Electronic Theses and Dissertations

Date of Award


Document Type


Degree Name

M.S. in Physics


Physics and Astronomy

First Advisor

Kevin Beach

Second Advisor

Cecille Labuda

Third Advisor

Luca Bombelli

Relational Format



Langevin dynamics was used to model the folding and unfolding of simple, hairpin-like biomolecules whose ends are attached to laser-trapped beads, as occurs in optical tweezers experiments. The Langevin process was evolved numerically, using parameters motivated by real experimental systems. Folding trajectories were generated and analyzed to extract the folding rate as a function of the force applied to the beads. The observed rate was compared to the analytical predictions of Kramers' theory. Strong discrepancies were noted. The failure of the Kramers' theory was attributed to the slow dynamical response of the beads, which it does not account for. The results of this work highlight the necessity to include in the modeling the experimental systems that mediate force along the length of the biomolecule.

Included in

Physics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.