Electronic Theses and Dissertations

Date of Award

1-1-2016

Document Type

Dissertation

Degree Name

Ph.D. in Pharmaceutical Sciences

Department

Biomolecular Sciences

First Advisor

Robert J. Doerksen

Second Advisor

Samir A. Ross

Third Advisor

John M. Rimoldi

Relational Format

dissertation/thesis

Abstract

Due to the pressing need for new disease-modifying drugs for Alzheimer’s disease (AD), new treatment strategies and alternative drug targets are currently being heavily researched. One such strategy is to modulate protein kinases such as cyclin-dependent kinase 1 (CDK1), cyclin-dependent kinase 5 (CDK5), glycogen synthase kinase-3 (GSK-3α and GSK-3β), and the protein kinase RNA-like endoplasmic reticulum kinase (PERK). AD intervention by reduction of amyloid beta (Aβ) levels is also possible through development of protein kinase C-epsilon (PKC-ϵ) activators to recover α-secretase levels and decrease toxic Aβ levels, thereby restoring synaptogenesis and cognitive function. In this way, we aim to develop new AD drugs by targeting kinases that participate in AD pathophysiology.

In our studies, comparative modeling was performed to construct 3D models for kinases whose crystal structures have not yet been identified. The information from structurally similar proteins was used to define the amino acid residues in the ATP binding site as well as other important sites and motifs. We searched for the comstructural motifs and domains of GSK-3β, CDK5 and PERK. Further, we identified the conserved water molecules in GSK-3β, CDK5 and PERK through calculation of the degree of water conservation. We investigated the protein-ligand interaction profiles of CDK1, CDK5, GSK-3α, GSK-3β and PERK based on molecular dynamics (MD) simulations, which provided a time-dependent demonstration of the interactions and contacts for each ligand. In addition, we explored the protein-protein interactions between CDK5 and p25. Small molecules which target this interaction may offer a prospective therapeutic benefit for AD. In order to identify new modulators for protein kinase targets in AD, we implemented three virtual screening protocols. The first protocol was a combined ligand- and protein structure-based approach to find new PERK inhibitors. In the second protocol, protein structure-based virtual screening was applied to find multiple-kinase inhibitors through parallel docking simulations into validated models of CDK1, CDK5 and GSK-3 kinases. In the third protocol, we searched for potential activators of PKC-ϵ based on the structure of its C1B domain.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.