Honors Theses

Date of Award

Spring 5-7-2022

Document Type

Undergraduate Thesis

Department

Biology

First Advisor

Courtney Roper

Second Advisor

Kristine Willett

Third Advisor

Robert Brian Doctor

Relational Format

Dissertation/Thesis

Abstract

Fine particulate matter (PM2.5) is a complex mixture of particles and sorbed chemicals that poses serious, adverse effects on human health such as increasing cardiovascular and respiratory morbidity and mortality. There is ongoing research into the impacts of PM2.5 of differing chemical compositions, sampling location, and the mechanisms for the observed health effects. To conduct these analytical and toxicology studies of PM2.5, researchers often split filters into sections. This process allows multiple, often destructive, assays to be performed. Our previous research showed chemical composition differences across PM2.5 filters. The goal of our study was to determine the validity of splitting filters for use in multiple analyses, analyze differences between an urban and rural sampling location, and examine trends between PM2.5 components and toxicology by assessing differences in chemical composition and oxidative potential within the same filter. Six PM2.5 filter samples collected from urban and rural locations were used. Each filter was split into quadrants, resulting in a total of 24 pieces; laboratory and blank filters were also prepared in the same manner. Each filter piece was extracted, concentrated, and then analyzed with dithiothreitol (DTT) assay run in triplicate to determine oxidative potential. Inductively coupled plasma mass spectrometry (ICP-MS) was run on all samples and controls to compare chemical composition of the filter quadrants (n=30). Stark differences in total elemental content and oxidative potential were observed between quadrants of the same filter. Correlation analysis between oxidative potential and elements yielded significant, positive correlations between oxidative potential normalized by PM2.5 mass and the elements Ag, Ba, Cr, and Ga at the rural location and a significant, negative correlation between oxidative potential normalized by PM2.5 mass and the element Cs at the urban location. This work will provide information about the feasibility of splitting PM2.5 filters for multiple analyses on the same sample and well as insight into the different sources and toxicology of PM2.5 components.

Accessibility Status

Searchable text

Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.