Faculty and Student Publications

Document Type

Article

Publication Date

5-28-2019

Abstract

© 2019 Author(s). The oxywater cation (H2OO+), previously shown to form barrierlessly in the gas phase from water cations and atomic oxygen, is proposed here potentially to possess a 2A″ ← 4A″ excitation leading to the H2⋯O2+ complex. This complex could then easily decompose into molecular hydrogen and the molecular oxygen cation. The present quantum chemical study shows that the necessary electronic transition takes place in the range of 1.92 eV (645 nm), in the orange-red range of the visible and solar spectrum, and dissociation of the complex only requires 5.8 kcal/mol (0.25 eV). Such a process for the abiotic, gas phase formation of O2 would only need to be photocatalyzed by visible wavelength photons. Hence, such a process could produce O2 at the mesosphere/stratosphere boundary as climate change is driving more water into the upper atmosphere, in the comet 67P/Churyumov-Gerasimenko where surprisingly high levels of O2 have been observed, or at gas-surface (ice) interfaces.

Relational Format

journal article

DOI

10.1063/1.5102073

Accessibility Status

Searchable text

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.