Faculty and Student Publications

Document Type

Article

Publication Date

3-1-2021

Abstract

Cardiovascular disease, specifically heart failure, is a common complication for individu-als with type 2 diabetes mellitus. Heart failure can arise with stiffening of the left ventricle, which can be caused by “active” cardiac fibroblasts (i.e., myofibroblasts) remodeling the extracellular matrix (ECM). Differentiation of fibroblasts to myofibroblasts has been demonstrated to be an outcome of AGE/RAGE signaling. Hyperglycemia causes advanced glycated end products (AGEs) to accu-mulate within the body, and this process is greatly accelerated under chronic diabetic conditions. AGEs can bind and activate their receptor (RAGE) to trigger multiple downstream outcomes, such as altering ECM remodeling, inflammation, and oxidative stress. Previously, our lab has identified a small GTPase, Rap1a, that possibly overlaps the AGE/RAGE signaling cascade to affect the downstream outcomes. Rap1a acts as a molecular switch connecting extracellular signals to intracellular responses. Therefore, we hypothesized that Rap1a crosses the AGE/RAGE cascade to alter the expression of AGE/RAGE associated signaling proteins in cardiac fibroblasts in type 2 diabetic mice. To delineate this cascade, we used genetically different cardiac fibroblasts from non‐diabetic, dia-betic, non‐diabetic RAGE knockout, diabetic RAGE knockout, and Rap1a knockout mice and treated them with pharmacological modifiers (exogenous AGEs, EPAC, Rap1a siRNA, and pseudo-substrate PKC‐ζ). We examined changes in expression of proteins implicated as markers for myofi-broblasts (α‐SMA) and inflammation/oxidative stress (NF‐κB and SOD‐1). In addition, oxidative stress was also assessed by measuring hydrogen peroxide concentration. Our results indicated that Rap1a connects to the AGE/RAGE cascade to promote and maintain α‐SMA expression in cardiac fibroblasts. Moreover, Rap1a, in conjunction with activation of the AGE/RAGE cascade, increased NF‐κB expression as well as hydrogen peroxide concentration, indicating a possible oxidative stress response. Additionally, knocking down Rap1a expression resulted in an increase in SOD‐1 expression suggesting that Rap1a can affect oxidative stress markers independently of the AGE/RAGE signaling cascade. These results demonstrated that Rap1a contributes to the myofibroblast popula-tion within the heart via AGE/RAGE signaling as well as promotes possible oxidative stress. This study offers a new potential therapeutic target that could possibly reduce the risk for developing diabetic cardiovascular complications attributed to AGE/RAGE signaling.

Relational Format

journal article

DOI

10.3390/cells10030557

Accessibility Status

Searchable text

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.