Electronic Theses and Dissertations

Title

Smart Nanocoated Structure for Energy Harvesting at Low Frequency Vibration

Date of Award

2012

Document Type

Dissertation

Degree Name

M.S. in Engineering Science

First Advisor

Jagdish P. Sharma

Second Advisor

Arunachalam M. Rajendran

Third Advisor

Tyrus A. McCarty

Abstract

Increasing demands of energy which is cleaner and has an unlimited supply has led development in the field of energy harvesting. Piezoelectric materials can be used as a means of transforming ambient vibrations into electrical energy that can be stored and used to power other devices. With the recent surge of micro scale devices, piezoelectric power generation can provide a convenient alternative to traditional power sources. In this research, a piezoelectric power generator composite prototype was developed to maximize the power output of the system. A lead zirconate titanate (PZT) composite structure was formed and mounted on a cantilever bar and was studied to convert vibration energy of the low range vibrations at 30 Hz–1000 Hz. To improve the performance of the PZT, different coatings were made using different percentage of Ferrofluid (FNP) and Zinc Oxide nanoparticles (ZnO) and binder resin. The optimal coating mixture constituent percentage was based on the performance of the composite structure formed by applying the coating on the PZT. The fabricated PZT power generator composite with an effective volume of 0.062 cm3 produced a maximum of 44.5 &mgr;W, or 0.717mW/cm3 at its resonant frequency of 90 Hz. The optimal coating mixture had the composition of 59.9%FNP + 40% ZnO + 1% Resin Binder. The coating utilizes the opto-magneto-electrical properties of ZnO and Magnetic properties of FNP. To further enhance the output, the magneto-electric (ME) effect was increased by subjecting the composite to magnetic field where coating acts as a magnetostrictive material. For the effective volume of 0.0062 cm 3, the composite produced a maximum of 68.5 &mgr;W, or 1.11mW/cm 3 at its resonant frequency of 90 Hz at 160 gauss. The optimal coating mixture had the composition of 59.9% FNP + 40% ZnO + 1% Resin Binder. This research also focused on improving the efficiency of solar cells by utilizing the magnetic effect along with gas plasma etching to improve the internal reflection. Preliminary results showed an improvement in solar cell efficiency from 14.6% to 17.1%.

Concentration/Emphasis

Mechanical Engineering

This document is currently not available here.

Share

COinS