Faculty and Student Publications

Document Type

Article

Publication Date

12-1-2022

Abstract

The cannabinoid receptors CB1R and CB2R are members of the G protein-coupled receptor (GPCR) family. These receptors have recently come to light as possible therapeutic targets for conditions affecting the central nervous system. However, because CB1R is known to have psychoactive side effects, its potential as a drug target is constrained. Therefore, targeting CB2R has become the primary focus of recent research. Using various molecular modeling studies, we analyzed the active, inactive, and intermediate states of both CBRs in this study. We conducted in-depth research on the binding properties of various groups of cannabinoid modulators, including agonists, antagonists, and inverse agonists, with all of the different conformational states of the CBRs. The binding effects of these modulators were studied on various CB structural features, including the movement of the transmembrane helices, the volume of the binding cavity, the internal fluids, and the important GPCR properties. Then, using in vitro experiments and computational modeling, we investigated how vitamin E functions as a lipid modulator to influence THC binding. This comparative examination of modulator binding to CBRs provides significant insight into the mechanisms of structural alterations and ligand affinity, which can directly help in the rational design of selective modulators that target either CB1R or CB2R.

Relational Format

journal article

DOI

10.3390/life12122137

Accessibility Status

Searchable text

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.