Faculty and Student Publications

Document Type

Article

Publication Date

5-1-2022

Abstract

Diabetics have an increased risk for heart failure due to cardiac fibroblast functional changes occurring as a result of AGE/RAGE signaling. Advanced glycation end products (AGEs) levels are higher in diabetics and stimulate elevated RAGE (receptor for AGE) signaling. AGE/RAGE signaling can alter the expression of proteins linked to extracellular matrix (ECM) remodeling and oxidative stressors. Our lab has identified a small GTPase, Rap1a, that may overlap the AGE/RAGE signaling pathway. We sought to determine the role Rap1a plays in mediating AGE/RAGE changes and to assess the impact of isolated collagen on further altering these changes. Primary cardiac fibroblasts from non-diabetic and diabetic mice with and without RAGE expression and from mice lacking Rap1a were cultured on tail collagen extracted from non-diabetic or diabetic mice, and in addition, cells were treated with Rap1a activator, EPAC. Protein analyses were performed for changes in RAGE-associated signaling proteins (RAGE, PKC-ζ, ERK1/2) and downstream RAGE signaling outcomes (α-SMA, NF-κB, SOD-2). Increased levels of endogenous AGEs within the diabetic collagen and increased Rap1a activity promoted myofibroblast transition and oxidative stress, suggesting Rap1a activity elevated the impact of AGEs in the diabetic ECM to stimulate myofibroblast transition and oxidative stress.

Relational Format

journal article

DOI

10.3390/ijms23094480

Accessibility Status

Searchable text

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.