Faculty and Student Publications

Document Type

Article

Publication Date

12-6-2022

Abstract

Rovibrational spectral data for several tetra-atomic silicon carbide clusters (TASCCs) are computed in this work using a CCSD(T)-F12b/cc-pCVTZ-F12 quartic force field. Accurate theoretical spectroscopic data may facilitate the observation of TASCCs in the interstellar medium which may lead to a more complete understanding of how the smallest silicon carbide (SiC) solids are formed. Such processes are essential for understanding SiC dust grain formation. Due to SiC dust prevalence in the interstellar medium, this may also shed light on subsequent planetary formation. Rhomboidal Si2C2 is shown here to have a notably intense (247 km mol−1) anharmonic vibrational frequency at 988.1 cm−1 (10.1 μm) for ν2, falling into one of the spectral emission features typically associated with unknown infrared bands of various astronomical regions. Notable intensities are also present for several of the computed anharmonic vibrational frequencies including the cyclic forms of C4, SiC3, Si3C, and Si4. These features in the 6–10 μm range are natural targets for infrared observation with the James Webb Space Telescope (JWST)’s MIRI instrument. Additionally, t-Si2C2, d-Si3C, and r-SiC3 each possess dipole moments of greater than 2.0 D making them interesting targets for radioastronomical searches especially since d-SiC3 is already known in astrophysical media.

Relational Format

journal article

DOI

10.3389/fspas.2022.1074879

Accessibility Status

Searchable text

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.