Location
Coulter Hall, Room 211
Start Date
20-5-2017 10:00 AM
Description
Nondynamic and strong correlation imposes the major challenge to the current density functional theory (DFT), and counts for the majority of the failures of DFT in a variety of areas such as catalysis, organic open-shell molecules and materials. The problem is often characterized as multireference in nature. In this talk, we will present a density functional model based on single-determinant Kohn-Sham density functional theory [1]. It combines Becke’13 method with a new model for kinetic correlation via adiabatic connection based on physical arguments and some exact conditions for both the weak and strong correlations. The result is a single-term functional for correlation of all strength, and is named as KP16/B13 (Kong-Proynov’16/Becke’13). KP16/B13 is the first model of its kind implemented with self-consistent field. The preliminary results show that the model, with only three empirical parameters, recovers the majority of left-right nondynamic/strong correlation upon bond dissociation and performs well for near equilibrium properties such as heats of formation, singlet−triplet energy splittings of diradicals. It also describes well a linear chain of H atoms with many strongly correlated electrons. The new development offers the hope for efficient computation of systems with multireference in nature.
- Jing Kong, Middle Tennessee State University
- Emil Proynov, Middle Tennessee State University
Relational Format
Conference proceeding
Recommended Citation
Kong, Jing, "IL12. Density Functional Theory Method for Nondynamic/Strong Correlation" (2017). Southeast Theoretical Chemistry Association Meeting (SETCA). 27.
https://egrove.olemiss.edu/setca/2017/schedule/27
IL12. Density Functional Theory Method for Nondynamic/Strong Correlation
Coulter Hall, Room 211
Nondynamic and strong correlation imposes the major challenge to the current density functional theory (DFT), and counts for the majority of the failures of DFT in a variety of areas such as catalysis, organic open-shell molecules and materials. The problem is often characterized as multireference in nature. In this talk, we will present a density functional model based on single-determinant Kohn-Sham density functional theory [1]. It combines Becke’13 method with a new model for kinetic correlation via adiabatic connection based on physical arguments and some exact conditions for both the weak and strong correlations. The result is a single-term functional for correlation of all strength, and is named as KP16/B13 (Kong-Proynov’16/Becke’13). KP16/B13 is the first model of its kind implemented with self-consistent field. The preliminary results show that the model, with only three empirical parameters, recovers the majority of left-right nondynamic/strong correlation upon bond dissociation and performs well for near equilibrium properties such as heats of formation, singlet−triplet energy splittings of diradicals. It also describes well a linear chain of H atoms with many strongly correlated electrons. The new development offers the hope for efficient computation of systems with multireference in nature.
- Jing Kong, Middle Tennessee State University
- Emil Proynov, Middle Tennessee State University
Comments
Download includes an expanded abstract with collaborators, institutional affiliations and cited references.