Faculty and Student Publications

Document Type

Article

Publication Date

6-30-2019

Abstract

The scope of solid-state transitions, from melting temperatures down to 4.2 K, is described for six systems: KxVF3, RbxVF3, CsxVF3, KxCrF3, RbxCrF3, and CsxCrF3 (for x = 0.0 to 1.0). Connections are drawn between the compounds’ compositions and structures with the various transitions and ordering events. Upon solidification from the melt and gradual cooling to room temperature, a sequential descent of symmetry appears to occur, from high-symmetry perovskite phases, through possible reconstructive transitions, to phases designated α, β, and δ, within which ionic ordering finally sets in, forming many new lower-symmetry structures. Many stable new structures are seen at room temperature. Finally, at cryogenic temperatures, magnetic ordering sets in. Other anomalies for these systems are also described. The analysis underscores the overall correspondence of structure, composition, and magnetic properties in these compounds. This lowering of symmetry mirrors what has been chronicled for oxygen-bearing perovskites that have yielded so many high-temperature ceramic superconductors.

Relational Format

article

Comments

The Article Processing Charge (APC) for this article was partially funded by the UM Libraries Open Access Fund.

DOI

10.4236/ns.2019.116022

Accessibility Status

Searchable text

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.