Electronic Theses and Dissertations


Sikyun Bae

Date of Award


Document Type


Degree Name

M.S. in Engineering Science

First Advisor

Paul Scovazzo

Second Advisor

Clint Williford

Third Advisor

Ajit Sadana

Relational Format



Membrane-based gas dehumidification can have technical energy, and economical advantages over other dehumidification technologies. Because, it is simple to install, ease to operate, and take low process cost. Removal of water vapor from gases constitutes a significant expenditure of energy in our society. Dehydration via a membrane process would constitute wide spread energy savings. This thesis explores experimental issues involved with testing Room Temperature Ionic Liquid(RTIL)-membrane for dehumidifying gases. RTIL-membranes or Supported Ionic Liquid Membranes (SILMs) have advantageous performance for the separations of the gas pair CO2/CH4 and CO2/N2. Previous research did not separate the membrane mass transport resistance the feed and permeate gas film transport resistance. This project continues work that examines the feasibility of using Room Temperature Ionic Liquid Membrane for dehydration of gases. In the study, we need to determine: the upper limit on SILM permeance free of gas boundary resistances, the upper limit on water/gas selectivity. Thus, we suggest designed several new membrane modules, and the testing RTIL-membranes, with water miscible and water immiscible SILMs, for dehumidification.


Chemical Engineering



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.