Electronic Theses and Dissertations

Date of Award


Document Type


Degree Name

Ph.D. in Engineering Science


Electrical Engineering

First Advisor

John N. Daigle

Second Advisor

Yixin Chen

Third Advisor

Lei Cao

Relational Format



The objective of this dissertation is to estimate the location of a sensor through analysis of signal strengths of messages received from a collection of mobile anchors. In particular, a sensor node determines its location from distance measurements to mobile anchors of known locations. We take into account the uncertainty and fluctuation of the RSS as a result of fading and take into account the decay of the RSS which is proportional to the transmitter-receiver distance power raised to the PLE. The objective is to characterize the channel in order to derive accurate distance estimates from RSS measurements and then utilize the distance estimates in locating the sensors. To characterize the channel, two techniques are presented for the mobile anchors to periodically estimate the channel's PLE and fading parameter. Both techniques estimate the PLE by solving an equation via successive approximations. The formula in the first is stated directly from MLE analysis whereas in the second is derived from a simple probability analysis. Then two distance estimates are proposed, one based on a derived formula and the other based on the MLE analysis. Then a location technique is proposed where two anchors are sufficient to uniquely locate a sensor. That is, the sensor narrows down its possible locations to two when collects RSS measurements transmitted by a mobile anchor, then uniquely determines its location when given a distance to the second anchor. Analysis shows the PLE has no effect on the accuracy of the channel characterization, the normalized error in the distance estimation is invariant to the estimated distance, and accurate location estimates can be achieved from a moderate sample of RSS measurements.


Emphasis: Electrical Engineering



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.