Date of Award
2019
Document Type
Thesis
Degree Name
M.S. in Engineering Science
Department
Geology and Geological Engineering
First Advisor
Lance Yarbrough
Second Advisor
Greg Easson
Third Advisor
Brian Platt
Relational Format
dissertation/thesis
Abstract
The Guarumen area of Venezuela is a tectonically active region that is approximately 1,640 mi2 across the northern portions of the Barinas Basin and the foothills of the Mérida Andes. It is structurally influenced by the Caribbean plate to the north, the Nazca plate to the west, and the Maracaibo block against the Guyana Shield of the South American Plate. These result in an oblique boundary that gives rise to the fold-and-thrust belt of the Mérida Andes to the west, and the Caribbean Mountain system to the north, in concordance to the right-lateral shearing that is evidenced by the Boconó fault system. The goal of this research was to investigate the geological setting of northwestern Venezuela and further understand the geologic controls of the region, as it has become a region of interest for mineral, oil, and gas exploration. To achieve the goal, hyperspectral and multispectral data analysis were used to address land cover types by reducing hyperspectral and multispectral spectra to unique endmembers for use in classification. Then, provide an accurate land cover analysis using derived endmembers to characterize the outcomes concerning the influence of geological phenomena, and determine if microclimate analysis using satellite-based land surface temperature data can be effectively used to infer geologic structure or geomorphology, particularly soils and vegetation. Based on the hyperspectral data, an in-depth endmember analysis was conducted with image-derived spectra. These spectra were plotted in comparison with spectral libraries to identify the anomaly classification. It was determined that the natural vegetation make up of a specific region helped identify soil type. The Guarumen area was influenced by the sediment transport of the alluvial stream geomorphology of both the Merida Andes and the Caribbean Mountain System and both its respective geologies. The microclimate analysis shoa land surface temperature comparison of two separate Landscenes. Both shoa similar mean temperature range due to Venezuela’s tropical climate, but differed in other classifications. Results from this research show that remote sensing applications with limited field data can provide accurate land cover analysis concerning geological phenomena, but further field analysis is needed for more detailed classification.
Recommended Citation
Ricketts, Tyler Edward, "Interpreting Vegetation and Soil Anomalies in the Guarumen Area of Northwestern Venezuela Using Remote Sensing Applications" (2019). Electronic Theses and Dissertations. 1666.
https://egrove.olemiss.edu/etd/1666