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ABSTRACT

Protein structure comparison and our understanding of protein sequence and struc-

ture relationships are intertwined. In this work, I use the TSR-based key generation algo-

rithm to develop a model for relating sequence and structure. I develop embeddings for the

sequence-based keys and the structure-based keys as the basis for a translation model be-

tween the two sets of keys, evaluating the efficacy of local and global embedding generation

techniques in the context of the TSR-based comparison method.
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1 INTRODUCTION

Pairwise protein structure comparison is a problem that has attracted significant

attention in computational biology in the past two decades; in particular because of the

many ways protein structure analysis can be used. Some problems where protein structure

comparison is useful include protein folding problems, protein structure prediction, and

understanding molecular evolution, to name a few.

Most existing protein structure comparison methods can be broken down into four

components: smallest structural unit for comparison, degree of comparison, methodology of

structural comparison, and the measure of statistical significance of the similarity measure.

The degree of comparison is by far one of the most varied, with many classifications existing

under its umbrella including rigid vs. flexible, sequential vs. nonsequential, and local vs.

global vs. local-global comparison.

The focus of this work is the triangular spatial relationship-based (TSR-based) com-

parison method. The TSR-based comparison method is a local-global descriptor-based pair-

wise protein structure comparison. The heart of this comparison method is vectorization of

each protein using keys to represent amino acid triplets. Both protein sequences and protein

structures can be vectorized using this method, with each one generating 1D and 3D keys,

respectively.

While this method is useful for protein structure comparison, the vectorization process

also allows us to examine the relationship between sequence and structure more thoroughly.

In this work, I model the relationship between 1D and 3D keys; this could be extended in

1



the future to examine the relationship between 1D vectors and 3D vectors, allowing us to

expand our understanding of the relationship between sequence and structure.

To model the relationship between 1D and 3D keys, I treat each key as a “word”, with

the set of 1D keys being a “language” and the set of 3D keys being its own “language”. By

breaking the problem down to these components, I can take an approach similar to machine

translation (MT) models, where I first generate embeddings for each language and then align

them to determine the closest 3D embedding for a chosen 1D embedding, or vice versa.

Several popular frameworks exist to generate embeddings for word related problems;

two of the most popular methods include word2vec and GloVe. Word2vec uses a local

context window method to generate embeddings; in contrast, GloVe uses a global log-bilinear

regression method. Since the TSR-method is a local-global structural comparison method,

it is unclear whether a local or global approach would be the better choice for embedding

generation.

In this work, I generate translation models using the word2vec and GloVe embedding

generation techniques to compare their effectiveness for TSR-based keys. The remainder of

this paper includes a more comprehensive review of existing protein structure comparison

methods followed by an in-depth description of the methodology by which I generated the

translation models. Several variations of these models and their effectiveness is discussed in

the evaluation section, followed by my conclusions and thoughts on future research directions.
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2 LITERATURE REVIEW

Proteins play a significant role in biochemical reactions. Analysis of proteins allows

us to create hypotheses on how to affect, control, or modify proteins, key components of

biochemistry, microbiology, drug development, and evolutionary biology. Protein structures

are more conserved than protein sequences, that is, protein structures with similar structural

features often have similar functions despite differences in their sequences. Thus, quantifying

these structural differences is critical to a deeper understanding of the structural, functional,

and evolutionary relationships among these proteins.

Pairwise protein structure comparison has attracted a significant level of research

attention from both biologists and computer scientists due to its significance. Protein com-

parison is applicable to a wide range of both physical and biological research questions,

including various facets of the protein folding problem, protein structure prediction, ho-

mology detection, functional annotation, mechanisms of evolutionary change, and molecular

evolution, just to name a few.

Over the last two decades, following the creation of the first automated structural

method, an abundance of potential solutions have been proposed for aligning protein struc-

tures. However, due to the considerable variety of results from these methods, no singular

method has been widely accepted for comparison or search among protein structures.

While examining all existing protein comparison methods would be impossible, most

methods can be broken down into four major components. The first of these is the smallest

structural unit by which to compare. This can be amino acids, secondary structures, or

torsion angles. The second, degree of comparison, can include or be a combination of rigid
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or flexible comparison, sequential or non-sequential comparison, and global, local, or local-

global comparison. Some methods use a rigid protein state to compare structures, however,

a growing variety of protein structure comparison methods include the concept of flexibility

[1, 2, 3, 4].

These methodologies attempt to capture structural similarity between proteins that

have undergone conformational changes. Previous estimates suggest that between 17.4% and

35.2% of all alignments are non-sequential, depending on parameter variations [5], leading

to the development of non-sequential [6], hybrid [3], and unified [7] comparison methods.

Various methods have been created using local [8], global [9], or local-global [10] comparisons

depending on the purpose of the comparison.

The third main component is the methodology of structural comparison, which can

be broadly classified into alignment or descriptor based comparison. Alignment based com-

parisons require translations and rotations before performing a comparison of two structures,

and can be either intramolecular [8] or intermolecular [11, 12] distance based alignments. In

contrast, descriptor based comparison usually uses histograms or vectors to describe molec-

ular shape, and only require reference transformation to perform comparison. Generally,

alignment based comparison methods are not considered to be efficient for searching for

similar structures from a database in real time [13]. Description based comparisons, on the

other hand, have to balance information loss against redundancy and high dimensionality to

be effective [14], but are considered efficient for searching large databases in a time effective

manner.

The final component of a protein structure comparison method is the measurement

of statistical significance of the similarity measure. Common measures of similarity include

root mean squared distance (RMSD) and its variations [15, 16], Template modeling-score

(TM-Score) [17, 18], and the Jaccard index [19, 20].

Many methods for protein structure comparison rely on basic computer science tech-

niques. Some geometry-based algorithms include maximum common subgraph detection
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[21], Ullman’s subgraph isomorphism algorithm [22], and geometric hashing [23]. Genetic

[24] and Monte-Carlo [11] algorithms have been used for secondary structure-based and

distance-based comparisons, respectively, while dynamic programming algorithms have been

implemented for both comparison methods [25, 26, 27, 28].

Newer approaches to finding homologous proteins focus primarily on structure; early

methods used sequence string matching to derive initial structural equivalence but their

performance struggled when sequence similarity was low [21]. These methods use similarities

in local structural regions [29], secondary structures [30, 18], or both [31] to determine initial

structural equivalence.

More recently, an innovative descriptor-based approach has been developed for ex-

amining pairwise protein structure similarity. This approach, called the triangular spatial

relationship-based (TSR-based) method [32] is a non-sequential, local and global descriptor-

based pairwise protein structure comparison.

The most critical component of TSR-based vectorization is the key generation. To

describe the key generation process succinctly, Cα atoms from each protein’s PDB file are

selected, and then all three lengths and angles of each possible triangle formed by Cα are

calculated. Each Cα of the 20 amino acids were assigned a unique integer identifier, which

was then transformed to l1, l2, l3 for the vertices of triangle i based on rule-based label-

determination. θ1 is defined using the Equation 2.0.1 and θ∆ is a function on θ1 values as

defined in Equation 2.0.2,

θ1 = cos−1(
(d213 − (d12

2
)2 − d23

2 ∗ d12
2

∗ d3
) (2.0.1)

θ∆ =

 θ1 if θ ≤ 90◦

180◦ − θ1 otherwise
(2.0.2)

where d13, d12, d3 are the distance between li1 and li3, the distance between li1 and li2, and

the distance between li3 and the midpoint of li1 and li2, for triangle i respectively.
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Once li1, li2, li3, D (where D = d12) and θ∆ have been determined, each key can be

calculated using equation 2.0.3,

k = θτdτ (li1 − 1)m2 + θτdτ (li2 − 1)m+ θτdτ (li3 − 1) + θτ (d− 1) + (θ − 1) (2.0.3)

where m is the total number of distinct labels, θ is the bin value for the class that θ∆, the

angle representative, falls in to achieve discretization, θτ is the total number of bins for the

angle representative, d is the bin value for the class that D, the length representative, falls

in to achieve discretization, and dτ is the total number of bins for the length representative.

If there are q amino acids in the protein dataset, the time complexity of this method

in the worst case is O(nq3) where n is the number of proteins in a given data set. Further dis-

cussion of this methodology of key generation, including the determination of bin boundary

values and the number of bins, was reported [32].

The key calculation, along with the comparison and search features of the TSR-based

method allow for crucial insight into the nature of protein structure relationships on both a

local and a global scale. Recent work has used the TSR-based method to study the structure

relations of proteins with a focus on the receptors organized in hierarchical levels. This work

has found that some protein pairs have high sequence similarity but low structure similarity,

or vice versa; studying these protein pairs in particular will help us understand more about

sequence and structure relationships [33].

In this work, I will examine this issue as a machine translation (MT) problem and pro-

pose a novel method by which to understand the relationship between 1D and 3D keys. De-

veloping this model requires that we first generate embeddings to represent these keys. Two

popular approaches for word embedding include word2vec [34] and GloVe [35]. Word2vec

has emerged as one of the most commonly used natural language processing (NLP) tech-

niques, and uses a shallow neural network. Two models are available for training word2vec,

including the continuous bag of words model (CBOW) and the continuous Skip-Gram model.
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CBOW uses surrounding words to predict the target word, while Skip-Gram takes the target

word and attempts to predict the surrounding words. Additional optimization techniques,

such as hierarchical softmax and negative sampling, help to make this process more efficient.

In contrast to word2vec, which is considered to be a local context window method, GloVe

is a global log-bilinear regression model. GloVe is trained on non-zero entries of a global

word-word co-occurrence matrix, which calculates how frequently words co-occur in a given

corpus. Then, the ratio of probabilities between two pairs of words are used to generate the

embeddings.

GloVe is mostly used in natural language processing (NLP) contexts. In contrast,

word2vec - along with its sister tool, doc2vec [36], which vectorizes documents rather than

words - have been used effectively in non-NLP contexts in a variety of fields, including

product recommender tools [37], generating embeddings for categorical variables [38], and

malware detection [39], to name a few.

In brief, despite the significant research effort into protein structure comparison, there

are still a lot of gaps in our understanding of the relationship between protein structures, and

the relationship between protein sequences and protein structures. A promising approach to

structure comparison is the TSR-based model, however, the relationship between 1D and 3D

keys is not well established. In this work, we use an approach akin to machine translation to

create models that can “translate” a 1D key to a 3D key and vice versa, based on context. We

utilize word2vec and GloVe, local and global embedding methods of vectorization, to build

these models. The resulting models will provide important insights into the relationship

between 1D and 3D keys, and allow future researchers to develop new algorithms examining

the relationships between protein sequences and structures.
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3 METHODOLOGY

I selected a small sample grouping of 5 protein structures to test the modeling system

on a small scale. Additional information about each protein can be found in Appendix A.

The key generation method described in Section 2.2 was applied to each protein, generat-

ing the 1D and 3D keys for each amino acid triplet within a protein for each amino acid

triplet, including the representative coordinates each amino acid within the triplet. These

coordinates can be denoted as p1, p2, p3 for the location of each amino acid in sequence and

(x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) for the locations of each amino acid in the structure.

c(p1, p2, p3) =
p1 + p2 + p3

3
(3.0.1)

C((x1, y1, z1), (x2, y2, z2), (x3, y3, z3)) = (
x1 + x2 + x3

3
,
y1 + y2 + y3

3
,
z1, z2, z3

3
) (3.0.2)

For each amino acid triplet, centroids c and C are calculated using Equation 3.0.1

and 3.0.2, respectively, with c denoting the 1D centroid and C denoting the 3D centroid.

The 1D and 3D keys for two amino acids are denoted as k1, k2, and K1, K2, re-

spectively. The similarity function for two one dimensional keys sim1(k1, k2) is defined as a

function of the distance between the two keys in sequence:

f(k1, k2) =

 1 if dist(c1, c2) ≤ d

0 otherwise
(3.0.3)

Likewise, the similarity function sim3(K1, K2) is defined as a function of the distance between

the two keys in the protein structure:
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F (K1, K2) =

 1 if dist(C1, C2) ≤ d

0 otherwise
(3.0.4)

where k1 and k2 are the 1D keys representing two amino acids, K1 and K2 are the equivalent

3D keys, c1 and c2 are the 1D centroids, C1 and C2 are the 3D centroids, dist(x, y) is the

distance function between two points, and d is a user input.

For the purposes of this work, I chose d by selecting the distances between approxi-

mately 150,000 pairs of amino acid triplets. This sampling approximates the normal distri-

bution, with the sample distances in 1D having a mean of 83.521 and a standard deviation

of 29.875 and the sample distances in 3D having a mean of 19.966 and a standard deviation

of 4.947. The goal of setting a value d is to find triplet pairs that are ”close” to each other.

Thus, I select d = 8.250 to approximate the smallest 2.5% of distances from both sets.

Each protein has an average of 406,663 total keys, which can be combined in pairs of

2 in approximately 80 billion ways. Even with advanced techniques, doing this across even

a small dataset is costly and time consuming. Initial observations suggest that triplets that

are close to each other in either dimension are generally near each other in the files. Thus,

I use a batching technique, calculating all the potential combinations in batches of 1,000

triplets and cross batches containing the last 500 triplets from the first batch and first 500

triplets from the second batch. Then, I apply the similarity function to each pair of triplets,

counting how many times a pair sim(k1, k2) = 1, or the co-occurrence frequency.

These values are stored as an adjacency list of the undirected weighted graph G =

(V,E), where V is the list of unique keys in a protein p and E contains the weighted

edges representing the co-occurrence frequencies. Two graphs are computed: one for the 1D

keys and one for the 3D keys. A Python implementation of B+ [40] trees is used to store

these adjacency lists; further reasoning behind this storage mechanism has been reported

[41]. After computing the adjacency lists for each file, these are aggregated to one global

adjacency list for each dimension.
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Each one-dimensional model uses vectors of size n1 ∗ 150, where n1 is the number of

unique 1D keys and 150 is the embedding dimension. The same embedding dimension is used

for the three-dimensional models, which use vectors of size n3 ∗ 150 where n3 is the number

of unique 3D keys.The list of protein files was split into training and test sets where 80%

of the proteins were allocated to training and the remaining 20% for testing. Each training

process was performed on a NVIDIA Tesla V100 GPU node on Maple cluster using pytorch

[42].

Fig. 1: Visualization of the embeddings after training.

I implemented word2vec using the SkipGram with negative sampling (SGNS) model.

I chose to use 5 positive samples so the model focused on finding interchangeable keys more

than contextual similarity. For a key k, the positive samples are the 5 edges containing k

with the largest weights. The number of negative samples per positive sample, γ, allowed

me to tweak the model training more, since increasing the number of positive samples nega-

tively impacted the model’s ability to find ”synonyms”, or interchangeable keys. For model
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training, I used γ = 3, γ = 5, and γ = 7 to evaluate the effect the number of negative

samples would have on building the word2vec models.

The GloVe model required additional hyperparameter tuning to obtain results; es-

pecially due to the amount of co-occurrences. Unlike the word2vec model which selects a

subset of the data by default, the GloVe model uses the full global dataset. The loss function

J is defined as the following:

J =
∑
i,j

f(wij)(k
T
i kj − log(wij))

2 (3.0.5)

where wij is the weight associated with the edge e = {ki, kj}, kT
i and kj are the embeddings

for ki and kj, respectively, and f(wij) is the weighting function, defined below:

f(wij) =

 (
wij

xmax
)α if wij ≤ xmax

1 otherwise
(3.0.6)

where wij is the number of co-occurrences and xmax is the maximum number of co-occurrences

considered significant. Further discussion of the selection of the weighting function has been

reported; the original authors found that an α value of 0.75 was most effective in their work

[35]. However, I was interested to see the impact of the weighting function in the model

training, so I used three alpha values: α = 0.5, α = 0.75, and α = 1 to investigate the effect

in this particular context.

After training the models, each pair of 1D and 3D models were aligned to each other

using a simple rotation technique. The rotation matrix R was computed using the scipy

[43] implementation of Orthogonal Procrustes Analysis [44], which finds the matrix that

minimizes the squared Frobenius norm of the difference between the two embeddings. The

matrix is then applied to the 3D embeddings by multiplying the two together; this newly
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Fig. 2: Before and after rotational alignment.

aligned set of 3D embeddings is used for the translation model. Experiments using the non-

aligned set of embeddings and the aligned set of embeddings show a significant increase in

accuracy when using the aligned embeddings.

After alignment, the translation model requires the two sets of embeddings, a key

k, and length P of similarity allowance. If k is a 1D key, then the P closest embeddings

are returned from the 3D embeddings, where closeness is measured by cosine similarity; the

nature of the model means it is effective for translation from 1D to 3D and from 3D to 1D.

12



4 EVALUATION AND RESULTS

Each model was evaluated on the same set of test data to ensure consistency in

the comparison process. The test data was read in as a set of 1D keys with their actual

corresponding 3D keys in the test set. For each direction - 1D to 3D and 3D to 1D - the

translation model was given a key k1 and a range P , and it generated the P closest keys for

the opposite dimension. If the corresponding key k3 was found in the set of P closest keys, it

was considered a positive; otherwise, it was not. Accuracy was given as a score numpositives
totalkeys

.

As there are a significant number of keys and the average number of closely related keys is

unknown, I chose to evaluate using P = 20.

The evaluation function can be written as the following:

accuracyx = (
nx∑
i=1

f(kxi))÷ nx (4.0.1)

f(kx) =

 1 if ky ∈ translate(kx, P )

0 otherwise
(4.0.2)

where the x and y are dimensions, nx is the number of keys in that dimension,

kx and ky are corresponding keys in different dimensions, translate(kx, P ) is the set of

keys {ky1, ky2. . . ky(P−1), kyP} containing the keys from dimension y closest to kx, and the

accuracyx represents the accuracy of translation from x dimension to y dimension.

The findings of this work have to be seen in light of some limitations. Protein data is

notoriously large and computationally expensive to work with; the amount of data I was able

to process was affected by the memory and time constraints present in the supercomputing
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nodes I had access to. The accuracy of the models is therefore subject to the limitations

of being able to process only a small portion of the protein data available, and may not be

fully realizing the potential of this methodology for translation between keys. Further work

on this topic will require more extensive parallelization, specifically in the calculation of the

adjacency lists, likely using CUDA or a similar framework to fully realize the potential of

the GPUs available; however, implementation of CUDA-based processing was outside the

scope of this work. However, even the worst performing models do still perform significantly

better than random chance, indicating that this is a viable technique.

TABLE I
WORD2VEC ACCURACY WHEN P = 20

accuracy
γ 1D → 3D 3D → 1D
5 0.00005 0.000042
7 0.00016 0.000084

The word2vec model shows an small increase in performance when a greater number

of negative samples per positive sample is used, particularly over several epochs; however,

too small or too large of a γ value results in the model not converging. I believe that this is at

least due in part to the fact that even if a key re-occurs multiple times, it is only trained on

once due to the structure of the model, where in a typical word2vec model it would generate a

number of positive and negative samples corresponding to the frequency of appearance in the

documents. Potential future optimizations to this model may include tracking a frequency

counter when generating the adjacency lists, where the number of positive samples is a

function of the frequency count rather than a fixed value. Also notable is the fact that 1D

to 3D translation generally outperformed 3D to 1D translation, although the cause is less

clear; there are generally fewer 1D keys than 3D keys but there are otherwise no significant

differences between the two.

While the word2vec model showed improvement with increasing numbers of negative

samples, the GloVe model was not able to converge despite significant experimentation with
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Fig. 3: GloVe training loss over multiple epochs.

hyperparameters. While local testing on a small scale with a validation set proved successful,

I was unable to replicate it on the larger dataset. Hyperparameter experimental values

included xmax values from 50-1000, alpha values of 0.5, 0.75, and 1.0, number of epochs from

3-10. Experimentation with reducing the number of values present in the co-occurrence

matrix was also done in an attempt to encourage faster convergence. The primary limitation

with the GloVe training was time - when using the full co-occurrence dataset, the model

was not reaching convergence over days of training; however, the smaller dataset does not

appear to support convergence either, as seen in Fig. 3.

Further improvements of this technique should be investigated. Similar techniques

for embedding alignment generally use translation reference points; while this may require

additional pre-processing and further domain knowledge that may not currently be available,

it could further improve the alignment process. Potential future research directions include
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utilizing back-translation to improve the translation; this has been proven to significantly

improve unsupervised learning methods for language translation models [45].

Given that the word2vec method outperformed the GloVe method I conclude that

local-based embedding techniques should be further explored for this specific problem. Word2vec

is one of the most common techniques used, however, similar and more advanced local tech-

niques such as FastText [46], ELMo (Embeddings from Langauge Models) [47], BERT (Bidi-

rectional Encoder Representations for Language Understanding) [48], or ULMFiT (Universal

Language Model Fine-tuning) [49]. In particular, I think FastText may provide an interest-

ing basis for future work due the way keys are generated; it may be able to find patterns

inside the keys that can be recognized across dimensions.
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5 CONCLUSION

Understanding the relationship between sequence and structure is a critical problem

in protein studies; protein structure comparison is at the heart of this problem. Using the

TSR-based key generation method, I examined the relationship between 1D and 3D keys

as a machine translation problem. As the TSR-based method is a local-global structural

comparison method, I investigated both local and global embedding techniques as potential

bases for the translation model.

Embeddings were generated based on co-occurrence frequencies; where co-occurrence

frequency represented the number of times the distance between two keys was less than or

equal to a variable d. Word2vec was used as the local embedding method, while GloVe

was chosen as the global embedding method. Both methods had individual challenges and

limitations on how the data could be adapted to be compatible with the models; additionally,

both methods faced challenges due to the amount of data being processed. A variety of

hyperparameters were tuned to improve these models, however, the results focus specifically

on the effect of the number of negative samples for the word2vec model, and the effect of

the weighting function parameter alpha on the GloVe model.

After training the sets of embeddings for 1D and 3D keys, they were aligned using

a rotational matrix found through Orthogonal Procrustes Analysis to ensure that the em-

bedding spaces trained separately could be overlapped. The translation model, given a key

and a variable P , returns the closest P embeddings from the opposite dimension. Due to

the number of keys present - approximately 340,000 unique 1D keys and 435,000 unique 3D

keys - I evaluated the models using a larger P to determine an accuracy score.

17



The global-based embedding technique (GloVe) struggled to converge despite exten-

sive experimentation with hyperparameters. In contrast, the local-based embedding tech-

nique (word2vec) showed improvement with increasing numbers of negative samples. Future

work should explore additional local-based embedding techniques like FastText or BERT to

further improve the translation model outlined in this work. Additional optimizations to the

word2vec model should be developed as well to improve its accuracy. Models with a variable

number of positive samples, alternative values of d, and a variety of hyperparameters such

as learning rate, number of epochs, should be explored, however, these specific optimizations

are outside the scope of this work.

In summary, I proposed a novel methodology for examining the relationship between

sequence and structure using TSR-based keys, developed a similarity function for under-

standing the relationship between keys in a singular dimension, and evaluated local and

global-based embedding techniques. This work shows that local embedding techniques have

a significantly improved performance over global-based embedding techniques, and suggests

several directions forward for similar work. The novel translation method introduced in

this paper provides a basis for future translation models seeking to examine the relationship

between sequence and structure.

18



BIBLIOGRAPHY

19



[1] Z. Li, L. Jaroszewski, M. Iyer, M. Sedova, and A. Godzik, “Fatcat 2.0: towards a better
understanding of the structural diversity of proteins,” Nucleic acids research, vol. 48,
no. W1, pp. W60–W64, 2020.

[2] J. Razmara, S. Fotoohi, and S. Parvizpour, “Flexible protein structure alignment
based on topology string alignment of secondary structure,” International Journal of
e-Education, e-Business, e-Management and e-Learning, vol. 4, no. 1, p. 19, 2014.

[3] S. Salem, M. J. Zaki, and C. Bystroff, “Flexsnap: flexible non-sequential protein struc-
ture alignment,” Algorithms for Molecular Biology, vol. 5, pp. 1–13, 2010.

[4] H.-W. Wang, C.-H. Chu, W.-C. Wang, and T.-W. Pai, “A local average distance descrip-
tor for flexible protein structure comparison,” BMC bioinformatics, vol. 15, pp. 1–13,
2014.

[5] A. Abyzov and V. A. Ilyin, “A comprehensive analysis of non-sequential alignments
between all protein structures,” BMC structural biology, vol. 7, pp. 1–20, 2007.

[6] P. Brown, W. Pullan, Y. Yang, and Y. Zhou, “Fast and accurate non-sequential protein
structure alignment using a new asymmetric linear sum assignment heuristic,” Bioin-
formatics, vol. 32, no. 3, pp. 370–377, 2016.

[7] C. Zhang and A. M. Pyle, “A unified approach to sequential and non-sequential structure
alignment of proteins, rnas, and dnas,” Iscience, vol. 25, no. 10, 2022.

[8] B. Zhu, “Protein local structure alignment under the discrete fréchet distance,” Journal
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APPENDIX A

TABLE II
PROTEIN DATA DETAILS

protein chain group group1 percent threshold all keys
1A25 A PKC PKABC 100 374660
1DSY A PKC PKABC 100 419220
1GMI A PKC PKABC 100 400995
3GPE A PKC PKABC 100 419220
3RDJ A PKC PKABC 100 419220
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