Faculty and Student Publications

Document Type

Article

Publication Date

8-2-2021

Abstract

The E-hook of β-tubulin plays instrumental roles in cytoskeletal regulation and function. The last six C-terminal residues of the βII isotype, a peptide of amino acid sequence EGEDEA, extend from the microtubule surface and have eluded characterization with classic X-ray crystallographic techniques. The band position of the characteristic amide I vibration of small peptide fragments is heavily dependent on the length of the peptide chain, the extent of intramolecular hydrogen bonding, and the overall polarity of the fragment. The dependence of the E residue’s amide I ν(C=O) and the αCOO− terminal ν(C=O) bands on the neighboring side chain, the length of the peptide fragment, and the extent of intramolecular hydrogen bonding in the structure are investigated here via the EGEDEA peptide. The hexapeptide is broken down into fragments increasing in size from dipeptides to hexapeptides, including EG, ED, EA, EGE, EDE, DEA, EGED, EDEA, EGEDE, GEDEA, and, finally, EGEDEA, which are investigated with experimental Raman spectroscopy and density functional theory (DFT) computations to model the zwitterionic crystalline solids (in vacuo). The molecular geometries and Boltzmann sum of the simulated Raman spectra for a set of energetic minima corresponding to each peptide fragment are computed with full geometry optimizations and corresponding harmonic vibrational frequency computations at the B3LYP/6-311++G(2df,2pd) level of theory. In absence of the crystal structure, geometry sampling is performed to approximate solid phase behavior. Natural bond order (NBO) analyses are performed on each energetic minimum to quantify the magnitude of the intramolecular hydrogen bonds. The extent of the intramolecular charge transfer is dependent on the overall polarity of the fragment considered, with larger and more polar fragments exhibiting the greatest extent of intramolecular charge transfer. A steady blue shift arises when considering the amide I band position moving linearly from ED to EDE to EDEA to GEDEA and, finally, to EGEDEA. However, little variation is observed in the αCOO− ν(C=O) band position in this family of fragments.

Relational Format

journal article

DOI

10.3390/molecules26164790

Accessibility Status

Searchable text

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.