Faculty and Student Publications

Document Type

Article

Publication Date

1-1-2020

Abstract

Copyright: © 2020 Payne et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Rivers are characterized by rapid and continuous one-way directional fluxes of flowing, aqueous habitat, chemicals, suspended particles, and resident plankton. Therefore, at any particular location in such systems there is the potential for continuous, and possibly abrupt, changes in diversity and metabolic activities of suspended biota. As microorganisms are the principal catalysts of organic matter degradation and nutrient cycling in rivers, examination of their assemblage dynamics is fundamental to understanding system-level biogeochemical patterns and processes. However, there is little known of the dynamics of microbial assemblage composition or production of large rivers along a time interval gradient. We quantified variation in alpha and beta diversity and production of particle-associated and free-living bacterioplankton assemblages collected at a single site on the Lower Mississippi River (LMR), the final segment of the largest river system in North America. Samples were collected at timescales ranging from days to weeks to months up to a year. For both alpha and beta diversity, there were similar patterns of temporal variation in particle-associated and free-living assemblages. Alpha diversity, while always higher on particles, varied as much at a daily as at a monthly timescale. Beta diversity, in contrast, gradually increased with time interval of sampling, peaking between samples collected 180 days apart, before gradually declining between samples collected up to one year apart. The primary environmental driver of the temporal pattern in beta diversity was temperature, followed by dissolved nitrogen and chlorophyll a concentrations. Particle-associated bacterial production corresponded strongly to temperature, while free-living production was much lower and constant over time. We conclude that particle-associated and free-living bacterioplankton assemblages of the LMR vary in richness, composition, and production at distinct timescales in response to differing sets of environmental factors. This is the first temporal longitudinal study of microbial assemblage structure and dynamics in the LMR.

Relational Format

journal article

DOI

10.1371/journal.pone.0230945

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.