Faculty and Student Publications

Document Type

Article

Publication Date

6-1-2021

Abstract

Fifty four domestically produced cannabis samples obtained from different USA states were quantitatively assayed by GC-FID to detect 22 active components: 15 terpenoids and 7 cannabinoids. The profiles of the selected compounds were used as inputs for samples grouping to their geographical origins and for building a geographical prediction model using Linear Discriminant Analysis. The proposed sample extraction and chromatographic separation was satisfactory to select 22 active ingredients with a wide analytical range between 5.0 and 1,000 μg/mL. Analysis of GC-profiles by Principle Component Analysis retained three significant variables for grouping job (Δ9-THC, CBN, and CBC) and the modest discrimination of samples based on their geographical origin was reported. PCA was able to separate many samples of Oregon and Vermont while a mixed classification was observed for the rest of samples. By using LDA as a supervised classification method, excellent separation of cannabis samples was attained leading to a classification of new samples not being included in the model. Using two principal components and LDA with GC-FID profiles correctly predict the geographical of 100% Washington cannabis, 86% of both Oregon and Vermont samples, and finally, 71% of Ohio samples.

Relational Format

journal article

DOI

10.1556/1326.2020.00782

Accessibility Status

Searchable text

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.