ 7, f(k) ≥ f(7) = 7− 6− c · 7 3
5 > 0.

Lemma 4.2.4. If k ≥ 3 and c1 = 1/( 3
√
256 + 0.02481)3/5 ≈ 0.3291, then k − 2 ≥ c1k

3/5.

Proof. Let f(k) = k − 2 − c1k
3
5 . Then f ′(k) = 1 − 3c1

5
k− 2

5 > 0 for all k ≥ 1. Thus f(k) is

increasing for all k ≥ 1. In particular, if k ≥ 3, f(k) ≥ f(3) = 3− 2− c1 · 3
3
5 > 0.

4.3 Proof of the Main Results

We will prove our main theorems in this section. The idea in the proofs for Theorems

4.1.1 and 4.1.2 is to first let |V (C)∩V (D)| = m for m less than our bound for contradiction.

We show that if there is no Hamiltonian cycle, then by Theorem 1.2.4, we obtain a cycle

of length at least 2k. Next, we assume k ≥ 11 in Theorem 4.1.1 and explore small k in

Theorem 4.1.2, and use this to guarantee at least k −m vertices in the segments of C − T

and D−T . Then, as G is k-connected and |T | = m, we can show G−T is (k−m)-connected,

and obtain k−m independent internally disjoint paths between the segments of C − T and

D−T . Constructing an auxilary subgraph H as described later, H has at least k−m edges.

Using Claims 4.3.1, 4.3.2, and 4.3.3 below, we obtain a minimum number of edges for si(H).

Then we show that |E(si(H))| ≥ 3
√
256(m − 2)m2/3 + 2m. Now, by Corollary 1.3.4, si(H)

has a K3,257-subgraph. From here, we are able to show that our graph contains two new

cycles, whose combined length leads to a contradiction, concluding our proofs.

Proof. (Proof of Theorem 4.1.1) Let G be a k-connected graph, k ≥ 11, and let C and D

be two cycles such that |C|+ |D| ≥ 2c(G)− 7 and |V (C) ∩ V (D)| = m, for m < ck3/5, and

c = 1/( 3
√
256 + 1.22271)3/5 ≈ 0.2968.
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By Lemma 1.2.4, either G has a Hamiltonian cycle, or G has a cycle of length ≥ 2k. If G

has a Hamiltonian cycle, then |V (C)∩V (D)| = |C|+ |D|−|V (C)∪V (D)| ≥ 2c(G)−7−n =

n − 7 ≥ k − 6 > ck3/5 by Lemma 4.2.3. So suppose G does not have a Hamiltonian cycle.

Then, c(G) ≥ 2k. Note then that as |C| + |D| ≥ 2c(G) − 7 = c(G) + (c(G) − 7), we have

that |V (C)| ≥ c(G) − 7. Now, as c(G) ≥ 2k, we have that |V (C)| ≥ 2k − 7, and similarly,

|V (D)| ≥ 2k − 7. Now, |
m⋃
i=1

Pi| ≥ c(G)− 7−m ≥ 2k − 7−m = k −m+ k − 7 > k −m, as

k ≥ 11. Similarly, |
m⋃
j=1

Qj| > k −m.

As G is k-connected, note that G−T is (k−m)-connected and G−T has at least k−m

vertex-disjoint paths (denote this set of paths by P from
m⋃
i=1

Pi to
m⋃
j=1

Qj. Now, construct an

auxiliary bipartite graph H as follows, and note that |E(H)| ≥ k − m. H is an auxiliary

graph of G such that for the segments X1, X2, ..., Xm of C − T and Y1, Y2, ..., Ym of D − T ,

V (H) = {X1, X2, ..., Xm, Y1, Y2, ..., Ym}, and for every path Ri,j in P from Xi to Yj in G,

noting that different Ri,j are vertex disjoint paths, we say there exists an edge joining Xi and

Yj in H. Following [1], we orient the cycles C and D as follows. Beginning with vertex v in

C, ∀x1, x2 ∈ V (C), x1 ≺ x2 if x1 ∈ P [v, x2]. Additionally, if S1 and S2 are disjoint segments

of C − {v}, then we define S1 ≺ S2 if S1 lies between v and S2 along C. For D, one can

make a similar definition.

The auxiliary graph H may not be simple. In the next three claims, we study H and

obtain a lower bound on the number of edges in the simplified graph of H, denoted by si(H).

Claim 4.3.1. Each edge of H has multiplicity of size at most 9.

Proof. Suppose for contradiction without loss of generality that the edge P1Q1 has a mul-

tiplicity of size at least 10. Then in G, there exists at least 10 paths, Ri[xi, yni
] for i ≥ 10,

with endpoints xi and yni
in the segments P1 and Q1 respectively. Relabel the endpoints of

these paths in P1 if necessary, and assume that x1 ≺ x2 ≺ ... ≺ x10.

By Corollary 1.3.1, As 10 = 32 + 1, the sequence {ni}(1 ≤ i ≤ 10) contain a monotone

subsequence of length at least 3 + 1 = 4 with respect to their index along the orientation of
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Q1. Call these endpoints ya1 , yb1 , yc1 , yd1 and relabel their corresponding endpoints in P1 as

xa, xb, xc, xd. Relabel the paths between them Ra, Rb, Rc, Rd such that they have endpoints

xa and ya1 , xb and yb1 , xc and yc1 , and xd and yd1 respectively. Reorienting D if necessary, we

may assume that ya1 ≺ yb1 ≺ yc1 ≺ yd1 . Then we have a new cycle C ′ in G, by replacing the

P1[xa, xd]-segment in P1 by a new segment Ra[xa, ya1 ]Q1[ya1 , yb1 ]
←−
R b[yb1 , xb]P1[xb, xc]Rc[xc, yc1 ]

Q1[yc1 , yd1 ]
←−
R d[yd1 , xd]. Similarly, we obtain a new cycle D′ by replacing the Q1[ya1 , yd1 ]-

segment in Q1 by
←−
R a[ya1 , xa]P1[xa, xb]Rb[xb, yb1 ]Q1[yb1 , yc1 ]

←−
R c[yc1 , xc]P1[xc, xd]Rd[xd, yd1 ].

However, |C ′|+|D′| ≥ |C|+|D|+2(|Ra[xa, ya1 ]|+|Rb[xb, yb1 ]|+|Rc[xc, yc1 ]|+|Rd[xd, yd1 ]|) ≥

|C|+ |D|+ 8 ≥ 2cF (G)− 7 + 8 > 2cF (G), a contradiction.

Note that the above proof can be easily modified to show that if m = 0, then we can find

two new cycles C ′ and D′ such that |C ′|+ |D′| ≥ |C|+ |D|+ 8 ≥ 2cF (G)− 7 + 8 > 2cF (G);

a contradiction. This m ≥ 1.

Claim 4.3.2. If two edges of H, PiQj and PsQt, both have multiplicity more than one, then

PiQj and PsQt must be adjacent edges.

Proof. Suppose R1[x1, y1] and R2[x2, y2] are two vertex-disjoint paths between Pi and Qj

where {x1, x2} ⊆ V (Pi) and {y1, y2} ⊆ V (Qj), and S1[x3, y3] and S2[x4, y4] are two vertex-

disjoint paths between Ps and Qt where {x3, x4} ⊆ V (Ps), and {y3, y4} ⊆ V (Qt). Moreover,

R1, R2 and S1, S2 are vertex-disjoint. We construct two new cycles C ′ and D′ as follows: C ′

is obtained from C by replacing two segments C[x1, x2] by R1[x1, y1]D[y1, y2]
←−
R 2[y2, x2], and

C[x3, x4] by S1[x3, y3]D[y3, y4]
←−
S 2[y4, x4]. Similarly, we construct D′ from D by replacing two

segmentsD[y1, y2] by
←−
R 1[y1, x1]C[x1, x2]R2[x2, y2], andD[y3, y4] by

←−
S 1[y3, x3]C[x3, x4]S2[x4, y4].

Then C ′ and D′ are such that

|C ′|+ |D′| = |C|+ |D|+ 2(|R1|+ |R2|+ |S1|+ |S2|) ≥ |C|+ |D|+ 8 ≥ 2c(G) + 1;

a contradiction.
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Claim 4.3.3. The simplified graph of H, si(H), has at least k − 9m edges.

Proof. Let |E(H)| ≥ k −m. To find |E(si(H))|, we must subtract the number of possible

multiple edges in H from k−m. By Claim 4.3.2, any edge of H with multiplicity more than

one must be covered by a single vertex as any two such edges are adjacent. Now, the vertex

covering all edges that could be multiple can be incident to at most m edges as H ⊆ Km,m.

By Claim 4.3.1, each of these m edges has multiplicity of at most nine. So, to subtract the

number of multiple edges in H, we must subtract at most eight edges for each of the m

possible edges. Thus, |E(si(H))| ≥ (k −m)− 8m = k − 9m.

If m = 1, then si(H) has at most one edge. However, from the last claim, we deduce

that |E(si(H))| ≥ k − 9m ≥ 11− 9 = 2, a contradiction. If m = 2, then si(H)) has at most

four edges as it is a subgraph is K2,2. However, as m = 2 ≤ ck3/5, we deduce that k ≥ 24.

From the last claim, we deduce that |E(si(H))| ≥ k − 9m ≥ 24 − 18 = 6, a contradiction

again. Therefore, m ≥ 3.

By Lemma 4.2.1, if m < ck3/5 where c = 1/( 3
√
256+1.22271)3/5 ≈ 0.2968, then k−9m ≥

3
√
256(m − 2)m2/3 + 2m. Now, as si(H) ⊆ Km,m, we have from Corollary 1.3.4 that si(H)

contains a K3,257-subgraph.

When C and D are longest cycles of G, Chen, Faudree, and Gould [1, page 14, line -4]

showed that if H has a K3,257-subgraph, then there are two new cycles C ′ and D′ such that

either C ′ or D′ is longer than |C| = |D|; thus reaching a contradiction. We observe that, in

the following claim, our cycles C and D are not necessarily longest cycles of G, and we can

still get the following result which follows essentially by the proof in [1, page 14, line -4].

Claim 4.3.4. [1, page 14, line -4] If H contains a K3,257-subgraph with vertex set

{X1, X2, X3, Y1, Y2, ..., Y257}, then G contains two new cycles C ′ and D′ such that |C ′|+|D′| ≥

|C|+ |D|+ 8.

We outline the proof of [1] for this claim here for completion. Relabelling as necessary,

assume that X1, X2, X3, Y1, ..., Y257 induce a K3,257-subgraph and let Ri,j[ui,j, vi,j] denote the
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path from Xi to Yj for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 257. Recall that we oriented the cycles C and

D.

In [1], the authors prove that, Using Lemma 1.3.2, reversing the orientation and relabeling

Xi and Yj if necessary, we can assume that u1,1 ≺ u1,2 ≺ u1,3 and u2,1 ≺ u2,2 ≺ u2,3, and

either u3,1 ≺ u3,2 ≺ u3,3 or u3,3 ≺ u3,2 ≺ u3,1.

Then the authors show that there are i, j, where 1 ≤ i < j ≤ 3, such that either

• (i) v1,i ≺ v2,i and v1,j ≺ v2,j, or

• (ii) v2,i ≺ v1,i and v2,j ≺ v1,j.

Indeed, assume that v1,1 ≺ v2,1. If v1,2 ≺ v2,2, then choose (i, j) = (1, 2), and if v1,3 ≺ v2,3,

then choose (i, j) = (1, 3). Otherwise, If v2,2 ≺ v1,2, and v2,3 ≺ v1,3, then choose (i, j) = (2, 3).

The case for v2,1 ≺ v1,1 is similar.

u2,2

u2,1

u1,2

u1,1

v2,2

v1,2

v2,1

v1,1

X2

X1

Y2

Y1

R1,1

R1,2

R2,1

R2,2

C ′ D′

C D

Figure 4.1: The new cycles C ′ and D′ in G

Reorient D if necessary one can assume that v1,1 ≺ v2,1. Now in each case one can reroute

and obtain two new cycles C ′ and D′ such that |C ′| + |D′| ≥ |C| + |D| + 8. All cases are

63



similar and without loss of generality, we will only describe the case when i = 1 and j = 2

and v1,1 ≺ v2,1 and v1,2 ≺ v2,2. Then one can get two new cycles as follows:

C ′ = u1,1R1,1v1,1Dv2,1
←−
R 2,1u2,1

←−
Cu1,2R1,2v1,2Dv2,2

←−
R 2,2u2,2Cu1,1

D′ = v1,1
←−
R 1,1u1,1Cu1,2R1,2v1,2

←−
Dv2,1

←−
R 2,1u2,1Cu2,2R2,2v2,2Dv1,1

Now |C ′|+ |D′| = |C|+ |D|+ 2(|R1,1|+ |R1,2|+ |R2,1|+ |R2,2|) ≥ |C|+ |D|+ 8.

Thus, by Claim 4.3.4, since si(H) has a K3,257-subgraph, there exists two cycles C ′ and

D′ such that |C ′| + |D′| ≥ |C| + |D| + 8 ≥ 2c(G) − 7 + 8 > 2c(G), a contradiction. Thus

|V (C) ∩ V (D)| ≥ ck3/5.

Proof. (Theorem 4.1.2) Let G be a k-connected graph, k ≥ 2, and let C and D be two

cycles such that |C| + |D| ≥ 2c(G) − 3 and |V (C) ∩ V (D)| = m, for m < c1k
3/5, and

c1 = 1/( 3
√
256 + 0.02481)3/5 ≈ 0.3291. Again we orient the cycles C and D. Beginning with

vertex v, ∀x1, x2 ∈ V (C), x1 ≺ x2 if x1 ∈ P [v, x2].

We now show that the theorem holds for k = 2. Suppose |V (C) ∩ V (D)| = 0. As G is

2-connected, there exist two internally disjoint paths connecting C and D, say R1[x1, y1] and

R2[x2, y2], where x1, x2 ∈ C and y1, y2 ∈ D. Reorient C and D if necessary, we assume that

x1 ≺ x2 and y1 ≺ y2. Then, construct two new cycles

C ′ = R1[x1, y1]D[y1, y2]
←−
R 2[y2, x2]C[x2, x1]

D′ =
←−
R 1[y1, x1]C[x1, x2]R2[x2, y2]D[y2, y1].

Now note that |C ′|+ |D′| = |C|+ |D|+2|R1|+2|R2| ≥ |C|+ |D|+4 ≥ 2c(G)−3+4 > 2c(G),

a contradiction. Thus the intersection of C and D must be nonempty, and we are done, as

we assume m < c1k
3/5, which for k = 2 gives c1k

3/5 = c1(2)
3/5 ≈ 0.4988 < 1. For the

rest of the proof we may now assume that k ≥ 3. If G has a Hamiltonian cycle, then

|V (C) ∩ V (D)| = |C| + |D| − |V (C) ∪ V (D)| ≥ 2c(G) − 3 − n = n − 3 ≥ k − 2 ≥ ck3/5 by
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Lemma 4.2.4. So suppose not. Then, by Lemma 1.2.4, G has a cycle of length at least 2k

which implies c(G) ≥ 2k. Note then that as |C| + |D| ≥ 2c(G) − 3 = c(G) + (c(G) − 3),

we have that |V (C)| ≥ c(G) − 3. Now, as c(G) ≥ 2k, we have that |V (C)| ≥ 2k − 3, and

|V (D)| ≥ 2k − 3. Thus, |
m⋃
i=1

Pi| ≥ c(G)− 3−m ≥ 2k − 3−m = k −m+ k − 3 ≥ k −m, as

k ≥ 3. Similarly, |
m⋃
j=1

Qj| ≥ k −m.

As G is k-connected, note that G−T is (k−m)-connected and G−T has at least k−m

independent paths from
m⋃
i=1

Pi to
m⋃
j=1

Qj. Now, construct an auxiliary bipartite graph H as

described above, and note that |E(H)| ≥ k−m. Suppose that H could have multiple edges,

say P1 = P1[u1, v1] and P2 = P2[u2, v2], such that u1 and u2 are in X1, and v1 and v2 are in

Y1. Reorient C and D if necessary, assume that u1 ≺ u2 and v1 ≺ v2.

Furthermore, suppose C[u1, u2] ⊆ X1 and D[v1, v2] ⊆ Y1. Then G would contain two

cycles

C∗ = C[u2, u1]P1[u1, v1]D[v1, v2]
←−
P 2[v2, u2]

D∗ = D[v2, v1]
←−
P 1[v1, u1]C[u1, u2]P2[u2, v2],

however |C∗| + |D∗| = |C| + |D| + 2|P1| + 2|P2| ≥ 2c(G) − 3 + 4 > 2c(G), a contradiction.

Thus, H has no multiple edges. Thus we have that H is a simple bipartite graph such that

|E(H)| ≥ k −m.

Modifying the proof in the last paragraph, one can show that m > 0. If m = 1, then H

has at most one edge, but as m < c1k
3/5, we deduce that k > 6 and thus H has at least

k −m > 5 edges; a contradiction. If m = 2, then from m < c1k
3/5, we deduce that k > 20,

thus H should have at least k −m ≥ 18 edges; a contradiction as H is a subgraph of K2,2.

Thus m ≥ 3.

With our chosen bound of c1k
3/5, Lemma 4.2.2 gives us that |E(H)| ≥ k−m ≥ 3

√
256(m−

2)m2/3 + 2m. Now, as H ⊆ Km,m, we have from Corollary 1.3.4 that H contains a K3,257-

subgraph.
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Then by Claim 4.3.4, since H has a K3,257-subgraph, there exists two cycles C ′ and D′

such that |C ′|+ |D′| ≥ |C|+ |D|+ 8 ≥ 2c(G)− 3 + 8 > 2c(G), a contradiction.
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5 INTERSECTION OF LONG CYCLES CONTAINING A LINEAR

FOREST SUBGRAPH IN k-CONNECTED GRAPHS

5.1 Introduction and Main Results

In Chapter 2, we raised the following general conjecture for k-connected graphs (k ≥ 2):

Let C and D be two longest cycles in a k-connected graph containing a linear forest subgraph

F with at most k − 1 vertices, then C and D must meet in at least k common vertices. In

Chapter 3, we prove this conjecture for 2 ≤ k ≤ 6 (in fact, we prove a slightly stronger

result by allowing |C| + |D| ≥ 2cF (G) − 1). In Chapter 4, we extend the result of Chen,

Faudree, and Gould [1] who gave a lower bound on the intersection of two longest cycles for

k-connected graphs.

In this chapter, we give a lower bound on the number of common vertices between two

long cycles containing a linear forest. This linear forest could be empty. Our main results

give a generalization of Chen et al.’s result [1]. Our main results also give generalizations of

the main results in the last chapter.

Recall that a graph F is called a linear forest if V (F ) = E(F ) = ∅ or every component

of F is a path [13]. Again, we use cF (G) as the length of a longest cycle of G containing F .

The following are the main results of this chapter.

Theorem 5.1.1. Let C and D be two cycles containing a specified linear forest subgraph F

with at most k − 1 vertices of a k-connected graph G, such that |C| + |D| ≥ 2cF (G) − 7.

In addition, we assume k ≥ 11 if |V (F )| ≤ 1. Then |V (C) ∩ V (D)| ≥ ck3/5, where c =

1/( 3
√
256 + 1.22271)3/5 ≈ 0.2968.
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Theorem 5.1.2. Let C and D be two cycles containing a specified linear forest subgraph F

with at most k−1 vertices of a k-connected graph G (k ≥ 2) such that |C|+|D| ≥ 2cF (G)−3.

Then |V (C) ∩ V (D)| ≥ c1k
3/5, where c1 = 1/( 3

√
256 + 0.02481)3/5 ≈ 0.3291.

Note that if F is the empty set, then the above results imply Theorems 4.1.1 and 4.1.2,

respectively. Additionally, if F is a single vertex, then the above results imply the following,

considering two cycles containing a specified vertex, where cv(G) is the length of a longest

cycle containing the vertex v.

Corollary 5.1.3. Let C and D be cycles containing a specified vertex v of a k-connected

graph G, k ≥ 11, such that |C| + |D| ≥ 2cv(G) − 7. Then, |V (C) ∩ V (D)| ≥ ck3/5, where

c = 1/( 3
√
256 + 1.22271)3/5 ≈ 0.2968.

Corollary 5.1.4. Let C and D be cycles containing a specified vertex v of a k-connected

graph G, such that |C| + |D| ≥ 2cv(G) − 3. Then, |V (C) ∩ V (D)| ≥ c1k
3/5, where c1 =

1/( 3
√
256 + 0.02481)3/5 ≈ 0.3291.

All the proofs of the above results will be given in the next section.

5.2 Proof of the Main Results

Proof. (Proof of Theorem 5.1.1) Let G be a k-connected graph and let C and D be two

cycles containing a linear forest subgraph F with at most k−1 vertices such that |C|+ |D| ≥

2cF (G) − 7. If |(F )| ≤ 1, we also suppose k ≥ 11. Let |V (C) ∩ V (D)| = m for m < ck3/5

and c = 1/( 3
√
256 + 1.22271)3/5 ≈ 0.2968.

If n = |V (G)| ≤ 2δ−l, by Corollary 1.2.8 and Dirac’s Theorem, G has a Hamiltonian cycle

containing F . Then |V (C)∩V (D)| = |V (C)|+ |V (D)|− |V (C)∪V (D)| ≥ 2cF (G)− 7−n =

2n − 7 − n = n − 7 ≥ k + 1 − 7 = k − 6. By Lemma 4.2.3, k − 6 ≥ ck3/5, and we are

done. Thus we may assume n > 2δ − l, and assume that G does not have a Hamiltonian

cycle containing F . Then by Corollary 1.2.8 and Theorem 1.2.9, cF (G) ≥ 2δ − l. Now,

|C|+ |D| ≥ 2cF (G)− 7 = cF (G) + (cF (G)− 7). Thus |C|, |D| ≥ cF (G)− 7.
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Now, |
m⋃
i=1

Pi| ≥ cF (G)−7−m ≥ (2k− l)−7−m = (k−m)+(k− l−7). If k− l−7 ≤ 0,

then l ≥ k − 7 and thus |V (C) ∩ V (D)| ≥ k − 6 ≥ ck3/5. So assume k − l − 7 > 0. Then

|
m⋃
i=1

Pi| > k −m, and similarly, |
m⋃
j=1

Qj| > k −m.

Following [1], orient the cycles C and D. Beginning with a vertex v of C, ∀x1, x2 ∈

V (C), x1 ≺ x2 if x1 ∈ P [v, x2]. For D, one can make a similar definition.

As G is k-connected, note that G−T is (k−m)-connected and G−T has at least k−m

vertex-disjoint paths (denote this set of paths by P) from
m⋃
i=1

Pi to
m⋃
j=1

Qj. Now, construct

an auxiliary bipartite graph H as in [1] and in Chapter 4, and note that |E(H)| ≥ k −m.

Here, H is an auxiliary graph of G such that for the segments X1, X2, ..., Xm of C − T and

Y1, Y2, ..., Ym of D− T , V (H) = {X1, X2, ..., Xm, Y1, Y2, ..., Ym}, and for every path Ri,j in P

from Xi to Yj in G, noting that different Ri,j are vertex disjoint paths, we say there exists

an edge joining Xi and Yj in H. Next we study the number of edges in si(H).

Claim 5.2.1. Each edge of H has a multiplicity of size at most nine.

Proof. Similar to the proof of Claim 4.3.1, suppose for contradiction without loss of generality

that the edge P1Q1 has a multiplicity of size at least 10. Then in G, there exists at least 10

paths, Ri[xi, yni
] for i ≥ 10, with endpoints xi and yni

in the segments P1 and Q1 respectively.

Relabel the endpoints of these paths in P1 if necessary, and assume that x1 ≺ x2 ≺ ... ≺ x10.

By Corollary 1.3.1, As 10 = 32 + 1, the sequence {ni}(1 ≤ i ≤ 10) contain a monotone

subsequence of length at least 3 + 1 = 4 with respect to their index along the orientation of

Q1. Call these endpoints ya1 , yb1 , yc1 , yd1 and relabel their corresponding endpoints in P1 as

xa, xb, xc, xd. Relabel the paths between them Ra, Rb, Rc, Rd such that they have endpoints

xa and ya1 , xb and yb1 , xc and yc1 , and xd and yd1 respectively. Reorienting D if necessary,

we may assume that ya1 ≺ yb1 ≺ yc1 ≺ yd1 . Then we have a new cycle C ′ in G, by replacing

the P1[xa, xd]-segment in P1 of C by Ra[xa, ya1 ]Q1[ya1 , yb1 ]
←−
R b[yb1 , xb]P1[xb, xc]Rc[xc, yc1 ]

Q1[yc1 , yd1 ]
←−
R d[yd1 , xd].
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Similarly, we obtain a new cycle D′ by replacing the Q1[ya1 , yd1 ]-segment in Q1 of D by

←−
R a[ya1 , xa]P1[xa, xb]Rb[xb, yb1 ]Q1[yb1 , yc1 ]

←−
R c[yc1 , xc]P1[xc, xd]Rd[xd, yd1 ].

Note that neither P1 nor Q1 contains any vertices or edges of F by the definition of

H. When we construct the new cycle C ′, we only replace two segments of P1, therefore

the new cycle C ′ still contains the linear forest F . Similarly, D′ also contains F . However,

|C ′| + |D′| ≥ |C| + |D| + 2(|Ra[xa, ya1 ]| + |Rb[xb, yb1 ]| + |Rc[xc, yc1 ]| + |Rd[xd, yd1 ]|) ≥ |C| +

|D|+ 8 ≥ 2cF (G)− 7 + 8 > 2cF (G), a contradiction.

Note that the proof of the last claim can be easily modified to show that m is not zero.

Otherwise, one gets two new cycles C ′ and D′ containing F so that |C ′|+ |D′| > 2cF (G), a

contradiction. Thus m ≥ 1.

Claim 5.2.2. If two edges of H, PiQj and PsQt, both have a multiplicity of more than one,

then PiQj and PsQt must be adjacent edges in H.

Proof. Suppose R1[x1, y1] and R2[x2, y2] are two vertex-disjoint paths between Pi and Qj

where {x1, x2} ⊆ V (Pi) and {y1, y2} ⊆ V (Qj), and S1[x3, y3] and S2[x4, y4] are two vertex-

disjoint paths between Ps and Qt where {x3, x4} ⊆ V (Ps) and {y3, y4} ⊆ V (Qt). Moreover,

R1, R2 and S1, S2 are vertex-disjoint.

We construct two new cycles C ′ and D′ as follows: C ′ is obtained from C by replacing the

segment C[x1, y1] byR1[x1, y1]D[y1, y2]
←−
R 2[y2, x2], and C[x3, x4] by S1[x3, y3]D[y3, y4]

←−
S 2[y4, x4].

Similarly, we constructD′ fromD by replacing the segmentD[y1, y2] by
←−
R 1[y1, x1]C[x1, x2]

R2[x2, y2], and D[y3, y4] by
←−
S 1[y3, x3]C[x3, x4]S2[x4, y4].

By the definition of H, none of Pi, Ps, Qj, Qt contain any vertices or edges of F . Note

that during the process of constructing C ′ and D′, we just replaced part of Pi, C[x1, x2], by

a new path from x1 to x2, and we replaced part of Ps, C[x3, x4], by a new path from x3 to
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x4. Therefore, C
′ still contains F . Similarly, D′ contains F as well. Moreover,

|C ′|+ |D′| = |C|+ |D|+ 2(|R1|+ |R2|+ |S1|+ |S2|)

≥ |C|+ |D|+ 8 ≥ 2cF (G) + 1;

a contradiction.

Claim 5.2.3. The simplified graph of H, si(H), has at least k − 9m edges.

Proof. Let |E(H)| ≥ k −m. To find |E(si(H))|, we must subtract the number of possible

multiple edges in H from k−m. By Claim 5.2.2, any edge of H with multiplicity more than

one must be covered by a single vertex as any two such edges are adjacent. Now, the vertex

covering all edges that could be multiple can be incident to at most m possible edges as

H ⊆ Km,m. By Claim 5.2.1, each of these m edges has a multiplicity of at most nine. So, to

subtract the number of multiple edges in H, we must subtract at most eight edges for each

of the m possible edges. Thus, |E(si(H))| ≥ (k −m)− 8m = k − 9m.

If m = 1, then si(H)) has at most one edge. However, from the last claim, we deduce

that |E(si(H))| ≥ k − 9m ≥ 11− 9 = 2, a contradiction. If m = 2, then si(H)) has at most

four edges as it is a subgraph of K2,2. However, as m = 2 ≤ ck3/5, we deduce that k ≥ 24.

From the last claim, we deduce that |E(si(H))| ≥ k − 9m ≥ 24 − 18 = 6, a contradiction

again. Therefore, m ≥ 3.

By Lemma 4.2.1, if m < ck3/5 where c = 1/( 3
√
256 + 1.22271)3/5 ≈ 0.2968, then

|E(si(H))| ≥ k − 9m ≥ 3
√
256(m − 2)m2/3 + 2m. Now, as si(H) ⊆ Km,m, we have from

Corollary 1.3.4 that si(H) contains a K3,257-subgraph.

Claim 5.2.4. G must contain two new cycles C ′ and D′ both containing the linear forest

subgraph F , such that |C ′|+ |D′| ≥ |C|+ |D|+ 8.
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This claim differs from the result of [1, page 14, line -4] by allowing C and D to be long

cycles containing a linear forest, and the obtained two new cycles also contain the linear

forest. The proof we provide next, again, essentially follow along the line from [1] (see

Claim 4.3.4). For completion, we outline their original proof while showing both new cycles

constructed contain the linear forest F .

Proof. We first outline the proof of the corresponding result of [1, pages 13-14], then we

prove that both new cycles constructed also contain the linear forest F .

Relabelling as necessary, assume thatX1, X2, X3, Y1, ..., Y257 induce aK3,257-subgraph and

let Ri,j[ui,j, vi,j] denote the path from Xi to Yj for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 257. Recall that

we oriented the cycles C and D as follows: beginning with vertex v, ∀x1, x2 ∈ V (C), x1 ≺ x2

if x1 ∈ P [v, x2].

In [1], the authors prove that, Using Lemma 1.3.2, reversing the orientation and relabeling

Xi and Yj if necessary, we can assume that u1,1 ≺ u1,2 ≺ u1,3 and u2,1 ≺ u2,2 ≺ u2,3, and

either u3,1 ≺ u3,2 ≺ u3,3 or u3,3 ≺ u3,2 ≺ u3,1.

Then the authors show that there are i, j, where 1 ≤ i < j ≤ 3, such that either

• (i) v1,i ≺ v2,i and v1,j ≺ v2,j, or

• (ii) v2,i ≺ v1,i and v2,j ≺ v1,j.

Indeed, assume that v1,1 ≺ v2,1. If v1,2 ≺ v2,2, then choose (i, j) = (1, 2) in (i), and if

v1,3 ≺ v2,3, then choose (i, j) = (1, 3) in (i). Otherwise, If v2,2 ≺ v1,2, and v2,3 ≺ v1,3, then

choose (i, j) = (2, 3) in (ii). The case for v2,1 ≺ v1,1 is similar.

Reorient D if necessary one can assume that v1,1 ≺ v2,1. Now in each case we we can

reroute and obtain two new cycles C ′ and D′, both containg F such that |C ′| + |D′| ≥

|C|+ |D|+ 8.

Without loss of generality, next we will only describe the following cases:

(a) v1,1 ≺ v2,1 and v1,2 ≺ v2,2.

(b) v2,2 ≺ v1,2 and v2,3 ≺ v1,3.
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u2,1

u1,2

u1,1

v2,2

v1,2

v2,1

v1,1

X2

X1

Y2

Y1

R1,1

R1,2

R2,1

R2,2

C ′ D′

C D

Figure 5.1: The new cycles C ′ and D′ in G with v1,1 ≺ v2,1 and v1,2 ≺ v2,2, each containing
every vertex and edge in the intersection of C and D

In case (a), we construct two new cycles as follows (see Fig 5.1):

C ′ = u1,1R1,1v1,1Dv2,1
←−
R 2,1u2,1

←−
Cu1,2R1,2v1,2Dv2,2

←−
R 2,2u2,2Cu1,1

D′ = v1,1
←−
R 1,1u1,1Cu1,2R1,2v1,2

←−
Dv2,1

←−
R 2,1u2,1Cu2,2R2,2v2,2Dv1,1.

By the definition of H, none of Xi and Yi (1 ≤ i ≤ 3) contain any vertices or edges of

F , as they are segments of C − T . Note that C ′ misses only internal vertices of X1 and X2

from C, and therefore these internal vertices of X1 and X2 contain no vertices or edges of

F . Therefore, C ′ contains F . Similarly, D′ also contains F .

In case (b), we construct two new cycles as follows (see Fig 5.2):

C ′ = u1,1R1,2v1,2
←−
Dv2,2

←−
R 2,2u2,2

←−
Cu1,3R1,3v1,3

←−
Dv2,3

←−
R 2,3u2,3Cu1,1,

D′ = v2,2
←−
R 2,2u2,2Cu2,3R2,3v2,3

←−
Dv1,2

←−
R 1,2u1,1Cu1,3R1,3v1,3Dv2,2.
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u1,3

u1,1

v1,3

v2,3

v1,2

v2,2

X2

X1

Y3

Y2

R1,2

R2,2

R1,3

R2,3

C ′ D′

C D

Figure 5.2: The new cycles C ′ and D′ in G with v2,2 ≺ v1,2 and v2,3 ≺ v1,3, each containing
every vertex and edge in the intersection of C and D

Again none of Xi and Yi (1 ≤ i ≤ 3) contain any vertices or edges of F , as they are

segments of C − T . Note that D′ misses only the internal vertices of Y2 and Y3 from D, and

therefore these internal vertices of Y2 and Y3 contain no vertices or edges of F . Therefore,

D′ contains F . Similarly, C ′ also contains F .

Moreover, in case (a), |C ′|+|D′| = |C|+|D|+2(|R1,1|+|R1,2|+|R2,1|+|R2,2|) ≥ |C|+|D|+8.

In case (b), |C ′|+ |D′| = |C|+ |D|+ 2(|R1,2|+ |R2,2|+ |R1,3|+ |R2,3|) ≥ |C|+ |D|+ 8. This

completes the proof of the claim.

Now, by Claim 5.2.4, G contains two new cycles, C ′ and D′, both containing F , such

that |C ′|+ |D′| ≥ |C|+ |D|+8 ≥ 2cF (G)− 7+ 8 > 2cF (G), a contradiction. This completes

the proof of the theorem.

Proof. (Proof of Theorem 5.1.2) Let G be a k-connected graph, k ≥ 2, and let C and D

be two cycles containing a linear forest subgraph F such that |C| + |D| ≥ 2cF (G) − 3 and

|V (C)∩V (D)| = m, for m < c1k
3/5, and c1 = 1/( 3

√
256+0.02481)3/5 ≈ 0.3291. If n ≤ 2δ− l,
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by Corollary 1.2.8 and Dirac’s Theorem, G has a Hamiltonian cycle containing F . Then

|V (C) ∩ V (D)| = |C| + |D| − |V (C) ∪ V (D)| ≥ 2cF (G) − 3 − n = n − 3 ≥ k − 2 ≥ c1k
3/5

by Lemma 4.2.4. Thus we may assume n > 2δ − l. By Corollary 1.2.8 and Theorem 1.2.9,

cF (G) ≥ 2δ − l ≥ 2k − l. Now, |C| + |D| ≥ 2cF (G) − 3 = cF (G) + (cF (G) − 3). Thus

|C|, |D| ≥ cF (G)− 3.

Now, |
m⋃
i=1

Pi| ≥ cF (G)−3−m ≥ (2k− l)−3−m = (k−m)+(k− l−3). If k− l−3 ≤ 0,

then l ≥ k − 3 and thus |V (C) ∩ V (D)| ≥ k − 2 ≥ c1k
3/5. So assume k − l − 3 ≥ 0. Then

|
m⋃
i=1

Pi| ≥ k −m, and similarly, |
m⋃
j=1

Qj| ≥ k −m.

As G is k-connected, note that G−T is (k−m)-connected and G−T has at least k−m

independent paths from
m⋃
i=1

Pi to
m⋃
j=1

Qj. Now, construct an auxiliary bipartite graph H as

described above, and note that |E(H)| ≥ k−m. Suppose that H could have multiple edges,

say P1 = P1[u1, v1] and P2 = P2[u2, v2] (vertex disjoint paths) such that u1 and u2 are in X1

and v1, and v2 are in Y1. Furthermore, suppose C[u1, u2] ⊆ X1 and D[v1, v2] ⊆ Y1. Then

G would contain two cycles C∗ = u1P1v1Dv2
←−
P 2u2Cu1 and D∗ = v1

←−
P 1u1Cu2P2v2Dv1 such

that |C∗| + |D∗| = |C| + |D| + 2|P1| + 2|P2| ≥ 2cF (G) − 3 + 4 > 2cF (G). Note that C∗

only misses some internal vertices of X1 from C, and as any vertex of F is not an internal

vertex of X1, C
∗ contains all vertices of F . Similarly, D∗ contains every vertex of F . If X1

contained an edge of F , then X1 would be the empty set. Thus, all edges of F are contained

in both C∗ and D∗ such that |C∗|+ |D∗| > 2cF (G), a contradiction. Thus, H has no multiple

edges and we have that H is a simple bipartite graph such that |E(H)| ≥ k −m.

Modifying the proof in the last paragraph, one can show that m > 0. If m = 1, then H

has at most one edge, but as m < c1k
3/5, we deduce that k > 6 and thus H has at least

k −m > 5 edges; a contradiction. If m = 2, then from m < c1k
3/5, we deduce that k > 20,

thus H should have at least k −m ≥ 18 edges; a contradiction as H is a subgraph of K2,2.

Thus m ≥ 3.
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With our chosen bound of c1k
3/5, Lemma 4.2.2 gives us that |E(H)| ≥ k−m ≥ 3

√
256(m−

2)m2/3 + 2m. Now, as H ⊆ Km,m, we have from Corollary 1.3.4 that H contains a K3,257-

subgraph. Then by Claim 5.2.4, since H has a K3,257-subgraph, there exists two cycles C ′

and D′, both containing F , such that |C ′|+ |D′| ≥ |C|+ |D|+8 ≥ 2cF (G)− 3+8 > 2cF (G),

a contradiction. This completes the proof of the theorem.
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6 CONSEQUENCES ON THE INTERSECTION OF LONG PATHS

CONTAINING A LINEAR FOREST SUBGRAPH IN k-CONNECTED

GRAPHS

6.1 Introduction and Main Results

In this chapter, we present our results related to the intersection of long paths containing

a linear forest subgraph. We obtain a result that partially proves a conjecture related to

Conjecture 2.1.7, and also give a lower bound on the intersection of two long paths containing

a linear forest subgraph. All results in this chapter are obtained as consequences of theorems

proved in earlier chapters for cycles.

The first main result for paths is similar to Theorem 5.1.1 for cycles. We note that the

small difference between this result and Theorem 5.1.1 arises from the construction of the

new cycles and application of the cycle result. Let F be a linear forest subgraph of G. We

use p(G) to denote the longest path length of G and pF (G) to denote the length of a longest

path containing F . For a path P , we use l(P ) to denote the length of the path.

Theorem 6.1.1. Let P and Q be two paths containing a specified linear forest subgraph F

with at most k − 1 vertices of a k-connected graph G, such that l(P ) + l(Q) ≥ 2pF (G) − 7.

In addition, we assume k ≥ 10 if |V (F )| = ∅. Then |V (P )∩ V (Q)| ≥ c(k + 1)3/5 − 1, where

c = 1/( 3
√
256 + 1.22271)3/5 ≈ 0.2968.

Corollary 6.1.2. Let P and Q be two paths of a k-connected graph G for k ≥ 10, such that

l(P ) + l(Q) ≥ 2p(G) − 7. Then |V (P ) ∩ V (Q)| ≥ c(k + 1)3/5 − 1, where c = 1/( 3
√
256 +

1.22271)3/5 ≈ 0.2968.
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The second result is similar to the above and uses an application of Theorem 5.1.2. We

omit the proof as it follows similarly to the proof of Theorem 6.1.1.

Theorem 6.1.3. Let P and Q be two paths containing a specified linear forest subgraph F

with at most k − 1 vertices of a k-connected graph G, such that l(P ) + l(Q) ≥ 2pF (G) − 3.

Then |V (P ) ∩ V (Q)| ≥ c1(k + 1)3/5 − 1, where c1 = 1/( 3
√
256 + 0.02481)3/5 ≈ 0.3291.

Corollary 6.1.4. Let P and Q be two paths of a k-connected graph G, such that l(P )+l(Q) ≥

2p(G)−3. Then |V (P )∩V (Q)| ≥ c1(k+1)3/5−1, where c1 = 1/( 3
√
256+0.02481)3/5 ≈ 0.3291.

The final main result is similar to Theorem 3.2.4, and uses an application of the theorem

in its proof. It confirms our previous Conjecture 2.1.7 for k ≤ 5. From the proof, we will see

that the path version conjecture is weaker than the cycle version conjecture.

Theorem 6.1.5. Let G be a k-connected graph where 1 ≤ k ≤ 5, and F be a specified linear

forest subgraph of G with at most k − 1 vertices. If P and Q are paths containing F such

that l(P ) + l(Q) ≥ 2pF (G)− 1, then P and Q must meet in at least k common vertices.

6.2 Proof of the Main Results

Proof. (Proof of Theorem 6.1.1) Let G be a k-connected graph and P and Q be two paths

of G containing a specified linear forest subgraph F with at most k − 1 vertices. Suppose

l(P ) + l(Q) ≥ 2pF (G)− 7 and assume k ≥ 10 if V (F ) = ∅.

Construct a new graph G+ v by adding a vertex v, and adding an edge from v to every

vertex of G. As G is k-connected, G + v is then (k + 1)-connected. Also note that P and

the two edges between v and the endpoints of P form a cycle, denoted C. Similarly, Q and

the two edges between v and the endpoints of Q form a cycle, denoted D. As C and D

contain every vertex and edge of P and Q respectively, C and D both contain the linear

forest subgraph F .

Now, suppose R is a longest path containing F of G with endpoints x1 and x2. Then

tx1Rx2t is a cycle of G + v containing R and thus containing F with length l(R) + 2 =
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pF (G) + 2. Suppose for contradiction there exists a longer cycle S in G + v containing F ,

with length at least pF (G)+3. If v is not contained in S, then S contains a path containing F

with length at least pF (G)+2 in G, a contradiction. If S contains v, then S\v is a path in G

containing F and has length at least pF (G)+3−2 = pF (G)+1, again, a contradiction. Thus

cF (G) = pF (G) + 2. Now, |C|+ |D| = l(P ) + l(Q) + 4 ≥ 2pF (G) + 4− 7 = 2cF (G+ v)− 7.

By Theorem 5.1.1, as G + v is (k + 1)-connected, |V (C) ∩ V (D)| ≥ c(k + 1)3/5. Thus

1 + |V (P ) ∩ V (Q)| ≥ c(k + 1)3/5, and thus P and Q must meet in at least c(k + 1)3/5 − 1

vertices in G.

Proof. (Proof of Theorem 6.1.5) Suppose G is a k-connected graph, 1 ≤ k ≤ 5, and F is

a specified linear forest subgraph of G with at most k − 1 vertices. Let P and Q be paths

containing F such that l(P ) + l(Q) ≥ 2pF (G)− 1.

Now, similar to the above proof, construct a new graph G+ v by adding a vertex v, and

adding an edge from v to every vertex in G. As G is k-connected, G + v is then (k + 1)-

connected, for 2 ≤ k + 1 ≤ 6. Also note that P and the two edges between v and the

endpoints of P form a cycle, denoted C. Similarly, Q and the two edges between v and

the endpoints of Q form a cycle, denoted D. As C and D contain every vertex and edge

of P and Q respectively, C and D both contain the linear forest subgraph F . Moreover,

cF (G+ v) = pF (G) + 2.

Now, |C|+|D| = l(P )+l(Q)+4 ≥ 2pF (G)−1+4 = 2cF (G+v)−1. As k+1 ∈ {2, 3, 4, 5, 6},

and G + v is (k + 1)-connected, by Theorem 3.2.4, C and D must meet in at least k + 1

common vertices. Therefore, P and Q must meet in at least k vertices in G.

Smith conjectures that any two longest cycles in a k-connected graph (k ≥ 2) meet in

at least k common vertices. Hippchen [12] conjectures that any two longest paths in a k-

connected graph must have at least k common vertices. This has been verified for k = 4 in

[11], k = 5 in [3], and for k ≤ 6 in [15]. Modifying our above proof in Theorem 6.1.5, we can

see that if Simth’s conjecture is true for 2 ≤ k ≤ t, then Hippchen’s path version conjecture
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is true for 1 ≤ k ≤ t − 1. As Smith’s conjecture is true for 2 ≤ k ≤ 8, we deduce that

Hippchen’s above conjecture [12] is true for 1 ≤ k ≤ 7.
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