Location

Coulter Hall, Room 211

Start Date

20-5-2017 10:00 AM

Description

Nondynamic and strong correlation imposes the major challenge to the current density functional theory (DFT), and counts for the majority of the failures of DFT in a variety of areas such as catalysis, organic open-shell molecules and materials. The problem is often characterized as multireference in nature. In this talk, we will present a density functional model based on single-determinant Kohn-Sham density functional theory [1]. It combines Becke’13 method with a new model for kinetic correlation via adiabatic connection based on physical arguments and some exact conditions for both the weak and strong correlations. The result is a single-term functional for correlation of all strength, and is named as KP16/B13 (Kong-Proynov’16/Becke’13). KP16/B13 is the first model of its kind implemented with self-consistent field. The preliminary results show that the model, with only three empirical parameters, recovers the majority of left-right nondynamic/strong correlation upon bond dissociation and performs well for near equilibrium properties such as heats of formation, singlet−triplet energy splittings of diradicals. It also describes well a linear chain of H atoms with many strongly correlated electrons. The new development offers the hope for efficient computation of systems with multireference in nature.

  • Jing Kong, Middle Tennessee State University
  • Emil Proynov, Middle Tennessee State University

Relational Format

Conference proceeding

Comments

Download includes an expanded abstract with collaborators, institutional affiliations and cited references.

Share

COinS
 
May 20th, 10:00 AM

IL12. Density Functional Theory Method for Nondynamic/Strong Correlation

Coulter Hall, Room 211

Nondynamic and strong correlation imposes the major challenge to the current density functional theory (DFT), and counts for the majority of the failures of DFT in a variety of areas such as catalysis, organic open-shell molecules and materials. The problem is often characterized as multireference in nature. In this talk, we will present a density functional model based on single-determinant Kohn-Sham density functional theory [1]. It combines Becke’13 method with a new model for kinetic correlation via adiabatic connection based on physical arguments and some exact conditions for both the weak and strong correlations. The result is a single-term functional for correlation of all strength, and is named as KP16/B13 (Kong-Proynov’16/Becke’13). KP16/B13 is the first model of its kind implemented with self-consistent field. The preliminary results show that the model, with only three empirical parameters, recovers the majority of left-right nondynamic/strong correlation upon bond dissociation and performs well for near equilibrium properties such as heats of formation, singlet−triplet energy splittings of diradicals. It also describes well a linear chain of H atoms with many strongly correlated electrons. The new development offers the hope for efficient computation of systems with multireference in nature.

  • Jing Kong, Middle Tennessee State University
  • Emil Proynov, Middle Tennessee State University