Faculty and Student Publications

Document Type

Article

Publication Date

1-1-2021

Abstract

Background. Benzoxazole derivatives have different biological activities. In pursuit of designing novel chemical entities with antiprotozoal and antimicrobial activities, benzoxazolyl aniline was utilized as a privileged scaffold of a series of (3-benzoxazole-2-yl) phenylamine derivatives, 3-benzoxazoloyl acetamide, and butyramide derivatives. Methods. These novel analogs were synthesized in straightforward simple chemistry without any quantitative chromatographic separations in reasonable yields. The biological evaluation of all target compounds as potential antimalarial, antileishmanial, antitrypanosomal, and antimicrobial agents was performed by various well-established cell-based methods. Results. Compounds 6d and 5a showed promising biological screening data. The amidation of 3-benzoxazolyl aniline 1 with the chloroacetyl functional group resulted in a good antimalarial activity and showed moderate inhibitory activities against leishmanial and trypanosomal spp. Moreover, chloroacetyl functionalization of benzoxazolyl aniline serves as a good early goal for constructing and synthesizing new antimicrobial and antiprotozoal agents. The molecular docking study rationalizes the relative inhibitory activity of compound 5a as an antimalarial agent with the deregulation of PfPNP activity which has emerged as a major mechanism of these targets.

Relational Format

journal article

DOI

10.1155/2021/6631868

Accessibility Status

Searchable text

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.