
University of Mississippi University of Mississippi

eGrove eGrove

Honors Theses Honors College (Sally McDonnell Barksdale
Honors College)

Spring 5-12-2023

Exploration of Feature Selection Techniques in Machine Learning Exploration of Feature Selection Techniques in Machine Learning

Models on HPTLC Images for Rule Extraction Models on HPTLC Images for Rule Extraction

Bozidar-Brannan Kovachev

Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Kovachev, Bozidar-Brannan, "Exploration of Feature Selection Techniques in Machine Learning Models on
HPTLC Images for Rule Extraction" (2023). Honors Theses. 2841.
https://egrove.olemiss.edu/hon_thesis/2841

This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell
Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized
administrator of eGrove. For more information, please contact egrove@olemiss.edu.

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/hon_thesis
https://egrove.olemiss.edu/honors
https://egrove.olemiss.edu/honors
https://egrove.olemiss.edu/hon_thesis?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F2841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F2841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/hon_thesis/2841?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F2841&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

Exploration of Feature Selection Techniques in Machine Learning Models

on HPTLC Images for Rule Extraction

by

Brannan Kovachev

A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the

requirements of the Sally McDonnel Barksdale Honors College

Oxford

May 2023

 Approved by

Advisor: Dr. Yixin Chen

Reader: Dr. Feng Wang

Reader: Dr. Thai Le

ii

© 2023

Brannan Kovachev

ALL RIGHTS RESERVED

iii

ABSTRACT

Research related to Biology often utilizes machine learning models that are ultimately

uninterpretable by the researcher. It would be helpful if researchers could leverage the same computing

power but instead gain specific insight into decision-making to gain a deeper understanding of their

domain knowledge. This paper seeks to select features and derive rules from a machine learning

classification problem in biochemistry. The specific point of interest is five species of Glycyrrhiza, or

Licorice, and the ability to classify them using High-Performance Thin Layer Chromatography (HPTLC)

images. These images were taken using HPTLC methods under varying conditions to provide eight

unique views of each species. Each view contains 24 samples with varying counts of the individual

species. There are a few techniques applied for feature selection and rule extraction. The first two are

based on methods recently pioneered and presented as “Binary Encoding of Random Forests” and “Rule

Extraction using Sparse Encoding” (Liu 2012). In addition, an independently developed technique called

“Interval Extraction and Consolidation” was applied, which was conceptualized due to the particular

nature of the dataset. Altogether, these techniques used in consort with standard machine learning models

could narrow a feature space from around one-thousand candidates to only ten. These ten most critical

features were then used to derive a set of rules for the classification of the five species of licorice.

Regarding feature selection, compared to standard model parameter optimization, the Binary Encoding of

Random Forests performed similarly, if not much better, in reducing the feature space in almost all cases.

Additionally, the application of Interval Extraction and Consolidation excelled in further simplifying the

reduced feature space, often by another factor of five to ten. The selected features were then used for

relatively simple rule extraction using decision trees, allowing for a more interpretable model.

iv

ACKNOWLEDGEMENTS

 I would like to thank Dr. Yixin Chen for serving as my thesis advisor and providing

invaluable assistance, guidance, and feedback throughout the entire process. I would like to

thank Dr. Chittiboyina for providing us with the dataset and a problem to explore. Finally, thank

you to all the teachers and mentors who have helped shape the foundation of knowledge this

paper was built on.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES ... vi

LIST OF TABLES .. vii

SECTION 1 - INTRODUCTION ..1

SECTION 2 - DATA ...3

SECTION 3 - DATA PREPARATION ...7

SECTION 4 – MOTIVATIONS FOR MULTIPLE VIEWS ...9

SECTION 5 - METHODS FOR FEATURE SELECTION AND RULE EXTRACTION11

SECTION 6 - RANDOM FOREST PARAMETER OPTIMIZATION ..31

SECTION 7 - ALTERNATIVE IMPLEMENTATION FOR DETERMINING AN

INTERVAL’S CENTER ...35

SECTION 8 - POSSIBLE EXTENSIONS AND FUTURE WORK ...38

vi

LIST OF FIGURES

2.1 HPTLC image under the Conditions of White, Non-Polar, and Post Derivatization5

2.2 HPTLC image under the Conditions of UV 366nm, Non-Polar, Prior Derivatization5

2.3 HPTLC image under the Conditions of UV 254nm, Non-Polar, Prior Derivatization6

3.1 Widened 1-Dimensional Sample Vectors ..8

5.1 Chain of Operations for Feature Selection and Rule Extraction ..11

5.2 Important Original Features in View 1 ..20

5.3 Widened 1-Dimensional Vector of Sample 2 in View 1 ...20

5.4 Consolidated Original Features Plotted on View 1..23

5.5 Extracted Rules in Decision Tree of View 1 ...27

5.6 Extracted Rules in Decision Tree of View 2 ...27

5.7 Extracted Rules in Decision Tree of View 3 ...28

5.8 Extracted Rules in Decision Tree of View 4 ...28

5.9 Extracted Rules in Decision Tree of View 5 ...29

5.10 Extracted Rules in Decision Tree of View 6 ..29

5.11 Extracted Rules in Decision Tree of View 7 ..30

5.12 Extracted Rules in Decision Tree of View 8 ..30

vii

LIST OF TABLES

2.1 Sample Count per Species of Glycyrrhiza ...4

2.2 Conditions under which HPTLC Images were Taken ...5

5.1 View to Feature Count after Binary Encoding of Random Forest14

5.2 Remaining Count of Features per View after Sparse Encoding ..17

5.3 Count of Important Original Feature by View ...19

5.4 Count of Critical Original Features after Iterative Sparse Encoding25

6.1 Accuracy across All Views for Random Forest with Max Depth: 3, N_Estimators: 3032

6.2 Accuracy across All Views for Random Forest with Max Depth: 3, N_Estimators: 4032

6.3 Accuracy across All Views for Random Forest with Max Depth: 4, N_Estimators: 2033

6.4 Maximum Number of Nodes in each RF Model ...33

7.1 Mean Center Interval Extraction ..37

7.2 Median Center Interval Extraction ...37

1

SECTION 1

INTRODUCTION

Much biological research sets out to solve and understand a problem. Often, solving the

problem with high accuracy can be achieved through machine learning models, such as using a

neural network to perform multiclass classification. However, many models like neural

networks, are “black boxes” and do not provide interpretable results. In contrast, other models,

such as Decision Trees, are easily interpretable but are significantly less accurate. This paper

investigates methods for producing highly accurate and easily interpretable results and models.

Regarding multiclass classification, decision tree models allow for simple rule extraction

as each node compares a selected feature against a threshold value to classify the sample

ultimately. However, they can suffer in accuracy due to their high variance, especially when

compared to neural networks or RF models (Talari 2022). This is often due to noisy input data

from a large feature space. Therefore, if we can create a compact representation of the feature

space that uses only the most valuable features, we can produce highly interpretable models that

are unlikely to be overfitting.

The compact representation of our feature space will be achieved through various feature

selection methods. Most generally, feature selection is “the process of reducing the number of

input variables when developing a predictive model” (Brownlee 2020). This paper primarily uses

two varieties of feature selection to narrow down the space. After selecting only the most critical

features for classification, we can train decision trees on these features to produce a relatively

lower variance and higher accuracy models when compared to using the entire feature set.

2

Furthermore, these decision trees allow for simple rule extraction when compared to the

alternative and also highly accurate, low variance “black box” classifiers such as SVM or RF.

For model interpretability, we seek to maintain the benefits of rule extraction from

decision trees while making up for their failings through strict feature selection.

3

SECTION 2

DATA

This paper investigates the classification of five Glycyrrhiza species, more commonly

known as licorice. Various samples of these five species were photographed through High-

Performance Thin Layer Chromatography (HPTLC) techniques.

2.1 HPTLC Introduction

 HPTLC is a way to separate and identify different substances in a mixture. This is done

by using a special kind of paper or plate and a solvent to help see the different substances better.

The outcome of HPTLC is a separation of the different substances in a mixture, resulting in

individual bands on the paper or plate. The position and size of these bands can be used to

identify the different substances in the mixture. Typically, this is done by comparing the bands or

spots to those of known substances or by using special tools to measure the bands or spots. The

information obtained from HPTLC can be used to identify unknown substances, quantify the

amount of a particular substance present in a mixture, or study the purity of a substance (Marathe

2020). Furthermore, this method of analysis has seen considerable use and growth in popularity

over the past decade, so the development of interpretable models from this data is of utmost

interest (Sathyajith 2019). In our application, we will be using the HPTLC images as input into

machine learning models to classify a sample into one of five species of licorice.

4

2.2 Glycyrrhiza HPTLC Samples

 The dataset we used does contain five species of Glycyrrhiza in total however, they are

not of equal distribution. The species name and sample count of each can be seen in Table 2.1:

Table 2.1 Sample Count per Species of Glycyrrhiza

Name Count

G. glabra 6

G. inflata 6

G. uralensis 6

G. echinata 3

G. lepidota 3

Altogether, this is a total of 24 samples.

2.3 Varying Conditions of HPTLC Images

 Rather than just a single set of 24 samples, we used several HPTLC images under various

conditions with the same count of samples for each species per condition. The sample conditions

varied in whether they were analyzed for polar or non-polar constituents, the wavelength of light

the images were taken under, and whether they were taken prior or post derivatization. Table 2.2

Contains the full set of conditions.

5

Table 2.2 Conditions under which HPTLC Images were Taken

Light Polar vs Non-Polar Properties Prior or Post Derivatization

White Light Non-Polar Post

UV 254nm Non-Polar Prior

UV 366nm Non-Polar Post

UV 366nm Non-Polar Prior

White Polar Post

UV 254nm Polar Prior

UV 366nm Polar Post

UV 366nm Polar Prior

Each of these images of 24 samples will be referred to as a “view.” For the reader’s

benefit, we have provided three examples from this table in Figures 2.1 – 2.3.

Figure 2.1: HPTLC image under the Conditions of White, Non-Polar, and Post Derivatization

Figure 2.2: HPTLC image under the Conditions of UV 366nm, Non-Polar, Prior Derivatization

6

Figure 2.3: HPTLC image under the Conditions of UV 254nm, Non-Polar, Prior

Each vertical segment is a sample, and each of these views contains 24 samples.

7

SECTION 3

DATA PREPARATION

Prior to applying any feature selection algorithms to the data, we prepared and

transformed each sample through a few standard practices.

3.1 Dimensionality Reduction

 Though the original images are in color, we seek to reduce the feature space, so the first

transformation we applied was a change from color to greyscale. Rather than using three values

per pixel, we will use only one. Not only does this limit the feature space, but it also helps create

a more standard representation of the data across the views. Should each view be left in full

color, there is an immediate and obvious bias to a particular color per view that isn’t practically

useful.

3.2 Sample Extraction

 Each HPTLC view image was provided, as seen in Figures 2.1-2.3, where all 24 samples

were placed adjacently and saved altogether in one image. However, in order to extract

information for each sample, we individually separated every sample within a view, repeating

this for all views.

8

3.3 Sample Vectorization

Once each sample was able to be handled individually, they were all transformed into a

single vector. This was done by taking the average value of a row of the sample and creating a

vector of each row’s average value.

 Figure 3.1 is an example of what this looks like, however each sample has been widened

from a one-wide pixel for the sake of visibility.

View Index = 2

Figure 3.1: Widened 1-Dimensional Sample Vectors

9

SECTION 4

MOTIVATIONS FOR MULTIPLE VIEWS

 Using multiple views adds a layer of complexity and possible confusion when trying to

implement and comprehend the various algorithms, so we provide the reasoning as to why we

decided to make use of all the views.

4.1 Dataset Size

 First and foremost, note that a single view has as few as three samples per class.

Although the data itself may be relatively straightforward to analyze, it has long been determined

that generally, the larger the training sample size, the more accurately a model will perform (S. J.

Raudys 1991). Given the small class size, we decided to test our models on each view to gain the

most insight into the data possible. We did not know whether one specific view would perform

better than another, or perhaps they might all perform similarly. As small sample size is bound to

produce a high variance, testing each view at least allows for some generalizable understanding

of the task rather than relying on a singular model’s performance on one view (Brownlee 2020

“Impact-”).

4.2 Generalizability of Algorithms

 Using multiple views enables us to eliminate the hypothesis that a single view is working

particularly well or badly within a model, and it also gives evidence for the performance of the

applied algorithms. Again, rather than a feature selection technique being validated in use with

just one view, we can provide more generalized evidence of its effectiveness.

10

4.3 Multi-view Learning

 Multi-view learning uses various techniques to combine data from multiple views about a

sample of data to perform machine learning tasks. Specific implementations vary, but the core of

the idea is that we can measure information about a sample in different ways. For example, “in

web page classification, there are often two views for describing a given web page: the text

content of the web page itself and the anchor text of any web page linking to this web page.”

(Zhao 2017). In our case, the different measuring techniques vary based on the conditions the

images were taken, resulting in our eight views.

 We could use these multiple views to perform feature extraction in ways we couldn’t if

we only used one. For example, we can naively combine all the views and extract the most

relevant features across all views combined using a model. This and other strategies that

necessitate the use of multiple views were performed and will be discussed later.

11

SECTION 5

METHODS FOR FEATURE SELECTION AND RULE EXTRACTION

As a brief reminder, the goal for us is to select a set of features from our dataset that we

can use to extract a simple set of rules so that the problem can be better understood. To this end,

there were quite a few computational methods used to remove the unnecessary features and

select the most useful ones before determining the rules. This section will discuss the breadth and

sequence of those that we used.

Figure 5.1 displays a summary of each of these steps, the data input into the step, and the

data output from the step.

Figure 5.1: Chain of Operations for Feature Selection and Rule Extraction

12

5.1 Binary Encoding of Random Forests

5.1.1 Overview

 The first step after preprocessing the data is creating a Binary Encoding of a Random

Forest. Abstractly, this “maps a sample point to a space defined by the entire set of leaf nodes

(rules) of the forest” (Liu 2012). This method was performed on each view separately, generating

a Binary Leaf Encoded Feature space for each view. While the following explanation indicates

how this encoding is done on one view, note that it was indeed performed on each of them.

5.1.2 Motivation and Method

 The Binary Encoding of a Random Forest is achieved by first training a Random Forest

(RF). An RF is an ensemble of Decision Trees, which themselves are models used for prediction.

Decision Trees choose features from a sample to create a model structured like the tree data

structure. At each node, there is a value with a threshold representative of a feature. A decision is

made about whether a sample should be placed in the subset of one group, or another based on

whether the value for this sample at this feature falls below or above the threshold. Each sample

has a path from the root node to a leaf which categorizes it. In our case, the leaves represent one

of the five classes. This chain of decisions made at each node along the sample’s tree traversal

can be interpreted as a set of rules. This chain of rules is easy to interpret as there is a clear

sequence of steps, and the feature impact at each node is stated (Liu 2012).

 As mentioned, an RF is an ensemble of these decision trees, so it also provides these

decision rules. The key difference is that there is a much larger number of them. However, in an

effort to select only the most critical of the features and rules, we performed a Binary Encoding

of the RF. The Binary Encoding of our samples is achieved as follows. For each sample passed

13

into our trained RF model, we will create a vector of length equal to the number of leaves in the

forest. This vector’s value will be in the order of the leaves in the forest. Finally, a particular leaf

node’s value in this vector is set to 1 if the sample reaches that leaf and 0 otherwise. This

transformation creates a binary vector for each of our samples. Each binary vector holds

information about the decision path for a sample because it “defines which rules are active” (Liu

2012). Active rules are useful as they can be used to determine the most critical features from our

original data. This will be done later after further feature elimination.

5.1.3 Creation of [Tree: Leaf Count] Dictionary

 After training an RF, we created a dictionary for the forest. Each key in the dictionary is a

tree object, and each value is its number of leaves. Furthermore, it should be noted that the tree

keys were ordered as they were in the RF. This map is immediately used to create the binary

vector for each sample. However, it is also used in step 3 to determine the original features used

in the decision paths of the trees.

5.1.4 Summary and Results

 As a reminder, the samples fed into this step were the preprocessed images. We input 1

Dimensional vectors for 24 samples with 1030 features for each view. The resultant binary leaf

encoding resulted in counts of features between 99 and 123. These vary as each view has its own

RF and, thus, its own number of leaf nodes. The specific view and feature count association can

be seen in Table 5.1.

14

Table 5.1 View to Feature Count after Binary Encoding of Random Forest

View # Feature Count View # Feature Count

1 114 5 120

2 109 6 100

3 113 7 99

4 123 8 103

5.1.4 Note on Random Forest Model

 While the training of the Random Forest was mentioned, the details of this were glossed

over. We would like to note that the optimization of the parameters of the RF was important.

However, it is not crucial to understanding the Binary Encoding of Random Forest, so the

discussion for these optimizations is set aside for Section 6.

5.2 Sparse Encoding for Rule Extraction

5.2.1 Overview

 As mentioned, the Binary Leaf Encoded Features from the previous step can be useful for

determining the most active features. This step is where they serve that purpose. We use binary

encoding as an input into a particular Support Vector Classifier (SVC), which functionally

selects the most important features from it. The SVC we use is a 1-norm Support Vector

Machine, which uses “l1” normalization. This configuration excels at handling inputs with

“redundant noise features” (Zhu 2003). Abstractly, it assigns a weight to a feature where the

15

higher the weight, the more important the feature is. This means that, with appropriate tuning,

this type of SVC will set certain features’ weight to 0, deeming them unimportant with regard to

a final, simplified model. The tuning for how aggressive the model should be with setting

features to 0 is determined by the regularization parameter. This parameter will be discussed

later. The behavior where unnecessary features are eliminated ultimately enables feature

selection.

 Finally, as was stated in the prior section, this transformation was applied to all views

individually, even though it is described as only being applied to one.

5.2.2 Motivation and Method

 With an understanding of how the SVC generally works, we now apply it to the Binary

Leaf Encoded Features. As a reminder, these encoded features represent the decision rules found

in the Random Forest. This means a 1-norm SVC machine trained on the encoded features will

eliminate the least important decision paths as it determines a sparser feature space. This forward

feeding technique works well as it is not simply training multiple models on the same set of

features. Instead, it intuits information about the original feature space at each step. The Binary

Leaf Encoded Features are a mapping of the features into decision rules, while the Sparse

Encoded Features are a selection of those mapped decision paths most important in determining

a sample’s classification. Thus, features that are not used in the SVC can be ignored as decision

paths as they presumably don’t have an impact on the decision rules extracted from the Random

Forest (Liu 2012). The extraction of the original features from the “Sparsely Chosen, Binary

Leaf Encoded” features is performed in Step 3.

16

5.2.4 SVC Tuning: Iterative Optimization without Cross-Validation

 With the goal of producing a sparser feature set, the regularization parameter was tuned

on the SVC model. With fewer features used, we can eventually make a simpler model.

However, fewer features can also mean a less accurate model. With the desire to maintain

accuracy, we noted the minimum number of features required to produce 100% accuracy on a

view. This required iteratively training the model on a range of regularization parameters and

noting the first occurrence of 100% accuracy. While the originators of the Sparse Encoding

technique recommend finding this regularization parameter using cross-validation, our dataset

was too small to be able to perform the operation reasonably (Liu 2012). As such, we used

simple iteration where many models were trained with various parameters until we noticed the

minimum number of parameters necessary to reach the asymptotic 100% accuracy.

5.2.3 Note on Training Data and Configuration: One v Rest

 Although we claim 100% accuracy of classification for each view, and this is accurate,

the classification was performed on the same training data. Due to the incredibly low count of

samples per class (only three in some cases) it wasn’t feasible to divide the data into training and

validation. Fundamentally, the concern of the veracity of the presented accuracy values is that

the model is overfitted to the inputs. However, this effect is mitigated in two key ways.

 First, given the nature and tuning of the 1-norm SVC, we explicitly attempted to create a

model that was as sparse as possible while still hitting an accuracy metric. The use of sparse

support vector machines has been noted to reduce overfitting by other researchers in the past

(Han 2014). Second, we used One-versus-Rest (OvR) training. OvR is a method of training a

multi-class classifier by training multiple binary classifiers, one for each class. Each binary

17

classifier is trained to distinguish the samples of its corresponding class from the samples of all

other classes. This can help prevent overfitting because it allows the SVM to focus on one class

at a time rather than trying to classify all classes simultaneously.

 Regardless, the prescribed accuracy isn’t ideal, but we believe it to be sufficient given the

model’s design.

5.2.5 Summary and Results

 This step of the operations chain, “Sparse Encoding for Rule Extraction,” consumed the

Binary Leaf Encoded Feature vectors from the previous step. Each view held 24 vectors, one for

each sample. Each vector was about 110 bits long, varying by the view. Each view was trained

using a range of regularization parameters until a parameter was found that produced 100%

accuracy with the fewest features used. The results of the remaining number of features in each

view can be seen in Table 5.2. As a reminder, this feature count is a count of the useful decision

paths per view, not the number of original features. That count is determined in the next step,

Original Feature Retracement.

18

Table 5.2 Remaining Count of Features per View after Sparse Encoding

View Accuracy Remaining Feature Count (of Binary Leaf Encoding)

1 100% 33

2 100% 24

3 100% 20

4 100% 38

5 100% 17

6 100% 22

7 100% 23

8 100% 21

5.3 Original Feature Retracement

5.3.1 Overview

 After the decision paths represented by the Binary Leaf Encoded Patterns have been

trimmed down to only the most relevant, we now map back these decision paths to the features

used within them. Again, this was done for each view individually.

5.3.2 Method

First, the tree objects in all the Sparsely Chosen, Binary Leaf Encoded Features from step

two were gathered. Each list of trees was ensured to be only one copy of a tree, removing

duplicates when necessary. This mapping was performed using the dictionary of Tree Object-to-

Leaf Count created in step one. After determining all of the unique trees, representative of the

19

leaves in the binary encoded leaves, each of the tree objects was used to determine the original

features present at each of their nodes.

5.3.2 Summary and Results

 We determined the original features used in the trees whose leaves were retained after the

sparse encoding of the previous step. This step consumed the Sparsely Chosen, Binary Leaf

Encoded Features and produced a small set of Important Original Features. The counts of

original features remaining in each view can be seen in Table 5.3.

Table 5.3 Count of Important Original Feature by View

View Important Original Feature Count

1 76

2 64

3 55

4 91

5 65

6 48

7 45

8 58

20

5.4 Interval Extraction and Consolidation

5.4.1 Overview

 After the previous step, the original plan was to move on to what is now step 6. However,

in observing the output of the previous step, we noticed a pattern in the Important Original

Features. Figure 5.2 shows a list of the Important Originals for one view.

Figure 5.2 Important Original Features in View 1

Our observation of the above feature space is that the chosen features seemed to occur in

groups. There are several nearly continuous values followed by a massive gap of unused values

before the next clump of important features. We can visually understand this by visually

inspecting a sample. See Figure 5.3 for an example.

Figure 5.3 Widened 1-Dimensional Vector of Sample 2 in View 1

21

A sample is fundamentally composed of bands of values. These bands represent the separated

components within whatever substance that is being analyzed. The varying color of the bands

helps researchers analyze samples even without computational methods. Thus, it is reasonable to

conclude that the model also uses bands to classify the samples. However, due to the nature of

the Random Forest and how nodes are picked in each of its Decision Trees (randomly), what a

human might call a “single band” can be represented by a range of features. After all, even

though two separate pixel values may be equivalent due to being adjacent portions of the image,

they are in different pixels and, thus, different features. Furthermore, this behavior reinforces the

usefulness of the decision path encoding created by the Random Forest. We now see that many

paths use the same feature (a specific single band) to determine the sample’s classification.

 Given this analysis and our goal of extracting only the most valuable features, we

consolidated each clump of features into a single value.

5.4.2 Method

 Consolidating the features in Figure 5.2 {Important Original Features in View 1} begins

with determining the interval a clump of features covers. This requires some tuning. Technically,

values are not continuous if they are not adjacent. However, based on our analysis, we can intuit

that having a small gap between the selected features to still consider them “continuous.” As

such, we created an algorithm to construct an array of intervals from the array like that in Figure

5.2 {Important Original Features in View 1} with a tunable parameter called the Relaxation

Value. The Relaxation Value determines the maximum distance apart that two features can be

and still be considered part of a single interval.

22

 Various Relaxation Values were tested, and their performance was gauged by the count

and compactness of their intervals. We desired a low count of intervals balanced with intervals

that did not span too large of a range. Ultimately, a Relaxation Value of 10 was used. Values

below 10 often produced intervals that could reasonably be joined further. Values above 10

either had no significant impact on the count of intervals or, in the extremely high Relaxation

Value Cases, produced too few intervals that covered far too large of a range. Finally, should a

value be “alone” (not within a range) it was ignored.

5.4.3 Determining the Center Value

 Once we determined each possible interval, we calculated the center feature within that

range and used that to replace all previous features within the interval. There was an alternative

approach to determining the best representative feature of an interval, and it will be discussed in

Section 7. However, the alternative approach was not used due to its increased complexity and

lack of improvement over the stated approach.

5.4.4 Multiview Learning

 Although Figure 5.2 {Important Original Features in View 1} shows an example of a

single view’s Important Original Features, this is not the final array we used to determine the

intervals. Instead, we combined each view’s Important Original Features into one long sorted

list. Then, the intervals were extracted from this list. This means that each view’s feature set is

now equivalent.

 This is the step in the chain of operations that makes use of the idea of Multiview

learning. Another method was explored but not implemented, and it will be discussed in Section

8. Beyond just making use of the multiple views, this decision was made for the following

23

reason. When all of the view’s Important Original Features were concatenated and sorted into a

single array, many features were duplicated a number of times over. This means that they already

existed in multiple views. Furthermore, some ranges became even more defined, with more

intermediary values present. These observations motivated us to conclude that using every view

would allow for more accurate and higher-resolution intervals.

5.4.5 Summary and Results

 The Interval Consolidation and Extraction performed in this step consumed the Important

Original Features and compacted them into a single set of Consolidated Original Features. The

counts of the Important Original can be seen in Table 5.3 {Count of Important Original Feature

by View}. The count of features after the Interval Consolidation and Extraction is 12 across all

views. A visualization of these twelve features plotted on View 1 is provided in Figure 5.4. Each

horizontal red line is a feature.

Figure 5.4 Consolidated Original Features Plotted on View 1

It can easily be seen that many of these features do line up with the horizontal dark or

light bands present in some classes of the samples.

24

5.5 Iterative Sparse Encoding without the use of a Random Forest for Rule Extraction

5.5.1 Overview

 We can now perform a Sparse Encoding on the original features. The process and logic in

this step are identical to step 2. We use a 1-norm SVC on the input features, “Consolidated

Original Features,” in this case, and eliminate features that are assigned a weight of 0 by the

model.

5.5.2 Motivation & Method

 The original paper, which discussed using binary leaf-encoded vectors in rule extraction

using sparse encoding, mentions an iterative approach. Their suggestion was to use the output

from the sparse encoding as the deciding factor for the input of a new Random Forest, thus

iterating through the process again (Liu 2012). While this is not what we do here, it inspired the

use of another iteration using sparse encoding. The key difference is that our sparse encoding is

performed on a set of the original features directly, not being passed back through a Random

Forest to generate binary vectors again.

 A key difference as compared to the previous implementation of the sparse encoding

method is that we did not expect 100% accuracy for each view this time. Instead, we sought a

high accuracy.

5.5.3 Summary and Results

 As a brief synopsis, this step consumes the Consolidated Original Features, performs

sparse encoding using a 1-norm SVC, and produces “Critical Original Features.” The results can

25

be seen in Table 5.4. Ultimately, this step did not reduce the number of features by as significant

a proportion as previous steps, but reducing the space even further is helpful, nonetheless.

Table 5.4 Count of Critical Original Features after Iterative Sparse Encoding

View Accuracy Critical Original Feature Count

1 100% 11

2 100% 9

3 87.5% 9

4 100% 9

5 91.7% 10

6 100% 10

7 100% 11

8 95.8% 11

5.6 Decision Tree Rule Extraction

5.5.1 Overview

 Now that the most critical features have been determined, reducing the feature space from

1030 to ~10, we can use these features to determine a set of simple rules. As described in Section

5.1.2, Decision Trees are excellent at creating a set of easily interpretable rules, which is what we

do in this step.

26

5.5.2 Method and Outcome

 A Decision Tree was trained for each view, using its own set of Critical Original

Features. The model parameters were tuned to provide 100% across all views. Each model

produced a Decision Tree. These trees can be viewed in Figures 5.5-12.

5.7 Conclusions

 This process of feature selection and rule extraction functionally reduced a space of 1030

features to around 10. It allowed us to produce a simple decision tree for each view. The

particulars for the “meaning” of each rule in each tree are not relevant to the scope of this paper,

but there are a few observations to make about the produced trees.

 Most obviously, the trees are not equivalent. Each view has a unique tree. However, there

is some similar behavior across the trees. For example, when any single sample from class 2 is

separated, all the class samples are also divided into subgroups. Even when comparing different

features, class 2 excellently differentiates itself from the other classes. Finally, while some trees

do have a more complex decision path to a particular leaf, such as in View 4, View 7’s decision

path per class is incredibly simple. It separates nearly every class into its own subset with one

decision. View 8 also nearly accomplishes this. Perhaps the form of imaging represented by

these views produces the most reliable and readily interpretable results.

27

Figure 5.5 Extracted Rules in Decision Tree of View 1

Figure 5.6 Extracted Rules in Decision Tree of View 2

28

Figure 5.7 Extracted Rules in Decision Tree of View 3

Figure 5.8 Extracted Rules in Decision Tree of View 4

29

Figure 5.9 Extracted Rules in Decision Tree of View 5

Figure 5.10 Extracted Rules in Decision Tree of View 6

30

Figure 5.11 Extracted Rules in Decision Tree of View 7

Figure 5.12 Extracted Rules in Decision Tree of View 8

31

SECTION 6

RANDOM FOREST PARAMETER OPTIMIZATION

6.1 Objectives

 As mentioned in Section 5.1.4, efforts were taken to optimize the Random Forest model

used for the Binary Leaf Encoding, which will be discussed in this section. Primarily, our key

objective was to have the fewest number of original features represented in our Random Forest

model. Of course, similarly to the 1-norm SVC model, the fewer features were present, the lower

the accuracy of the RF. Therefore, we sought at least a near-perfect accuracy from our model

while tuning its parameters. This means miss-classifying no more than 3 samples, preferably

fewer. Regarding the Random Forest model, this specifically means that we desire the fewest

nodes present across all our trees.

6.2 Outcomes

 To this end, we conducted various tests of our model. The two key parameters to

optimize around are the maximum depth of each tree and the number of trees in the forest. Using

these values, you can calculate the maximum number of nodes present in the forest. Simply find

the maximum number of nodes in a binary tree using the maximum depth (h): 2h – 1. Then,

multiply this value by the number of estimators. The result is the maximum number of nodes in

your forest.

 Keeping the criteria in mind, we performed a number of tests on forests with different

depths and numbers of estimators. When trees were forced to depths less than three, they did not

32

reach high enough accuracy without a very high number of estimators. At a max-depth equal to

three, we achieved relatively good accuracy with a relatively low number of estimators. Tables

6.1 and 6.2 show the accuracy for each view for a Random Forest with a max depth 3 and a

number of estimators equal to 30 and 40, respectively.

Table 6.1:

Accuracy across All Views for Random

Forest with Max Depth: 3, N_Estimators:

30

View Accuracy

1 95.8%

2 100%

3 100%

4 87.5%

5 95.8%

6 100%

7 100%

8 100%

Table 6.2:

Accuracy across All Views for Random

Forest with Max Depth: 3, N_Estimators:

40

View Accuracy

1 100%

2 100%

3 100%

4 95.8%

5 100%

6 100%

7 100%

8 100%

However, when the max depth was set to 4, we were able to achieve comparable

accuracy with even fewer estimators. See Table 6.3.

33

Table 6.3: Accuracy across All Views for Random Forest with Max Depth: 4, N_Estimators: 20

View Accuracy

1 95.8%

2 95.8%

3 100%

4 91.7%

5 95.8%

6 100%

7 100%

8 100%

After calculating the maximum number of nodes in all three of these forests, we get the

results in Table 6.4.

 Table 6.4 Maximum Number of Nodes in each RF Model

Model Max. Number of Nodes

Max Depth = 3, N_Estimators = 30 150

Max Depth = 3, N_Estimators = 40 200

Max Depth = 4, N_Estimators = 20 140

Because our objective is to have the fewest possible nodes, we used the model with a

max depth of 4. Finally, a brief note that while this calculation shows the maximum number of

34

nodes, it is unlikely that this number is actually reached as Decision Trees do not often fill out

their full binary structure. The model we used had fewer than 140 nodes.

35

SECTION 7

ALTERNATIVE IMPLEMENTATION FOR DETERMINING AN INTERVAL’S CENTER

7.1 Motivations

As discussed in Section 5.4.3, there was an alternative implementation for determining

the center value of an interval. As a reminder, the final implementation took the numerical center

between the two ends of the interval. This calculation is (End of Interval) + (Start of Interval) / 2.

Although the intervals are built from many values, it is very often the case that the selected

center value is not present in the semi-continuous values used to define the interval. This begs

the following question. Would using a value present in the set used to construct the interval

generate better results?

7.2 Implementation

 At its essence, the alternative implementation chooses the median value of all the values

used to construct a particular interval. It performs this by keeping track of all the values used to

construct an interval. Then, we pick the center feature from this ordered list. This guarantees that

we will use a feature that was produced by the Sparse Encoding and the Binary Encoding of the

Random Forest steps.

 After extracting and consolidating the intervals, we used the resultant features as we did

in the final implementation and put them through another SVC for a round of Iterative Sparse

Encoding.

36

7.3 Results

 The median value extraction method was compared to the mean value extraction method

across all views based on resultant feature count and accuracy.

Regarding the feature count, the median implementation performed as well or better than

the mean implementation. However, this difference is negligible as it is by one to three features

at most.

In terms of accuracy, the two extraction methods performed better than each other on

different views. However, if we calculate the average accuracy value across all views, the mean

method scores a 96.9% while the median method only scores a 94.8%. The mean method is

slightly more accurate than the median method in our test.

Ultimately, we determined that the implementations produced such similar results that the

difference between them was not significant enough to warrant using one over another. Thus, we

decided to use the simpler implementation. That is simply choosing the center value of an

interval.

37

Table 7.1

Mean Center Interval Extraction

View Accuracy Feature Count

1 100% 11

2 100% 9

3 87.5% 9

4 100% 9

5 91.7% 10

6 100% 10

7 100% 11

8 95.8% 11

Table 7. 2

Median Center Interval Extraction

View Accuracy Feature Count

1 100% 10

2 100% 9

3 91.7% 7

4 91.7% 9

5 83.3% 10

6 95.8% 7

7 100% 8

8 95.8% 8

38

SECTION 8

POSSIBLE EXTENSIONS AND FUTURE WORK

 The following items are a few ideas related to the data or processes used in this project

which could be further explored.

8.1 Multiview Binary Leaf Encoding

 In the demonstrated method, each view individually generated a Binary Leaf Encoding

after preprocessing the data. However, it is possible to perform a very simple multiview training

technique where each view is concatenated so that they all functionally become one dataset. This

concatenated superset could then be used to generate a Binary Leaf Encoding and continue

through the remaining steps described previously. The one other exception in the series of steps

would be that when one performs Interval Consolidation and Extraction, they will not join

multiple views together to extract intervals.

 Multiview feature selection can increase accuracy (Komeili 2021). Therefore, an

approach where this is incorporated from the start might allow for the same high standards of

accuracy with fewer features. Although we eventually use multiple views in our process, this

approach would leverage the benefits from the very beginning.

8.2 Increased Iterations

 As mentioned in Section 5.5.2, the original paper, which discussed using binary leaf-

encoded vectors sparsely encoded for rule extraction, mentions an iterative approach. Their

suggestion was to use the output from the sparse encoding as the deciding factor for the input of

39

a new Random Forest, thus iterating through the process again (Liu 2012). We did not do this, so

it is certainly a path that could be explored for further research.

 Furthermore, while the “natural” step for this, as envisioned by the original authors,

would be after our step 3 “Original Feature Retracement,” it could just as easily be performed

after step 4 “Interval Extraction and Consolidation.” Either of the outputs of these steps could

reasonably be used as the input for another iteration of Binary Encoding of a Random Forest and

Sparse Encoding.

8.3 Applying Interval Extraction and Consolidation on Higher Dimensional Data

 Finally, in terms of very different datasets, we could imagine use cases where something

similar Interval Extraction and Consolidation is applied to higher dimensional data. Of course,

this would require an entirely different implementation, but choosing a single representative for a

cluster of features could produce useful results, especially in cases where the goal is to select

features for rule extraction.

40

BIBLIOGRAPHY

Brownlee, Jason. “How to Choose a Feature Selection Method for Machine Learning.”

MachineLearningMastery.com, Machine Learning Mastery, 20 Aug. 2020,

https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/.

Brownlee, Jason. “Impact of Dataset Size on Deep Learning Model Skill and Performance

Estimates.” MachineLearningMastery.com, 25 Aug. 2020,

https://machinelearningmastery.com/impact-of-dataset-size-on-deep-learning-model-skill-

and-performance-estimates/.

Han, Henry, and Xiaoqian Jiang. “Overcome support vector machine diagnosis

 overfitting.” Cancer informatics vol. 13,Suppl 1 145-58. 9 Dec. 2014,

 doi:10.4137/CIN.S13875

Liu, Sheng et al. “Combined rule extraction and feature elimination in supervised

 classification.” IEEE transactions on nanobioscience vol. 11,3 (2012): 228-36.

 doi:10.1109/TNB.2012.2213264

M. Komeili, N. Armanfard and D. Hatzinakos, "Multiview Feature Selection for Single-View

 Classification," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

 43, no. 10, pp. 3573-3586, 1 Oct. 2021, doi: 10.1109/TPAMI.2020.2987013.

Marathe, Written by Sandesh. “HOW HPTLC WORKS: A Guide for Researchers at the Bench.”

Bitesize Bio, 11 June 2020, https://bitesizebio.com/47784/hptlc-basics-and-

instrumentation/.

S. J. Raudys and A. K. Jain, "Small sample size effects in statistical pattern recognition:

 recommendations for practitioners," in IEEE Transactions on Pattern Analysis and

 Machine Intelligence, vol. 13, no. 3, pp. 252-264, March 1991, doi: 10.1109/34.75512.

Sathyajith, Deepthi. “High-Performance Thin Layer Chromatography (HPTLC) in the

Pharmaceutical Industry.” NewsMedical, News Medical, 17 Oct. 2019, https://www.news-

medical.net/life-sciences/High-performance-Thin-Layer-Chromatography-(HPTLC)-in-

the-Pharmaceutical-

Industry.aspx#:~:text=The%20pharmaceutical%20industry%20has%20witnessed,of%20bu

lk%20drugs%20and%20formulations.

Talari, Saikumar. “Random Forest vs Decision Tree: Key Differences.” KDnuggets, 2022,

https://www.kdnuggets.com/2022/02/random-forest-decision-tree-key-differences.html.

Zhao, Jing, et al. “Multi-View Learning Overview: Recent Progress and New Challenges.”

Information Fusion, vol. 38, 2017, pp. 43–54.,

https://doi.org/10.1016/j.inffus.2017.02.007.

41

Zhu, Ji, et al. ‘1-Norm Support Vector Machines’. Advances in Neural Information Processing

 Systems, edited by S. Thrun et al., vol. 16, MIT Press, 2003,

 https://proceedings.neurips.cc/paper/2003/file/49d4b2faeb4b7b9e745775793141e2b2-

 Paper.pdf.

	Exploration of Feature Selection Techniques in Machine Learning Models on HPTLC Images for Rule Extraction
	Recommended Citation

	tmp.1682523720.pdf.Z2wkc

