Honors Theses

Date of Award

Spring 5-12-2023

Document Type

Undergraduate Thesis

Department

Mathematics

First Advisor

Samuel Lisi

Second Advisor

Laura Sheppardson

Third Advisor

Ruaa Al Juboori

Relational Format

Dissertation/Thesis

Abstract

The classic Kermack-McKendrick model of mathematical epidemiology suggests that a population is only in equilibrium when there is no disease present. In the modern era, we have several cyclic infectious diseases that show no signs of eradication, despite global health measures. In this thesis, we introduce a coefficient of waning immunity in order to produce a modified Kermack-McKendrick model and analyze whether the model yields system stability with a certain amount of infection present. Ultimately, the model is incongruent with real-world case data, with its most glaring failure being exponential dampening of the height of each disease case peak due to the system's complex eigenvalues.

Accessibility Status

Searchable text

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.