Electronic Theses and Dissertations

Date of Award

2014

Document Type

Dissertation

Degree Name

Ph.D. in Engineering Science

Department

Electrical Engineering

First Advisor

Atef Z. Elsherbeni

Second Advisor

Mustafa Matalgah

Third Advisor

Laura Sheppardson

Relational Format

dissertation/thesis

Abstract

Light-weight phased array antennas for aerospace and mobile applications require utilizing the same antenna aperture to provide multiple functions with dissimilar radiation pattern specifications (e.g., multiband operation for communications and tracking). Multi-functional antennas provide advantages over aggregate antenna clusters by reducing space requirements, and can aid in the optimal placement of all required apertures to provide adequate isolation between channels. Furthermore, the combination of antenna apertures into a common geometry mitigates co-site installation issues by addressing interference within the integrated radiator design itself as opposed to the extensive analysis which is required to configure multiple radiators in close proximity. The combination of multiple radiators into a single aperture can only be achieved with the proper selection of antenna topology and accompanying feed network design. This research proposes a new technique for the design of multiband arrays in which a common aperture is used. Highlighted by this method is the integration of a tri-band array comprised of an x-band (12 ghz) microstrip patch array on a superstrate above printed dual-band (1 and 2 ghz) slot loop antenna arrays in an octave-spaced lattice. The selection of a ground backing reflector is considered for improved gain and system packaging, but restricts the utility of the design principally due to the î›/4 depth of the ground plane. Therefore, a novel multiband high impedance surfaces (his) is proposed to load the slot apertures for reduced height. The novel techniques proposed here will enable the design of a low profile and conformal single aperture supporting multi-band and multi-functional operations.

Concentration/Emphasis

Emphasis: Electromagnetics

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.