Faculty and Student Publications

Document Type

Article

Publication Date

1-1-2020

Abstract

© 2013 IEEE. Energy efficiency is the major concern in hierarchical wireless sensor networks(WSNs), where the major energy consumption originates from radios for communication. Due to notable energy expenditure of long-range transmission for cluster members and data aggregation for Cluster Head (CH), saving and balancing energy consumption is a tricky challenge in WSNs. In this paper, we design a CH selection mechanism with a mobile sink (MS) while proposing relay selection algorithms with multi-user multi-armed bandit (UM-MAB) to solve the problem of energy efficiency. According to the definition of node density and residual energy, we propose a conception referred to as a Virtual Head (VH) for MS to collect data in terms of energy efficiency. Moreover, we naturally change the relay selection problem into permutation problem through employing the two-hop transmission in cooperative power line communication, which deals with long-distance transmission. As far as the relay selection problem is concerned, we propose the machine learning algorithm, namely MU-MAB, to solve it through the reward associated with an increment for energy consumption. Furthermore, we employ the stable matching theory based on marginal utility for the allocation of the final one-to-one optimal combinations to achieve energy efficiency. In order to evaluate MU-MAB, the regret is taken advantage to demonstrate the performance by using upper confidence bound (UCB) index. In the end, simulation results illustrate the efficacy and effectiveness of our proposed solutions for saving and balancing energy consumption.

Relational Format

journal article

DOI

10.1109/ACCESS.2020.2968562

Accessibility Status

Searchable text

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.